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Reflection Groups 
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§1. Introduction 

In this note we shall show that the moduli space of curves of genus 
4 is birational to an arithmetic quotient of the 9-dimensional complex 
ball and that the arithmetic subgroup is commensurable with one of 
Deligne-Mostow's complex reflection groups related to hypergeometric 
functions. Let C be a non-hyperelliptic curve of genus 4. Then its 
canonical model is the intersection of a quadric Q and a cubic S in P 3 . 

Let X be the minimal resolution of the triple cover of Q branced along 
C which is a K3 surface with an automorphism a- of order 3. The period 
domain of the pairs (X, a-) is a 9-dimensional complex ball B. This gives 
an isomorphism between the moduli space of non-hyperelliptic curves 
of genus 4 and an arithmetic quotient (B \ H.)/f where H. is the union 
of hyperplanes of B and r is an arithmetic subgroup of Aut(B) (§2, 
Theorem 1). We remark that H. consists of two components Hn and H.h 
so that a generic point of Hn (resp. H. h) corresponds to a curve of genus 
4 with a node (resp. a hyperelliptic curve of genus 4 plus a point on the 
quotient of the hyperelliptic curve by the hyperelliptic involution) (§3, 
Theorem 2). The method works in some other cases, for example, the 
moduli space of universal curves of genus 2, 3 or del Pezzo surfaces of 
degree 1~4 (see Remarks 1~6). 

The above K3 surface X has the structure of an elliptic fibration 
1r: X ---+ P 1 which is induced from a ruling on Q. The automorphism 
a- acts on each fiber of 1r as an automorphism of order 3, and hence the 
functional invariant of 1r is constant. Moreover, for a generic X, this fi­
bration has twelve singular fibers of type I I in the sense of Kodaira [Ko], 
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and hence this fibration gives twelve points on P 1 . This suggests a rela­
tion between rand Deligne-Mostow's complex reflection groups [DM], 
[Ml], [M2]. In fact, in §4, Theorem 3, we shall show that our group r is 
commensurable with the largest r 11- in Deligne-Mostow's list where 

1 1 1 1 1 1 1 1 1 1 1 1 
J.l = (J.Li) = ( 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6) 

(No.1 in Deligne-Mostow's list [M2] and No.lO in Thurston's list [T]). 
In [K2], we showed that the moduli space of curves of genus three is 

also birational to an arithmetic quotient of the 6-dimensional complex 
ball. In this case we take the 4-cyclic cover of P 2 branched along a 
smooth plane quartic curve. Then we have a K3 surface with an auto­
morphism of order 4. However this arithmetic subgroup does not appear 
in Deligne-Mostow's list (the corresponding K3 surface has no elliptic 
fibration invariant under the automorphism of order 4). We remark that 
the moduli space of curves of hyperelliptic curves of genus 3 or plane 
quartic curves with a node is birational to an arithmetic quotient of 
the 5-dimensional complex ball ( [K2], §4, 5). Both of these arithmetic 
subgroups are commensurable with the group r 11- where 

1 1 1 1 1 1 1 1 
J.l = (J.Li) = (4, 4' 4' 4' 4' 4' 4' 4) 

(No.8 in Deligne-Mostow's list [M2] and No.3 in Thurston's list [T]). 
For recent works related to this paper, we refer the reader to All­

cock, Carlson, Toledo [ACTl], [ACT2], van Geemen, Izadi [vG], [vGI], 
Heckman, Looijenga [HL], Vakil [V]. 

In this paper we shall use the following notation: A lattice L is a 
free Z-module of finite rank endowed with an integral non-degenerate 
symmetric bilinear form (, ) . A lattice L is even if ( x, x) is even for each 
x E £, and unimodular if its discriminant is ±1. For a lattice L, we 
denote by L * the dual of L, and by AL the quotient group L * / L. Let L 
be an even lattice. We extend the bilinear form on L to the one on L * 
and define 

qL: AL----+ Q/2Z, qL(x+L) = (x,x) +2Z, (x E £*) 

which is called the discriminant quadratic form. We denote by Am, Dn, 
Ek (m ;:::: 1, n ;:::: 4, k = 6, 7, 8) the negative definite lattice which is 
defined by the Cartan matrix of type Am, Dn, Ek respectively. We also 

denote by U the lattice of signature (1, 1) defined by the matrix (~ ~) . 
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For a lattice Land an integer m, L(m) is the lattice whose bilinear form 
is the one on L multiplied by m. 

Acknowledgement. The author would like to thank Daniel Allcock, 
Igor Dolgachev and Tomohide Terasoma for valuable conversations. He 
also would like to thank the referee for useful suggestions. 

§2. A ball quotient structure 

In this section, we shall show that the moduli space of curves of genus 
4 is birational to an arithmetic quotient of a 9-dimensional complex ball 
by using the periods of K3 surfaces with an automorphism of order 3. 

Let C be a smooth non-hyperelliptic curve of genus 4. First we 
assume that C has no vanishing theta constants. Then its canonical 
model is the complete intersection of a smooth quadric Q and a cubic S 
in P 3 . Let X be the 3-cyclic cover of Q branched along C which is a K3 
surface with an automorphism u of order 3. We denote by L the second 
cohomology group H 2 (X, Z). Together with the cup product, L has the 
structure of a lattice which is even, unimodular and of signature (3, 19). 
Let E (resp. F) be the inverse image of a general fiber of one of the 
rulings of Q (resp. another ruling of Q). Then E, Fare smooth elliptic 
curves with (E, F) = 3. Since u has a fixed curve, u acts on H 0 (X, [!~) 
as a multiplication by a cube root w of unity (Nikulin [N2], §5). We 
remark that U(3) = H 2 (X, Z)(a). We have a 9-dimensional family of K3 
surfaces with an automorphism of order 3. The transcendental lattice 
of a generic member of this family has rank 20 (see the definition of the 
period domain Bin this section). Hence if C is generic, then the Picard 
lattice Sx of X is generated byE and F, and isometric to U(3). 

Next we consider the case that C has a vanishing theta constant. 
Then its canonical model is the complete intersection of a quadric cone 
Q' and a cubicS. By taking the minimal resolution of the triple covering 
of Q' branched along C, we have a K3 surface X' with an automorphism 
u of order 3. Let R 1 , R 2 , R 3 be three smooth rational curves obtained 
by resolution of three rational double points of type A1 of the triple 
cover of Q'. Let F be the pull back of a fiber of the ruling of Q'. Then 
F and R 1 + R 2 + R3 generate the invariant part H 2 (X', Z)(a) which 
is isomorphic to U(3). For generic C with a vanishing theta constant, 
the Picard lattice of X' is generated by F, R1, Rz, R3 and isomorphic 
to U EB A2 (2). By a result of Brieskorn [B], (X',u) is a deformation of 
(X, u). Thus the action of u on the cohomology group does not depend 
on the condition whether C has a vanishing theta constant or not. It is 
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known that a* fixes no non-zero vectors in T®Q (Nikulin [N2], Theorem 
3.1). 

Let 
T = U(3) EEl U EEl Es EEl Es 

which is isometric to the orthogonal complement of H 2 (X, Z)(u) (~ 
U(3)) in L. Let e,f (resp. e',f') be a basis of U(3) (resp. U) with 
e2 = P = 0, (e,f) = 3 (resp. (e')2 = (!')2 = 0, (e',J') = 1). Let P1 be 
an isometry of U(3) EEl U defined by 

Pl(e) = -2e + 3e', PI(!)= f + 3f', 

Pl(e') = -e + e', P1U') =-f- 2f'. 

Note that p1 is of order 3, has no non-zero fixed vectors in U(3) EEl U 
and acts on the discriminat of U(3) EEl U trivially. On the other hand, it 
is known that the root lattice E 8 can be regarded as a complex lattice 
defined over the Eisenstein integers (Allcock [A], §5). In other words, 
there exists an isometry p2 on E8 of order 3 which has no non-zero fixed 
vectors in E 8 . We denote by p the isometry ofT= U(3) EEl U EEl E 8 EEl Es 
defined by 

P = (Pb pz, Pz). 

Note that p has order 3 and has no non-zero fixed vectors. Since pacts 
on T* /T trivially, it can be extended to an isometry of L = U EEl U EEl U EEl 
E8 EEl E 8 which acts on the orthogonal complement U(3) ofT trivially. 
For simplicity, we also denote by the same p this isometry of L. 

Now we shall define the period domain for the above K3 surfaces. 
Let X be a K3 surface with an automorphism a of order 3 of above 
type. A marking of the pair (X, a) is an isometry 

with ax o a* o a_x-1 = p or p-1. In the proof of Theorem 1, we shall 
show the existence of a marking for each pair. (Note that to prove the 
existence of a marking, it is enough to show this for some pair (X, a) 
because our 9-dimensional family of K3 surfaces is irreducible). Let 

be the decomposition into eigenspaces Tw, Tw of p with eigenvalues w, w 
respectively. Put 

B = { z E P (Tw) : (z, z) > 0}, r = { ¢ E 0 (T) : ¢ o p = p o ¢}. 
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Note that B is a bounded symmetric domian of type h,9 , that is, a 
9-dimensional complex ball. Also note that if z E B, then (z, z) = 0. 
Hence B is contained in a IS-dimensional bounded symmetric domain D 
of type IV: 

D = { z E P(T ®C) : (z, z) = 0, (z, z) > 0}. 

We call a vector r in T with r 2 = -2 a root. For a root r, we define 

Hr ={wEB: (r,w) = 0}, H = UHr 
r 

where r varies over the set of all roots. It is known that for each X with 
an automorphism of order 3, (H 2 (X, z)<a*>)J. n Sx contains no ( -2)­
vectors (Namikawa [Na], Theorem 3.10). Hence a marked K3 surface 
(X, a-, ax) of above type determines the point ax(wx) in B \ H where 
wx is a nowhere vanishing holomorphic 2-form on X. Thus B \His the 
period domian of marked K3 surfaces of above type. 

We remark that the natural map from O(U(3)) to O(qu(3 )) is surjec­
tive. In fact O(qu(3J) is isomorphic to (Z/2Z)2 . The following isometries 
of U(3) induce generators of O(qu(3)): let e, f be a basis of U(3) with 
e2 = p = 0, (e, f) = 3. Then, with respect to this basis, the involutions 

generate O(qu(3 ) ). This implies that the restriction map from O(L) to 
O(T) is surjective (Nikulin [Nl] Proposition 1.6.1). Since pI U(3) = 1, 
we can easily see that the natural map from 

f'={'rEO(L):/op=pol} 

to r is surjective. 

Theorem 1. (B \ H) jr is isomorphic to the moduli space of non­
hyperelliptic curves of genus 4. 

Proof. Let z E B ( C D). It follows from the surjectivity of the 
period map (Kulikov [Ku], Persson, Pinkham [PP]) that there exist a 
K3 surface X and an isometry 

with ax(wx) = z where wx is a nowhere vanishing holomorphic 2-form 
on X. 
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In the following, we shall show that if z E B \ 1i, then X has an 
automorphism a with ax oa* oa_X1 = p, and X is obtained as a 3-cyclic 
cover of Q or Q' branched along a smooth curve C of genus 4 where Q is 
a smooth quadric and Q' is a quadric cone. We may identify H 2 (X, Z) 
with L by ax. 

First we remark that by the assumption z fJ. 1i, (£(P))_inz_i contains 
no roots. Hence p is induced from an automorphism a of X of order 
3 (Namikawa [Na), Theorem 3.10). Since a acts on H 0 (X,03c) as a 
multiplication by w, it acts on the tangent space of a fixed point as 

(1 0) (w2 0) 
0 w ' 0 w2 · • 

Hence the fixed locus of a consists of the disjoint union of smooth curves 
and isolated fixed points. Note that the trace of p on L is -8. It follows 
from the topological Lefschetz fixed point formula that a fixes a smooth 
curve C of genus g( C) > 1. Then by the Hodge index theorem, C is 
a unique fixed curve with g(C) > 0. On the other hand, £(P) = U(3) 
contains no ( -2)-vectors, a has only one fixed curve C. Let k be the 
number of isolated fixed points of a. Then by the topological Lefschetz 
fixed point formula, we have 

k + 2 - 2g( C) = -6. 

This implies g( C) ?: 4. Let { e,!} be a basis of £(P) = U(3) with 
e2 = P = 0, (e, f)= 3. By the Riemann-Roch theorem, we may assume 
that both e and f are effective. 

Claim. Either e or f is nef. 

Proof of Claim. Assume that e is not nef. Then there exists a 
smooth rational curve R with (R, e) < 0. Since £(P) contains no ( -2)­
vectors, R = r' + r" where r' E U(3)* and r" E (U(3)_i )*, r" =/= 0. 
Since (£(P))_i nz_i is negative definite, (r") 2 < 0. Put r' = (me+nf)/3 
(m, n E Z). Since (R, e) < 0, n < 0. If m ::; 0, then r' is not effective 
because we assume that e and f are effective. This contradicts the 
fact that 3r' = R + a(R) + a 2 (R) is effective. Hence m > 0. By 
the equation -2 = 2mn/3 + (r") 2 and (r") 2 < 0, we have (m, n) = 
(1, -1), (1, -2), (2, -1). In the last two cases, we have (3r') 2 = (R + 
a(R) + a 2 (R)) 2 = -12. On the other hand, R 2 = -2 and R =I= a(R), 
and hence (R + a(R) + a 2 (R))2 ?: -6. This is a contradiction. Thus 
(m, n) = (1, -1) and e- f = 3r' is effective. On the other hand, iff 
is not nef, the same argument shows that f - e is effective. This is a 
contradiction. Hence we have proved the assertion. Q.E.D. for Claim. 
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Thus we may assume that e is nef , in other words, it gives an elliptic 
fibration 

n : X ---+ pl. 

Let E be a general fiber of n. Let C = ae + bf. Then 6ab = C 2 = 
2g( C)- 2 2: 6. If b > 1, then C · E 2: 6. Since Cis the fixed curve of cr, cr 
acts on the base of 1T trivially. Hence cr acts on E as an automorphism. 
Now by applying the Hurwitz formula to the pair (E, cr), we have a 
contradiction. Hence b = 1. Thus we have the following two cases: 

Case 1. f is nef. 

Case 2. f is not nef. 

In Case 1, a= b = 1, g(C) = 4 and k = 0. By taking the quotient 
of X by cr, we have a smooth quadric surface X/(cr). 

In Case 2, there exists a smooth rational curve R so that (R, f) < 0. 
Since U(3) contains no ( -2)-vectors, R is not contained in U(3). Let 
R 1 = cr(R), R 2 = cr2 (R). Then R + R 1 + R 2 E U(3). By the same 
argument as in the proof of the claim, R + R1 + Rz = -e +f. Hence 
(R, R 1 ) = 0. Since Cis the fixed locus of cr, (C, R) = 0. Hence a= b = 1, 
g( C) = 4 and k = 0. Now by taking the quotient by cr and contracting 
the ( -2)-curve which is the image of R, R 1 , R 2 , we have a quadric cone. 

Finally we shall show that the isomorphism class of C is uniquely 
determined by its image in (B\ H)jr. Let C and C' be non-hyperelliptic 
curves of genus 4. Let (X, cr), (X', cr') be the corresponding K3 surfaces 
with automorphisms cr, cr' of order 3. Assume that their periods are the 
same in (B \ H)jr. Since the natural map f' ---+ r is surjective, there 
exists a Hodge isometry 

with r.p ocr* = (cr')* o r.p. Since (H2 (X, Z)<a-*>)j_ n Sx contains no ( -2)­
vectors, C is an ample class. Obviously r.p( C) = C'. It now follows 
from the Torelli theorem for K3 surfaces (Piatetskii-Shapiro, Shafare­
vich [PS]) that there exists an isomorphism f : X' ---+ X with f* = r.p 
and f ocr'= cro f. By taking the quotient of X, X' by cr, cr' respectively, 
f induces an isomorphism between the canonical models of C and C'. 
Q.E.D. 

Remark 1. The following was suggested by I. Dolgachev. In the same 
way as above, we can see that the moduli spaces M 2 ,1 , M 3 ,1 of pointed 
curves of genus 2 and 3 have a ball quotient structure. Let ( C, q) be 
a pair of a smooth curve of genus 2 (resp. genus 3) and q E C. Then 
the linear system I Kc + 2q I gives a plane quartic curve C with a cusp 
(resp. a curve C of bidegree (3,3) with a cusp in a smooth quadric Q). 
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By taking the 4-cyclic cover of P 2 (resp. the triple cover of Q) branched 
along C and then by taking the minimal resolution of rational double 
point, we have a K3 surface with an automorphism of order 4 (resp. 
order 3). This correspondence gives a birational map from M 2 ,1 (resp. 
M 3 ,I) to an arithmetic quotient of 4-dimensional complex ball (resp. 7-
dimensional complex ball). In case M 2 ,1 , the Picard lattice of a generic 
member X is isomorphic to U EEl D 4 EEl D 4 EEl Ai. The pencil of lines on 
P 2 through q induces an elliptic pencil of X with one singular fibers of 
type I~ and six singular fibers of type III. In case M 3 ,ll the Picard 
lattice of a generic member Y is isomorphic to U(3) EEl D 4 , and a ruling 
of Q induces an elliptic pencil on Y which has one singular fiber of type 
I~ and 9 singular fibers of type I I. 

Remark 2. Let C be a plane quartic curve and let q be a flex. Then 
by considering the map I Kc + 2q I as above, we can see that the 
moduli space M3,Jlex of plane quartic curves with a flex is birational 
to an arithmetic quotient of the 6-dimensional complex ball. Let X be 
a generic K3 surface appearing in this family. Then its transcendental 
lattice, together with an automorphism of order 3, has the structure 
of a complex lattice defined over the Eisenstein integers Z[w]. On the 
other hand, in [K2], we showed that the moduli space M 3 of curves 
of genus 3 is birational to an arithmetic quotient of the 6-dimensional 
complex ball by taking the 4-cyclic cover of P 2 branched along a plane 
quartic curve. In this case, the transcendental lattice, together with an 
automorphism of order 4, has the structure of a complex lattice defined 
over the Gaussian integers Z[H]. By forgetting a flex we have a map 

of degree 24. The author does not know the relation between two com­
plex ball quotient structures. 

Remark 3. Let C be a general smooth curve of genus 6. It is known 
that the canonical model of C ( C P 5 ) lies on a unique del Pezzo surface 
R of degree 5 (Koll<ir, Schreyer [KS], Shepherd-Barron [SB]). By taking 
the double covering of R branched along C, we have a K3 surface X 
with the covering transformation a. Let p : R ---+ P 2 be a blow up 
at 4 points. We can easily see that the Picard lattice S of a generic 
X is isomorphic to (2) EEl Ai where (2) is generated by the pullback of 
the class of a line in P 2 and Ai correspond to 4 exceptional curves on 
R. It is known that O(qs) ~ o-(4,F2 ) ~ S5 (Morrison-Saito [MS], 
Corollary 2.4, Lemma 2.5). Let T be the transcendental lattice of X. 
Let V be a bounded symmetric domain of type IV associated toT, and 
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let r = O(T). Then we can see that the moduli space of curves of genus 
6 is birational to the arithmetic quotient V jr. The author does not 
know whether the moduli of curves of genus 5 has a similar description 
as an arithmetic quotient or not. 

§3. Discriminant locus 

In this section we shall discuss the discriminant locus 7-i. Let r E T 
with r 2 = -2. By using the equation 

p2 + p+ 1y = 0, 

we have ( r, p( r)) = 1. Let Ar be the lattice generated by r and p( r). 
Obviously Ar ~ A2 . Let A-j: be the orthogonal complement of Ar in T 
and let M be the orthogonal complement of A-j: in L. We remark here 
that pacts on T* /T because pI H 2 (X, Z)(P) = 1 (Nikulin [N1], Corollary 
1.5.2). Alsop acts on A;/Ar trivially. This follows from the fact that 
(r + 2p(r) )/3 is a generator of A;/ Ar and p(r + 2p(r)) = r + 2p(r) mod 

3Ar· 

Lemma 1. There are two possibilities: 

Case (i). M ~ U(3) EB A2 and A-j: ~ U(3) EB U EB Es EB E6 

Case (ii). M ~ U EB A2 and A-j: ~ U EB U EB E8 EB E 6 . 

Proof. First note that M contains S EB Ar as a sublattice of fi­
nite index where S = £(P) ~ U(3). M is determined by the isotropic 
subgroup I = M / ( S EB Ar) of As EB AAr with respect to the discrimi­
nant quadratic form qs EB qAr (Nikulin [N1], Proposition 1.4.1). Since 
As EB AAr ~. (Z/3Z) 3 , I = {0} or I = Z/3Z. In the case I = Z/3Z, 
by using Nikulin [N1], Corollary 1.5.2, we can see that qM(a) = -2/3 
where a is a generator of I = Z/3Z. Now the assertion follows from 
Nikulin [N1], Theorem 1.14.2. Q.E.D. 

It follows that 7-i decomposes into two pieces 7-in and 7-ih so that the 
first case 7-in corresponds to the case (i) in Lemma 1. In the following, 
we shall study K3 surfaces whose periods are in 7-i. 

Case (i): We shall show that the Case (i) in Lemma 1 corresponds 
to a curve in Q of bidegree (3, 3) with a node. 

Example 1. Let C be a curve in a smooth quadric Q of bidegree (3, 3) 
with a node p. Let L 1 , L 2 be the two lines through p. First blow up at 
p and denote byE the exceptional curve. Next blow up the two points 
in which E and the proper transform of C meet. Then take the 3-cyclic 
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cover X' branched along the proper transforms of C and E. Then X' 
contains an exceptional curve of the first kind which is the pullback of the 
proper transform of E. By contracting this exceptional curve to a point 
q, we have a K3 surface X. On X, there are 4 smooth rational curves 
F 1, F2, F3, F4 which are the inverse images of L 1, L 2 and the exceptional 
curves which appeared in the second blow up. They meet together at 
one point q. Each triple of Fj defines an elliptic pencil with singular 
fiber of type IV and a 3-section. For generic C as above, these 4 curves 
Fj generate the Picard lattice of X isometric to U(3) EB A2 , where U(3) 
is generated by F1 + F2 + F3, F1 + F2 + F4 and A2 is generated by F1, F2. 
It is known that X has a finite group of automorphisms and the Fi ( i 
=1,2,3,4) are all the smooth rational curves on X (e.g., Nikulin [N3], §4, 
p.661). 

Next we shall show that a generic point of Hn corresponds to a K3 
surface mentioned in Example 1. Let z be a generic point in Hn which is 
orthogonal to a root r E T with kj: c:::- U(3) EB U EB E8 EB E6 . Let Y be the 
K3 surface whose period is z. Then the Picard lattice of Y is isomorphic 
to M c:::- U(3) EB A2 . Since the dual graph of all smooth rational curves 
on Y depends only on the Picard lattice, Y contains exactly 4 smooth 
rational curves F; (1 :::::; j :::::; 4) which form the same dual graph as that 

of Fj on X: F; · F~ = 1, (j -=F k). Let p' be the isometry of L given by 

Obviously (L(p'))j_ n zj_ = 0, and hence it is induced from an automor­
phism a-' of order 3 (Namikawa [Na], Theorem 3.10). On the other hand, 
by the topological Lefschetz fixed point formula, a-' fixes a smooth curve 
C' of genus g( C') > 1. Now take any triple, for example, F~, F~, F~ and 
consider the linear system I F~ + F~ + F~ I which defines an elliptic pencil 
1r : Y ---> P 1 . By the Hodge index theorem, each fiber meets C', and 
hence a-' acts on the base of 1r trivially. Thus a-' acts on a general fiber 
as an automorphism of order 3, and hence the functional invariant of 1r 

is equal to 0. Hence the singular fiber F~ + F~ + F~ is of type IV. This 
implies that the four F: (i = 1, 2, 3, 4) meet each other at one point q. 

Since a-' acts on M trivially, a-' preserves each F:. Since a-' acts on a 
fiber as an automorphism of order 3, it fixes 3 points on it. Hence C' 
meets a fiber at three points. Now we can easily conclude that C' meets 
each F: at one point, the fixed point set of a-1 consists of { q} and C', 
and g( C') = 3. Thus Y is obtained by the same way as X in Example 
1. 
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Case (ii): We shall show that the Case (ii) in Lemma 1 corresponds 
to a smooth hyperelliptic curve of genus 4 plus a point. 

Example 2. Let C be a hyperelliptic curve of genus 4. Then C is 
given by the equation 

10 

y 2 = II (xo - .Aix1) 

i=1 

which is unique up to automorphisms of P 1 . Let (xo : X1, Yo : Y1) be 
a hi-homogeneous coordinate of P 1 x P 1 . Then C can be embeded in 
P 1 x P 1 as follows: 

5 10 

Y5 ·II (xo- .Aix1) + y~ ·II (xo- Aix1) = 0. 
i=1 i=6 

Let E be the divisor defined by y0 = 0. Let L be a general fiber of the 
ruling given by 

Note that the fiber given by x 0 = Aix1 is tangent to C. By taking 
elementary transformations at the intersection of C and E, we have the 
Hirzebruch surface F5 . Let C', E' be the proper transform of C, E 
respectively. Let R be a rational surface obtained by blowing up F5 at 
three points which are the intersection of C', E' and L. Let C", E", L" 
be the proper transform of C', E', L respectively. Let Y' be the 3-cyclic 
cover of R branched along the divisor C" + E" + L". The inverse image 
of L" is a ( -1 )- curve. By contracting this we have a K3 surface Y. We 
can see that the ruling p induces a structure of an elliptic pencil 

7r : y ----+ p1 

which has one singular fiber of type IV and 10 singular fibers of type 
II, and a section. Here the singular fiber of type IV corresponds to 
L, ten singular fibers of type I I corresponds to fibers x0 + Aix1 and E 
corresponds to a section of 1r. For a generic C, the Picard lattice of Y 
is generated by three components of the singular fiber of type IV and 
a section, which is isomorphic to U EB A2 • In this case, Aut(Y) is finite 
andY contains exactly 4 smooth rational curves (e.g., Nikulin [N3], §4, 
p.661). 

Next we shall show that a generic point of 1ih corresponds to a K3 
surface mentioned in Example 2. Let z be a generic point in Jih which 
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is orthogonal to a root r E T with A:): ~ U EB U EB E8 EB E 6 • Let Y' 
be the K3 surface whose period is z. Then the Picard lattice of Y' is 
isomorphic to M ~ U EB A2 • Since the dual graph of all non-singular 
rational curves on Y' depends only on the Picard lattice, Y' contains 
exactly 4 smooth rational curves Fj (0 :::;: j :::;: 3) which form the same 
dual graph as that of Example 2. Here we assume that Fr, F2, F3 form 
the dual graph of a singular fiber of type I 3 or of type IV, and Fo meets 
F1 . Then the linear system I F1 + F2 + F3 I defines an elliptic pencil 
1r: Y ------> P 1 which has one singular fiber of type h or of type IV, and 
a section F0 . Let p' be the isometry of L given by 

p' = (1M,P I A;). 

Obviously (L(P'))l_ n zj_ = 0, and hence p' is induced from an automor­
phism a' of order 3 (Namikawa [Na], Theorem 3.10). On the other hand, 
by the topological Lefschetz fixed point formular, a' fixes a smooth curve 
C' of genus g( C') > 1. By the Hodge index theorem, each fiber meets 
C', and hence a' acts on the base of 1r trivially. Hence F0 is a fixed 
curve of a'. Also a' acts on a general fiber as an automorphism of order 
3, and hence the functional invariant is a constant. Hence the singular 
fiber F1 + F 2 + H is of type IV and all irreducible singular fibers are of 
type II. Thus 1r has one singular fiber of type IV and 10 singular fibers 
of type I I. Since a' acts on a general fiber as an automorphism of order 
3, it fixes 3 points on a general fiber, i.e., C' meets a fiber at two points. 
Let q be the singular point of the fiber H + F 2 + F3 • Then we can easily 
conclude that C' meets each F 2 , F3 at one point (# q) and the fixed 
point set of a' consists of { q}, F0 and C'. It follows from the topological 
Lefschetz fixed point formula that the genus of C' is 4. Therefore Y is 
obtained by the same way as X in Example 2. Thus we have 

Theorem 2. A generic point in 'Hn ( resp. in 'Hh) corresponds to a 
curve in Q of bidegree (3, 3) with a node ( resp. a pair of a hyperelliptic 
curve of genus 4 and a point on the quotient of the hyperelliptic curve 
by the hyperelliptic involution). 

Remark 4. (i) The above theorem 2 tells us that Bjr looks like a 
blow up of the moduli space of curves of genus 4 along the hyperelliptic 
locus. 

(ii) There is a family of codimension 1 in the moduli space of curves 
of genus 4 which consists of smooth curves with a vanishing theta null. 
In this case, the corresponding generic K3 surface contains smooth ra­
tional curves, but the covering transformation does not fix them (see the 
proof of Theorem 1, Case 2) and the periods of these (generic) K3 are 
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contained in V \ 7-l. The Picard lattice of a generic K3 surface in this 
family is isometric to 

U EB A2(2). 

This lattice contains U(3) Ef) A2 (2) as a sublattice of finite index and 
the factor U(3) corresponds to the Picard lattice of a generic member of 
9-dimensional family. 

Remark 5. Recall that the anti-bicanonical map of a del Pezzo sur­
face of degree 1 is the double cover of a quadric cone in P 3 branched 
along the canonical curve C of genus 4 (Demazure [D]). Then C has a 
vanishing theta null. This gives a birational map from the moduli space 
of del Pezzo surfaces of degree 1 to the moduli space of curves of genus 
4 with vanishing theta constant. Thus the moduli space of del Pezzo 
surfaces of degree 1 can be written as a ball quotient, too. Heckman, 
Looijenga [HL] and Vakil [V] studied this case from a different point of 
view. In case of del Pezzo surfaces of degree 2 or 3, van Geemen (un­
published), Kondo [K2], Allcock, Carlson, Toledo [ACT1],[ACT2] gave 
a ball quotient structure for this moduli space. In the case of del Pezzo 
surfaces of degree 4, the moduli space is also a ball quotient (e.g. Heck­
man, Looijenga [HL]): A del Pezzo surface of degree 4 is the complete 
intersection of two quadrics Q1 , Q2 in P 4 . The discriminant locus of the 
pencil of quadrics defined by Q1 and Q2 gives five points on P 1 . This 
gives a correspondence between the moduli space of del Pezzo surfaces 
of degree 4 and a compact arithmetic quotient of 2-dimensional complex 
ball which appeared in Shimura [S], Terada [Te], Deligne-Mostow [DM]. 

Remark 6. Del Pezzo surfaces of degree 4 are also related to K3 
surfaces with an automorphism of order 5. Let C be the plane quintic 
curve defined by 

5 

y5 = IJ(x- ~iz) 
i=l 

which corresponds to five points {(~i : 1)} on P 1 (see Remark 5). Let a 
be an automorphism of P 2 given by 

a(x, y, z) = (x,(y, z) 

where ( is a primitive 5-th root of unity. Let L be the line defined 
by y = 0 which is fixed under the action of a. Let X be the minimal 
resolution of the double cover branched along the sextic curve C + L. 
Then X is a K3 surface and a can be lifted to an automorphism of X 
of order 5. We can see that the period domain of these K3 surfaces is a 
2-dimensional complex ball. The pencil of lines through (0 :1 : 0) lifts 
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to a pencil of curves of genus 2 on the K3 surface which has two base 
points. A general member of this pencil is a smooth curve of genus 2 
with an automorphism of order 5 and this pencil contains five singular 
members corresponding to five lines 

X- ~iZ = 0, (1 ~ i ~ 5). 

§4. Deligne-Mostow's complex reflection groups 

In this section we shall show that r is commensurable with an arith­
metic subgroup of PU(l, 9) which appeared in Deligne-Mostow's list. 
The idea of the proof of Theorem 3 is due toT. Terasoma. 

Let { oo, 0, 1, X2, .•• , Xd+ 1 } be a set of d + 3-distinct points in P 1 . For 
each integer i, with 0 ~ i ~ d + 1, and i = oo, let Ii-i be a real number 
such that the following equality holds: 

In (DM], for each p, = {p,i}, Deligne and Mostow defined a subgroup r J.L 

of the automorphism group of a d-dimensional complex ball, which is 
the monodromy group of a hypergeometric equation. 

Let 81 c 8 = {oo, 0, 1, ... , d + 1} and assume that Ms = Mt for all 
s, t E 8 1 . We assume that li-s > 0 for all s E 8 and {Ms} satisfies the 
condition 

(Y:.INT): For all s -1- t such that li-s+ li-t< 1, (1- li-s- Mt)-1 is an 
integer if s or t is not in 8t, and a half-integer. if s, t E 81 . 

Deligne and Mostow (DM],(Ml] showed that this condition is a sufficient 
condition for which r J.L is a lattice in PU(l, d), i.e., r J.L is discrete and 
has cofinite volume. Conversely if r J.L is discrete and d > 3, then p, 
satisfies the condition (Y:.INT) (Mostow (M2]). In (DM], [Ml], Deligne 
and Mostow determined all such p, and listed them in cased~ 5. Note 
that Thurston gave a correction of their list ( (T]). 

Now we shall show that our group r is commensurable with r J.L• 

where p, = {Mi}, Ii-i = 1/6 for all i = oo, 0, 1, ... , 10 (No.1 in Deligne­
Mostow's list (M2] and No.lO in Thurston's list (T]). 

Let C be a curve defined by 

12 

y 6 = IJ(x- ~i)· 
i=1 
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Let a be the covering transformation of C over P 1 . Consider the action 
of a on H 1 ( C, C). Let H 1 ( C, C) -w be the eigenspace of a with eigenvec­
tor -w where w is a primitive cube root of unity. Let (,) be the symplec­
tic form on H 1 (C, Z). Then '1/J(x, y) = y'-3(x, iJ), x, y E H 1 (C, C)-w, is 
a hermitian form on H 1 (C, C)-w· This space is defined over the Eisen­
stein integers Z[w]. Deligne and Mostow showed that the signature of 'ljJ 
is (1, 9) and that r J.L is an arithmetic subgroup of (PU(H1 (C, C)-w), '1/J). 

In the following we shall use the same notation as in §2. Recall that 
the K3 surface X has an elliptic fibration 1r induced from a ruling of 
the smooth quadric Q. For a generic X, 1r has twelve singular fibers 
of type II in the sense of Kodaira [Ko]. Note that 1r has no sections. 
Let S = U(3) be the Picard lattice for a generic X and let T = U(3) EEl 
U EEl Es EEl Es be the transcendental lattice. Since p \ S = 1, p acts 
trivially on the discriminant group S* IS ~ T* IT. Let a E T* IT be 
the non-zero isotropic vector corresponding to the class of a fiber of 1r 

under the canonical isomorphism S* IS ~ T* IT. By adding vectors 
in T* representing a to T, we have an even lattice T' which contains 
T as a sublattice of index 3. Hence T' is unimodular and isometric 
to U EEl U EEl E 8 EEl E8 • Since p fixes a, p induces an isometry p" of 
T' of order 3. We denote by p' the isometry - p" of order 6. By the 
surjectivity of the period map for K3 surfaces, there exists a K3 surface 
Y whose transcendental lattice is isometric to T' and whose period is 
the same as that of X. Since T' is unimodular, p' can be extended to 
an isometry of H 2 (Y, Z) acting on (T')j_(~ U) trivially. Hence it follows 
from the Torelli theorem that p' is represented by an automorphism of 
order 6. Since the Picard lattice of Y is isomorphic to U, Y has an 
elliptic fibration n' with a unique section (Kondo [K1], Lemma 2.1). If 
p' acts on the base of n' non trivially, then the set of fixed points of p' 
is contained in two fibers. On the other hand the Lefschetz number of 
p' is -6 (see the proof of Theorem 1). With this observation it follows 
from the topological Lefschetz fixed point formula that p' acts on the 
base trivially. Thus every smooth fiber has an automorphism of order 6 
which fixes the intersection point with the section. Hence the functional 
invariant of this elliptic fibration is a constant. Since Pic(Y) ~ U, every 
singular fiber is irreducible, and hence it is of type II. We remark that 
n': Y ~ P 1 is nothing but the Jacobian fibration of n. 

By the theory of elliptic surfaces with a section (Kodaira [Ko]), we 
can easily see that there exists a Galois cover of Y with the Galois 
group G ~ ZI6Z, which is birational to C x E where C is a ZI6Z-cover 
of P 1 ramified at 12 points and E is an elliptic curve with a complex 
multiplication w (a cube root of unity). We denote by a (resp. r) an 
automorphism of C (resp. E) of order 6. We may assume that (a, r) is 
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a generator of G. Denote by f the rational map from C x E to Y. Then 

and 

Moreover the action of p' on T' 0 Q is compatible with that of T on 
J*(T' 0 Q). The above isomorphisms give an isomorphism between two 
hermitian spaces T'_w = {x E T' 0 C: p'(x) = -wx} and H 1 (C, C)-w, 
which is defined over Q(w). Since both r ~" and 

r' = {g E O(T') : g o p' = p' o g} 

are arithmetic, r ~" is commensurable with r'. On the other hand, by 
definition of T', r is commensurable with r', and hence with r ~". Thus 
we have 

Theorem 3. r is commensumble with r ~" where 

1 1 1 1 1 1 1 1 1 1 1 1 
1-£ = (J-ti) = (6, 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6). 

Remark 7. In [A], Allcock proved that r ~"in Theorem 3 is isomorphic 
to the hyperbolic reflection group of the complex lattice over the Eisen­
stein integers Z[w] whose real form is U EB U EB E8 EB E 8 . We also remark 
that van Geemen gave a similar correspondence between the curve C as 
above and some K3 surface (see [vG], Example 3.11). 

Remark 8. In [K2], we showed that the moduli space of curves of 
genus 3 is birational to a ball quotient by taking the 4-cyclic cover of P 2 

branched along a plane quartic curve. The corresponding discrete group 
does not appear in Deligne-Mostow's list (the corresponding K3 surface 
has no elliptic fibration invariant under the action of the automorphism 
of order 4). However, for example, in case of hyperelliptic curves of 
genus 3 or plane quartic curves with a node, the corresponding generic 
K3 surface has an elliptic fibration with 8 singular fibers oftype III (see 
[K2], §5). The same argument as above shows that the corresponding 
arithmetic subgroup is commensurable with r JL where 

1 1 1 1 1 1 1 1 
1-£ = (J-ti) = (4, 4' 4' 4' 4' 4' 4' 4) 

(No. 8 in Deligne-Mostow's list [M2] and No. 3 in Thurston's list [T]). 
Allcock informed the author that he showed the commensurability in this 
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case by a different way. Shiga [Sh] suggested a relation between Deligne­
Mostow's complex reflection groups and elliptic K3 surfaces with a sec­
tion in some special cases. In the case of del Pezzo surfaces of degree 
4 (see Remark 6), the pencil of curves of genus 2 with an order 5 auto­
morphism on the K3 surface works like the elliptic pencil in the above 
cases. 
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