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Introduction

Let by be the Siegel upper half space of genus g, and I" an arithmetic
subgroup of Sp(2g). Then the following compactifications of '\, were
constructed.

(1) Satake-Baily-Borel compactification ([Sa], [BB]).
(2) Borel-Serre compactification ([BS]).
(3) Toroidal compactifications ([AMRT]).

Denote the compactification (2) by I'\(hg)ss (I'\b, in their notation).
Let D be a Griffiths domain, i.e., a classifying space of polarized
Hodge structures (cf. §1). In the case of the Hodge numbers hl:? =
h%! = g and hP¢ = 0 otherwise, D coincides with h,. Replacing b, by D,
we generalize in this paper the construction of (h4)gs in two directions.
The one is a Borel-Serre space Dps (§2), and the other is a space of
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SL(2)-orbits Dgr,(2) (§3). We give remarks about the compactification
(1) (3.15, 6.9). In the forthcoming paper [KU2|, we will generalize (3)
and also (1).

Now let Gr, Gz be the groups in NOTATION below. Gr acts on D
transitively. (In the case D = b4, Gr = Sp(2¢9, R) and Gz = Sp(2¢,Z).)
The construction of the space Dps is similar to that of (h,)Bs, and the
quotient T\ Dpg, by a subgroup I' of Gz of finite index, is a compact
Hausdorff space (§5). On the other hand, the construction of the space
Dg,(2) is based on the theory of SL(2)-orbits in [CKS]. The space Dgp,(2)
is Hausdorff (§3) but not always locally compact (6.12). The quotient
I'\\Dgy,(2y is Hausdorff (§5), and has a nice property for period maps
(3.15) which is an advantage of I'\ Dgy,(3), that I'\ Dps does not have.

The two spaces Dpg and Dgp,) are not related directly (cf. §6). To
remedy this situation, we introduce the spaces Dgg va1 (resp. Dgr,(2),val),
the projective limit of the blowing-ups of Dpg (resp. Dgi,z)) (2.6, 3.7).
We then have the following diagram of topological spaces (3.1 (1)).

Dsr(2),val = Dgg val

L

Dgy(2) Dgs

In the classical situation, that is, when D is a Hermitian symmetric
space and its horizontal tangent bundle is the whole tangent bundle (see
6.6; actually, this case is dealt with in [Sa], [BB], [BS], [AMRT]), we
have Dgr,2y = Ds and Dgr,(2),val = DBs,val except one case (6.7). As a
corollary, we derive the canonical surjection from the Borel-Serre com-
pactification I'\ Dpg to the Satake compactification T\ Dg (6.9), which
was defined by Zucker [Z2] in another way.

In a sequel paper [KU2], we will generalize the theory of toroidal
compactifications of I'\f, by Mumford et al. replacing h, by general D,
whose summary is in [KU1]. The results of the present paper will be
also used there. The whole picture is explained in 3.16 Remark below.

After having written out this paper, the authors were informed by
Steven Zucker that a recent work of Borel and Ji [BJ] independently
gives generalization of Borel-Serre compactifications.

The authors are grateful to the referees for their valuable suggestions
and comments which improved the present paper.

NOTATION

Throughout this paper, we use the following notation.
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Let H be a Z-module. For A = Q, R, C, we denote Hy := AQgz H.
We fix a 4-tuple

®o = (w7 (hp’q)p,q€Z7 H07< 5 >O)

where w is an integer, (h??), ,cz is a set of non-negative integers satis-
fying

hP? = 0 for almost all p, q,

hP1 =0 if p+ q # w,

hP? = h?P for any p, q,

Hy is a free Z-module of rank > hP7, and (, )o is a Q-rational non-
degenerate C-bilinear form on Hy ¢ which is symmetric if w is even and
anti-symmetric if w is odd. In the case w is even, say w = 2t, we assume
that the signature (a,b) of (Ho g, (, )o) satisfies

a (resp. b) =3, hitit=i,

where j ranges over all even (resp. odd) integers.
Let
Gz = Aut(Ho, {, Jo),
and for A= Q,R,C, let

G4 = Aut(Ho 4,(, o),
ga = LieGy4
= {N € End4(Ho,a) | (Nz,y)o + (, Ny)o = 0 (vVz,Vy € Ho 4)}.

Following [BS], a parabolic subgroup of Gr means a parabolic sub-
group of (G°)r, where G° denotes the connected component of G in the
Zariski topology containing the unity. (Note that G° = G if w is odd,
and G° = {g € G | det(g) = 1} if w is even.)

§1. Classifying spaces of polarized Hodge structures

In this section, we recall polarized Hodge structures, the classify-
ing space D of polarized Hodge structures, horizontal tangent bundles,
polarized variations of Hodge structure and the associated period maps
(cf. [G]). Let @0 = (w, (h**?)p qez, Ho, { , )o) be as in NOTATION.

1.1. A Hodge structure of weight w and of Hodge type (h??) =
hP?), ez is a pair (Hz, F') consisting of a free Z-module Hz of rank
p.q
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Zp q hP9 and of a decreasing filtration F' of Hg, which satisfy the fol-
lowing two conditions.

(i) dimg FP =3 5 A"™¥7" for all p.
(i) Hc = @, H?*~P, where H»*~P := FP NFP,

Here ~ is the complex conjugation with respect to Hor. Note that
dim HP"W~P = pP¥~P for all p.

1.2. A polarized Hodge structure of weight w and of Hodge type
(hP?) is a triple (Hz, (, ), F') consisting of a Hodge structure (Hz, F)
and a Q-rational non-degenerate C-bilinear form ( , ) on Hc, symmmet-
ric for even w and anti-symmetric for odd w, which satisfy the following
two conditions.

(i) (FP,F%) =0 forp+gq>w.

(i1) The Hermitian form Hy c x Hoc — C, (z,y) — (Cr(2),7),
is positive definite.

Here Cf is the Weil operator which is defined by Cr(z) := i*’ ¥z for
z € HP® P, The condition (i) (resp. (ii)) is called the Riemann-Hodge
first (resp. second) bilinear relation.

1.3. A polarized variation of Hodge structure of weight w and of
Hodge type (hP?) on a complex manifold X is a triple (Hgz,( , ), F)
consisting of a local system Hyz on X, of a locally constant Q-rational
non-degenerate C-bilinear form ( , ) on C ® Hz and of a decreasing
filtration F' of Ox ® Hz by subbundles, which satisfy the following two
conditions.

(i) (Hzz,{, )z, F(z)) is a polarized Hodge structure of weight w
and of Hodge type (h??) (Vz € X).

(ii) Griffiths transversality VF? C Q% ® FP~! holds (Vp).
(V:=d®idg, is the connection of Ox ® Hgz.)

Definitions 1.4. The classifying space D of polarized Hodge structures
of type ®g is the set of all decreasing filtrations F' on Hy ¢ such that the
triple (Hg,{, )o, F') is a polarized Hodge structure of weight w and of
Hodge type (hP9).

Note that, by the condition on the signature of (Ho g, {, )o) (see
NOTATION), D isnon-empty.

Definitions 1.5. The compact dual D of D is the set of all decreasing
filtrations F' on Hp ¢ such that the pair (Hy, F') is a Hodge structure



Borel-Serre Spaces and Spaces of SL(2)-Orbits 325

of weight w and of Hodge type (h*?) and that the triple (Hy, ( , Yo, F)
satisfies the condition 1.2 (i).

Note that D (resp. D) is homogeneous under Gr (resp. G¢) and
that D is an open subset of D.

Definition 1.6. Let F € D and let Tp(F) be the tangent space of
D at F. The horizontal tangent space TE(F) of D at F is defined as
follows:

Th(F) = F~'(gc)/F°(gc) € To(F) = gc/F(gc),

where F"(gc) := {N € gc | N(FP) C FPt" (Vp € Z)}.

1.7. Let &, = (w, (h"?), qez, Ho,{, )o) be as in NOTATION. Let
X be a connected complex manifold and let H = (Hz,{, ),F) be a
polarized variation of Hodge structure on X of weight w and of Hodge
type (h¥9) with (Hz,z,(, )z) =~ (Ho,{, )o) for some (hence any) point
x € X. Fix such a point z and identify (Hz 4, (, )z) = (Ho, {, )o). Put
I :=Im(m(X) — Gz). Then we have the associated period map

(1) p: X —-T\D.

The differential of the period map at z € X factors through T8 (5(z)).
Here ¢ : U — D is a local lifting of ¢ on a neighborhood U of .

§2. Borel-Serre spaces

2.1. Summary. Let X be the set of all maximal compact sub-
groups of Gr. Then Gr acts transitively on X’ by inner automorphisms.
Since the normalizer in Gr of each K € X is K itself, we have a Gr-
equivariant isomorphism

Gr/K S5 X, g—gKg™,

for each fixed K € &X. By using this isomorphism, we introduce a
topology on X'. This topology does not depend on the choice of K. Borel
and Serre constructed in [BS] a space Aps (X in their notation) which
contains X’ as an open dense subset. The action of Gz on X extends to an
action on Xpgs. The space Apg has the following remarkable properties:

(i) If T is a subgroup of Gz of finite index, then the quotient space
T\ AXBs is compact.

(ii) If T is a neat subgroup of Gz, then the projection Agg — I'\Aps
is a local homeomorphism.
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Here I' being neat means that the subgroup of C* generated by all
eigenvalues of all v € T is torsion free.

In this section, we enlarge D to get a topological space Dgg, which
contains D as a dense open subspace, in the same way as X’ was enlarged
to Xgs. We also construct a topological space Dgs val, as the projective
limit of the blowing-ups of Dgg, which also contains D as a dense open
subspace. These spaces are related by continuous proper surjective maps
in the following way:

Dgs va1 — Dps — &Bs.

2.2. Borel-Serre action. Let P be a parabolic subgroup of Gr and
P, be its unipotent radical. Let Sp be the maximal Q-split torus in the
center of P/P,. Let Ap be the connected component of Sp containing
the unity. (Sp ~ (R*)", Ap ~ (R>0)", where r := rank Sp.)

For K € X, let 0 : GrR — GRr be the Cartan involution associated
to the maximal compact subgroup K, i.e., the unique automorphism of
GRr characterized by 6% = id and K = {g € Gr |0k (g) = g}. By [BS],
for each K € X and a € Sp, there exists a unique element ag € P
satisfying both of the following.

(i) (ax mod P,) = a.

(ii) HK(aK) = a;(l.

Then the map Sp — P, a — a, is a homomorphism of algebraic groups
over R. We call ak (a € Sp) the Borel-Serre lifting of a at K.
For F € D, we use the following notation:

g preserves the Hermitian}
9y

Krp = {g € Gr inner product (Cr( ), )o

(1)
K%:Z{QGGngFZF}CKF,

where Cr is the Weil operator in 1.2 (cf. [Sc, §8]). Note that Kp is
a maximal compact subgroup of Gr and the Cartan involution g, is
given by

(2) HKF = IIlt(CF).
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Note also that we have the canonical Gr-equivariant continuous propér
map

D —— X F+—— Kr.
3) , lz lz
Gr/Ky — Gr/Kp,
For a € Ap and K € X (resp. F € D), we define an action o by
(4) ao K :=Int(ax)K (resp.ao F :=ag.F).
We call this the Borel-Serre action.

Lemma 2.3. Fora€ Ap and p € P, we have ay(p)x = Int(p)ak .
Proof. This follows from the fact

(1) OInt(p)K = Int(p)eK Int(p)”l
and the definition of the Borel-Serre liftings in 2.2. Q.E.D.

Lemma 2.4. Fora € Ap,p € P and F € D, we have aopF = p(aoF).
Proof. By 2.3, we have

aopF = ak,,pF = ap(p)kPF

= (Int(p)ag,)pF = pak,F =pac F). Q.ED.

By 2.4, we see that the Borel-Serre action is indeed an action of Ap
on D. In fact, for a,b € Ap and F € D, we have

ao(boF)=aqao(bg,F)=bg.(aoF) =bx.ax.F = (ba)k,F = (ab)oF.

It can be verified in a similar way that Ap acts on X via the Borel-Serre
action.

Definition 2.5. The generalized Borel-Serre space Dgg (resp. Borel-
Serre space Xpg) is defined by
. P is a Q-parabolic subgroup of Gr,

Dgs (resp. &ps) := {(P’ 2) ‘ 7 is an (Apo)-orbit in D (resp. X)

For an abelian group L and a submonoid V of L, we say V is valu-
ativeif VUV~ = L. Also, put VX =V NnV~1,
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Definition 2.6. We define the space Dgg val by

T is an R-split torus of Gr,

Z is a (Tsp)-orbit in D,

V is a valuative submonoid of X (T),
which satisfy the following (i)—(iii)

Dgs a1 :=1% (T,2,V)

Here, T is the connected component of T' containing the unity, and
X(T) is the character group of T.

(i) Ox.(t) =t (VFe ZVteT).

(ii) V* ={1}.

iii) Let Hor = H(x) be the decomposition into eigenspaces
, xXEX(T)

H(x) := {v € Hor|tv = x(t)v (V¢ € T)}. Then, for any
X € X(T), the R-subspace

MX = @X’Exv_l H(XI)

of Hy r is Q-rational.

2.7. Let M be a finite set of R-subspaces of Hy g satisfying the
following two conditions:

(i) M contains 0 and Hy g and is totally ordered with respect to the

inclusion, i.e.,

M = {Mj}0§j§m7 O=MycCcM,C---C M, = H07R.
(ii) M;" = M (0 < j < m),
where Mjl :={v € Hor | (v,M;)o =0}

Let P :={g € (G°)mr | gM; = M; (0 < j < m)}. Then P is
a parabolic subgroup of Gr. To see this, it is sufficient to show that
(G°)r/P is a projective variety. In fact, (G°)r/P is identified with
the projective variety of finite sets M’ = {M}o<j<m of R-subspaces
of Hor satisfying the above conditions (i), (ii) and dim M} = dim M;
(0<j<m).

If all M; (0 < j < m) are Q-rational, then P is a Q-parabolic
subgroup of Gr. (It can be shown that any Q-parabolic subgroup of
Gr is obtained in this way. See 6.6.)

2.8. For a torus T of Gr and for a valuative submonoid V of X (T,
let
Pry :={g € (G°)r | gMy = My (Vx € X(T))},

where M, is defined as in 2.6 (iii).
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For (T, Z,V) € Dgg a1, We prove the following two assertions:
(1) Pr,y is a Q-parabolic subgroup of Gg.
(2) T C Pry,themap T — Pry /Pry, is injective, and the image
of this map is contained in Sp.

To prove (1), it is enough to show that the set {M, | x € X(T)}
has the properties (i) and (ii) in 2.7. In fact, for x,x’ € X(X), we have
either x'x ' € V or xx’~! € V, and we have M, C M, in the former
case and M, C M, in the latter case. This proves 2.7 (i). Furthermore,
(M)t = > My, where X' ranges over all elements of X (T') which are
not contained in x "'V, and hence (M, )+ = M, for some x’ by 2.7 (i).

Next, (2) follows from P/P, C [] cx(r) GL(H(x)) and the fact
that T acts on each H(x) as scalars.

Now we have maps

Dgs val — Dgs LA Xps, where
(3) a:(T,2,V) v (Pryv,Ap.y 0 Z),
B : the map induced by 2.2 (3).

2.9. For a Q-parabolic subgroup P of Ggr, we define

DBS(P) = {(Q, Z) € Dgg | Q D P},
(1) Xps(P) :={(Q,2) € Ass |Q D P},
DBS,V&I(P) = {(T7 Z7 V) S DBS,val I PT,V D) P}

In 2.10-2.14 below, we give preliminaries to define topologies on the
spaces Dpgs, XBs; DBs val-

2.10. Let P be a Q-parabolic subgroup of Ggr. A subset Ap of
X (Sp) is defined as follows. Let Sp C P be any torus which lifts
Sp C P/P,. Let

0 # Jv € Lie(P,) such that }

P= {X € X(5p) Ad(a)v = x(a)~'v (Ya € Sp)

Identify X (Sp) with X(Sp) via the canonical isomorphism Sp = Sp.
Then A% is independent of the choice of the liftings Sp, and it is a finite
subset of X (Sp) which generates Q ® X (Sp) over Q. Then there exists
a unique subset Ap of A, satisfying the following two conditions:

(i) $(Ap) = rank Sp.

(if) A’p is contained in the submonoid of X (Sp) generated by Ap.
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Let P be as above. Let Q be a Q-parabolic subgroup of Gr con-
taining P. Then we have injective maps

(1) Sq — Sp,
(2) Ag = Ap,

obtained as follows, which we regards as inclusion maps. Note Q@ D P D
P, D Q,. We have that Sg C P/Q, in Q/Q., that the canonical map
Sg — P/P, is injective, and that the image of this map is contained in
Sp. This gives the injection (1). Let I := {x € Ap | x annihilates Sg},
and let J C Ap be the complement of I in Ap. Then the restriction
to Sg gives a bijection J = Ag. The injection (2) is obtained as the
composite Ag < J — Ap. It is known that we have a bijection

Q-parabolic subgroup | ~
(3) {of Ggr containing P — {subset of Ap}, Qr Ag

(cf. [BS, §4], [BT, §5], [B, §11]).

2.11. Let M = {M;}o<j<m be asin 2.7, and let P be the associated
parabolic subgroup {g € (G°)r|gM; = M; (0 <j < m)} of Gr. We
describe in terms of M the unipotent radical P,, the quotient P/P,,
and, in the case when all M; are Q-rational, Sp and Ap.

(1) Pu={g9€(@)rllg-DM; C M;y (1<j<m)}.

tg; = gmia,; (1<i<m), }

_ Ay M
(2) P/P,= {(gJ)J € HGL(ng ) det(g(m+1)/2) = 1 if m is odd

1<j<m

Here ?( ) is the transpose with respect to the pairing
(s )o: gr;.” X grn]\fﬂ—j — R.
Assume now that all M; (0 < j < m) are Q-rational. We say that
M is exceptional if either one of the following two conditions is satisfied:
(a) w is even, m is even, and dim gré\frn/z)Jrl =1.

(b) w is even, m is odd, and dim gr%l_‘_l)/z = 2, and there exist ele-
ments e, ez € M y1)/2NHo,q such that (e;,e1)o = (e2,e2)0 =0
and <€1, 62>0 =1.
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We have

Sp=41(9;); € P/P. C HGL(gréw)
1< <m
9i € Gmr C GL(gré"I) unless m is odd

and j = (m+ 1)/2; Jim+1)/2 = 1
if m is odd and M is not exceptional

Ap is described in terms of M as follows.
Assume first M is not exceptional. Let r := m/2 if m is even, and
r:=(m—1)/2if mis odd. Then r = rank Sp and Ap counsists of

(gi1<j<m — girrg; T (1<§<r) (g9; € Gmpr)-

Assume next M is exceptional and m is even. Let r := m/2. Then
r = rank Sp and Ap consitsts of

(gi1<i<m = ginrg; T (1<j<r—1) and
(gj)1<j<m Gr+107 1

Assume lastly M is exceptional and m is odd. Let r := (m + 1)/2.
Then r = rank Sp and Ap consitsts of

(gi)1<i<m = giwrg; ! (1<j<r—2),
(gj)lgjgm = gr,lg;jla and

(9j)1<j<m F Gr20r 1,
where g, € G (k= 1,2) are defined by
grek = grrer in gr?:[n+1)/2 :

2.12. Identification of Dps(P) with D x47 Ap. Let P be a Q-

parabolic subgroup of Gr. Let Ap := Map(Ap,R>o) (= the set of
maps Ap — Ryo). Hence Ap ~ RL,, r = rankSp. Via Ap =
Map(Ap,Rso), Ap acts on Ap in the natural way. Denote Dx4P Ap :=
(D x Ap)/Ap under the action a(F,b) = (ao F,a'b) (a € Ap, (F,b) €
D x Ap). Then we have a bijection

DBS(P):DXAPZPv (QvZ)M(F7b)7

defined as follows. For (Q,Z) € Dgs(P), F is any element of Z and
b € Ap is defined by b(x) = 0 if x € Ag and b(x) = 1 if x &€ Ag. For
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(F,b) € D x4P Ap, Q is the Q-parabolic subgroup of Gg containing P
such that Ag = {x € Ap | b(x) =0}, and Z :={ao F |a € Ap,x(a) =
b(x) for any x € Ap — Ag}.

For a Q-parabolic subgroup @ of Gr containing P, we have Ag C
Ap and ZQ C Ap. The latter follows by extending a map Ag — R to
Ap by 1. Hence we have a commutative diagram

Dps(Q) ~ D x4e ZQ
N N

Dpg(P) =~ D x4P Ap.

2.13. The topological space (R’éo)val. We define a topological space
(R%g)val (r > 0) as follows. Let 7 > 0 be an integer, and define a
topological space B by

(1) B :=lim reg Bl ((Gar)"),
where ¥ denotes the set of all non-zero ideals I of Rlty,...,t,] =

O((Gar)") generated by some monomials fi, ..., fn, and Bl;((Gar)")
means the blowing-up Proj(@,-1°) of (Gar)” along I. Define an
order in ¥ by: I < J if and only if II' = J for some I’ € ¥. For
I<Il=JwithI=(f1,...,fa), ' =(01,--.,9m), define a morphism

Bl;((Gar)") = Ulgkgn Spec (R[tl, R A JJ:—;, cee ch—:])
7
Bl;((Gar)") = Ulgkgn,lglgm Spec (R[th ERRLS ggi 1e ;kgT])

by the inclusions of affine rings

Rltr, .o tp, 4, 2] S Rty B2 Jade]
(1 <k <mn,1<1<m). The projective limit in (1) is taken with respect
to this ordering.

Since the centers of the blow-ups are outside (Gm,r)" (C (Ga,r)"),
we have a dense open immersion (Gmr)” < B. Furthermore, there is
a unique action of (Gm,r)" on B which is compatible with the standard
action of (Gm,r)" on itself. Let (RL,)va be the closure of RY, in B
under the composite of open immersions R, C (Gmr)” < B. Then
the canonical map (RZ,)va1 — RZ is proper and surjective because so
is B— (Gar)" (cf. [NB, Ch. 1, §10, no. 2, Corollaire 3]). Furthermore
the group RZ, acts on (RZ)val.
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Let N := Z>o. There exists a canonical bijection between (RZg)val
and the set of all pairs (V,h) where V is a valuative submonoid of Z"
containing N” and h : V* — Ry is a group homomorphism. In fact,
for a point z of (RLy)va1 C B, the corresponding pair (V, ) is defined
by

@) {V ={meZ"|[]; t;-n(j) is regular at z},

h(m) := (I1,; £ ().

The inverse map (V,h) — z = (21)1ew, 21 € Bli((Gar)"), is given as
follows. Let h be the extension by zero of h to V. Let I = (f1,..., fn),
and take 1 < k < n such that the all exponents of 7{71; 1<l1<n)in

the expressions as the products of ¢; (1 < j < r), belong to V. Define a
point z; by an R-algebra homomorphism

xr: R[tlv"'vtm %a’%] _>Ra II(H] t;n(J)) = iz(m) (m (S V)

The action of a = (a;)1<j<r € RL, sends (V, k) to (V,ah), where
ah is defined by
(ah)(m) := (I1; af)r(m) (m e V™).

A directed family of elements (Vj,hy) of (RTZO)MI converges to
(V,h) € (R%q)val if and only if the following condition is satisfied for
eachmeV:

(3) m € V, for any sufficiently large A, and ky(m) converges to i(m).
(For the generality of ( )va, cf. [K].)

2.14. Identification of Dps val(P) with D x4? (Ap)ya. Let P be a
Q-parabolic subgroup of Gr. Let (Zp)val be the set of all pairs (V| h)
where V' is a valuative submonoid of X(Sp) containing Ap and h :
V>* — Ry is a homomorphism. Then, by writing Ap = {x1,.-.Xr}
(r = rank Sp), we have a bijection

(ZP)val =~ (R’%O)Vab (‘/7 h) = (Vlv hl)7

where V' 1= {m € Z" | []; X;n(j) € V} and K is the map (V')* — R,
m — h(I; X;-n(j)). For the set Dpg vai(P) in 2.9, we have a bijection

(1) DBS,Val(P) — D XAP (ZP)valv (T7 Zv VI) = (F7 (‘/: h))7
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which is given by

F € Z (any element),
V := (the inverse image of V' under X(Sp) — X(T)),
h:V* — Rsg, the trivial homomorphism

h(m) :=1 (Vm € V).

()

Here in the definition of V', we regard T as a subtorus of Sp via the
composite of the embeddings ' — Sp,,, — Sp (2.8 and 2.11).

The inverse map D x4? Ap — Dgs val(P), (F, (V,h)) — (T, Z, V"),
is given by

under the Borel-Serre lifting Sp — Ggr atKp
Z:={aoF|a€ Ap, x(a) = h(x) (Vx € V)},
V' .= (the image of V under X(Sp) — X(T')) (so that V' ~V/V*).

T.— (the image of the annihilator of V* in Sp )

We show that (T, Z, V') satisfies the conditions (i)—(iii) in 2.6 which
define Dpgva. (i) and (ii) are clear. We prove (iii), that is, M, =
D, cyvi-1 H(X') is Q-rational for any x € X(T'). The image of T' in
P/P, is Q-rational, since it is contained in Sp. This shows that uTu ! is
Q-rational for some u € P,. Hence uM,, is Q-rational for any x € X(T').
Hence it is enough to prove uM, = M,. For this, it is enough to prove
IM, C M, for |l :=logu € Lie(P,). By decomposing Lie(P,) as the
direct sum of eigenspaces for the adjoint action of Sp, we may assume
that there exists x' € A, such that Ad(¢)l = x/(t)"!! for any ¢t € T.
Since Ap C V, V' contains the restrictions of elements of A} to T.
Hence x'|r € V'. Hence IM, C MX(X,lgl) C Myyi-1 = M,.

2.15. Topologies of Dps, Aps and Dgs val. Let P be a Q-parabolic
subgroup of Gr. We have, with the identification of Ap and RZ,,

Dgs(P) = D x*7 R%, (see 2.12),
Aps(P) ~ X x4 RY, (analoguously to the above),
DBS7V3,1(P) ~D XAP (Rgo)val (see 2.14).

By using these isomorphisms, we introduce a topology on Dpg(P)
(resp. Aps(P), Dpsvail(P)). We introduce the strongest topology on
DBS (resp. XBs, DBS,val) for which the map DBS (P) — DBS

(resp. Aps(P) — ABs, Dpsvai(P) — Dgsval) is continuous for every
Q-parabolic subgroup P of Gg. Then, it can be shown as in [BS] that all
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these maps Dgg(P) — Dgg, Xss(P) — Xgs, and Dgs va1(P) — Dgs val
are open embeddings.

2.16. We give here a preparation for the proof of Theorem 2.17.
Let P be a Q-parabolic subgroup of Gr. As we shall show below, there
is a closed subset &’ of X such that we have homeomorphisms

(1) X/XAP:)‘Xv ($7a)'—)a0x7
(2) D'x Ap 5 D, (z,a)—aoux,

where D’ is the inverse image of X’ under the canonical map D — X in
2.2 (3). These (1), (2) induce homeomorphisms

X x Rgo ~ XBs(P),
(3) D' x RS =~ Dps(P),
D' x (R5g)val = Dgs vai(P),

where r = rank Sp.

Now we define X’. Let °P be the intersection of the kernel of |x| :
P — R-o, a — |x(a)|, for all homomorphisms x of algebraic groups
P — Gy, r defined over Q. Then P, C °P. By [BS, 1.2], the canonical
map Ap — P/°P is an isomorphism of topological groups. Let | | : P —
Ap be the composite map P — P/°P ~ Ap. Fix a maximal compact
subgroup K of Gr. Since Gr = PK (cf. [B, §11]) and since | | kills the
compact group P N K, there exists a unique map Gr — Ap sending pk
to |p| (p € P,k € K). This map factors through Gg/K ~ X. Let X' be
the inverse image of 1 € Ap under the induced map X — Ap. It is seen
easily that we have the homeomorphisms (1), (2).

Theorem 2.17. (i) The maps ¢ : Dgg val — Dps and 8 : Dgs — Xps
in 2.8 are proper and surjective.
(i1} The spaces Xps, Dps, Dps val are Hausdorff and locally compact.

Proof. (i) follows from the descriptions of Xgg(P), Dps(P), Dgs,vai (P)
in 2.16 (3) together with the fact that (R )va — R%, and D' — X’
are proper and surjective. B a

(ii) for Xgs is proved in [BS]. (ii) for Dgg, Dps val follows from this
and (i). Q.E.D.

§3. Spaces of SL(2)-orbits
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3.1. Summary. Let A : (Gmr)"” — SL(2,R)" be the homomor-
phism defined by

(t1y .. tn) o ((tf)l 2) (tgl t‘i))

For a homomorphism p : SL(2, C)" — G¢ defined over R, the following
three conditions are equivalent:

(1) p does not factor through the projection onto any component

SL(2,C)™ of SL(2,C)" (m < n).

(2) The induced Lie algebra homomorphism p, : s[(2,C)®" — g¢ is
injective.
(3) The induced Lie algebra homomorphism

Lie(Gm,c)™ = s[(2,C)®" 25 g is injective.

Let (p, ¢) be a pair of a homomorphism p : SL(2, C)" — G¢ defined
over R and a map ¢ : P}(C)" — D. Throughout this paper, such a
pair (p, ) is called an SL(2)-orbit of rank n if it satisfies the following
three conditions:

(i) p satisfies the equivalent conditions (1)—(3).

(ii) ¢(gz) = p(g)¢(z) for all g € SL(2,C)™ and all z € P}(C)".

(i) Let b be the upper-half plane and let i := (¢,...,7) € h™ C
P1(C)". Then ¢(i) € D, and the associated Lie algebra homo-
morphism Lie(p) : s1(2,C)®™ — g¢ is a homomorphism of type
(0,0) with respect to the Hodge structures induced by the points
i€ bh™ and (i) € D, respectively.

Let (p, ) be an SL(2)-orbit of rank n. We denote by Y;, N; = N,
N ]+ the image under the Lie algebra homomorphism Lie(p) of

-1 0 0 1 0 0
0o 1)’ 0 0)’ 1 0
of the j-th factor of sl(2, C)®™, respectively.
Define a homomorphism
(4) p: (Gm7R)" — GR,
(tl, ey tn) [nd p(A(tl R tn,tQ . 'tn, ey tn_ltn,tn)).
(The map p will be related in 3.9 to Borel-Serre liftings.)

In this section, we introduce spaces of SL(2)-orbits Dgp 2y and the
projective limit Dgr,(2),va1 Of the blowing-ups of Dgp2). These spaces,
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together with the spaces in the previous section, will form the following
diagram:

Dsp2),val - = Dss,val
(5) ! !

Dsy(2) Dps — ABs.

In general, there is no direct relation between Dgr (2) and Dps (see, §6),
which is why we introduce Dsp,(2),val and Dgs val-

3.2. Weight filtrations. For a nilpotent element N € ggr, the weight
filtration associated to N is the increasing filtration W = W(N) of Ho r
characterized by the following conditions (i), (ii) ([D]).

(i) NWy C Wy_q for all k € Z;

(ii) N*: gr}V 5 gr¥, for all k € Z>o.

3.3. Cones. We fix terminology concerning cones. Let V be an
R-vector space. A cone in V is a subset o of V which is closed un-
der addition and under multiplication by elements of R>¢ and satisfies
oN(—c) = 0. A subset o in gr is a nilpotent cone in ggr if it is a finitely
generated cone in ggr consisiting of mutually commutative nilpotent el-

ements. Let ¢ be a nilpotent cone in gg. For A = R, C, we denote by
o4 the A-linear span of ¢ in gg4.

Definition 3.4. Let o be a nilpotent cone in ggr, and let N; (1 <j <
r) be its generators over R>g. A subset Z of D is a o-nilpotent orbit
(resp. o-nilpotent i-orbit) if it satisfies the following three conditions for
some F € Z.

(i) Z =exp(oc)F (resp. Z = exp(ior)F).

(ii) NFP C FP~! (Vp, VN € o).

(iii) exp(3_, < j<, 1y N;)F € D (Vy; > 0).

It is easy to see that, in 3.4, if the conditions (i)—(iii) are satisfied by
one F' € Z then they are satisfied by any F' € Z. The condition (ii) is
called Griffiths transversality and the condition (iii) is called positivity.

3.5. Weight filtrations associated to a nilpotent orbit. We recall
here a result of Cattani and Kaplan.

Theorem-Definition ([CK2]). Let (0,Z) be a nilpotent i-orbit.
Then, for any elements N, N’ of the relative interior of o, the filtrations
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W(N) and W(N') of Hor coincide. This common filtration is denoted
by W(o).

Note that, as in [CKS, §4], an SL(2)-orbit (p, ¢) of rank n defines an
n-tuple of nilpotent elements (NN;)1<j<n and a nested family of nilpotent
i-orbits (0, Z;)1<j<n by

0']' = RZONI + - +RZONj7

(1) A
Z; = exp(io;r)¢(0,...,0,4,...,7).

We have W(Ny + -+ N;) = W(o;) for each 1 < j < n.

Definition 3.6. We define Dgy,(2),0 := D and, for a positive integer
n, we define

(p, ) is an SL(2)-orbit of rank n, }/N

W (o;) is Q-rational (1 < j < n)

DSL(2),n = {(p7 SO)

where (p,¢) ~ (p/,¢') if and only if there exists t € R%, such that
p" = Int(p(A(t)))(p) and ¢’ = p(A(t)) - p. We define

Dsr(2) = Upnso DsL@)ms  Dsr2),<r = Uo<n<r DsL(2)n-

We denote by [p, @] the point of Dgy,2) represented by (p, ).

Definition 3.7. For a non-negative integer n, we define

[p7 SD] € DSL(Z),’I’L’ ZC (p((R>OZ)")a
Dsy2),val,n = § ([0, 9], Z,V) | V : a valuative submonoid of X(G7,),
which satisfy (i) and (ii) below

(i) Let X((Gm)™)+ be the image of N™ via the canonical isomor-
phism Z" ~ X ((Gy)™). Then,
X(Gm)")+ CV and X((Gm)™)+ NV ={1}.
(ii) Let
T:={t € (Gmr)"|x(t)=1(Vx € V*)}

Then Z is a p(T~o)-orbit in D. Here 5 is as in 3.1, and we denote
again by 7% the connected component of T' containing the unity.

We define
DSL(Q):Val = U’nZO DSL(Z),val,n-
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We have the canonical surjection

DSL(Q),val - DSL(2)7 ([p7 (p]v Z, V) = [p’ SD]-

After preliminaries in Lemmas 3.8-3.10, we will relate Dgy,(2) vai
with Dpsg va1 in 3.11 below.

Lemma 3.8. Let (p,p) be an SL(2)-orbit of rank n and put r := ¢(i).
Then

Or. (p(A (1)) = p(AE) ™ (7t € (Gmr)"™)-

Proof. Let Y; (1 < j < n) be as in 3.1. It is enough to show
0k (Y;) = =Y; for all j. We prove this. Here 0k, is regarded as the
involution of gc induced by the Cartan involution 0k, of Gr at K, by
abuse of the notation. Let

go=@@,807°, o0 " ={X €gc| XHPY™P C HPF**7F~* (Vp)}

r

be the Hodge structure on gc induced by r. Then, by 2.2 (2) and the
definition of the Weil operator C, in 1.2, O, is given by

(1) 0k, (X) =1, (=1)°X5~° for X =) _X>*ecgc=@P,9s °

On the other hand, the Hodge decomposition of Hy c = C? = Ce;+Cey
corresponding to 7 € b is

Hyc=H° @ H)' = C(iey + e2) © C(—iey + e2) (cf. 6.2 below),
and this induces the Hodge decomposition

sl(2,C) = sl(2)V 7! @ s1(2)° @ s1(2) 71!

o} L)ec(l ¥)ec(i )

of s[(2,C). Since

10\ _iffi 1\ (- 1
0 1) 2 1 —i 1 1 ’
Y; € gi~ @ gy bt by 3.1 (ii) for all j. Hence, by (1), 0k, (Y;) = —Y; for

all j. Q.ED.

Lemma 3.9. Let (p,) and r be as in 3.8. For 1 < j < n, let
W) = W(o;) be as in 3.5 and let P; be the Q-parabolic subgroup of Gr
defined by W), Then the j-th factor of p (cf. 3.1),

tjHﬁ(l,...,l,tj,l,...,l),
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coincides with the Borel-Serre lifting at K, of the j-th weight map

%)
GmRr — Pj/Pju, tj— (t? ongry k.

Proof. This follows from 3.8 and the observation
J
. —_——
p(].,...,].,tj,l,...,].) :p(A(tj,...,tj,l,...,l))
= exp(log(t;)(Y1 +---+Y;)). QE.D.

Lemma 3.10. Let (p, ), r = ¢(i) be as in 3.8, and W be the family of
weight filtrations (W (0;))1<j<n as just before 3.6. Then, an SL(2)-orbit
(p, ) of rank n is completely determined by (W,r).

Proof. By 3.9, p is determined by (W,r), and Y; (1 < j < n) are
determined by p. Let Tp(r) (resp. Ty (¢)) be the tangent space of D at
r (resp. h at 7). Then we have a commutative diagram

gc —= > Tp(r)
(1) Lie(p)T d(p]\
sl(2, O)" —— T, (i)",

where a, (resp. ;) is the differential of the morphism G¢ — D, g—

gr, (resp. SL(2,C) — P(C), g ~ g¢i,) at 1. Since —2iq; (8 (1)> =

o (‘01 (1) , we have —2ia,(N;) = ox(Y;) (1 < j < n). Since the
restriction of o, on Lie(P; ) is injective, N; (1 < j < n) are determined.

The N, J+ are determined by the Y; and the ;. Q.E.D.

Theorem 3.11. There is an injective map
(1) Dsp(2)val = Dsyvat, (0,9, 2, V) = (p(T), Z,V").

Here T is the subtorus of (Gpmr)"™ in 3.7 (ii) and V' = p,(V/V*),
which is regarded as a subset of the character group of p(T).

Proof. Let ([p, @], Z,V) € Dgp,(2),va1 and let (T", Z, V") be its image
under (1).

We check first the conditions (i)—(iii) in 2.6 hold for (7", Z,V'). (i)
follows from 3.8 and 2.3. (ii) is evident. We prove (iii), that is, M, =
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D, exv—1 H(X') is Q-rational for any x € X(T"). For x € X((Gm)"),
let

H(x) :=={v e Hor | p(t)v = x(t)v (VL€ (Gmr)™)},
Wy = Byrexx(@mm - HX)-
Let x € X(T") and let ¥ € X((Gm)™) be an element such that
x(p(t)) =x(t) (vteT).

Then

M, = @x’@zVwl H(XI)-'
Since X ((Gm)™)+ C V, we have

M, = foegvfl Wy

Hence it is enough to show that W, is Q-rational for any x € X((Gm)").
Write x = (l1,...,l,) (; € Z) via X((Gm)™) = Z™. Then W, =
Mi<j<n W(0;)1;, where W(o;) is as in 3.5. Since the W(o;),; are Q-
rational, so is W,,. This proves that the map (1) is well-defined.

We prove that (1) is injective. V C X ((Gm)™) is the inverse image
of V' under the map X ((G,)") — X (T) ~ X(T"). Hence it is sufficient
to show that [p, ] € Dgp(p) is determined by (7,Z,V’). Letr € Z
and take a representative (p, ) with ¢(i) = r. To prove that (p, p) is
determined by (T, Z,V’) and r, it is sufficient to show, by 3.10, that
the rank n of (p,¢) and the family of weight filtrations (W(Ny + --- +
Nj))1 <j<n 8sSOCiated to (p, ) are determined by (7", Z,V'). Hence it

is sufficient to prove that the family (IV;)1<;j<n is the unique family of
elements of Lie(Pr v ,) having the following properties (i)—(iv).

(i) For 1 < j < n, Nj is a non-zero eigenvector for the adjoint action
of T'.

(if) For 1 < j < m, let x; : T" — Gm,r be a character defined by
Ad(t)N; = x;(t)N; for t € T'. Then the x; are non-trivial and
different from each other.

(iii) In the notation (ii) above, ij;jl eV (1<ji<n—1).

(iv) Let or : gc — Tp(r) be the canonical C-linear map 3.10 (1). For
1 < j <, let Lie(x;) : Lie(T") — R be the map induced by x;.
Then

—ior(A) = 321 <<, Lie(x;)(A)ar (N;) for any A € Lie(T").
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We first show that the family (IV;)1<;j<n associated to (p, ) satisfies
these (i)—(iv). We have

Ad(p(Atr, -, ta)))(N;) = £2N;
and hence
(2) A(Btr, - ) (N5) = (- o) 2N

Hence (i) and (iii) are satisfied. Denote by x,+1 the trivial character of
T’. Suppose x; = X for some j, k with 1 < j < k < n+ 1. Then the
character

(tla e 7tn) = Hj§l<k tlz

of (Gm,r)" is trivial on T and hence belongs to V*. Since it also belongs
t0 X((Gm)™)+ and since X ((Gyy)™)+ NV > = {1}, we have j = k. Thus
we have proved (ii). Note that

(3) o (Y;) = —2i0(N;) (1 <7 <n) (cf. Proof of 3.10).
By (2) and (3), we have, for an element A =73, ., b;Y; of Lie(T"),

—iay(A) = -2 E1gjgn bjar(N;) = Z1gj§n Lie(x;)(A)ar(N;).

Next we prove that a family (NV;)1<j<n of elements of Lie(Pr v+ )
satisfying (i)—(iv) is unique. Since the restriction of oy on Lie(Prs v+ )
is injective, we have:

(4) Y1<j<n Lie(x;)(A)N; for A € Lie(T") is the unique element of

Lie(Prs v+ ,,) whose image under «, coincides with —ic,(A).

As sets, we have

under the action of Ad(T")
the x-component
5 Jicjen = x € X(T) | 0 2o
6)  {xh<ic X (T") of Zlgjgn Lie(x;)(A)N;
(A € Lie(T")) is not zero

Since (V')* =1, (iii) determines the order, hence the family (x;)1<j<n-
For each 1 < j < n, Lie(x;)(A)N; (A € Lie(T”)) is determined as the
xj-component of »7, . Lie(x;)(A)N; (A € Lie(T")) under the action
of Ad(T"). Since Lie(x;) # 0, N; is determined. Q.E.D.

3.12. Topologies on Dsy,(2), Dsp(2)val- A family (W), <;<,, of in-
creasing filtrations W) of Hy g is called a compatible family if there ex-
ists a direct sum decomposition Hor = €D,,cz» H(m) such that W,Ej ) =
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@Drmezn, m; <k H(m) for any j and k and that (H(m), H(m'))o = 0 if
m +m’ # 0. Note that, for [0, ¢] € Dgr(2),n, the family of weight filtra-
tions (W (0;))1<j<n associated to [p, ¢] in 3.5 is a compatible family.

Let W = (W), <<, be a compatible family of Q-rational increas-
ing filtrations W) of Hy r. We define the subset DSL(Q)(W) of Dgy,2)
by

Js; € Z (1 < j < m) such that
Dspy(W) = | {2 €Dsppm|1<s1 < <sm<nand
0<m<n W(O'J) = W(SJ)(VJ)

Here (W(0;))1<j<m is the family of weight filtrations associated to = €

Dsy,2),m-
We define the subset Dgy,(2)val(W) of Dgp(2),va1 by the pull-back of

Dsr2)(W).
Definition 3.13. We define the topology on Dgy,(2),va1 as the weakest
one in which the following two families of subsets are open:
(i) The pull-backs on Dgy,(2),va1 of open subsets of Dps val-
(ii) The subset Dgr,(2),va1(W) for any n and any compatible family of
Q-rational increasing filtrations W = (W), <, <.
Note that the injective map Dsy,(2) val — DBs,val is continuous by

(i). We induce the quotient topology on Dgy 2y of the above one under
the projection Dsr,(2),va1 — DsL(2)-

This topology of Dgy,2) has the following property (see 4.19 below).
For an SL(2)-orbit of rank n (p,¢), [p, ¢] € Dsy(2) is the limit of

Yi . ooforl<Vj<m,
Yji+1

@(iylr .- ,'Lyn) € D, as yY; > 0 and

where y,,1 denotes 1.
Note that the space Dgy,(2),val is Hausdorff by 3.11 and 3.13.

Theorem 3.14. (i) The canonical map Dgy,2),va1 — Dsi(2) s proper
and surjective.

(ii) The space Dgy,y is Hausdorff.
The proof of this theorem will be given in §4.

In Remarks 3.15, 3.16 below, we give a rough sketch of the rela-
tionship between the present results and the results in [KU1|. Precise
descriptions and their proofs will be found in the forthcoming paper
[KU2J.
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3.15 Remark (Relation with period maps). Let X be a connected
complex manifold, let Y be a reduced divisor with normal crossings on
X,andlet X :== X —Y. Let H = (Hgz,{, ), F) be a polarized variation
of Hodge structure on X of weight w and of Hodge type (h?9). Then,
as in 1.7, we have the associated period map

(1) @: X —T\D.

In the forthcoming paper [KU2], by using SL(2)-orbit theorem in [CKS],
we will show that ¢ extends continuously to pgy,(2) and also to ang(Q) in
the following diagram.

: Y \lo: PsL(2)
%BII(X) ) =~ T\Dsr)
@ l
b
: ~ PsL(2) b
11€<I_11; Bl (X) = F\DSL(Q)‘
Here, in analogy with 2.13, ¥ denotes the set of all non-zero O-ideals
which are locally of forms I = (f1,..., fn) generated by some local
sections fi,..., fn of O whose zeros are contained in Y, Bl;(X) means

the blowing-up of X along I, Bl;(X)!°8 is the topological space defined
by the method of [KN], and the projective limit is taken with respect
to the ordering of the set ¥ as in 2.13. DEL(z) is a space of Satake(-
Baily-Borel)-Cattani-Kaplan type ([Sa], [BB], [CK]) which is defined as
a quotient space of Dgp(z) under the following equivalence relation ~.
For x € Dsr2),m» ¥ € DsL(2),n>

m = n, and the associated families of weight,

T~y { filtrations coincide, say W, and y € Gw R 2.

Here Gwr is the subgroup of Ggr preserving all the filtrations in W
and Gw . is its unipotent radical. (When D is in the classical sit-
uation (6.6) except one case (i) in Theorem 6.7, this space DgL(z) is
exactly the same as the ‘reductive Borel-Serre space’ which was con-
structed by Zucker in [Z1], [Z3].) Since the centers of the blowing-ups
are contained in Y, we have open immersions X < Lgl Iew Blj(f),
X — lim ey Bl;(X)°2. Note that, when X is a unit disc and Y is the
origin, we have lim ey Bl; (X)=X.

3.16 Remark (Relation with moduli of polarized logarithmic Hodge
structures). In the forthcoming paper [KU2|, the diagram 3.1 (5) is
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enlarged as
Dsr2)vat <  DBsyval
! 1
1) DY, « D, — Dsg Dps  — Xps.
! ! !

F\Dz «— DE,val — D;L(2)

We explain roughly the spaces and the morphisms appeared in this
diagram (1).

Replacing gr by gq in 3.3, we can define a nilpotent cone o in gq
analogously. In this remark, we always consider nilpotent cones in gq.
Let X be a fan of nilpotent cones in gq, i.e., a set of nilpotent cones in
gq satisfying

ced, tisafaceof o =7 € X,
0,0/ € X = oNo’ is aface of 0 and of o’.

By using the notions in Definition 3.4 (replacing ¢ = > ; R>0N; by
o =>,Q>0N;), we define sets

(2) Ds (resp. Dg:)
:= {(0, Z) nilpotent orbit (resp. i-orbit) |oc € ¥, Z C D}.
There is a natural map Dg — Dy, (0,2) — (0,exp(cc)Z). Let T be a

neat subgroup of Gz. We assume I is strongly compatible with ¥, i.e.,
they satisfy

Freloex=TI"1oT X,
I'(0) ;=T Nexp(c) = logI'(0) generates the cone o.

Theorem 6.2 in [KU1]| says that I'\ Dy, with a suitable structure of ‘gen-
eralized fs logarithmic analytic space’ is a fine moduli space of ‘polarized
logarithmic Hodge structures of type ($g, X, I")’, and that F\Dgz, with
a suitable structure of ringed space, is isomorphic to ‘the ringed space
(T'\Dyx)!8 associated to I'\Dx’. This space I'\ Dy, is our generalization
of a toroidal compactification (3) in Introduction.

The space Ds; vs1 and ng’val are certain projective limits of blowing-

ups of Dy and Dﬁz, respectively. The maps Dy ya — D%L(z) and
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Dﬁz,val — Dgp,(2) are the unique continuous maps extending the iden-
tity of D, which are constructed by using SL(2)-orbit theorem in [CKS].

We can derive good properties, such as Hausdorflness, on I'\ Dy
from good properties 2.1 (i), (ii) on Xpg along the fundamental diagram

(1).

Let H = (Hz,(, ), F) be a polarized variation of Hodge structure
on X in 3.15. If there is a suitable fan ¥ for X, then the period map
3.15 (1) extends to

X — '\ Dsg,
—)—(—log R (F\DZ)lOg - F\D%,

lim see Bly (z) — T\ Ds vat = T\Dgy 59,
lim e Bl (X)'"°8 — F\Dﬁz‘,val = I\ Dsr,(2)-

The composite maps (4) are nothing but cng(Z) and gy (2), respectively,
in 3.15 (2).

§4. Proof of Theorem 3.14

4.1. Summary. This section is devoted to proving Theorem 3.14. To
do so, we will introduce a new topology 7 on the set Dgy,2)(W)in 3.12 in
terms of filters on D associated to points of Dgy,2)(W) by using Cartan
decompositions (4.6, 4.8 below). Denote this new topological space by
Dsp2)(W)7, i.e., the underlying set coincides with the one of Dgy, () (W)
but whose topology is 7. We will show that the topological space
Dsr,(2) va1(W) in 3.13 is homeomorphic to Dgy,2)(W)r XRz, (Rgo)val

(4.14 below). From this, we get the homeomorphism Dgp)(W) =
Dsr2)(W) 1 (4.15 below) and the proof of Theorem 3.14 (4.17 below).

4.2. First, we prove two Lemmas 4.3, 4.4 below. Let X; (1 <
j < d) be indeterminates. A convergent Lie power series in the X
is a power series with respect to the bracket product [, ] in the Xj
with coefficients in C which converges if the X; are elements of a finite-
dimensional Lie algebra over C and sufficiently near 0. The order of a
convergent Lie power series f(X7,..., Xy) is the minimum of the degrees
of the monomials in f(X;,...,X4) whose coefficients are not zero.

Lemma 4.3. Let X, Y be two indeterminates. Then there exist
convergent Lie power serieses f_(X,Y) and f1(X,Y) which satisfy the
following two conditions.
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(i) exp(X +Y) = exp(f_ (X, ¥)) exp(f+ (X, V).

(i) Each monomialin f_(X,Y) (resp. f+(X,Y)) is of odd (resp. even)
degree in X.

Proof. Let A be the convergent Lie power series of order > 2 defined
by

exp(X +Y) =exp(X + A) exp(Y).

Devide A = A_ + Ay so that each monomial in A_ (resp. A;) is of odd
(resp. even) degree in X. Let A’ be the convergent Lie power series of
order > 3 defined by

exp(X +Y) =exp(X + A_ + A") exp(A}) exp(Y).

Then exp(A4.) exp(Y) = exp(B;) for some convergent Lie power series
B, whose monomials are of even degree in X. Devide A’ = A” + A/, so
that each monomial in A’ (resp. A’,) is of odd (resp. even) degree in X.
Continuing this process, we obtain Lie power series f_(X,Y), f+(X,Y)
which can be checked to be convergent Lie power series. Q.E.D.

Lemma 4.4. Let y € Dgp2),vain and let [p,¢] € Dgpe),n be the
image of y. Let P = Py v+ be the Q-parabolic subgroup of Gr associ-
ated to y in 3.7 and 2.8. Let K = K, be the maximal compact subgroup
of Gr associated to the point v := (i), and let 6 = 0 be the associ-
ated Cartan involution. Let gg = @, g(l) be the decomposition into the
eigenspaces under the action of (Gmr)" through Ad(p( )). Let Xi, Yy
be indeterminates, where the index l runs over all l € Z™ with g(l) # 0.

Then, there exist convergent Lie power series fp and fx in the X
and the Y; which satisfy the following conditions. Let U be a sufficiently
small neighborhood of 0 in gr. For any x € U, writing x = Y, ay,
x; € g(l), we have

(@) fe((z), (0(z))) € LieP, fr((z)i, (0(z)i) € LieK, and
(i1) exp(z) = exp (fp((z2)1, @(x1))1)) exp (fx ((zo)1, (O(z1))1))-
Proof. Note that Lie(P) = @ _;cy 8(l). We write
T= 3T = ey Tt ZvléV T
= Z-lEV T — Zwl¢V 0(111) + Z#l¢v($l + 9(1’1)),
exp (X _jey 31— Xy O(z1) + A)
cexp (Y jgv(m1 + 0(x1))),

Il

exp(x)
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where A is the convergent Lie power series of order > 2 determined by
the above. Then

Yo aev T — 2 gy 0(@) € Lie(P), 3°_ 4y (zi + 0(z1)) € Lie(K).
Do the same for A replacing z, and iterate. In the end, we obtain

the desired convergent Lie power series fp and fi. Q.E.D.

4.5. The filter on D associated to a point of Dgr,()- We use the
terminology filter in the sense of [NB, §6]. We introduce, in Definition
4.6 below, the filter 7, on D associated to a point z € Dgr,(2y. We shall
see later that this F, coincides with the filter

{UN D |U is a neighborhood of z in Dgy,2)} (4.15 below).

Definition 4.6. Let x € Dgp(2),» and (p, ) be a representative of z.
Put r = ¢(i). For

U :a neighborhood of 1 in K,
1) U’ : a neighborhood of 0 in R%,
U"” : a neighborhood of 1 in Gg,

we denote

(2) AUU U = {gﬁ(t)kr

keUteR,,NU, }
geU”, O5uke(g) =971

where p is as in 3.1 and 05(), is the Cartan involution of Gr associated
to the maximal compact subgroup Kj;)rr- We define 7, associated to
x as the filter on D whose basis is given by the A(U,U’,U") where U,
U’ and U” run over all such neighborhoods as in (1).

As is easily seen, F, is independent of the choice of a representative
(p, ) of z. Note that, since 85y, = Int(5(t))0; Int(5(¢)) !, we have

n !
3) muUCW3=§mmm|k€“teRW”U’ }

g € Int(p(t))~1(U"), b:(9) = 97!

Lemma 4.7. A basis of the filter F,, is also given by the following
family of sets:

(1) BU,U,U"):= {gﬁ(t)kr

keUteR,NU,
Int(5(t))? (g) € U” (j = 0,%1)

where U, U’ and U" run over all such neighborhoods as 4.6 (1).
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Proof. We prove that, for given U, U’ and U”, and for sufficiently
small V, V' and V", such as in 4.6 (1), we have

(2) A(V, V', V") c BU,U',U").
(3) B(V,V',V") c AU,U",U").

We prove (2). By the remark just after Definition 4.6, any element
of A(V,V', V") can be written as

p(t)gkr such that k € V, t € R, NV’, Int(5(t))(g) € V", 0:(9) = g7
When V" is sufficiently small, there exists a € gr near 0 such that
Int(5(t))(9) = exp(a), (Ad(A(t))0r Ad(5(t))™")(a) = —a.

Decompose

(4) a=3 czn 0 € GR = Dz 8(0)

under the action of Ad(p(t)) (t € (Gm,r)"™). Then we have
(5) Int(5(t))(g) = exp(a),

(6) g =Int(5(t)) " (exp(a)) = exp (3,7 ... 151 ar),
(7) Int(5(t)) ' (g) = exp (3, 7% ... ;% ay).

We want to see Int(p(t))(g) € U” for j = 0,+1. Int(5(t))(g) € U" is
obvious by definition. In order to see Int(5(t))~!(g) € U”, we compute
as follows.

a=—(Ad(5(t)0: Ad(5(t) ") (a) = — 3, (Ad(A(t))0:) (t7 " .. .t may)
= =3 (0: Ad(B@®) ) (T -t tra) = = S P Lt 0 (ay).

Since 6, transforms g(I) to g(—1), we have a_; = —t72" ... £; 20, (ay),
that is,
(8) t72 My = —0c(ay) (V€ ZM).

Since a is sufficiently near 0, so is each component a_; and hence so is
each —0y(a_;). Therefore, by (8) and (7), we have Int(5(t))"1(g) € U".
Finally, g € U” is proved as follows. Take a basis {e; ;} of gr subordinate
to the decomposition (4) and write a; = }_; ai jer ;. Since

(9) tth e = a7t ey )



350 K. Kato and S. Usui

and since a; ; and t72h e a; ; are sufficiently near 0, so is the left-
hand-side of (9). Thus we have g € U” by (6).

We prove (3). By definition, any element of B(V,V’, V") can be
written as

p(t)gkr such that k € V, t € RZ, NV, Int(5(t))? (g) € V" for j = 0, £1.
Since V" is sufficiently small, there exists b € gr with

(10) g =exp(b)
such that Ad(p(t))? (b) are sufficiently near 0 for j = 0, £1.

Let

b=b"+b" €gr =g Dog, 0L = {z€gr|bc(z) = £z},
be the Cartan decomposition. Then, by 4.3, we have

g = exp(b) = exp(f- (b7, b%)) exp(f1(b7,b%)),  fu(b7,b") € o5
Since
p(t)gkr = p(t) exp(f-(b~,b7)) exp(f+ (b7, bF))kr,

it is enough to show

exp(f+(b7,b"))k € U and Int(p(t))(exp(f-(b~,b%))) € U".

Since b is sufficiently near 0, exp(f4(b~,b%)) € K, is sufficiently near 1.
Hence

exp(f+ (b, b))k € U.
Since b* = (b £ 0.(b))/2, we have

Ad(3(t) () = AdP@)(B) £ 9;(Ad(ﬁ(t))_1(b))

These are sufficiently near 0 by (10), and hence so is

F-(Ad(p())(b7), Ad(h(1))(b7)).

Thus
Int(ﬁ(t))(exp(f_ (b,b%)) €eU”. QED.

4.8. Topology T on Dgpy(W). Asin 3.12, let W = WDY)ici<n
be a compatible family of Q-rational increasing filtrations W) of H 0R-
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For z € DSL(Q)(W), let F, be the filter on D associated to x in 4.6. For
an open set U of D, denote

U :={z € Dg,s(W) | U € F,.}.

We define the topology T on Dgp)(W) so that its basis of open sets is
given by

{U | U is an open set on D}.

We denote by Dgr,2)(W)r the topological space whose underlying set
coincides with the one of Dgy,2)(W) but whose topology is 7. By con-
struction, for € Dgy,2)(W), the filter 7 on D associated to x coincides
with the filter

{VN D |V is a neighborhood of  in Dgr,2)(W)1}.

We recall here the definition of ‘regular spaces’ and a property of a
map into a regular space, which will be used in the proofs of 4.12, 4.14
below.

Definition 4.9 ([NB, Ch. 1, §8, no. 4, Definition 2]). A topological
space is called regular if it is Hausdorff and satisfies the following ax-
iom: Given any closed subset F' of X and any point = ¢ F, there is a
neighborhood of x and a neighborhood of F' which are disjoint.

We will see that Dgy,2)(W) and Dgy,(a) vai(W) are regular spaces.
(On the other hand, Dgp,2) and Dgp,(2),val are not necessarily regular.)

Lemma 4.10 ([NB, Ch. 1, §8, no. 5, Theorem 1]). Let X be a
topological space, A a dense subset of X, f: A —Y a map from A into
a regular space Y. A necessary and sufficient condition for f to extend
to a continuous map f : X — Y is that, for each x € X, f(y) tends to
a limit in' Y when y tends to x while remaining in A. The continuous
extension f of f to X is then unique.

4.11. Let W = (W©));.,<, be a compatible family of Q-rational
increasing filtrations W) of Hy g as in 3.12. For valuative submonoid -
V of X((Gm)™) = Z™ containing X{((Gm)™)+ = N”, we define a Q-
parabolic subgroup Py of Gr as follows.

Note that the quotient group Gw,r/Gw,r,. has the induced effective
action on

(1) Breze (Micjan Wi /(Trckan Mi<ijn W6)),
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where 6, is the Kronecker’s symbol. Define an action on (1) of
(t1,--+tn) € (GmR)" by Pjczn th ...t This induces a Q-rational
group homomorphism

(2) t:(Gmr)" = Gwr/GwRu
Let v : (Gm,r)™ — Gr be asplitting of W, that is, v is a homomorphism
of algebraic groups over R such that W,g] ) = Diczn, 1<k H(l) for all j

and all k, where H(l) == {v € Hor | v(t)v =[], t;jv (Vt € (Gmr)™)}
Then such v corresponds to a lifting (Gm,r)"” — Gw,r of ¢ in (2). Let
T C (Gmmr)" be the annihilator of V>, and let V' be the image of V
under X((Gm)™) — X(T) =~ X(v(T)). (So V! =~ V/V*.) Define the
parabolic subgroup Py of Gr by Py := P, 1)y (see 2.8). Then Py is
independent of the choice of v as is easily seen. By taking v defined over
- Q, we see that Py is Q-rational.

~ Lety=([p,¢],Z,V) € Ds zppat(W), let W' = (WD) cjcpn (0 <
m < n,l <5 <+ < 8, < n) be the families of weight filtrations
associated to [p,¢], and let V' C X((Gm)™) be the inverse image of
V under X((Gm)™) — X((Gm)™), (a5)1<j<n = (@s;)1<j<n. Then,
the Q-parabolic subgroup of Ggr associated to the image of y under
Dsy(2),va1 = DBs,val — Dgs coincides with Py.

Proposition 4.12. Let W = (W)1<j<n be a compatible family of
Q-rational increasing filtrations W@ of Hogr.-

(i) There exists a continuous map 3 : D — RZ, with the following
property. For any splitting v : (Gm,R)™ — Gr of W, we have

B(v(t)z) =tB(x) (Vz € D,Vt € RY).

(ii) Let B be as in (i). Then the map B extends uniquely to a con-
tinuous map B : Dga)(W)1 — R%,.

Proof. We prove (i). Take a valuative submonoid V of X ((Gm)™)
such that V O X((Gm)™)+ and V> = {1}. (Such V exists. For exam-
ple, identifying X((Gm)") = Z" and X((Gm)™)+ = N™, let V be the
subset of X ((Gm)™) corresponding to the set of all elements of Z™ which
are > 0 in the lexicographical order of Z™.) Let P := Py (see 4.11), let
h: (Gmr)® — Sp C P/P, be the canonical homomorphism, and let
0: Ap — RY, be a continuous homomorphism such that the compos-

ite map R, LN —Ap 2 —RZ, is the identity map. Fix a maximal
compact subgroup K of Gr. We define 3: D — R as the composite
map

D—X~Gr/K '} Ap L RY,,
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where | | is as in 2.16. We show that 3 has the property stated in (i).
Let z1 € D be a point lying over K € X. Let € D and write ¢ = pkx;
with p € P and k € K. Then, for ¢t € R%,, we have

Bv(t)x) = Bv(t)pkz1) = O(|v(t)p]) = 6(|lv(D))0(Ip|) = t0(lp|) = t6(z).

We prove (ii). Let z € Dgpo)(W), let (p,¢) be a representative
of z, and let r := (i) (i= (i,...,7) € h™). Let W/ = (W) e
(1 <s; <--+ < 8m < n) be the family of weight filtrations associated
to z, let

Gwir={g9 € (G°)r | gWt) = W& (1 <j <m)}

Put s := (s;)1<j<m. Denote by ¢5: (Gm,r)™ — (Gm,gr)" the injection
to the s-components, that is, ¢s : (aj)1<j<m — (Di)i<i<n; b = a; if
l=5;(1<j< m) and b; = 1 otherwise. Put v; := v o ts. Since both p
and v, split W/, there exists a unique

(1) u € Gw/ r,u suchthat p=Int(u)v,.

Since the target RZ; is a regular space, it is enough to prove, by 4.10,

that, for =, (p,¢), r as above, and for directed families (£)x, (ga)a,
(kx)x such that £y € RY7, g0 € Gr, ky € K, limyty =0, limy gx = 1,
limy kx = 1, there exists a limit

(2) lim B(p(tr)grkar) € RZq

Let W’ and u € Gy R, be as above, and let uy := v,(tx) " uv,(ty).
Then

B(A(tr)grkar) = B(uvs(ta)u" gakar)
= Bvs(ta)urutgrnkar) = 1s(t) Bluru~tgrkar).

Since v, splits W' and v € Gw' Rr,u, We have limyuy = 1. Hence
limy B(uyu~tgrkar) = B(u~'r). This proves the existence of the limit
(2). QE.D.

By the proof of Proposition 4.12 (ii), B(z) = B(u~'r) for z = [p, ¢] €
Dgy(2) (W), where r = p(i) and u is as in (1) above.
Lemma 4.13. Let W = (W(j))lngn be a compatible family of Q-
rational increasing filtrations W) of Hyr. Then the topology of

Dsy2)val(W) (as a subspace of Dgy,(2),va1) cotncides with the topology as
a subspace of Dgg val-
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Proof. Tt is sufficient to prove that, for any compatible family W’
of Q-rational increasing filtrations of Hp r, there exits an open set U of
Dgs va1 such that Dgy(2) val(W) N Dsp(2) val(W') = Dsp2)vat(W) N U.
As is easily seen, Dgr,(2)val(W) N Dgy(2),vai(W’) is a finite union of sets
of the form Dgy,(2) va1(W") where W" = (W(Si))lgjs,n for some m with
0 < m < n and for some s1,...,8, with 1 < 571 < -+ < 8, < n.
Hence we may assume that W' itself has the form W’ = (W (), <,
0<m<n,1<8 < < 8y <n). Assume this. Let V be the set of
all valuative submonoids V of X((Gm))") such that V O X((Gm)™)+ -
and V* = {1}. Then

DSL(Z),val(W) - UVGV DBS,val (PV)7

where Py is as in 4.11. In fact, for ([p,¢], Z,V) € Dsp,2)val(W), let
W' = (W(sj))lngm 0<m<n 1<s < < 8y, <n) be the
family of weight filtrations associated to [p, |, and let V' € X ((Gm)"™)
be the inverse image of V under X ((Gm)") = X((Gm)™), (a;)1<j<n —
(as;)1<j<m. Take V' € ¥V with V" C V'. Then Py O Py~ and hence
(le, ), Z,V) € Dpgvai(Pyv:) C Dggvai(Pyvr). We show the existence
of V. Let | = rankz(V’)* and fix any isomorphism h : (V/)* 5 ZL.
Define

Vii={zeV' |zg (V)}
U{z € (V')* | h(z) > 0 for lexicographical order of Z'}.

Then, V' €V and V' C V'.
For V €V, we define an open subset Uy of Dgg va1(Py) such that

(1) Dsr(2)val(W') N Dgs val(Pv') = Dsp,(2),va1(W) N Uy

This will show

Dsp2)val(W') = Dsp2)vat(W) N (Uy ey Uv)-

The definition of Uy is as follows. Let (Gm,r)" — Sp, be the canon-
ical injective homomorphism. Let (ej)1<j<n be the standard base.of
X((Gm)™). Take a; > 1 such that e?j is the restriction of an ele-
ment ; € X(Sp,) to (Gmr)" and fix such a; and ¥; (1 < j < n).
Let Ui, be the Ap,-stable open set of (Ap, )y consisting of all ele-
ments (V’,h) such that ¢, € (V/)* for 1 < j < m, and let Uy :=
D xAprv Ul, C D x4pv (va Jval = DBs va1(Pv). Then we have (1), as is
easily seen. Q.E.D.
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Proposition 4.14.  Let W = (W), be a compatible family
of Q-rational increasing filtrations W) of Hogr. Let 8 : D — RY,
and B : Dgp2)(W)7 — R, be as in 4.12. Then there exists a unique
homeomorphism

Dsr,(2),va1(W) = Dsr2) (W)t xRz, (RZ0)val

which extends the identity map of D.

Proof. Take a splitting v : (Gm,r)" — Gr of W. The homeomor-
phism in 4.14 is defined by

1) ¥ (@2, V)= (2,(V;h) (z€ Dspey(W), (Vo h) € (Rg)va1)

as follows. Let W, = (W(SJ' ))1§j§m be the family of weight filtrations
associated to z. Let (p,¢) be a representative of z, and let r = ¢(i)
(i=(...,7) € h™). Put s := (s;)1<j<m. Let

ts: (GmR)" — (GmRr)", (a1,--,am) — (b1,...,b,)

be the map defined by b := as; if | = s; 1<j<m)and b :=1
otherwise. Put vs := v ots. Since both v and p split W, there exists a
unique element u of Gw, Rr,, such that g = Int(u)(vs). For (z,Z,V) €
Dgy,(2) val(W), the image (z, (V, h)) under ¢ is defined as follows. First,

V is the inverse image of V under
2" = X((Gm)") = X((Gm)™), x> Xxo0Ls

Take an element ¢t € R, such that 5(t8(u"'r))"'r € Z. Define h :
V> — Rso by h(x) := x(es(2))-

The inverse map ¥~ ! of v is given as follows. Let (z,(V,h)) €
Dsr(2) (W) 1 xRz, (R%()val. We define Z and V as follows. Let (ej)1<j<n
be the standard basis of X ((Gp,)"). The fact that the image of (V,h) €
(RZ)val in R, coincides with B(x) implies the following two assertions.

2) e; €V -V*ifje{s),...,8m}, and e; € V> otherwise.
3 3

(3) B(x); =0ifj € {s1,-..,5m}, and

B(z); = B(u~'r); = h(e;) # 0 otherwise.
Here ( ); denotes the j-th component of an element of RZ,. By (2),
we see that there exists a unique valuative submonoid V of X ((Gm)™)
such that V O X((Gm)™)+, VN X((Gm)™)4 = {1}, and such that V'
is the inverse image of V under X((Gm)") — X((Gm)™), X — X © ts.
By (3), we have '
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(4) (Bu'r)"th)(ej) =1if1<j<nandj¢&{s1,...,Sm},
and B(u~'r)~1h: V* — Ry, factors through V* — V.

Hence there exists t € R7, such that
x(ts(1) = (B 'r)TTh)(x)  (Yx € V).
The Z is defined by
Z = {pt)r | t € RTy, x(s(t)) = (Bu™'r)"*h)(x) (Vx € V)}.

It is easy to see that the maps 9 and ¢! are the inverse to each
other and hence 1 is bijective. For the proof of 4.14, it is enough to
show that both 1) and ! are continuous.

Assume (z, Z,V) = (z,(V, h)), let Vy be a valuative submonoid of
X((Gm)™) such that V 2 Vg D X((Gm)")+ and Vg = {1}, and let
P = Py,. Then, since the Q-parabolic subgroup of Ggr associated to
(z,Z,V)is Py (4.11) and Py contains P, we have (z, Z,V) € Dgs val(P).
The following (5) is checked easily.

(5) The image of (x, Z, V) under Dgs vai(P) = D x4? (Ap)a is
(r, (V, Bu"r)"'h)),

where V is the inverse image of V under the restriction map X (Sp) —
X((Gm)™) for the canonical embedding (Gm)® — Sp, and h is the
composite V* — v A, R.o.

Now fix (x,Z,V) € DgL(2),vai(W) and let

(z,(V,h)) € Dsp2) (W) xmz, (RZg)val

be its image under ¥. Fix Vj as above, and let P = Py;,. Fix a repre-
sentative (p, @) of x, and let r = ¢(i).

We prove first that the map ¥~ is continuous. By the fact that
Dgs val is a regular space, and by 4.10 and 4.13, it is enough to prove
the following. Let (yx)x be a directed family of elements of D which
converges to (z, (V, h)) in Dgp2)(W)r XRz, (Rgo)val. Then (yx) con-

verges to (r, (V, B(u~'r)"'h)) in D x*? (Ap)yal. Since (yx)r converges
to x in DSL(z) (W)T,

yx = p(ta)gakar, tx € RTy, gx € Gr, ki € K,
tx — 0, Int(5(tx)) (gr) — 1 (j = 0,£1), ky — 1.
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By 447 g\ = p)\kg\: Dy € P7 kf\ S Kra Int(ﬁ(t)\))](g)\) -1 (.7 = 07:’:1))
K\ — 1. Put kY := K}k € K,. We have

Ya = P(Ea)pakir = p(ta)pas(ta) " p(ta) kAT
= (p(tx) mod P,) o p(tx)pap(ta) kAT,

where o is the Borel-Serre action for the Q-parabolic subgroup P. Note
that

AP =1, kY — L.
It suffices to prove
(A(tr) mod P,) — (V,B(u™"r)"'h) in (Ap)var
Since B(ya) — (V,h) in (R%)var and
Byr) = B(AEA)PAKST) = B(ws(tr)vs(tr) " urs(ta)u™ pakiT)

(E)BWs(tr) M uvs(tn)) = ts(t2) B(rs (82) ruvs(tr)u™ 'pakiT),
I/s(t)‘)_l’u,ljs(tA) — 1 (by (RS GWm,R,u)y py — 1 k;\l — 1,

:[’S

we have
ls (t)\) - (‘/7 5(uilr)_1h) in (Rgo)vaL
This implies

x{ts(tx)) — 0 ifxeV-Vx,
x(ts(tx)) = (Bw™r)"th)(x) i xe V™.

This shows
x(p(ty) modP,) — 0 ifyeV-vx,
x((ty) mod P,) — (B(u~'r)"th)(z) if x e V*.

Hence (5(ty) mod P,) — (V, B(u~'r)"1h) in (Ap)yal.

Next we prove that ¢ is continuous. Let (yy)x be a directed fam-
ily of elements of Dsy,(2)va(W) converging to (z,Z,V). Write yy =
(zx,Zx, V), and let (zz,(Vh, hy)) be the image of yy under . We
show that z) converges to z and (Vi,hy) converges to (V,h). We as-
sume yx € Dgp(2),val(Wz) N Dps,va1(P) without loss of generality. Define
(Va,ha) € (Ap)val just as in the definition of (V,h). Since there ex-
ist only finitely many possible families of weight filtrations for points
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in Dgy,(2),val(Wz), we may assume that all 2, have a common family of

weight filtrations (W(s;))lgjgm:. Put s’ = (3;')1§j§m'- Let vy :==voury

and let v/ : (Gm)™ — (Gm)™ be the unique homomorphism with
Lty =ts0t. Let (p)\,cp)\) be a representative of zy, and let ry = @, (i)
(i = (4,...,3) € h™'). Let uy be the unique element of Gy g, with
px = Int(uy)(ve). The image of yy in D x“A7 (Ap)ya coincides with
(ths (Va, B(uy 'ra) ~1ha).

Since (v}, (Va, B(uy'ry) thy)) converges to (r,(V,B(u"'r)h)) in
D xA% (Ap)yal, there exist ay € Ap satisfying the following two condi-
tions.

6)  (Va,anBluy'ra) " ha) = (V, B(u™'r)7'h)  in (Ap)var.
(7 ay'ory —r in D.

By (6) and (4) (applied also by replacing u, r, h, s by ux, ra, hy, 8,
respectively), the j-th component of the image of ay in R%, converges
tolif j & {s1,...,8m}. Hence

ay = Ls(t)\)b)\, t) € R>0, by € Ap, by — 1.

(We identify here an element of R%, with its canonical image in Ap.)
Hence (6) and (7) are rewritten as

®)  (Varta(t)Bluxrx) " ha) — (V. B(u'r) 7 h)  in (Ap)val.
(9)  ts(tx)"tory—r inD.
By (9), we can write
LS(tA)_l ory =pakxr, px€ P, pr — 1, ky€ K, ky—1.
Hence
(10)  rx=pap(tr)kar, prx€ P, px — 1, kx€ Ky, ky— 1.
In (8), we have

ts(t)B(uy 'ra) T = Bus(ta) tuyten)
= B(vs () uy 'pap(Er)kar) !
= B(vs(tr) " ruy pauvs(ta)u ear) L

‘We will show

(11) vs(tx) T tuy tpauvs(ty) — 1.
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This will show
ta(tn)Buy m) Tt = BluTr) T

and hence, by (8),

(Vas hn) = (V, ).
It follows

(Va, ha) = (V; h).

We prove (11). Let
(12) Gw.r=Gw ruxL
be the semi-direct decomposition, where
L:={g € (G°)r | ve(t)g = gvs(t) (V¢ € (Gmr)™)}-

We claim
(13) PAPAU € Gwrm, uy'pau € L,

pau = uy - (uy pau) under the decomposition (12).

In fact, since the induced homomorphisms (Gm’R)m/ — P/P, from
px and po coincide and since py (resp. po (') is the Borel-Serre lifting
at Ky, (resp. K;) of this induced homomorphism, we have

7r = Int(pa) (70 1),

Since gy = Int(uy)vy and po ' = Int(u)v,, this proves u;lp)‘u € L.
Since uy,u € Gwr R, it follows py € Gw' r. Hence we have (13).
We prove (11) by using (13). For x € X((Gm)™), let
H(x):={v € Hor | v(t)v=x(t)v (Vt € (Gmr)")}
Let x1,x2 € X((Gm)™), v € Hor(x1). For the proof of (11), it is

enough to show

v ifX2:X17

s (T “lyt s t
(vs(tx) 7 uy pauvs(ta)v)(xz) — {0 otherwise,

where (x2) means the xz-component in the eigenspace decomposition
Hor = @, ex((@m)m) H(X)- We have

(s (t2) Ly Mpaurs (£2)v) (x2) = X1 (65 (E2))x2 (ks (82)) 7L (uy tpaun) (x2),
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and the decomposition of pyu in (13) implies

_ uv if Doy =1,
(15 pauw) (x2) = {(’“ @) 1 baxa )
0 otherwise.

Since pyu € P, we have

(pruv)(x2) =0 unless x1x5 € V.

Furthermore, since py — 1, we have

(Pauv)(x2) — (uv)(xe2)

Since u € Gw, r,u C Py, we have

w)ia) = {0 2T
0 if x2#x1 and y1x3 ' €V - VX,

By these facts, {11) is reduced to the following (14) which we apply to
X =X1X5 "
(14) Let x € V and assume x oty = 1. Then x(ts(¢x)) is bounded.
If furthermore x € V — V', then x(¢5(tx)) — 0.

This (14) follows from (8), and from (ﬂ(u;lrk)_lﬁ)\)(x) =1 by (4)
(applied replacing u, r, h, s by uy, rx, hy, s, respectively).

It remains to prove that ) — z for the 7-toplogy. Take U € F,.
It is enough to show that if A is sufficiently large then there exist a
neighborhood Uy ; of 0 in R’;l(l), a neighborhood Uy 2 of 1 in Gr and a
neighborhood Uy 3 of 1 in K,._A such that

ﬁA(t)gkr,\ celU

for any t € R7gNUy 1, any g € Ggr and any k € Uy 3 with Int(px(t))/ (g) €
Uy for j =0,+1. Fort e Rglé, g € Ggr and k € K,,, we have, by (10)
and px = Int(px){(p o '),
Ax(t)gkrs = At (1)) Int(A(txe’ (1)) ™ (p2)
“Int(pap(ta)) " (9) Int(pap(ta)) ~ (K kar.
Note that Int(pxp(tx))~1(k) € K,. It is enough to prove that if X is

sufficiently large and if ¢t € R’;(I, converges to 0 then we have the following
two assertions.

(15) tad(t) — 0,
(16) Int (5(tx2 (1)) (pa) — 1 for j = 0,—1,—2.
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(15) follows from (14), and (16) follows from py € P N Gw' g (13).
Q.E.D.

Corollary 4.15. The topology T on Dgy,)(W) coincides with the
one on Dgr2)(W) as a quotient space of Dgy,(2),val(W).

Proof. By 4.14, Dgy2),val(W) — Dsp(2)(W)7 is proper surjective,
because so is (Rgo)val — RY,. Hence Dgp(2)val(W) — Dspo)(W)7T is
a closed surjective continuous map. This proves 4.15. Q.E.D.

Lemma 4.16. Let f: X — Y be a continuous proper surjective map
of topological spaces.

(i) ([NB, Ch. 1, §10, no. 1, Corollaire 2]). If X is Hausdorff, then
soisY.

(ii) If X is regular, then so isY .

Proof. We prove (ii). Let F be a closed set of Y and y be a
point of Y with y ¢ F. Then f~'(y) N f~Y(F) = 0. Since X is
regular, for each point = € f~1(y), there exist disjoint open neighbor-
hoods U, and V of z and of the closed set f~!(F), respectively. Since
f is proper, f~l(y) is quasi-compact. Hence, there exist finite sub-
sets {Uj}1<j<n of {Us}ocs-1(y), Which cover f~1(y). Let {V;}1<j<n be
the corresponding finite subsets of {Vi}uer-1(y). Put U == U;;<, U
and V := (\;,¢;, Vj. Then, it is easy to see that ¥ — f(X — U) and
Y — f(X —V) are disjoint open neighborhoods of y and of F, respectively.
Hence Y is regular. Q.E.D.

4.17. Proof of Theorem 3.14. Since, for each W, Dgp,(2) va1(W) —
Dgy,(2)(W) is continuous proper surjective, so is Dgy,(2) val — Dsr(2)- It
follows that Dgy,) is Hausdorff by 4.16 (i). Q.E.D.

Proposition 4.18.  Dgy,2)vai(W) and Dgy2)(W) are regular spaces.

Proof. Since DBs val is regular, so is Dgy,(2)va1(W) by 4.13 and hence

4.19 Remark. We prove that, for an SL(2)-orbit (p, ¢) of rank n,

[0, ] = lim p(iy1, ..., 1Yn)

yyi — 00 (Y, yny1 = 1) in Dgp(2), which is stated after 3.13.
Let W be the family of weight filtration associated to (p, ¢). Since

eliyn, - iyn) = (/22 /122 (i)
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and y;i — 0, the right-hand-side converges to [p, ¢] in Dgy,2y(W)7
and hence in the topology of Dgy ) (W) by 4.15.

85. Actions of Gz

- 5.1. Summary. In this section, we will transport the good properties
(i), (ii) in 2.1 of the quotient space I'\Apg to other spaces along the
diagram 3.1 (1). The main result of this section is the following Theorem
5.2.

Theorem 5.2. (i) For any subgroup ' of Gz, all the quotient spaces
F\DBS; F\DBS,vaI; F\DSL(2),vaI; F\DSL(Q) are Ha’LLSdOTﬁ

(ii) If T is a subgroup of Gz of finite index, then T'\Dps, I'\Dgs vai
are compact. '

(iii) If T is a neat subgroup of Gz, then all the projections Dpg —
M\Dgs, Dps,val — I'\Dsyval, Dsu2)val — I'\Dsr(2)vai; Dsrizy —
I\ Dgy,2y are local homeomorphisms.

Before proving this theorem, we recall the notion of ‘proper action’
and some related results in [NB] which are needed for our present pur-
pose.

Definition 5.3 ([NB, Ch. 3, §4, no. 1, Definition 1]). Let G be a
topological group acting continuously on a topological space X. G is
said to act properly on X if the map

GxX—=XxX, (3,2)— (z,92),
is proper.

Lemma 5.4 (cf. [NB, Ch. 3, §4, no. 2, Proposition 3]). If a topological
group G acts properly on o topological space X, then the quotient space
G\ X 1is Hausdorff.

Lemma 5.5 (cf. [NB, Ch. 3, §4, no. 4, Corollary]). If a discrete group
G acts properly and freely on a Hausdorff space X, then the projection
X — G\X is a local homeomorphism.

Lemma 5.6 (cf. [NB, Ch. 3, §2, no. 2, Proposition 5]).  Let G be
a topological group acting continuously on topological spaces X and X'.
Let ¢ : X — X' be an equivariant continuous map.

(i) If o is surjective and proper, and if G acts properly on X, then
G acts properly on X'.
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(ii) If G acts properly on X' and if X is Hausdorff, then G acts
properly on X.

Now we come back to our situation.

Lemma 5.7.  IfT' is a neat subgroup of Gz, then I' acts on Dgo
freely.

Proof. Let x € Dgr,(2)n, ¥ € T', and assume yx = x. We prove y = 1.
Let (p,¢) be a representative of z. Then Ad(7)Y; =Y; (1 < 5 < n).
Here the Y; are the semi-simple elements of gr associated to pin 3.1. Put
Y := 3 <<, Yj. Then vy preserves the l-eigenspace H(I) C Hor of Y

for all I. Put gr), := grkw(") (Ho,c) and gr := @, gry. Let F:=¢(i) € D
and F'(gr) be the filtration of gr induced by F'. Then, by the assumption,
the automorphism gr(+y) of gr induced by - satisfies gr(y) F(gr) = F(gr).
Thus we have the following four statements.

(i) (W [—w], F) is an (N3 +- - -+ Ny, )-polarized mixed Hodge struc-
ture ([Sc]).
(il) AWM = W),

(iif) gr(v) F'(gr) = F(gr).
(iv) If a is an eigenvalue of gr(v) and if a is a root of 1, then a = 1.

We prove gr(y) = 1. Since F(gr) is polarized, the isotropy group
of F(gr) is compact, and so gr(~y) is contained in the intersection of a
discrete subgroup and a compact subgroup and hence is of finite order.
Therefore gr{y) =1 by (iv).

Now v = 1 follows from gr(y) = 1 and the commutativity of v and
Y. Q.E.D.

5.8. Proof of Theorem 5.2. We prove (i). Gz acts on Xgg prop-
erly by [BS]. Since Dgs, DBs,val, Dsr(2),val are Hausdorff by 2.17 (ii),
it follows that Gz acts on these spaces properly by 5.6 (ii). Since
Ds1,(2),va1 = Dsr(2) is proper and surjective by 3.14 (i), it follows that
Gz acts on Dgy,2) properly by 5.6 (i). Hence, for any subgroup I' of
Gz, all the quotient spaces T'\ Dgs, F\DBS,val, F\DSL(Z),Vala F\DSL(z)
are Hausdorff by 5.4. -

We prove (ii). Let T' be a subgroup of Ggz of finite index. Then
F\XBS is compact by [BS] Since DBS — XBS and DBS,val —> DBS are
proper by 2.17 (i), T\ Dps — I'\ABs and I'\ Dpg va1 — I'\ Dpg are proper.
Hence I'\ Dpg and T'\ Dpg v, are compact.

We prove (iii). Let I" be a neat subgroup of Gz. Since I' acts on
Aps freely by [BS], so does T' on Dgs, on Dgsyal, and on Dgp,(2),val
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by 3.11. T acts on Dsgps) freely by 5.7. Moreover, all the spaces
Dgs, DgBsyval, Dsy(2),val, Dsp(2) are Hausdorff and acted by I' prop-
erly. Hence all the projections Dgs — I'\Dgs, Dgsvai — I'\Dgs val,
Dsp(2yvat — T'\Dsp2)val, Dsrizy — I'\Dsr(2) are local homeomor-
phisms by 5.5. Q.E.D.

§6. Examples and comments

6.1. Summary. In this section, we will first give a criterion in Propo-
sition 6.3 for the existence of the canonical map Dgy 2y — Dps by using
the family of weight filtrations associated to a point of Dgy,z). This
criterion explains the reason why we need to introduce the projective
limits of blowing-ups Dgs val, Dsy(2),val of DBs, Dsp(2), respectively, to
relate Dps and Dgr,2)- Then we will give the list of ‘classical situa-
tion’ in 6.6, and in this situation we will show that Dgp(2) = Dps and
Dsy,(2),val = DBs,val €xcept one case in Theorem 6.7. As a corollary, we
have in 6.9 the canonical surjection from the Borel-Serre space Dgg to
the Satake space Dg in the ‘classical situation’. This map was defined
by Zucker [Z2] by another method. Proposition 6.10 gives examples
which do not have the canonical map Dgp2) — Dps. We will give an
example in 6.11 for which Dgr2) € Ds (hence I'\ Dgp,(2) is not com-
pact for I' of finite index in Gz) because the horizontal tangent bundle
T} is trivial. Proposition 6.12 gives examples for which Dgy,(2) is not
locally compact, that is, Dgy,(z) has ‘slits’ influenced by the fact that the
isotropy subgroups K, are not maximal compact.

6.2. The case of the upper half-plane §. Let Hy = Z% = Ze; +
Zey, let ( , )y be the anti-symmetric bilinear form on Hy c x Hy.c
characterized by (ez,e1)y = 1, and take (Hy,{ , )y) as (Ho,{ , o)
Then

D=PYC); F, & z=(z1: z),
where FZO = Hy,c, F! = 0(2161 -+ 2262), Fz2 = 0.

z

Identify z € C with (z: 1) € P!(C). Then D C D is identified with the
upper-half plane h C P}(C). We have

Gr = SL(2,R) D SO(2,R) = K; = K..
The map

P*(Q) — {P|a Q-parabolic subgroup of Gg with P # Gr},
z+— P, :={g € Gr|gz =z},
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a € R, (1 b
pen ) P lo 1)ren
The unique element of Ap_ sends

-1
Spoo = ((a O) mod P, u) — a?.
0 a ’

If we identiy Ap_ with R by this élement of Ap_, we have

is bijective. We have

={("% o)

SPoo = oo/Poo,u~ !

ao(z+iy) =z +ia" 'y (a€Rsp,z € R,y € Rsg).

Hence Dps(Ps) is identified with the topological space {z + iy |z €
R,0 < y < co}. We have

XBs = Dps <= Dgs val < Dsr(2),val — DsL(2),

and too € Dps(Px) is identified with the class of the SL(2)-orbit (py, ©y),
which we call the standard SL(2)-orbit, defined by

{p,, =id:SL(2,C) — G,
py(2) =F, (z€PY(C)).

In fact, it is obvious that (R%,)vas = R%, for n = 1. Since P
is a Q-parabolic subgroup of Ggr = SL(2,R) with P # Ggr, we have
rank Sp = 1. Hence, by Proposition 2.15, we have Dgg yal = Dgs.
Dsy2) = DsL(2),<1, because sl(2,C)" — gc can not be injective if
n > 1. Hence, by Proposition 4.14, we have Dgy,(2) val = Dg;,(2)-
Proposition 6.3. We use the notation in 2.5, 2.6, 3.6, 3.7. Let
z = [p,¢] € Dg(2) and let W = (WW)1<j<n be the associated family
of weight filtrations, where W) = W(a;) (3.5).

(i) The following conditions (a), (b), (c) are equivalent.

(a) For any y,y' € Dsp(2)val lying over x, the images of y, y' in

Dgs, via Dgs val, coincide.

(b) The subspaces W,gj ) (1 <j <n,kcZ) are linearly ordered by

incluston.

(c) For x,x' € X((Gm)™) with H(x) # 0 and H(X') # O, either

xX' "' or x'x71 is contained in X ((Gm)™)4 -
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(i1) Assume the equivalent conditions in (i) are satisfied. Then the
Q-subgroup (G°)wr := Gwr N (G°)r of Gr is parabolic and, for any
lifting y € Dgy(2)val Of T, the image of y in Dps, via Dgs val, coincides
with ((Go)wyR, A(G°)W,R o go(i)).

For the proof of Proposition 6.3, we use the following
Lemma 6.4. Let P be the set of all Q-parabolic subgroups of Gr, and
let M be the set of all finite sets M such that M = {M; | 0 < j < m},
the M; are Q-rational R-subspaces of Hyr, 0 = My C M; € --- €
M,, = Hyr and Mjl =M,—; (0<j<m). Letp: M — P be the map
defined by p(M) :={g € (G°)r | gM; = M; (0 < j <m)}. Write

M= MoUMi UMy, where

Mo :={M € M | M is not exceptional},

My :={M € M| M is exceptional with m even},
My :={M € M | M is exceptional with m odd}.

Here the meaning of ‘exceptional’ is as in 2.11. Then
(i) Let M € Mgy and P = p(M). Then, M coincides with the set of
all P-stable R-subspaces of Hyr. We have p~t(p(M)) = {M}.

(ii) Let P € p(M1 UMs) C P. Let N be the set of all P-stable
R-subspaces of Hor, and let

M:={LeN|VL €N, either LC L or L' C L}.

Then, M € My. Write M = {M; |0 <j <m},0= M, ¢
My C--C My, = Hyr, let e1, ez be as in 2.11, and let Ly =
M(m—l)/2+Rek fork = 1,2. Then, N = MU{LI,L2}, MU{L1}
and M U {Ly} belong to My, and p~*(P) consists of the three
elements M, MU {L1} and M U {Ls}.

(iif) p : M — P is surjective.
(iv) p(M1) = p(M>).

p induces a 2 : 1 map p : My — p(My), and a bijection p :
Mo LI Mo S p. :

Proof. The proofs of (i)-and (ii) are straightforward. It follows that
p(Mi) = p(My3), that the map p : My — p(M;) is 2 : 1 and that the
map p : MoUMy — P is injective. It remains to prove P = p(MoUMs).
We divide our considerations into three cases:

(a) w is odd.
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(b) w is even and (, )o : Ho,q X Ho,q — Q is not hyperbolic.

(c) wis even, and ( , )o : Ho,q X Hoq — Q is hyperbolic (that
is, d := dim Hy,q is even and there exists a basis (e;)i1<j<a of
Hy,q such that (ej,ex)o =1if j+k =d+1 and (ej,ex)o =0
otherwise).

Assume first we are in the case (a). Then there exists M = {M; | 0 <
j<m}e My (miseven, 0 =My C My C--- C M, = Hyr) such that
dimgrﬁ” =1forl1<j<m. Let P:=p(M), r:=m/2. Then P isa
minimal Q-parabolic subgroup of Gr. This is because P/P, >~ (Gm,Rr)"
(see 2.11 (2)) and has no Q-parabolic subgroup other than P/P, itself.
We have r = rank Sp = f§(Ap). We find 2" elements M’ of My such
that M’ C M (in fact, for each finite subset I of {1,...,7}, we find
M’ defined by M’ := {0,M; (j € I),Mm—; (j € I),Hor}). Since
p: Mo — P is injective, this shows that there exist at least 2" elements
P’ of p(Myp) such that P’ D P. By 2:10 (3), this shows that any Q-
parabolic subgroup P’ of Ggr with P’ O P belongs to p(Mj). Now let
P’ be any element of P. Take any minimal Q-parabolic subgroup P”
of Ggr such that P’ O P”. Then P = gP"g~! for some g € Gq. Since
gP'g™' D P, we have gP'g~! € p(My). Hencce P’ € p(My).

Next assume we are in the case (b). Then there exists M = {M; | 0 <
7 < m} € My (m isodd, 0 =My C M; € --- C M, = H(),R) such
that dimgr;y[ =1if1<j<mandj+# (m+1)/2 and such that
the R-bilinear form ¢ : gré‘fnﬂ)ﬂ X g;ré‘fn_lﬂl)/2 — R induced by ( , )o
is anisotropic (that is, p(z,z) # 0 for any = € grf‘fnﬂ)/z —{0}). Let
P = p(M), r := (m —1)/2. Then P is a minimal Q-parabolic sub-
group of Ggr. This is because P/P, =~ (Gmr)" X SO(p)r (see 2.11
(2)) and has no Q-parabolic subgroup other than P/P, itself. We have
r = rank Sp = #§(Ap). Just as in the case (a), we find 2" elements M’
of Mg such that M’ C M and then we can deduce P = p(M).

Assume lastly we are in the case (c). Then there exists M =
{M; |0<j<m}eM;y(misodd,0=My & My G- & My, = Hor)
such that dimgr} = 1if 1 < j <m and j # (m+1)/2. Let P := p(M),
r := (m + 1)/2. Then P is a minimal Q-parabolic subgroup of Grg.
This is because P/P, ~ (Gmr)" (see 2.11 (2)) and has no Q-parabolic
subgroup other than P/P, itself. We have r = rank Sp = #(Ap). Just
as in the cases (a), (b), we find 2" elements M’ of Mgy U My such that
M’ € M and then we can deduce P = p(Mg U Mas). Q.E.D.

6.5. Proof of Proposition 6.3. 1t is éasy to see the equivalence of
(b) and (c), the implication from (b) and (c) to (a), and the implication
from (b) and (c) to the conclusion in (ii).
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We prove the implication from (a) to (c). We first prove the following
assertion:

(1) Assume (a). Let x,x" € X((Gm)") which satisfy H(x) # 0,
H(x') #0and (xx*)* & X((Gm)")+. Then, w is even, x' = x !
and dim H(x) =dim H(x") = 1.

Write x = (a1,...,a,), X' = (a},...,a,) under the identification
X((Gm)™) = Z". Then, there exist j, k such that a; > a}, ax < aj.
Let 5,8 : {1,...,n} — {1,...,n} be bijections satisfying s(1) = j,
s(2) =k, (1) = k, §'(1) = j, and let V (resp. V') be the valuative
submonoid of X((Gm)™) = Z" consisting of all (b1,...,bn) (b; € Z)
such that (bs1),...,bs(n)) = 0 (resp. (bsr(1)s---,bsi(ny) = 0) for the
lexicographical order of Z™. Then, V O X((Gm)™)+, V' D X((Gm)™)+,
V> =V’ ={1}. By (a), we have Py = Py (see 4.11). Let M = MyUl
MyUM;, P,and p: M — P beasin6.4. Let L:=3" 1 H(Y),
L' =3 yeov-1 H(¥). Then, since X' ¢ XV and x € X'V, we
have H(x') ¢ L, H(x) ¢ L', H(x) C L, H(x') ¢ L'. Hence L ¢ L'
and I’ ¢ L. Since L and L’ are stable under Py = Py, we have,
by 6.4, that Py = Py, = p(M). Wiite M = {M; | 0 < j < m},
0=MyC M C - C My =Hor- By 64, wiseven, L = H(x) +
M(m—l)/27 L' = H(X/) + M(m—l)/27 dlIIlH(X) = dlmH(Xl) =1, and
(H(x),H(x"))o # 0. Hence we have (1).

To proceed more, we need the following (2), (3).

(2) Let 0 : Z™ — Z"™ be the map defined by 8(by,...,b,) =
(bl,bl+b2,...,b1+"'+bn), so that

H(O(by,...,by))
={ve Hor | p(A®))v =t ... thv (t € (Gmpr)")}

(Ais asin 3.1). Let by,...,b, € Z so that H(0(by,...,b,)) # 0.
Then, for any ci,...,c, € Z with |¢j| < |b;] and ¢; = b; mod 2
(1 <j<n), we have H(6(c1,...,¢,)) #0.

(3) For by,...,b, € Z, H(by,...,b,) has canonically a Hodge structure
of weight w + by,.

(2) is deduced from the following (4) and (5) whose proofs are easy.

(4) Let by,...,b, € Z. Then,

NjH(O(bs, - - ,bn)) C H(B(by,. .. bj_1,b; —2,bj11,...by)).
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(5) Let b; € Z,b; >0 (1 < j <n). Then,
b, ~
ngjgn N;7 : H(O(b1,. .., bs)) = H(0(=b1,...,~by)).

We prove (3). By [Sc], (W™ [—w], ¢(0)) is a mixed Hodge structure.
Hence

0(0)(grl’ ™) = ypegnr Hb, k)

has a Hodge structure of weight w + k. Since 5(t)p(0) = ¢(0) for all
t € RZ, each H(b,k) (b € Z" ') carries a Hodge structure of weight
w+ k.

Now we complete the proof of (a) = (c). Assume (a). By (1), if (¢)
is not satisfied, then w is even and there exists x € X((Gy,)™) such that
dimH(x) =dim H(x ") =1 and x € X((Gm)™)+, X" & X((Gm)"™)+-
Write x = (a1,...,a,) € Z™. Then there exist j, k such that a; > 0 and
ar, < 0. By replacing x by x~! if necessary, we may assume j < k. We
prove

(6) ap = —1

Take [ such that j < ! < k and a; < a;—1. Let b; = a; — a;_1
(1 €5 < n, ap means 0). Then (ai,...,an) = 6(by,...,b,), by < O.
Define ai,...,ay,b1,...,b;, € Z by b, := b; for j # | and b} := b +
2, a; —a_, :=b (1 <j<mn a =0). Then, H(ay,...,a,) =
H(O(b,...,b,)) # 0 by (2). If ap < —1, then a = ar +2 < —a,
and a} = a; > —a;. Since H(a},...,a,) # 0 and H(~ay,...,—a,) # 0,
(1) shows a} = a; (1 < j < n). Hence aj + 2 = ax, a contradiction.
Hence we have (6).

We next prove
(7) a=—-1 for E<I<n.

In fact, if a; # —1 for some ! with k¥ < I < n, then (a1,...,a,) =
0(b1,...,by) with b; € Z (1 < j < m), by # 0 for some | with k <1 <n.
By (5),

H(e(bh ooy by _lbk+1|7 L) _lbnl)) #0
and hence there exist aj_ ,,...,a,, € Z such that
H(a17~",ak7a;c+17"'7a',n) #0

and such that a,; < ay, for some [ with k¥ < | < n. Since a; > 0 and
a; < —2, this contradicts (6).
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By (7), a, = —1. Hence, by (3), H(x) carries a Hodge structure of
weight w — 1, which is odd. This contradicts dim H(x) = 1. Hence we
have (a) = (c), and Proposition 6.3 is proved. Q.E.D.

6.6. Classical situation. Let F € D, and let Tp(F) and TH(F) be
the tangent space and horizontal tangent space of D at F', respectively
(1.6).

It can be proved that the following (i) and (ii) are equivalent.

(i) For any F € D, TA(F) = Tp(F) and dim K} = dim Kr (2.2 (1)).
(ii) One of the following (a), (b) is satisfied:

(a) Thereis t € Z such that w = 2t+1 and h»" P =0ifp # ¢, t+ 1.

(b) There is t € Z such that w = 2¢, h*"1¥~1 < inf{1,h*}, and

WP = 0if p>t+ 2.

Note that the condition (i) is independent of the choice of F' € D.
The equivalence of (i) and (ii) follows by computing dimensions of the
subspaces F"(gc) in 1.6 and of the Lie algebras of the following groups.

G~ Sp(2¢9,R) ifw=2t+1,
R O(a,b;R) if w=2¢,

Q) K~ Ulg) ifw=2t+1,
"7 10(a,R) x O(b,R) if w = 2t,
K' ~ szo U(hi+1+j’t_j) if w=2t+1,
T (TLso UR7)) x O(RAE,R) if w = 28,

where g := rank Hy/2 if w = 2t + 1, and a,b are the signature of
(Hom, {, )o)) if w=2t. (cf. NoTAaTION, [U2]).

We say that we are in the classical situation if these equivalent con-
ditions (i), (ii) are satisfied. The polarized Hodge structures in (ii) (a)
are Tate twists of the first cohomology of polarized abelian varieties, and
the primitive part of the second cohomology of a polarized K3 surface
belongs to (ii) (b).

Theorem 6.7.  In the classical situation, except in the case (i) be-
low, there exist homeomorphisms Dgy,(z) = Dags, Dsy,(2) ,val 5 Dgs,val
extending the identity map of D.

(i) w is even, rank Hy = 4, and there exists a Q-basis (€j)1<j<a of
Hy q such that {ej,ex)o =1 if j + k =5, and = 0 otherwise.
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Proof. In the case w = 2t and h*T%=% =0 for any s # ¢, D is a one
point set and Theorem 6.7 holds trivially. We assume A**1t~1 = 1 in

the case w = 2t.
We have the following (1).

(1) Let [p,¢] € Dgr,(2),n, and let W = (W(j))lgjgn be the associated
- family of weight filtrations. Let 1 < j < n. In the case 6.6 (ii) (a),
we have

w4 =0, W = Hyg.
In the case 6.6 (ii) (b), we have one of the following (b1), (b2).

(b1) grkW(j) =0 unless k = 0,+£1, and dimgrkw(j) =2for k = £1.
(b2) grkW(j) =0 unless k = 0,12, and dim grkW(j) =1for k = £2.

This follows from the facts that the filtration (i) (grkW(j)), induced

on grgv(j) by (i), is a Hodge structure of weight w+k for each k € Z, and
that if we denote the Hodge type of this Hodge structure by (h}'?), 4ez

then AP P =3, hi’w+k_p.
We next prove the following (2).

(2) Let the notation be as in (1). In the case 6.6 (ii) (a), we have
ocwh cwd g .owty
cwi” ¢ oW c Wi ¢ Hog.
In the case 6.6 (ii) (b) with n > 2, we have n = 2, W) is of type
(b1), W® is of type (b2), and
0c W =w® cwly cwg? c W =wi” ¢ Hop,
dim W2 = dim Wl /w?® = dimw® /wV
= dim Hy g /W? = 1.

In fact, in the case 6.6 (ii) (a), since Ker(ai N1+ -+ a;N;) = Wéj)
for any ai,...,a; > 0 (3.5), we have Wéj) D Wo(j) for1<j <j<mn,
and hence, by taking ( )+, we obtain Wﬁjl) - WEj1)~ Since WU") % W)
for j' # j, this proves (2) in the case 6.6 (ii) (a).

We consider the case 6.6 (i) (b). Assumen > 2. If 1 < j < n and
W) is of type (bl), (a1 N1 +---+a;N;)? = 0 for any ay,...,a; > 0 and
hence (a1 N1 +---+a;N;j)? =0 for any j' < j and any aq,...,a; > 0.
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Hence WU") for j' <j is also of type (b1), and we have Wéjl) 2 Wéj)

for j/ < j just as in the case 6.6 (ii) (a). This contradicts the statement

about dimensions in (b1) if j > 2. Hence any W) with j > 2 is of
type (b2). If WO is of type (b2), Ker((a;Ny + --- + a;jN;)?) = Wl(’)

for any ay,...,a; > 0. Hence, if j' < j and W) and W@ are of type
(b2), we have W) 5 W, Since W) # W), we have W) 2 w1

which contradicts the statement about dimensions in (b2). Hence we
have n = 2, W) is of type (bl), and W® is of type (b2). By (1),
it remains to prove Will) D W£22) (Wél) D W1(2) follows from this by
taking ( )*). The condition on the Hodge numbers (ii) (b) shows that

the signature of (Ho mr, {, )o) is (d -2, 2), where d = rank Hy, and hence
Hy r has no 3-dimensional isotropic subspace, i.e., R-subspace on which
the restriction of (, )¢ is zero. However, if Will) 2 W?l), Wfll) + WEZZ)

is a 3-dimensional isotropic subspace as is shown in the following way.

From (aN; + bN2)3 = 0 for a,b € R, we have NINJ = 0 if i > 0,

§>0,i+j >3 Since WY =1ImN, and W% = Im(N; + N2)2, by
(hz,y)o+{z, hy)o = 0 for h € gr, we see that Wﬁll) +W£22) is an isotropic
subspace. This proves (2) in the case 6.6 (ii) (b).

By (1) and (2), we have the following.

(3) In the classical situation, the set {W,gj ) |1 <j<nkeZ}is totally
ordered, and (G°)w g is a parabolic subgroup of Ggr.

Hence, by 6.3, we have a continuous map Dsy,2y — Dps which extends
the identity map of D.
‘We prove

(4) Dsp2) — Dgs is injective.

By 3.10, an SL(2)-orbit (p,¢) of rank n is characterized by the as-
sociated (W, r). Assume that the points of Dgy,(s) determined by (W, r),
(W', ') are sent to the same point in Dgs. Then we have

(GO)WQR = (GO)W,R, r =qor (30, S A(GO)W,R)'
The totally ordered set {W,i] ) |1 <j<n,keZ}is not exceptional

(2.11). In fact, if it is exceptional, then w = 2t (3t € Z), d := rank Hy
is even, and there exists a Q-basis (e;)1<;<a of Ho,q such that

(e, ex)o = 1 ifj+k=d+1,
32 %k/0 = 0 otherwise.
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Hence, the signature of (Ho g, (, )o) is (d/2,d/2). On the other hand,
it was (d — 2,2), and hence we have d = 4 and this would imply that we
were in the case (i).

Hence, it follows W/ = W from (G°)w'r = (G°)w,r and (2). We
see also, by (2), that the torus S(go),, 5 in 2.2 coincides with the torus
of the SL(2)-orbit of rank n determined by (W, r). Hence v’ = a or lies
on the torus orbit containing r of this SL(2)-orbit of rank n. Thus, the
points in Dgy,(g) determined by (W,r), (W', r’) coincide, as desired.

We prove

(5) Dsp(2) — Dgs is surjective.

Let (P,Z) € Dps. Let M = (OZMO CM C---C M, :H(),R) €
M be a Q-rational increasing filtration of Ho g such that P = p(M)
(see 6.4). Let n =m/2 if m is even, and n = (m — 1)/2 if m is odd.

We first prove (5) in the case 6.6 (ii) (a). Let e(j) := dim M; /M, _4
for1 <j<m,andlete:=3",_,, e(j). Fixapolarized Hodge structure
(Hy,{, )1, F1) of weight 1 whose Hodge type (h}"?), ez is given by

P9 =g—e if (p,q) = (1,0) or (0,1), hY? =0 otherwise.
Fix an isomorphism
(Hsa D Hvav < 3 >a®€ 53] < ) >1) =~ (HO,Q7< ) >0)’

where (Hy q,(, )y) is as in 6.2, and take this isomorphism as an iden-
tification. Let (p, ¢) be the SL(2)-orbit of rank n defined by

p(g1; -1 0n) = (Bicj<n Py (97)%W) @1id,
(21,5 20) = (®1Sj§n ¥ (Zj)®e(j))(_t) @ Fi(-1),

where (py, ¢p) is the standard SL(2)-orbit in 6.2, and (—t) means the
Tate twist. Then the family W of weight filtrations of (p, ) satisfies
M={WP |1<j<n,ke Z} and hence (G°)wr = P. Let r = o(i).
Since K, = K], we have D = P -r by Ggr = PK,, and hence tere is
p € P such that pr € Z. The group P = (G°)w,r acts on Dgp (W),
and the image of p[p, p| € Dg,2)(W) in Dgg is (P, Z).

Next we prove (5) in the case 6.6 (ii) (b). Since Gr ~ O(h**,2; R),
if P # Gr then we have one of the following (c), (d), (e).
(¢) n=1,dimM; =2.
(d) n=1,dimM =1.
() n=2,dimM =dimM,;/M; =1.
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In the case (d), since Gr ~ O(h**,2; R) and dim M; < 2, there is
an element ! € M,,—1 N Ho.q such that ([,l)o < 0. Fix such /. Take a
Q-subspace L of Hy,q such that

My 1=M&Lgr in the case (c),
My N (1Y) = M, ® L in the case (d),
Mo =My ® Ly in the case (e).

Then, dimg L = d — 4 in the cases (¢), (e), dimg L = d — 3 in the case
(d) (d = rank Hp), and the restriction of { , )o to L is non-degenerate in
any case. Fix a polarized Hodge structure (Hy,( , )1, F1) of weight w
satisfying the following conditions.

(H1,q,(, )1) = (L, the restriction of (, )o),
hP? =0 for (p,q) # (t,1).

In the case (c), fix also a polarized Hodge structure (Hz,(, )2, F2) of
weight 1 whose Hodge type (h5'?), qcz is given by

R =1 if (p,q) = (1,0) or (0,1), h5? =0 otherwise.

Then (Hy q, (, )o) is isomorphic to

(Hy,q ®q H2q ® Hiq, (5 )y ®(, )2®(, )1) ~  in the case (c),
(SymZQ(H;,,Q) ® Hi,q, —(I, 1o Sym>({, ))& (, )1) in the case (d),
(Hi?(zg © Hyq, (, );,@2 ® (, >1) in the case (e).

Here Sym®((, )y) is defined by
(H1§j5k 3’1’7H1§j§k Yy;) = ZUGGk H1gj§k<$j"7yj>h’

and —(I,1)o Sym?(( , )p) means —(I, )¢ times Sym?((, )p). We fix this
isomorphism and take it as an identification. Let (p, ) be the SL(2)-
orbit of rank 1 in the cases (c), (d), and the SL(2)-orbit of rank 2 in the
case (e), defined respectively by

{p(g) = py(9) ® 1oz, @ Ly,
0(2) = (py(2) ® F)(1— ) & Iy

{p(g) := Sym”®(py (9)) ® 1m,,
o(2) = (Sym(py ()1 — 1) & Fy

{p(gl,gz) = py(g1) ® py(g2) ® s,
w(21,22) 1= (‘Ph (1) ® ®y (2)(1—1t)® Fi,

in the case (c),

in the case (d),

in the case (e).



Borel-Serre Spaces and Spaces of SL(2)-Orbits 375

Then the family W of weight filtrations of (p, ) satisfies M = {W,g] ) 1<
j < n,k € Z} and hence (G°)wr = P. It can be checked that
Gr = GwrK], where r = @(i). This implies D = Gwpgr - r, and
hence there is p € Gw,r such that p-r € Z. The group Gwr acts on
Dgi(2)(W), and the image of p[p, p] € Dgp2y)(W) in Dgs is (P, Z).

Finally we prove
(6) Dsr(z) — Dgs and Dgp,(2),val — DBs,va1 are homeomorphisms.

From the coincidence of the tori in the proof of (4), we see that, for
T € Dgg, the map from the inverse image of z in Dgp,(2),val to the the
inverse image of z in Dps val is bijective. Hence Dgr,(2),val — DBS,val is
bijective. By (3), this map is a homeomorphism. This shows that the
bijection Dgp,2) — Dps is also a homeomorphism. Q.E.D.

6.8. Remark. In the case 6.7 (i), we have Dgp(2)va = DBS val
as topological spaces, and we have a continuous surjection Dgy) —
Dgs extending the identity map of D. This map Dgy,3) — Dps is not
injective. In fact,

(Ho,Q, (s )o) = (Hy,q ®q Hy,q, (: )p ®(, )p),

and if we take this isomorphism as an identification, we have two SL(2)%-
orbits (p, ), (¢, ¢’) defined by

p(g1,92) = pp(g1) ® py(g2), w(z1,22) := (©(z1) ® p(22))(1 — 1),
p'(91,92) = py(g2) ® py(g1), @' (21,22) := (p(22) ® p(21))(1 — 1),

whose images in Dgg coincide but [p, @] # [p/, ¢'].

6.9. Relation with Satake compactifications. In the classical situa-
tion, we have a compactification T\ Dg of '\ D defined by Satake for a
subgroup I' of Gz of finite index ([Sa]). The space Dg is the set of all
pairs (W, F'), where W is a Q-rational increasing filtration of Hor and
F = (F(;))jez is a family of decreasing filtrations F{;) of the C-vector
spaces C ®r gry’ (j € Z), satisfying the following condition (i).

(i) There exist an integer n > 0 and an element [p, ] of Dgy,(2),n
such that the n-th weight filtration W(N; + --- + N,,) of [p, ]
coincides with W, and such that, for some F' € p(C™) C D, the
filtration of C Qg gr}”indueed by F (which is independent of the
choice of F) coincides with F{; for any j € Z.

Except the case 6.7 (i), by composing the evident surjection Dsr,2) —

Dg with the isomorphism Dgy,y ~ Dpg in 6.7, we obtain a canonical
surjection Dps — Dg. (In the case 6.7 (i), by using (1) and (2) in
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the proof of Theorem 6.7, we can see that the map Dggs — Dg fac-
tors through the surjection Dsyzy — Dps.) This map Dps — Ds was
defined by Zucker [Z2] by another method.

Propositon 6.10. Assume one of the following (1), (ii) is satisfied for
somet € Z.
(i) w=2t+1, pttHt > 2 pi+2i=1 L0,

(ii) w = 2¢, kbt > 3, K11 > 2 and there is a Q-vector subspace

of Ho,q of dimension 3 on which the restriction of , )o is zero.

Then there is no continuous map Dgy,2) — Dps which extends the iden-
tity map of D.

Proof. First we consider the case (i). Fix a polarized Hodge struc-
ture (Hi,(, )1,F1) of weight w whose Hodge type (h]?)p qcz is given
by

2 if (p,q) = (t+1,t) or (t,t+1),
hPd =hP? — 1 if (p,g) = (t+2,t — 1) or (t —1,t+2),

0 otherwise.
Fix an isomorphism

(Hy,q ®q Symg(Hy,Q) ® Hiq, (, )y @ Sym?((, )p) & (, )1)
= (H07Q3< ’ >0)7

where (Hy q,(, )y) is as in 6.2, and take this as an identification. Let
(p, ©) be the SL(2)-orbit of rank 2 defined by

p(g1,92) = py(g1) ® Sym®(py(g2)) ® 1m,,
p(21,22) 1= ¢y (21) ® Sym* (g (22))(1 — ) ® Fr.

Then this SL(2)-orbit of rank 2 does not satisfy the condition 6.3 (i)
(c¢). In fact, p(A(t1,t2)) acts on (e; ® €2,0) (resp. (e2 ® €2,0)) by t; 't2
(resp. t1t5 %), hence jp(t1,t2) acts on (e; ® €3,0) (resp. (ez ® €2,0)) by
t7 My (vesp. tit; 1), Tt follows (e; ® €2,0) € H(—1,1) and (ex ® €2,0) €
H(1,-1).

Next we consider the case (ii). Let L be a Q-vector subspace of Hp g
of dimension 3 on which the restriction of {, ) is zero. Since R!TH¢-1 4
Rt=Li+1 > 3 thereis an element I € L+ C Hy q such that (I, 1)o < 0. Let
L' be a Q-subspace of (L + Ql)* C Ho q such that L& L' = (L+ QI)*.
Then we have dimq L' = dimg Ho,q — 7, and the restriction of (, )o to
L, is non-degenerate. Fix polarized Hodge structures (Hqy, (, )1, F1) of
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weight w and (Ha, {, )2, F2) of weight 1 having the following properties:
The Hodge types (h%'?)p,qez of (Hj,(, );, Fj) for j = 1,2 are given by

2 if (p,q) = (t,1),
W= kPt 31 i (p,q) = (t+ Lt — 1) or (£~ 1,8 +1),
0 otherwise.

P — 1 if (p,q) = (1,0) or (0,1),
2 0 otherwise,

and
(H1,q,(, )1) = (L', the restriction of ({, )o).
Then there is an isomorphism

(Hy.q ®q Haq & Symg(Hy,q) ® Hyq,
() ® ()2 ® (—(L, Do Sym>((, )p)) @ (, )1)
~ (Ho,qQ,(, )o)-

We take this as an identification. Let (p, @) be the SL(2)-orbit of rank
2 defined by

p(g1,92) = py(91) ® 1g, @ SymZ(Pb (92)) ® 1m,,
o(z1,22) := (95 (21) ® F)(1 — t) @ Sym*(py (22)) (1 — t) ® F.

Then this SL(2)-orbit of rank 2 does not satisfy the condition in 6.3

(i) (¢). In fact, for any element z € Hj, (e; ® z,0,0) € H(1,1) and

(0,€2,0) € H(0,2). Q.E.D.
Example 6.11 and Proposition 6.12 below show that, for a subgroup

I' of Gz of finite index, I'\ Dgp,(2) is not necessarily compact in general,
and furthermore not necessarily locally compact in general.

6.11. Ezample. Consider the case h®°? = h%° = 1 and hP9 = 0
otherwise. This is satisfied by the polarized Hodge structure associated
to a modular form of weight 6. In this case, D is identified with the upper
half plane b, which is the Griffiths domain of the case h1'* = h%! =1
and hP? = 0 otherwise. We have Dps = hgs, but Dgy,(3) = b, as follows
from the condition 3.1 (ii).

Propositon 6.12. Assume one of the following (1), (ii) is satisfied for
somet € 7.

(i) w=2t+1, 1t £0, and h>*~° # 0 for some s >t + 1.
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(i) w = 2t, kbt > 2, pIFLEZL > 1, i1 ht+3t=3 > 2 and there is a
Q-vector subspace of Ho g of dimension 2 on which the restriction
of {, )o is zero.

Then Dgy, ) is not locally compact. More precisely, there are an open
set U of Dgs and V of Dgy ) such that the inverse image U’ of U in
Dgs val and the inverse image V' of V' in Dgp ) va Satisfy

~ ~

U'SU, V'S5V, V' =U"NDsye)val

and such that there are integers m > 1> 0 and a commutative diagram

U’ ~ R™ x RZO
U U
V'~ (R™xRso)U(R!x0)
U U
U'nND ~ R™ x Rag.

Note that the subspace (R™ x R+g)U(R! x0) of R™ x R3¢ is not locally
compact.

Proof. Fix a Q-rational R-subspace L of Hy r satisfying the follow-
ing condition. In the case (i), dim L = 1. In the case (ii), dim L = 2 and
(, Yoiszeroon L. Let P be the Q-parabolic subgroup {g € (G°)r | gL =
L} of Gr, and let W be the Q-rational filtration of Hyp g defined by

W_2:=0CW_y1:=LCWy:=L"CW; :=Hyp.
Then we have

(GO)W,R =P, DBS,val(P) n DSL(Q),val = DSL(Q),V&I(W)a
Dgsvail(P) = Des(P), Dsr2)va(W) = Dsr2)(W).

On the other hand, in the case (i), fix a polarized Hodge structure
(Hi,{, )1, F1) of weight w whose Hodge type (h}'?), 4z is given by

ppd — e _ )1 if (p,q) = (t+1,t) or (t,t+1),
! 0 otherwise.

In the case (ii), fix polarized Hodge structures (Hj,( , );, Fj) ( =1,2)
of weight w for 7 = 1 and of weight 1 for j = 2, respectively, having the
following properties: The Hodge types (h%%), ez of (Hj, (, );, Fj) for
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J =1,2 are given by

2 if (p,q) = (,1),
WPt =hPt =91 if (pg) = (t+1,t— 1) or (t—1,t+1),

0 otherwise.

hp’q — 1 i (pa q) = (170) or (07 1)7
2 0 otherwise,

and
(H1,q,(, )1) =~ (I, the restriction of (, )o)

for some Q-subspace L’ of Ho q such that L@ Lz = L. Then we have
an isomorphism
(Ho.q:( )o)
o JHyq® Hiq, (, )y ®(, )1) in the case (i),
(Hy.q ®q Haq ® Hi,q, {» )y ®(, )2@(, )1) in the case (ii),

which sends L onto Qe; @ {0} in the case (i) (resp. e; ® Hp q ® {0} in
the case (ii)) and L’ onto Hy q. Fix this isomorphism and take it as an
identification. Let (p, ) be the SL(2)-orbit defined by

e(z) = ()1 -t) ® Fy in the case (i),

{p(g) = py(9) ® 1, ® 1,
(

{,,(g) = py(9) ® 1m,

0(z) = (4 (2) ® Fy)(1 —t) & F, in the case (ii).

We claim
(1) DSL(2),val(W) =Du P[pa (P] in DBS,val(P)~

In fact, let (o', ¢’) be an SL(2)-orbit of rank 1 whose weight filtration is
W. Since p and §’ split W, there is an element p € P, such that p/ =
Int(p)p. The Hodge types ¢(4)(gr}”) and of ¢'(4)(gr}") coincide for each
j. (In the case (i) (resp. (ii)), it is (t+1,t+1) (resp. (¢+1,8)+(¢,t+1))
for j = 1, (t,t) (resp. (t,t — 1) + (¢t — 1,¢)) for j = —1, and (h})"?) for
j = 0.) Hence by [U1, 3.16 (iii)], there is an element g € (G°)gr which
commutes with g’ = Int(p)p and satisfies ¢/(i) = gpp(i). By 3.10, we
have p’ = Int(gp)p, ¢’ = gpp. Since gp € P, this proves (1).
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Let D’ be the subspace of D defined in 2.16 with respect to the
maximal compact subgroup K; of Gr. Then, (1) shows that we have a
commutative diagram of topological spaces

Dgsva(P) = Dps(P) = D’ x Rxo
U U
Dspyvail(W) = Dgpgy(W) =~ (D' xRyo)U(°P-rx0),

where °P is as in 2.16 and [p, ¢] € Dgr,(2)(W) corresponds to r x 0. Let

m:=dim D' =dim D — 1,
I:=dim(°P-r) =dim(P-r) — 1.

By [U2, 3.12 (iii)], we have dim(P -r) < dim D under the assumption of
Proposition 6.12. This proves that the statement of 6.12 holds for some
neighborhood U of the image of [p, ¢] in Dps. Q.E.D.
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