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Introduction

In [27], J.H.M. Steenbrink studied degenerations of Hodge struc-
tures. For f: X — A = {2 € C; |z| < 1} projective and of semi-stable
degeneration, he showed that a “limit Hodge structure” appears as the
limit of the Hodge structures H™(X;,Z) (m € Z; t € A — {0}). In log
Hodge theory, as in [23], his theory is interpreted in the form “the higher
direct images on A of Zx carry the natural variations of polarized log
Hodge structure.”

In this paper, we will generalize the theory of Steenbrink in this
form to the theory with coefficients (that is, we will start with general
variations of polarized log Hodge structure Hz on X instead of Zx).

Received March 13, 2001.
2000 Mathematics Subject Classification: 14A20, 14D07, 32G20. Key-

words: variation of Hodge structure, limit of Hodge structures, nilpotent orbit,
log geometry.



270 K. Kato, T. Matsubara and C. Nakayama

Our method is different from Steenbrink’s. We use “log C'°°-func-
tions” and “log harmonic forms”, in the way as we use C°°-functions and
harmonic forms in the case without degeneration in the classical Hodge
theory. Our main result is the following. (See Appendix for special
terminology of log geometry, if the reader is not familiar with log struc-
tures of Fontaine-Illusie. For example, see Appendix 2 for “log smooth fs
log analytic space”, see Appendix 4 for “log smooth morphism” and for
“vertical morphism”, and see Appendix 5 for “ket sense”. In particular,
the word “vertical” in the statement below shows that we assume the
degeneration of f and the degeneration of (Hz, M, ( , )) occur only in
the “vertical direction” with respect to f.)

Theorem. Let X, Y be log smooth fs log analytic spaces, and let
f: X — Y be a projective log smooth vertical morphism. Let (Hz, M,
(', ) be a variation of polarized log Hodge structure on X of weight w
in the ket sense. Then:

(1) The Hodge to de Rham spectral sequence

EP1 = RP"'qf*grp(w;{/y(M)) = E = RMf*(wS(/y(M))

degenerates from Ey and each R™ f,grP(w$ /Y(./\/l)) s a locally free Oy -
module on Yie;. Here wgc/y(/\/l) denotes the de Rham complex with log
poles and with coefficients in M.

(2) For each m € Z, (Rm FEHg, R™ fulyy (M), ( )) with the
Hodge filtration on R™ f,w$ /Y(M) is a variation of polarized log Hodge
structure on 'Y of weight w + m in the ket sense. Here ( , ) is the
intersection form defined by fizing an invertible Ox-module which is
relatively very ample with respect to Y .

In the case where Hz = Z and X is semi-stable over Y = A, this
gives a new proof of a result of Steenbrink [27] as explained in the above.
See 8.13 for the details. The theorem also gives new proofs to results
of T. Fujisawa [6], L. Illusie [13] and M. Cailotto [1]. See also Remark
8.12.

In [14], the functoriality of log Riemann-Hilbert correspondences
was established, which is a generalization of results of the second author
[23], [24], [25], F. Kato [16], and S. Usui [29], [30]. This implies that
R™ fi(w%y(M)) is a locally free Oy-module in the ket sense, and cor-

responds to R™ fiogHZ via the log Riemann-Hilbert correspondence on
Y. The above Theorem shows that we can add Hodge filtrations in this
functoriality.
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See Y. Kawamata-Y. Namikawa [21] for another approach by log
method to the degenerations of Hodge structures.

Log C*°-functions are functions which have, together with their “log
derivatives”, logarithmic growth at the boundary. After we completed
our paper, we learned from Prof. S. Zucker that this notion has been
already considered by several authors (for example, [10], [9], [11], [12])
and that contents of the sections 1 and 3 are known.

We are very much thankful to Prof. L. Illusie, Prof. S. Usui, Prof.
T. Saito and Prof. S. Zucker for their advice.

§1. Log C°°-functions

1.1. Let X be an fs log analytic space which is log smooth over C. Let
Xiiv = {& € X;Mx, = (93},%}, which is an open dense subset of X.
(See Appendix.) We define the ring of log C*°-functions on X as a
subring of the ring of C*°-functions on Xy;,. When X is a complex
manifold M whose log structure is given by a divisor D with normal
crossings, the sheaf of log C*°-functions is the same as A%, (M, D) in
[12] (2.2). See also [10], [9], and [11] 3.8.

For a function f: X4, — C, we say f is of log growth on X if there
exists an open covering (Uy), of X with an element ¢ty € I'(Uy, M§P)
and an integer m(\) > 0 for each A, for which we have

|f ()] < |log |tx(x)||™

for any A and any z € Xy N Uy

By a log C°°-function on X, we mean a C*°-function f: Xy, — C
having the following property: If U is an open set of X and (¢;)1<j<n
is a family of elements of I'(U, M§") such that (dlog(t;))i<j<n is an
Oup-basis of w}, (= the sheaf of analytic differential forms on U with log
poles; see [18] (3.5)), then the following condition (C) is satisfied.
(C) For any a(7), b(j) € N (1< j <),

H-4)" (5 2)" )

J

is of logarithmic growth on U.
Note that locally on X, a family (¢;)1<;j<n as above exists and the
condition (C) is independent of the choice of such (¢;)1<;<n.

Example 1.2. (1) When X is a complex manifold whose log structure
is given by a divisor with normal crossings, a C*°-function on X is a log
C*°-function.
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(2) A meromorphic function on X is a log C*°-function on X if and only
if it is holomorphic.

(3) For any section t of M%", log|t| and (ﬁ)" (n € Z) are log C°°-
functions on X. If t is in Mx, |t|¢ (c € C, Re(c) > 0) is a log C°°-function
on X.

(4) For any section ¢ of Mx, |log|t||¢ (c € C) is a log C*°-function on
X outside the points « € X at which ¢, € O , and [t(z)| = 1.

1.3. We show that log C°°-functions on X form a ring. For this, it is
sufficient to show that functions on Xy of log growth on X form a
ring. It is sufficient to show that for z € X and ty, ¢, € I'(X, M§’),
there exist an open neighborhood U of z and t € I'(U, Mx) such that

|log([¢])| > max(|log(|t:])], [log(|t2])]) on Xy N U.

We may assume that x € Xii,. Take an element s of Mx , whose
‘image in the fs monoid Mx ;. / (9;((’1 belongs to the interior of Mx ,/ O;(’x.
Then for some n > 1, s™t;, s™t] L smty, 5™ty ! belong to the interior of
Mx /0% .- Hence |s"t;]| < 1, ls"t7| < 1, |s"t2| < 1, |s"t3'| < 1on
Xiriv N U for some open neighborhood U of z. This shows

| log(|s™|)| > max(|log(|t1]), [ log([t2])])

on Xy NU.

1.4. Let Ax be the sheaf U — {log C°°-functions on U} of X. Let V =
Xiriv, let CFP be the sheaf of C°°-functions on V, and let j: V — X be
the canonical morphism. Then Ax is regarded as a subsheaf of j,.C7°.
Let Cy7? (g € Z) be the sheaf of C* g-forms on V. For p, q € Z, define
the sheaf A%? of log C* (p, q)-forms on X to be the image of

Ax @ Wk @ — j(CY M) fRw@n— fu AT,

and for m € Z, let

= D A iy

p+g=m

Proposition 1.5. Assume that the underlying analytic space X of X
is Hausdorff. For any p, q € Z, AR is a soft sheaf on X.

Proof. If A is a soft ring, an A-module M is also soft. Hence we
can reduce 1.5 to proving that Ax is soft. Moreover we can assume X =
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(Spec C[S])? for some fs monoid S. Then we can find a surjective map

N* — S and, hence, a closed immersion X <» Z := (Spec C[N*])*".

Then we have a map i~ 1Az — Ax. Since C is soft, C®-module Az
z z

is soft. This implies Ax is soft. Q.E.D.

Proposition 1.6. U — Ax(U) is a sheaf on Xyer. (See [14] or Ap-
pendiz for the definition of Xyet.)

Proof. 1t is enough to show that, for a surjective, Kummer log
étale morphism g: V — W of log smooth fs log analytic spaces, a C°°-
function f: Wi,y — Cis log C*° if and only if fog is log C°. This is
easily checked with the fact that g is an open map. Q.E.D.

Proposition 1.7. Let M be a sheaf of Q-vector spaces on Xye,. Then
Ric, M = 0 for any q > 0, where ¢ s the projection of topoi from Xiet
to X.

Proof. See [14]. Q.E.D.

From now, everything is in the ket sense unless the contrary is ex-
plicitly stated.

1.8. We define a sheaf A%E on X'°¢ by
.Al)?g = O})?g ®T~1(@X) T_I(Ax),

where 7 is the canonical map X108 — Xj. (Ox, Ax, and Ol)c(’g here
are the ket versions.) Note that Al)‘;g — jiogC{'," is not necessarily
injective since 771 Ax — j}f’gC{’," is not. We define
,q51 1 - s

ARLE = ORE @,-1(0x) T (AR (b, € Z)

ARYE = OFF @0 T (AR) (mEZ).
We have a complex conjugate A{,cgg — A};ég by extending the complex
conjugate of Ax by (’)])?g — Ag}g;log(f) — 2 (log|f|) —log(f)®1.
Proposition 1.9. We have

Rr, (A’;(’q’log) = AR for p, ¢ € Z.

Proof. Tt is checked stalkwise that R7, ((’)l)?—g ®r-10x, T M) =M
for any Ox-module M (cf. [14]). The proposition is a special case of
this fact. : Q.E.D.
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§2. Log C* Hodge decompositions

2.1. In this section, we relate log C°°-functions to degenerations of polar-
ized Hodge structures. In Theorem 2.6 below, we show that a “variation
of polarized log Hodge structure” (VPLH) has a “log C*° Hodge decom-
position”. Here VPLH is a notion which is something like “degenerating
variation of polarized Hodge structure” and which matches well the the-
ory of Schmid on nilpotent orbits ([26]). The proof of Theorem 2.6 bases
on the theory of Cattani-Kaplan-Schmid on SL(2)-orbits ([26], [3]).

In the classical theory, if X is a complex manifold and Hz is a
variation of polarized Hodge structure (VPH) on X of weight w, C ®z
‘Hz,o for each z € X has Hodge decomposition

— DP,q
HC7$_ @ HC,Z

prg=w

where He = C ®z Hz and ch’”‘i is the intersection of Fil’(H¢ ) and
the complex conjugate of Fil?(H¢ ;). The Ox-module Ox ®z Hyz, has a
filtration by the definition of VPH, but this O x-module Ox ®z Hz does
not necessarily have a Hodge decomposition (this is because Ox does
not have the complex conjugation). However C§ ®z Hz has a Hodge
decomposition
CF @zMz= P (p,a)-part
prg=w

where (p,q)-part means the intersection of Fil’(C§ ®z Hz) and the
complex conjugate of Fil?(CF ®zHz). Theorem 2.6 states that a similar
Hodge decomposition exists also for a VPLH if we replace C'°°-functions
by log C*°-functions.

2.2. Before we discuss VPLH, we review the theory of log Riemann-
Hilbert correspondences studied in [18] and [14] (cf. Remark 2.4). Let
X be a log smooth fs log analytic space. The log Riemann-Hilbert corre-
spondence relates the following two categories Lqunip(X) and Vynip(X).
Let Lqunip(X) be the category of locally constant sheaves L of finite
dimensional C-vector spaces on X!°8 such that for any z € X and
y € 771x) C X8, the action of 7;(77(z)) (called the local mon-
odromy at x) on the stalk L, is quasi-unipotent. On the other hand, let
Vanip(X) be the category of Ox-modules V' on Xy, endowed with an
integrable connection with log poles

V:V —wk®o, V

which satisfies the following condition locally on Xyet (cf. [14]).
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There exists a finite family of Ox-submodules (V;)o<;<, of V satis-
fying V(V;) C wk ®0y Vi such that
o=VycWc---CV,=V
and such that for each 1 < i < n, V;/V;_; is locally free and the connec-
tion induced on V;/V,_; does not have a pole.

Then we have an equivalence of categories
Launip(X) = Vanitp(X); L = 7.(O%E @c L)
whose converse is given by
V= Ker (V: OF @0y V — 0wy @0y, V),

where — oy V = — ®,-1(04) 77 (V).
Furthermore, if L € Lqypnip(X) and V =7, (Ol)?g ®c L) € Vinip (X),
we have
O @c L= 0% 00, V.

2.3. Now we introduce VPLH. See [19], [20] for generality of log Hodge
structures and polarized log Hodge structures (cf. Remark 2.4).

First, we review the definition of VPH. For a complex manifold X
and for w € Z, a VPH on X of weight w is a triple (Hz, F, ( , )) where
o Hz is a locally constant sheaf of finitely generated Z-modules on X,
o F'is a descending filtration (F?),cz on Ox ®z Hz by Ox-submodules
such that

FP = Ox ®zHyg for p <0, FP =0 for p > 0,

and each FP is locally a direct summand of Ox ®z Hy,

o (, )is a Q-bilinear form Hg x Hg — Q,

satisfying the following conditions (1) and (2).

(1) For any = € X, the triple (Hz ., (, )z, F(x)) is a polarized Hodge
structure of weight w. Here F'(x) means the filtration (C ®coy , F¥)pez
on C®g Hz ., (Ox, — Cis given by f — f(x)).

(2) (Griffiths transversality) The connection

vvzd@)liOX@ZHZ“‘“‘)Q%(@ZHZ

sends F? into Q% ®p, FP~! for any p € Z.

Now let X be a log smooth fs log analytic space and let w € Z. A
VPLH on X of weight w is a triple (Hz, M, (, )) where
o Hz is a locally constant sheaf on X'°8 of finitely generated Z-modules
with quasi-unipotent local monodromies.
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o M is the object of Vgyuiip (X) corresponding to the object He = C®zHz
of Lqunip(X), endowed with a descending filtration (MP)ycz by Ox-
submodules such that

MP = M for p < 0, MP =0 for p >0,

and each MP is locally a direct summand of M,

o (, ) is a Q-bilinear form Hg x Hog — Q

satisfying the following conditions (1) and (2).

(1) Let € X, let y be a point of X'°¢ lying over z, and let sp(y) be
the set of all ring homomorphisms Ol)gi — C whose restrictions to the

subring Ox , of Ology coincide with the map Ox , — C; f — f(x).

Then if s € sp(y) and if the map Mx , — C*; f — exp(s(log(f))) is
sufficiently near to the canonical composition

MX,Z i) OX,m I Cv f = a(f)(fﬁ),

then (Hz,, M(s), (, )y) is a polarized Hodge structure of weight
w in the classical sense. Here log(f) is defined in Olog ,/2miZ and
exp(s(log(f))) is well defined since exp(s(2miZ)) = exp(QmZ) =1, “suf-
ficiently near ” is with respect to the topology of simple convergence of
the set Map(Mx,., C), and M(s) = C®0o, , My endowed with the in-
duced filtration. (Ox,, (resp. M,) is the stalk at y of the inverse image
of Ox (resp. M) on X!°8 by X8 — Xy, Ox, — Cis f — f(y),
and we identify M(s) with C ®z Hz, by

M(s)=C ®ol§i (Ol)?,gy R0x 4 My) =C®z Hzy

where (’)l)cfy — Cis s.)
(2) (Griffiths transversality)

V(MP) C wk ®pyx MP™! for any p € Z.
Sometimes we denote by (Hz, (MP)pez, (, )) for (Hz, M, (, )).

Remark 2.4. Inthe above 2.2 and 2.3, we work on the ket site. Work-
ing on the usual site (of open sets of X) instead, we have the non-ket
analogues of 2.2 and 2.3: First, replacing Xyet with X (the usual site) in
2.2, we have the definition of the non-ket analogue Vpiip(X) of Vinip (X).
Then we have the non-ket version of the log Riemann-Hilbert correspon-
dence Lunip(X) — Vailp(X), where Lunip(X) := {L € Lqunip(X) ; the
local monodromies of L are unipotent}. See [18] for the details. Next, re-
placing Xiet with X in 2.3, we have the definition of the non-ket version
of VPLH, which is called VPLH in [20].
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These non-ket versions relate to ours as follows: First, the functor
¢ from the category of locally free O x-modules of finite rank on X (Ox
here is in the non-ket sense) to that of locally free O x-modules of finite
rank on Xyt is fully faithful and it induces the categorical equivalence
between Vi, (X) and the full subcategory of Vguip(X) consisting of the
objects whose “V” belong to the essential image of . Further ¢ induces
the equivalence between the category of VPLH in the non-ket sense
and the full subcategory of that of VPLH in our sense consisting of the
objects whose “H¢” belong to Lypip(X).

The following Proposition 2.5 is a reformulation of the nilpotent
orbit theorem of Schmid ([26]).

Proposition 2.5. Let X be a log smooth fs log analytic space and let
w € Z. Then the restriction to Xiy induces an equivalence of categories

{VPLH on X of weight w} — { VPH on X, of weight w}.

We show in 2.7-2.9 how Proposition 2.5 is deduced from the nilpo-
tent orbit theorem of Schmid.

See [20] for more details about the relation between nilpotent orbits
and polarized log Hodge structures on more general fs log analytic spaces
X.

The aim of this section is to prove

Theorem 2.6. Let X be a log smooth fs log analytic space, let w € Z,
and let (Hz, M, (,)) be a VPLH on X of weight w. Then we have

Ax Rox M = @ Mﬁ{q
ptHg=w

where M%7 is the intersection of MY = Ax ®oy MP and the complex
conjugate of MY,.

Here the complex conjugation on Ax ®, M is the one induced by
(complex conjugation) ® 1 on .Al)c(’g ®z Hz,
via the identification
ASE @7 Hy = AYE @0, M.
2.7. We prove Proposition 2.5 in 2.7-2.9. In there we fix w € Z and

VPH (resp. VPLH) means VPH (resp. VPLH) of weight w. The fully
faithfulness of the restriction functor

{VPLH on X} — {VPH on Xy}
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is easily seen. Hence it is sufficient to show that a VPH (Hz, F, (, ))
on Xiriv extends to a VPLH on X. Since X'°8 is a topological manifold
with the boundary X198 — X ..., Hy extends uniquely to X!°8 as a locally
constant sheaf, and (, ) extends also on X'°&. Denote this extension
of (Hz, (, )) on X'°# also by (Hz, (, )). Since the local monodromy
of Hz at each point of X is quasi-unipotent by a theorem of Borel [26,
4.5], Hc is an object of Lqunip(X). Let M be the object of Vynip(X)
corresponding to Hc. It remains to show that F' extends to a filtration
on M and (Hz, M, (, )) satisfies the conditions (1) (2) of VPLH. We
prove this in 2.8 in the case where X is a complex manifold and the log
structure of X is given by a divisor with normal crossings, and in 2.9 in
general.

2.8. Assume that X is a complex manifold whose log structure is given by
a divisor with normal crossings. We may assume X = A™t™ with the log
structure given by the divisor which is the complement of (A*)™ x A™.
Assume that we are given a VPH (Hz, F, (, )) on Xiv = (A*)™ x
A™. We show that it extends to a VPLH on X. As is explained in
2.7, (Hz, (, )) is extended to X'°¢ and we have an Ox-module M on
Xket- We may assume that the local monodromies of (Hz, F, (, )) are
unipotent. Let

U = the upper half plane ={zx+yi; z, y € R, y > 0},
U={z+yi;z€R, 0<y< oo}

Then we have a commutative diagram
U'x Am<=——U" x A™

l l

Xlog (Z\D)™ x A™ <— (Z\U)™ x A™

Lo ek

X = AP <D (AR X AT

Il

where Z\x (x = U, U) means the quotient by the action z +— z +
n (n € Z) of the group Z, (2) is the isomorphism induced by U —
A*; z — exp(2miz), and (1) is the unique continuous extension of (2).
The group m(X'°8) = m(Xipiv) = Z™ acts on the stalks of Hz, and
since 71 (X°8) is commutative, we have a unique action of 7;(X'°€) on
Hz which induces the original action of 71 (X'°8) on each stalk of Hz.
Let v; € m((A*)™ x A™) (1 < j < n) be the loop in the j-th A*
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around O in the clockwise direction, and let /V; be the logarithm of the
action of v; on Hz which is unipotent. It can be shown easily that the
inverse image of M on U x A™ is equal to Ox ®g exp(zyzl ziN;)Hz
in the inverse image of Olfég ®z Hz on U" x A™, where z; denotes the
coordinate function of the j-th U, and regarding z;j as (2mi)~! times a
logarithm of the coordinate function of the j-th A, we regard z; as a
global section of the inverse image of Ol)?g onU" x A™.

Since U x A™ is contractible, the inverse image of Hz on U" xA™
is a constant sheaf. By regarding the inverse image of H¢ on U" xA™ as
a constant C-vector space, let D be the set of all descending filtrations
(fP)pez on this C-vector space and let D be the subset of D consisting
of (fP)pez for which (Hz, f, (, ))is a PH of weight w (D is a classifying
space of polarized Hodge structures of Griffiths). Let

é: UM x A™ — D

be the map defined by the filtration F'. Then by Schmid [26, Section 4],
the map

U™ x A™ — D; (z,w) — exp(— szNj)é(z, w)

j=1

descends to a holomorphic map %: (A*)" x A™ — D and furthermore
1) extends to a holomorphic map A™*™ — D. This implies that the
filtration exp(— 2?21 z;N;)F on the inverse image of Ox,,,, ®z Hz on
U™ x A™ extends to a filtration F’ of Ox ®z Hz on T" x A™ by Ox-
submodules which are locally direct summands of Ox ®z Hz, and that
there is a filtration (MP),cz of M by Ox-submodules such that the
inverse image of MP on U x A™ is equal to exp(3_j—; #jN;)F'. These
MP are locally direct summands of M. We show that (Hz, M, (,))
satisfies the condition (1) (2) of VPLH. The Griffiths transversality (2)
is checked on Xyiy. For (1), it is enough to check this at 0 € A™+™,
Let a € X'°¢ lie over 0 € A™*™, let s € sp(a), let b be a lifting of a to
U" x A™, and let s(z;) € C be the image of z; € Ol}?i = (’)I;;’i by s.
Then the filtration of M(s) is identified with exp(3_7_, s(2;)N;)¥(0).
Since

n

C" — ﬁ; (Zj)lgjgn = eXP(Z szj)qr/J(O)

=1

is a nilpotent orbit ([26, 4.12], [3, 1.15]), the condition (1) of VPLH is
satisfied.
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2.9. We prove Proposition 2.5 in general. We may assume that X is an
open subspace of the toric variety (Spec C[S])* where S is a torsion free
fs monoid and the log structure of X is given by the divisor which is the
complement of X N (Spec C[S&P])2". Here S®P is the group {ts~!; t, s €
S} associated to S.

We recall some facts about toric geometry ([22]). Let Q>0 = {a €
Q@ ; a > 0} regarded as an additive monoid. For a finitely generated
Q-cone ¢ in Hom (S,Qx0) (i.e., a subset of Hom (S, Qs0) having the
form {a1hy + -+ + arh, ; a; € Q>o} for some elements hq,...,h,
of Hom (S,Q>¢)), we have a log smooth fs log analytic space X, =
X X(specc|s))= (Spec C[S,])*" where S, = {t € S8 ; h(t) > 0for all h €
c}. The canonical morphism f,: X, — X induces an isomorphism
Xo X x Xtriv — Xriv- If A is a finite polyhedral cone decomposition of
Hom (S,Q>0), we have a log smooth fs log analytic space Xy = UserXo
(open covering) with a proper surjective map fy: X, — X which in-
duces X xx Xiriv — Xirive If X is a subdivision of )\, we have a
unique morphism Xy, — X, over X.

We endow X, and X, with the log structures corresponding to the
divisors which are the complements of Xy, .

Assume that we are given a VPH (Hz, F, (, )) on Xiriv-

Claim 2.9.1. If o is a simplicial Q-cone (that is, o is a Q-cone gen-
erated by dim(o) elements), (Hz, F, (, )) extends to a VPLH on X,.

In fact, there is a finite Galois Kummer log étale covering X! of X,
such that X! is smooth and such that the reduced part of the comple-
ment of the inverse image of X,y in X/, is a normal crossing divisor. By
2.8, (Hz, F, (, )) extends to a VPLH on X/, and by Galois descent,
we see that (Hz, F,(, )) extends to a VPLH on X,.

As in 2.7, we can extend (Hz, ( , )) to X'°8 and we have the
Ox-module M on Xye. Let D(M) — X be the space classifying
descending filtrations (FP)pcz on M such that all FP are locally direct
summands of M. (D(M) is a (finite disjoint union of) flag manifold
bundle(s) over X.) By 2.9.1, for a simplicial Q-cone in Hom (S, Q>0),
the Hodge filtration of the extension of (Hz, F, (, )) to X, defines a
morphism p,: X, — D(M) over X. Take A\ € A such that for any
o € X S = N" x Z™ for some m, n > 0 (such X exists by [22] I,
Theorem 11). Let uy: Xy — D(M) be the union of u, (o € A).

Claim 2.9.2. ) descends to a section X — D(M) of D(M).

If we prove 2.9.2, we have a filtration (MP),cz on M extending F
on Xty such that MP are locally direct summands of M. We can then
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prove that with this filtration of M, (Hz, M, (, )) is a VPLH on X.
In fact, Griffiths transversality is checked on Xiriv, and the condition (1)
of VPLH follows from the nilpotent orbit theorem of Schmid [26, 4.12]
applied to the manifold X,.

We prove 2.9.2. It is sufficient to show that py(y) = pa(z) for any
y, z € X, whose images in X coincide. Fix z € X and let X,(z) =
it (x) € X Let

Sy ={ae8%; ac0x,},
Sy={a €S ; acOx,,} forye X,(x).

Then
ScCS,CS§,C S

For p =z or for p € X(x), let C(p) = Hom (Sp, Q>0) and regard C(p)
as a Q-cone in Hom (S8P, Q). Then for y € X, (a;) C(y) C C(zx) and the
interior {h € C(y) ; Ker (h: S, — Qx0) = (Sy)*} of C(y) is contained
in the interior of C(z).

To prove px(y1) = pa(y2) for any y1, y2 € Xa(z), it is sufficient
to consider the case C(y;) is a face of C(yz2) (this is because any two
points of X(z) are connected by a chain of this relation). Let hy be
an element of the interior of C(y;). Since hj belongs to the topological
closure of the interior of C(yz2), by taking a point hy of the interior of
C(y2) which is sufficiently near to hy, we can find a simplicial Q-cone o
in C(z) such that both h; and hy are contained in the interior of o and
such that dim(o) = dim(C(x)). Fix such hy, by and o.

Take a finite polyhedral cone decomposition X' of o such that the
corresponding proper birational Xy, — X, has a morphism X, —
X, over X. The composite maps X — X, —= D(M) and X —
X LN D(M) coincide because they coincide on Xi.iy. Hence it is
sufficient to show that there are elements y; of Xy for 5 =1, 2 such
that the image of y; in X is y; for j = 1, 2 and such that the images
of yJ in X, coincide.

For j =1, 2, let K; = Ker(h;: S — Q). Then K; D (Syj)><
Extend the homomorphlsm (Sy;)* — C*; f = f(y;) to a homomor-
phism s;: K; — C*. For j =1, 2, take 0; € X\’ such that h; € o; and
let y; be the point of X, C (SpecC[S,,])*" characterized by the follow-
ing property. Fort € Sy, t(y}) = s;(t) if t € K and ¢(y}) = 0 otherwise.
Then the image of y; in X coincides with y;. By dim(o) = dim(C(z)),
we have (S,)* = (S;)*, and we have K; NS, = (S,)* since h; is in
the interior of 0. Hence for j =1, 2 and for t € S, t(y)) = t( ) if
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t € (S;)* and t(y;) = 0 otherwise. Hence the images of y; and y3 in X,
coincide. This completes the proof of Proposition 2.5.

The following proposition is useful in the proof of Theorem 2.6 and
also in other places in this paper.

Proposition 2.10 (Cf. [11], 3.8.2). Let X be a log smooth fs log an-
alytic space, and let f: Z — X be a blowing up along log structure.
Then

fo(Az) = Ax.

Proof. It is easy to see that the equality Xy = Ziriv induces the
bijection between the set of functions of log growth on X and that for
Z. On the other hand, wlz = 0z Qoy w}( since f is log étale. These
imply the desired equality. Q.E.D.

2.11. By 2.10, we can reduce the proof of Theorem 2.6 to the case where
X is a manifold and the log structure of X is given by a divisor with
normal crossings.

Lemma 2.12. Let X be a log smooth fs log analytic space and let
f e(X, Ax). Assume that f does not have zero on Xy and that the
function % on Xy 18 of log growth on X. Then % e (X, Ax).

Proof. We may assume that X is an open subspace of (Spec C[S])?"
for a torsion free fs monoid S and the log structure is given by the divisor
which is the complement of X n(Spec C[S8P])*". Let (t;);ecs be a Z-basis

of S8P and let
1o}

g
={tj— == j i
@ {Jatja ]atjaje‘]}

Then 2.12 is reduced to

Claim 2.12.1. For any &1,...,0; € O, 81-~-8k(%) 1s contained in
the ring generated over Z by {%, b1---6(f); 1 >0, b4,...,6, € ©}.

This 2.12.1 is deduced from 8(%) = f~29(f) (0 € ©) by induction
on k.

2.13. We prove Theorem 2.6.

Assume that X is a complex manifold and the log structure of X
is given by a divisor with normal crossings. Let (Hz, M, (, )) be a
VPLH on X. We may assume that the local monodromies of Hg are
unipotent.
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It is sufficient to show that the map
Ax ®ox MP ® Ax @0y MYFTITP — Ax @0y M; (f,9) = f+7

is an isomorphism for any p € Z. Locally on X, take an Ox-basis
(ej); of MP, an Ox-basis (€} )r of M“T'=P and an Ox-basis (e]'); of
M, and let ¢ be the matrix which expresses the pair ((e;);, (e})x) by
(e')i- Then det(y) € Ax and det(¢) does not have zero on Xy It is
sufficient to prove det(p)~! € Ax. By 2.12, it is enough to show that
det(p) 1! is of log growth. Hence it is enough to prove

Claim 2.13.1. Forp, q € Z such that p+ q = w, the projector
CRX.... ®z Hz — (p,q)-part

of the Hodge decomposition on Xy, s of log growth on X, that is,
in j«CF . ®ox Endoy (M) (j denotes the inclusion j: Xuiy — X),
the projector belongs to A’ ®o,, Endoy, (M) where A’ is the subsheaf of
J+C%,,., consisting of functions of log growth.

In the following proof of 2.13.1, we use the arguments in section 5
of [3] which were used for the estimate of the Hodge metric of a degen-
erating VPH ([3, Theorem 5.21], [15]).

We may assume X = A™T™ and the log structure of X is given by
the divisor which is the complement of (A*)™ x A™. As in [3], for a
subset I of {1,...,n} containing n, and for K > 1, let

(RZo)k CRZy,  ((A")M)k C (A"
(Rso = {r € R; r > 0}) be as follows. Write I = {i, ; 1 < a < r},
1o <igif o < B. Let ‘
( 7;0);( = {y = (yj)j € RZO s Yig /yia+1 >K (1 S (64 S T, yir+1 means
1), K' <vy,/yi, <K forany a (1 <a <r) and
j such that i4_1 < j < %4 (ip means 0)},

(A" k = {(t;); € (A")" 5 (=(2m) ' log |t;])1<i<n € (R2p)k }-

Then, when o ranges over all permutations on the set {1,...,n} and I
ranges over all subsets of {1,...,n} containing n, the union
Ug 1o ((A*)™)L contains a set of the form V N (A*)" for some neigh-
borhood V' of 0 in A™ ([3, 5.7]). Hence Claim 2.13.1 is reduced to

Claim 2.13.2. Fiz a subset I of {1,...,n} containing n. Then if
K > 1 is sufficiently large, the projectors of the Hodge decomposition
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on Xy are of log growth at 0 € A™™ when they are restricted to
(A" x A™.

We prove a more precise

Claim 2.13.3. Fiz a subset I of {1,...,n} containing n. For K > 1,
let BL be the subring of (4«C%,, Jo consisting of elements which are
bounded on V N (((A*)™)L x A™) for some open neighborhood V of 0 in
A™M™ . Then, if K > 1 is sufficiently large, the projectors of the Hodge
decomposition on Xiiy are contained in the subring

B;{ [ylv sy yn] ®Ox,o Endox,o (MO)
of
(j*cg(iriv)o ®0X,0 End@x,o (MO)

where y; are defined by z; = x; + ty; with x;, y; real.

(If t; denotes the coordinate function of the j-th A, y; = —(27) ™! log
(I£51) and it is of log growth.)

Let D, ﬁ, (Nj)lgjgna (15: U™ x A™ — D and 1/1: A™M™ — D
be as in 2.8. By regarding the inverse image of Hg on U™ x A™ as
a constant finite dimensional R-vector space, let Gg be the group of

all automorphisms of this R-vector space preserving ( , ). Let I’ :=
{1,...,n} — I. Let

S ={(u,w) ; u=(uj)jer, u; € Rsg, we A™}.

For (u,w) € S, the pair

(D wlN)+ Nii<asr, $(0,w)

ta-1<j<iq

yields a nilpotent orbit, and hence by the theory of SL(2)-orbits ([3]),
this pair defines a homomorphism

Puw : SL{2,R)" — Gg

’

of algebraic groups over R. This homomorphism p,, ., depends real an-
alytically on (u,w) € S. For ay,...,a, € Rsg, let

Har, ..y ap) = ((‘3 3) (‘g E_)) € SL(2,R)".
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By [3, Proposition 5.10], there exists Ko > 1 such that for any K > Kj,
we can find a compact set C of D and a neighborhood V of 0 in A™*™
such that

Puew @ %)) exp(= Y 2Nz, w) € C
=1

for all (z,w) € U™x A™ such that (exp(2miz),w) € VN(((A*)")L xA™),
where z; = z; + iy; with z;, y; real and u(y) = (y;/vi.)jer » ta—1 <
7 < ig. This proves 2.13.3.

Example 2.14. We describe an example of the log C*° Hodge de-
composition, for the VPLH arising from a family f: E — A of elliptic
curves on A* degenerating at 0 € A. Let

E={(u,v) € C*; |uv| <1}/ ~

where ~ is the equivalence relation defined as follows: (u,v) ~ (u',v’) if
and only if either one of the following (1) (2) is satisfied.

(1) uv = v'v' # 0 and if we denote wv (= w'v') by ¢, v/ = wt™ and
v’ = vt~™ for some n € Z.

(2) (u,v) = {¢,0) and (v/,v") = (0,1/¢) for some ¢ € C*, or (u,v) =
(0,1/c) and (u',v") = (¢, 0) for some c € C*, or (u,v) = (v',v’).

Then FE is a complex manifold. Let f: E — A be the holomor-
phic map (u,v) — uv. Then for ¢t € A*, f~!(¢) is identified with the
elliptic curve C* /tZ where we identify the coordinate v on E with the
coordinate of CX, and f~1(0) is identified with the singular space ob-
tained from P!*(C) by identifying 0 and co. We endow A with the log
structure corresponding to the divisor {0}, and E with the log structure
corresponding to the divisor f~*(0) with normal crossings.

The family of H' of the elliptic curves C* /tZ forms a VPH on A*
and this VPH is extended to a VPLH (Hz, M, (, )) on A, where

Hy = leiogZ, M= le*(w;_«',‘/A)v MP = le*(wzii)

and (, ) is explained later. The sheaf Hyz is a locally constant sheaf which
is described as follows. Let U — Al°®8 — A be as in 2.8. The pull
back of the family E — f~1(0) — A* to U is identified with the family
{C/(Zz+ 7Z)},cu of elliptic curves (we identify C/(Zz + Z) with C* /tZ,
where t = exp(2niz), by exp(2ni—)) and H1(C/(Zz + Z), Z) is identified
with Zz + Z. Hence Hz = R fI°¢Z is identified with the local system
Homgz(Zz + Z,7) where z is regarded as a local section (274) ! log(#) of
(’)Xg (t denotes here the coordinate function of A) and the inverse image
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of Hz on U is identified with the constant sheaf Hom z(Zz + Z, Z) where
z is regarded here as a global section of the inverse image of Okg onU.
Let (e;)j=1,2 be the Z-basis of Hom7(Zz + Z,Z) where e; sends z to 1
and 1 to 0, and ey sends z to 0 and 1 to 1. Then

(A, R'f,Z) =T (A8, R'fl¢7) = Zey, (R f.Z)o = Ze;.

The Q-bilinear form (, ): Hg x Hg — Q is the unique anti-symmetric
form satisfying (e2,e1) = 1.
Next, M is a free Oa-module of rank 2 with basis (e;,w) where

w = dlog(u) = —dlog(v) € T(A, fuwhs),
and the filtration of M is described as

MP = Mforp<0, MP=0forp>2,

M = f*wb/A = Op - w.

On U, we have

2.14.1. w = 2mizeq + 2mwies.
In fact, the pull back of w to each elliptic curve C/(Zz + Z) for z € U is
2mids where s is the coordinate of C, and 2.14.1 follows from foz 2mids =

2miz and fol 2mwids = 2mi.
Now the log C*° Hodge decomposition

Ap ®o, M= MY & MG

is described as follows: M}‘(O is a free Aa-module of rank 1 with basis
w, M?‘{l is a free Aa-module of rank 1 with basis
2.14.2. W = —2mize; — 2mies.

The relation with the basis (e1,w) of Ax ®0, M is given by

@ = —w+ 2log(|t|)es,
e1 = 3 log(|t))~'w + 3 log(|t) '@,

as is seen from 2.14.1 and 2.14.2. Note that log(|t|) and log(|¢t|)~! are
log C*°-functions on A, but not C°°-functions on A. This tells that
C*°-functions are not enough to obtain the Hodge decomposition in the
situation of degeneration.
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§3. Log O-Poincaré lemma

The purpose of this section is to prove

Theorem 3.1. Let X be an fs log analytic space which is log smooth
over C. Then we have an exact sequence on Xyet

8 401 9 40,2
0—>Ox—-—>¢4x—>AX —>.AX —

where 8: A% — AR is the map induced by d: AL — A
(The non-ket version of this is also true.)

When X is a complex manifold whose log structure is given by a
divisor with normal crossings, the non-ket version of this theorem is a
case of Proposition (2.2.4) in [12]. The part after 3.3 of this section is
essentially included in [12] section 2. See also [10].

3.2. To prove 3.1, first we show that we may assume X = A™T™ with the
log structure given by the complement of (A*)™ x A™. In fact, locally
on X, take a blowing up f: Z — X along log structure such that Z is
a complex manifold and the complement of X, in Z is a divisor with
normal crossings. If Theorem 3.1 is true for Z, then by Rf,Oz = Ox
([22] 1, Corollary 1 c¢) to Theorem 12, GAGA ([8] XII Théoréme 4.2),
and 1.7), Rf. Az = Ax (1.5, 1.7, and 2.10), and A%? = Az @4, AY?
(log étaleness of f), Theorem 3.1 is true for X. Hence we may assume
that X = A™™™ with the log structure as above.

3.3. We fix notation concerning A™+™,
For 1 < j <n 4 m, let t; be the j-th coordinate function of AT,
For 1 <j<mn,let
ri =t;],  u; =t;/r;

(u; is defined on (A*)™ x A™). Let

0 = — 0
az—.t——’ L=t — fOrlS]Sn,
T ot 7ot
0 = o .
6].:(9_1:;’ ajza—t_j forn+1<j<n+m.

Then for 1 < j <mn,
3.3.1. (9]' = %(T‘jalrj -+ ujaiuj), gj = %(’I‘ja—?; — U,J%)

Let |Al={seR; 0<s<1},|A*={seR; 0<s<1}.
We use the theory of Fourier expansions as in [31, Proposition 6.4].
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Lemma 3.4. (1) Via the Fourier expansion

f= :£:~f IIQJU)

leZn

a C®-function f on (A*)™ x A™ corresponds bijectively to a family
(fi)iczn of C®-functions on |A*|™ x A™ satisfying the following condi-
tion 3.4.1.
3.4.1. For each v € |A*|" x A™ and each a € N™, there exists C > 0
such that "

(TG - 1fiw) < ©

=1
for anyl e Z™.
(2) Endow A™™ with the log structure as in 3.2. Then, in the corre-
spondence in (1), f is a log C*-function on A™*™ if and only if the
family (f))iczn satisfies the following condition 3.4.2.

3.4.2. For each a, b € N each ¢, d € N™ and each compact subset K
of |A|™ x A™, there exists C > 0 and h € N™ such that

3§ COTRORIG § (PR Hazﬁi TN 2)

<C- ﬁ [log(r;)|""

j=1
for any l € Z™ and any (r,z) € K N (JA*|™ x A™).

Proof. Asis well known in the theory of Fourier expansions, a C*°-
function on (S')™ corresponds bijectively to a rapidly decreasing function
on Z™. (1) follows from this. (2) is deduced from the relation 3.3.1 of

8j, 8; and 1552, ujza- (1< j < n). Q.ED.

3.5. We prove that if f is a log C"°-function on A™™ with the log
structure as in 3.2 and if 9(f) = 0, then f is a holomorphic function on

A™™ Let f =35 -1 u*9) be the Fourier expansion of f. Then

_ j=1%j
by 9;(f) =0 for 1 < j <n-+m and by 3.3.1, we have for each | € Z™

7’]3 (f)=1G)fi=0 for 1 <j<n,

Bj(fl)=0 forn+1<j<n+m.
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This shows

n

filr,2) = H Y h(2)

where hi(z) (z = (tj)n+1<j<n+m) is @ holomorphic function in z € A™.
The log growth of f shows the log growth of f; for each [ € Z™, and this
shows h; = 0 unless [(j) > 0 for all 1 < j < n. Hence

F=Y (19 ).

leNm j=1
This and 3.4 (1) show that f is a holomorphic function on A™t™,

3.6. By 3.5, for the proof of Theorem 3.1 for X = A™"t™ with the log
structure as in 3.2, it remains to prove 'Hq(A())é') =0forg>1 Asin
the argument of the proof of the classical d-Poincaré lemma (cf. [7, p
25]), this is reduced to proving the following 3.6.1.

3.6.1. Let 1 <k <n-+m and let S be a subset of {1,.. .,ni—i— m} which
does not contain k. Let f be a log C*°-function on AT and assume
9;(f) = 0 for j € S. Then locally on A™™, there exists a log C™-
function g satisfying

i(9)=0forj €S, anddi(g)=f

We prove 3.6.1 in the case 1 <k <n (resp. n+1 <k <n+m)in 3.7
(resp. 3.9).

3.7. First assume 1 <k <n. Let f =3, fi - H;L " i(]) be the Fourier
expansion of f. For each ! € Z", define a C*°-function gf; on |A*|" x A™
as follows. Fix a positive number A < 1. Let e = I(k), and define

e " —e ds
gf,l(r’z):2rk/ S fl(rl,"~7rk—l7sa7’k+17~'-7rn7z)?
B

where B = A in the case ¢ > 0 and B = 0 in the case e < 0. We
estimate g¢;. Let a € N", let K be a compact subset of |A|™ x A™, and
by putting b=0€ N* and c=d =0 &€ N™ in 34 (2), let C > 0 and
h € N™ be as in 3.4 (2) for the family (f;);. Then by lemma 3.8 below,
for any | € Z™ and any (r, z) € K N (JA*|* x A™),

n n

([T DI )lgsa(r, 2)] < 2C - 6(r) - [ 1og(r;)"
=1 1
Tk
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where
h(k)! - SE) (| log (e[ + | log(A)[FA=¢) if e > 0,
0(r) = < |log(ry)|P*) T + | log(A)[MR)+1 ife=0,
h(k)!- S [log(ry)|? if e < 0.

Hence

9r = ngl H’U

lezZr

is a C°°-function on (A*)™ x A™ and is of log growth on A™*™. We
can check easily

3.7.1. ék(gf) =f

3.7.2. D(gy) = gp(s) for D = H"+m a(J)Gb(])
for any a, b € N*t™,

By 3.7.2, we have 9;(gs) = 0 for j € S. Furthermore, by 3.7.2, what
we have proved concerning the log growth of gy shows that g; is a log
C*°-function.

Lemma 3.8. Lete, h€ Z, h>0andlet B, z € R, 0 <z < 1.
Assume 0 < B < 1 in the case e > 0, and B = 0 in the case e < 0.

Then
z dt
a:e/ t~Clog(t)" - =
B t

1s equal to
— Yo 8- e (log(a) — log(B)'(£)°) ife >0,
i - (log(a)"+! —log(B)"+1) ife=0,

—Zz 07 et—h—1 log(x)i ife < 0.

3.9. We prove the case n+1 < k < n+m of 3.6.1 by the method in [7].
Fix v = (v;); € A™™. Take a positive number e such that |v;] + ¢ < 1
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for 1 <j<n+mand |vg| + 3e < 1. Let
U={weA™™; |lwj —v;| <e for1<j<n+m},
K={weA™™; |wj—vj|<e if1<j<n+mandj#k,
lwg — vi| < 3¢},
M={z€A; |z—v| <€},
N={(r, u;reR ueC, 0<r <2, |u =1}

We define a C*°-function g on U N ((A*)™ x A™) by

1 _
gf(w):%/M(z—wk) Lf(wy, ..., Wee1, 2, Whtts - - -, Wnim)dz A dZ.

Since
(z —wg) " rdz A dZ = —2u"2dr A du,
where r = |z — wg|, u = (z — wyg) /7, and since
M c{wg+ru; (r, u) € N},

we see that the integral defining gf converges, g; is a C°°-function on
Un((A*)™ x A™), and
3.9.1.

1
lgf(w)| < ;/ |flw, .. Whe1, W + TU Wt 1, - - -y Wrdmn)| + |[dr A du].
N

It is checked easily that f — g; satisfies 3.7.1 and 3.7.2. By 3.7.2,
Ej(gf) =0 for j € §. By 3.7.2, to show that gf is a log C"°°-function
on U, it is sufficient to prove that g is of log growth on U. Since K is
compact and f is of log growth, there are C > 0 and h € N™ such that

|f(w)| < C- ] tog(jw; )"
j=1
for any w € K N ((A*)™ x A™). By
{(wi, ...y W1, Wk + TU, Wht1, -« s Wnpm) 5 w €U, (r, u) € N} C K,
and by 3.9.1, .
|97 (w)| < 4¢C - T log(juw;])"?)

j=1
for any w € U N ((A*)™ x A™). This shows that gy is of log growth on
U.
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§4. Relative log Poincaré lemma

Here everything is in the ket sense except in the latter part of 4.4.
Let X, Y be fs log analytic spaces which are log smooth over C,
and let f: X — Y be a log smooth morphism. Let A% n% be the

P
cokernel of Ax ® 4, A} — AL, _Ag’(/y = /\.AX‘A}(/Y’ and Ag’él/oé =
(’)l)?g ®r-1(0x) T_I(Al;(/y) for each p > 0.

Theorem 4.1. Let f: X — Y be a log smooth morphism of log
smooth fs log analytic spaces. Let x be a point of X'°8. Assume that
f is exact at T(xz). Then the stalk at x of

0 — (J1°5) THARE) — A — ARRE — AT — -

18 exact.
For the proof we use;

Proposition 4.2. Under the same assumption as in Theorem 4.1, let
y = fl°8(x) € Y'°8. Assume that the cokernel of Mé‘;(y)/O;T(y) —

M ffT(m) / (’);}’T(I) is torsion free. Then the followings hold.
(1) There exists an open neighborhood Uy of 7(y) having the following
property: For any open neighborhood W of x, there is a continuous map
s: U := UéOg — X8 satisfying the following 4.2.1-4.2.4.

4.2.1. fl°8os =idy.

4.2.2. s(y) e W.

4.2.3. S(Utriv) C Xiriv-

4.2.4. For any open set V of X, Uy of Uy such that s(U\%) C V'8, and
for any g € T(V, Ax), gos belongs to T'(Uy, Ay).

(2) If f is vertical, s can be chosen to satisfy s(y) = =.

4.3. We prove Proposition 4.2. We may assume the following: X =
Spec (C[T])®, Y = Spec (C[S])*" for fs monoids S, 7 such that S C 7,
§8PNT =8, S* = {1}, T* = {1}, T# /S#P is torsion free, € X8 lies
over the origin of X, and f: X — Y is the natural projection so that
y € Y'°8 lies over the origin of Y. It is enough to prove the following
claim on monoids.

In the rest of this subsection, for Y = S or 7, we denote by ||
the topological space Hom (U, RT4!*). By a log C*°-function on an open
U of U], we mean a C*®-function g: U N Hom (U, Rso) — C having
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the following property If (tj)1<j<n is a basis of U®&P, for any a; € N
(1<j<n), H (t ) (9) is of log growth on U (cf. 1.1).

Claim. For § C T as above, let x (resp. y) be the origin of |7V| (resp.
|SV]). Then for any open neighborhood W of z, there is a continuous
map s: |SY| — |TV| satisfying the following 4.2.1~4.2.4’.

4.2.1! fos =id, where f is the canonical map |7V| — |SVY]|.

422! s(y) e W.

4.2.3! s(Hom (S,Rsg)) € Hom (7,Ro).

4.2.4! For any open set V of |TV| and for any log C*®°-function g on
V, gos is a log C*°-function on s~1(V).

Further, if S — 7 is dominating (i.e., any t € 7 divides an element
of §), 4.2.2' can be replaced by s(y) = =.

In the rest of this subsection, we prove this claim. By induction on
rank(78P) — rank(S®P), we may assume that rank(78P) = rank(S&P)+1.
Fix an embedding 7 C Si° @ Q which sends each s € S C T to (s, 0).
Take a finite family ((ax, e(A)))rea (ax € SE', e(A) € {£1}) of elements
of Ty, := 7 ®n Q30 C S @ Q which together with S generates Tg.,.
Let

Ar={ el eXN)=1}, A_={reA, e(\)=~1}.

Then the exactness S = 7 N S&P implies the following 4.3.1.
4.3.1. If (a,1) and (a/,—1) belong to Tg.,, then aa’ € Sg. .

The condition “dominating” implies -
432. Ay #0and A_ # 0.

In the followings, for Y = S or 7, we identify each element of |I/"|
with its natural extension in Hom (U ®y RE', RZ™). We will define
s(h) for each h € |SY|.

In the non-dominating case, define s(h) as follows. We may assume
that S # {1}. We have A = A, or A = A_. So assume A = Ay. Take
an element b of S such that axb belongs to the interior of Sg. , for any
A € A, and define a homomorphism 0: 7 — Sg., by sending (ay, 1) to
axb. Define s(h) = ho 6. -

Now we assume that S — 7 is dominating, that is, A, and A_ are
non-empty sets. Let I := Ay x A_. By 4.3.1, we have s; := axa, € Sg.,
for any i = (A, p) € I. B

In the case h(s;) = 0 for any ¢ € I, define s(h) to be the unique
homomorphism 7 — R which coincides on § with h and which sends
(ax, e(A)) to 0 for all X € A. (It is easy to see that such homomorphism
exists.)
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Before defining s(h) for h € V := {h € |SY| ; h(s;) # 0 for some
i € I}, we choose a partition of unity on V, which is subordinate to
the covering (U;)icr as follows. Here U; := {h ; 3h(s;) > h(s;) for any
j € I}. Take a C°-function x on R>q such that x(t) =0 for ¢ > 2 and
x(t) + x(t~') = 1 for all t > 0. For any i,j € I, let w;; := x(s7's;),
which is defined on {h ; h(s;) # 0}, and ; := [];; wi;. Then {p;}ies
is the desired partition of unity. Note that each ¢; is log C*° in the
sense explained before the above claim. Now let ¢ := [],¢; sft ay =
icoumer af’, and a— = [[,_\ peraf’- Then c(h) = h(ara_) # 0
for any h € V. Let h € V. Define s(h) to be the unique homomorphism
7 — R>( which coincides on S with h and which sends (ay,1) (A € A4)
to h(axa_)-c /2 and (a,,—1) (u € A-) to h(aya,) ¢ /2. (It is easy
to see that such homomorphism exists.)

Thus we have defined a map s. It is easy to see that s is continuous
and has the desired properties.

4.4. We prove Theorem 4.1. The proof is essentially the same as the proof
of the classical Poincaré lemma. We may assume that the following:
X = Spec (C[T])*® x CT, Y = Spec (C[S])** x C? for fs monoids S, T
such that S C 7, 88 NT = S, §* = {1}, 7> = {1} and finite sets
S C T, z € X' lies over the origin of X and f: X — Y is the natural
projection so that y = f1°8(x) € Y8 lies over the origin of Y. We will
prove the exactness at Ag(’l/oéw, p>0.

First we reduce to the case where the relative dimension d := dim X
—dimY is one by the standard induction argument (cf. [7] p.25) as
follows: Supposing that the statement is valid for the case of the relative
dimension < d, we will prove the case where it is d. We will assume that
S # T; the other case is similar. Let w € A’)’(’l/oﬁw such that dw = 0.

We will prove that w comes from A’;&;’}Zg (resp. Al}?i) for p > 1 (resp.

p = 0). Take an fs monoid &’ C 7 such that S C &' = §’8* NT and
such that rank(S’)8P = rank(S)8P + 1 and an element ¢ € S’ such that
t ¢ S® @ Q. Denote Spec (C[S])>® x C% by Y’ and the image of
in Y’ by y'. Since the image of w in AX’I/O)%,’w is closed, the induction
hypothesis implies that we may assume that the image is zero if p > 1;
w lies in Al});‘iy, if p = 0. Hence the case p = 0 follows. In the case where
p > 1, we can write w as wodlogt + widlogt (w; € A;‘)’("/;’lzg7 1=0,1).

Similarly we may assume that the image of w; in A’)’(‘/;’l,oi is zero (i = 0,

1) if p > 2; w; lies in Alﬁ,gyy, (:=0,1)if p=1. Thus the case p = 1

follows. If p > 2, we can write w = wadlogt A dlogt (ws € A’}’(’/r‘;}}zg).
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Then the similar argument shows that w is exact (p > 3) or lies in
Af,}/yx (p = 2). Thus we may assume that d=1and 0 <p < 2.

Further we may assume that the cokernel of S8 — T8P ig torsion
free and it is enough to prove the non-ket version of the statement. In
the following we will assume that S # 7; the proof for the other case
where S # T is similar and simpler. Let w € Aggl/oé’m with dw = 0 and
we will prove that w is exact (p = 1, 2) or comes from Y (p = 0). In
the following, fix an element t € 7 — S and consider it as a relative
coordinate function.

Assume that p = 0. Take a base s1,...,s, of S8. Then w is
regarded as a polynomial in Ax - (z)[l1,... , 1], where l; = logs; (1 <
i <r)and [ =logt. Write w = S wj,..; 18I, wy,..i, € .AX ey UE
Then dw = 0 implies dw;, ...;, = 0 for the highest degree (11, ., i) in the

sense of the lexicographic order. Hence the induction works when Wiy vy,
comes from Ay ,(,). Thus the problem is reduced to show that dw = 0
for w € Ax +(z)[l] implies w € Ay,,(,). We will show this. By induction
of the degree of [ with the fact that dfy + fidlogt = 0 implies f; = 0 for
any fo € Ax r(z) and fi € Ay r(y), We may assume that w € Ax r(z)-
(We have that, by seeing each fiber near y, the above fact is reduced
to another simple fact that adlogt (o € C) is not exact on an annulus
{re? ; 0<0<2m Ry <r < Ry}, Ry > Ry >0 in the complex t-plane
unless a = 0.) Fix a set of generators {tc = t,t1,...,ts} of 7. Then
there is a positive real number ¢ such that w is defined and dw = 0 on the
neighborhood X’ = {r € X ; |t;(z)| < e for any ¢ = 0,... ,s} of 7(z).
By Proposition 4.2, we may assume that there exist open neighborhood
Y’ of 7(y), a continuous map s: U := Y'1°8 — X'l°o8 ¢ X1°¢ gatisfying
4.2.1, 4.2.3, and 4.2.4 (Uy there being replaced with Y'). Then we see
that w comes from Ay ,(,) by 4.2.4.
Next let p=1or 2. Let ly,... ., | as above. Write w = Y w;,...;

I Ul wy o € AX/YT( ) Then dw = 0 implies dw;,...;.; =0 for
the highest degree (in the same sense as above). Hence the induction

works and the problem is reduced to show that w € A% Y (@) with
dw = 0 comes from Ag(_/;q_(m). We take the same X', Y’ and s as above.
In the following, we regard each fiber of Xt’ — Y’ as an annulus in

r1v triv
the t-plane. Assume that p = 1. For 3 €.Y{,,, define
c(y') = / w,
¥

where v is any loop {Reio ; 0 <6 < 2r}, R > 0, in the fiber of
X! at ¢ in the t-plane. Then c is a log C*°-function on Y’

triv

trlv ?

1/Ytl‘lV
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and d(clog(t)) = cdlog(t). Replacing w with w — 5%-dlog(t), we may

27
assume that ¢ = 0. For 2’ € X{;, which maps into Y, define

where « is any route from s(f(z')) to #’ in the fiber f=1(f(2')) N X{,,
Then we have w = d¢. To show that ¢ is log C*°, we have to estimate
the growth. It is achieved by using special routes; for example, jointed
ones of the routes on which either u or v is constant, where u = arg(t)
and v =log|t|.

Assume that p = 2 and w = h(u,v)dudv. Here we take the above
u,v as coordinates of the fiber. For 2’ € X{; which maps into Y, define

v(z’)
H(z') = / h(u, v)dv.
v(s(f(=')))

Then H is log C*° and d(—Hdu) = h(u,v)dudv.

§5. Consequences of the relative log Poincaré lemma

Everything is ket here.

Let f: X — Y be as in the beginning of section 4. For an
object V' of Vinip(X), let w;{/y(V) (resp. A;{/Y(V)) be the complex
i w}/y ®oy V (resp. Aé{/Y ®ox V) (i € Z) with the differentials
induced by those of w% y (resp. A%,y ) and the connection V' —
wx (V) — w}(/y(V).

The aim of this section is to prove the following proposition.

Proposition 5.1. Let f: X — Y be a proper separated log smooth
morphism between log smooth fs log analytic spaces. Let V be an object
of Vanip(X). Then for any m € Z, the canonical map

Ay oy R™ fu(w,y (V) — R™ [ (A% /vy (V) = H™(fu( A%y (V)
is an isomorphism.

Here the identity of the right hand side is by f,-acyclicity of .Af;{ %
(V) (p € Z) which is deduced from Propositions 1.5 and 1.7.
We use the following result on the functoriality of the log Riemann-

Hilbert correspondences in [14] (generalization of results of the second
author, F. Kato, and S. Usui).
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Theorem 5.2. Let f: X — Y, V be as in the hypothesis of Propo-
sition 5.1. Let L be the corresponding object to V' of Lqunip(X) with
respect to the log Riemann-Hilbert correspondence. Then for any m € Z,
we have:

(1) R™fI°8(L) is an object of Launip(Y).

(2) R™ f(w% /Y(V)), endowed with the Gauss-Manin connection, is an
object of Vanip(Y).

(3) R™fI°%(L) and R™f, (W% /v (V) are in the log Riemann-Hilbert cor-
respondence. In particular,

O® @c R™fI*5(L) = Oy @0, R™f.(wh/y (V) on Y8,

(4) O ®c RE(L) = OFF 8oy Rfu(why (V) on Yo%,

To prove Proposition 5.1, since the problem is local on Y, we may
assume that we have a commutative diagram

X —2 X/

7| |7

R
b

where a, b are blowing ups along log structures such that f’ is exact
({14]). Further we may assume that Rf.(w%,y (V) is bounded above.

Lemma 5.3. On (Y')'°8, we have
AYE ®6, Rf(wy/y(V) 2 R(F)EATE (V).

Proof. This is obtained by the sequence of isomorphisms

AS ®6, Rfs W,y (V)
> AYf @c Rf5(L)
> AYF @c R(f')05(L)
= R(f')5 (") T AVF ©c L)
> R(f')\5 (AL, ®c L)

= R(f')o%( ;J‘;%(vn.

Here the first isomorphism is by Theorem 5.2 (4), the second one is
by the following Lemma 5.4, the third is by the projection formula, the
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fourth is by log Poincaré lemma Theorem 4.1 for X’ — Y’, and the
last isomorphism is the evident one. Q.E.D.

Lemma 5.4. (b'°8)~1R™fi°8(L) =~ R™(f)\5(L) on (Y')8. (The
right hand side means R™(f)\°8((a'8)~1(L)).)

Proof. The both sides are locally constant sheaves (5.2 (1)), and
the restrictions of them to Y coincide. Q.E.D.

triv
Lemma 5.5. OnY’, we have
Ayr @, RE(yy (V) 2 RO (Ao (V).
Proof. We apply R7y/. to Lemma 5.3. Proposition 1.9 implies that
Rry+.(Lhs. of 5.3) =2 Ay: ®6, Rfc(wk/y (V)
On the other hand
Rryo(vhs. of 5.3) = R(ryro (1)) (A5 (V)

(F'omxr) o (ARCE, (V)
() (ASer (V).

Q.ED.

5.6. Now we prove Proposition 5.1 by applying Rb, to Lemma 5.5.
Propositions 1.5, 1.7, and 2.10 imply that

Rb.(Lhs. of 5.5) = Ay @6, Rf.(wk/y (V).
On the other hand

Rb.(r.h.s. of 5.5) = R(bo f') (A% /v (V)
= B(foa)«(A%:/y(V))
= Rfc(Ax/y (V).
Since Rmf*(w;(/Y(V)) is locally free (5.2 (2)), we obtain 5.1 by
taking H™.

Remark: The authors do not know whether Ay is flat over Oy or not.
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§6. Log Kahler metrics

Everything is in the ket sense here except in a part of the proof of
Proposition 6.4.

6.1. Let X and Y be log smooth fs log analytic spaces and let X — Y
be a log smooth morphism.
For p, g, m € Z, let A";{’?Y be the image of A7 — ’;7{,,

.Ax/yd,,q = HO’ITLAX (A:g{’(}y, Ax), .Ax/yﬂn = ’HomAX (.AQ/Y, .Ax)
We call Ax,y,1 the sheaf of log vector fields on X over Y.

6.2. As is easily seen, we have a bijection between the set of Hermitian
forms
(> ) Axyvio X Axyyvio — Ax

and the set {w e I'(X, A;;}Y) ; @= —w} given by

(fr9)=(fAg,w)
where (, ) means the natural pairing between Ax/y,1, and A;}Y.

6.3. By a log Hermitian metric on X over Y, we mean a Hermitian form

() Ax/y0 X Axyy,i0 — Ax

which is “positive definite” in the following sense: The map

AX/Y,LO — Hom s ('AX/Y,l,Oa-AX) ;g (fe(f,9)

is an isomorphism and the restriction of {, ) to X,y is positive definite.
By a log Kahler metric on X over Y, we mean a log Hermitian metric
on X over Y such that the corresponding global section w of Ai&}y (6.2)
satisfies dw = 0.

Proposition 6.4. Let f: X — Y be a log smooth projective mor-
phism between log smooth fs log analytic spaces, and fix an invertible
Ox-module L that is relatively very ample with respect to Y. Assume
that X is a complex manifold and the log structure of X is given by a
divisor on X with simple normal crossings having only finite number of
wrreducible components.

Then, locally on Y, there exists a log Kdhler metric on X over
Y such that the class of the corresponding global section of .A;(’}Y mn

’Hz(f*.AB(/Y) coincides with the image of the Chern class of L under

R £Z(1) — R* [ A%y = H (Al y)-
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Proof. The log Kéhler metric which we construct below is essen-
tially the same as the metric which appeared in [4] and [31].

Forgetting the log structure of X, take an immersion from X to
a projective bundle P over Y such that £ is isomorphic to the pull
back of Op(1). Let wp be the pull back of the global section of C’;o/’;l/’l
corresponding to the (classical) Kéhler metric on P relative to Y. Let
D be the divisor on X which gives the log structure of X, and let (D;);
be the set of all irreducible components of D. For each j, let f; be
the global section of Mx /O% corresponding to D;, and let log(|f;|) be
the global section of Ax/C$ defined to be the image of f; under the
homomorphism

log(| =) : M?/Ox — Ax/C%.
Here Ay is in the non-ket sense. By the exact sequence
0 —Cf — Ax — Ax/C¥ — 0

and by H' (X, C§¥) = 0, there exists a global section s; of Ax such that
s; = —log(|f;]) mod C%. By replacing s; by 3(s; +35;) +¢; for a C>-
function ¢; on X with sufficiently large positive values, we find s; such
that s; > 0 on Xi,4,. Take a positive real number C, and let

w=wy+C- Zga(log(sj))
7

(0 (resp. 9) denotes the part ARy — f;;i}q (resp. ARJ, — .AX’?;L,l)
of d: A’)’{"/IY — 1‘)’;;’.‘1 @A’;("}‘;l). Then, locally on Y, if C is sufficiently
small, w corresponds to a relative log Kahler metric on X over Y.

Since 9o 8 = do 9, we have class (w) = class (wo) in H?(f. Syv)- 1t
is known that class (wg) coincides with the image of the Chern class of
L. Q.ED.

§7. Log harmonic forms

Let f: X — Y be a projective log smooth vertical morphism be-
tween log smooth fs log analytic spaces. Let n be the relative dimension
of X over Y (that is, the rank of the locally free sheaf w} /Y which is a
locally constant function on X) and we assume that n is constant.

We assume further that we are given a log Kahler metric on X over
Y.

Everything in this section is in the ket sense except in a part of the
proof of Proposition 7.6.
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Assume that we are given a VPLH (Hz, M, (, )) of weight w on X.

7.1. Following the classical theory of Laplacian, we introduce the star
operator

0 ARy (M) — AFT(M)
which is A x-linear, the é-operator
6: Ay (M) — ATTHM) ; 6 = — x
where d denotes V: A%, (M) — Ag;r/ly (M), and then the Laplacian
A A}l/y(M) — A?/Y(M) ; A =db+6d.
The definition of * is as follows. The Hermitian metric
(, ): Axyvia0 X Axyvao — Ax
induces by duality an Hermitian metric
(»): 'AX/Y ‘AX/Y — Ax.
Clearly, this Hermitian metric is extended to a unique Hermitian metric
(,): A%{/Y XA%(/Y — Ax
having the properties that .AX Y and AX /y are orthogonal under { , )

and (@, b) is the complex conjugate of {a,b) for any a,b € A_IX(/)Y This
Hermitian metric on A}( % is extended naturally to an Hermitian metric

() AX)y x ARy — Ax

for any m.
We have an Hermitian metric

() ARy (M) x ARy (M) — Ax

(a®u,b®v) — (a,b) - (u,v) (a,b € AY )y, u,v € Ma).
Here (u,v) = i"~9(u,v) when u € M%? (p+ q = w). In this Hermitian
metric, the direct summands .AT;)Y Quax MBI (r+s=m,p+q =
w) are orthogonal to each other, and (i, %) coincides with the complex

conjugate of (u,v) for any u,v € AY,y (M).
We define the star operator

0 ARy (M) — AT (M)
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by the formula
u A *(0) = (u, v)(iw)" for u,v € A%, (M)

where w is the global section of .A‘lx’}y corresponding to the log Kahler
metric of X over Y, and A denotes the pairing

A%y (M) ® A_%?/}m(M) — ARy

induced by the exterior product A%, X Ai?/}m — Ag{”/y and the
Ox-bilinear form (, ): M x M — Ox.
Then we have

7.1.1. % commutes with complex conjugation.

7.1.2. #(x(u)) = (—=1)Pu for u € A% (M).

7.2. We define an Ay-submodule har’ y (M) of f, A% (M), called the
sheaf of harmonic m-forms with coefficients in M, by

har'’y/y (M) = Ker (A: fLA% )y (M) — f A%y (M)).

Then har’y,y (M) coincides with the intersection of the kernels of
the two operators

d: fo A%y (M) — FLARTHM)
8: foAR)y (M) — AR (M),

In fact, it is clear that Ker (d) NKer (§) C Ker (A), and the converse
inclusion can be checked on Y.

The aim of this section is to prove the following log version of the
classical direct decomposition theorem.

Theorem 7.3. For each m € Z, we have:

1) feAR)y (M) = hary)y (M) @ df AT 3 (M) @ 6 f AR (M).

(2) Ker (d: fuAy (M) = fLARFH(M)) = hary (M)Bdf. AT (M).
(3) Ker (6: £ ATy (M) = fLARH(M)) = har'y )y (M)@6 fu A (M).
(4) A: f. ”X’/Y(M) — f*.Aﬁ/Y(M) induces an automorphism of the
space df Ay (M) @ Sfo ARy (M).

We prove 7.3 after preliminaries on the L?-metric on f, A%} /Y(M)
(7.4) and on Lie derivatives on f, Xy (M) (7.5).
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7.4. We define a pairing
(G0 LAR )y (M) X fL ARy (M) — Ay

(called the L?-metric on fi. A /v (M)) by

(w,0) = (3= [, uA$8) (5 € Y, Xy = F71(3)).

Here, we have to show that the function y — f x. WA U is log C.
Y
This is reduced to the following

Claim: For v € I'(X AX/Y) the function ¥ — fX (y € Yinv) is a log
C*-function on Y.

This follows from the fact that the above function coincides with
the image of u under

f*.AX/Y Qn(f*A;(/y) = Ay ®o, RQ"f*w;(/y (by Proposition 5.1)
—_— .Ay.

The last homomorphism comes from R?"f,w$ — Oy which
X/Y

follows from the fact that the canonical homomorphism R2" f1°%(Z) —
Z on Yy is canonically extended to Ylog.)
The pairing ({ , )) satisfies

74.1. ((u,u)) = 0 for any u € fLAY,, (M).

7.5. Let o be a global section of Ax; := Ax/c,1- Then « is identi-
fied with a homomorphism of Ax-modules AL — Ax. We have a
homomorphism of A4 x-modules

o ALY — Ag{l
characterized by

talas Ao Nag) =
q .
Z(—l)]_l . CV(CL]) S STVANCRRIVAN aj—1 N (<7 S A agq.

Define
Oy = doiy +igod: .Ag{ — Ag(.

Then we have:
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75.1. Oq(u Av) = 9(u) A v+ u A dy(v) for any u € A%, v € AL
(g €Z).
7.5.2. do8y = Opod: Ay — AR (p€ 7).
Let
0ot A% (M) — A% (M)

be the additive map characterized by
Ou(a®@u) =0,(a) ®u+a®dn(u) (ae A, ue M)

where 9, (u) means the image of v under
M —V—>w;(®ox M@Axg)ox M.

Then:

7.5.3. Oo(au) = Ox(a)u + ads(u) for any a € Ax and u € A% (M)
(p €Z),

7.5.4. dody = Opod: AR (M) — AT (M) (p € Z).

Ifa: ALY — Ay sends A}, into Ay C Ax, then it is seen from 7.5.1
that 851 A% (M) — A% (M) induces A%y (M) — A%, (M). We
call this induced map 8,: A% Jy (M) — A% )y (M) the Lie derivative
defined by a.

Proposition 7.6. Let u € I'(Xyiv, A%y (M)). Then the following
(1) and (2) are equivalent.

(1) u € (X, A,y (M)).

(2) Locally onY, for any k > 0 and any sections oy, ... , o of fuAx 1
which send A}, into Ay, the section

((Oayo -+ + 000y (u), 0y 0 + - - 0 Oy, (1))
of Ay on Yy 15 of logarithmic growth on'Y .

Proof. It is clear that (1) implies (2). We will reduce the converse to
the well-known inequality sup | f| < (2||f]|z2 - || f/||z2) 2 for a compactly
supported C*°-function f: R — R, which is a direct consequence of
the Schwartz’ inequality. We may assume that Y is Hausdorff. We will
prove that u is log C* around a point z of X. Let y = f(z). First
note that any non-ket germ a € Ax,1, which sends A} into Ay, is
extended to an & € (f«Ax,1)y such that &, sends A%/,y into Ay, for
any ' € f~!(y) and &, = a. This is because A} ®4, Ax is a direct
summand of A% and the non-ket version of Ay/y,; is soft. Then it is
enough to show that the section u satisfying (2) is of log growth.
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We will prove that u is of log growth around x. Take an open neigh-
borhood Uy of z, a ket subneighborhood U — Uy, and t1,... ,tn1q €
I'(Uo, Mx) such that (dlog(ti))i<i<n is a basis of wf v (dlog
(t:))1<i<n+d is a basis owa ; and such that M|y is free. Let u; = arg(t;)
and v; = log[t l,1 < i< n+d. Let S be the subset {8 -, 81) ;1<i<n}

of {au , av ; 1 <4< n+d}, the dual basis of {du;, dvz} Take a com-
pact subnelghborhood K C U such that for any « € S, there exists an
extension & € f.Ax, such that & sends A} into Ay and such that o
and & coincide on a neighborhood of K in U. Fix such an & for each
a € S. Further, multiplying u by a log C*°-function ¢ on X such that
¢ = 1 near z and ¢ = 0 outside the image Kq of K in Uy, we may
suppose that u = 0 outside K.

Consider the metric on A}J /vy such that {du,dvs, ... ,du,,dv,} is
an orthonormal basis with respect to it. Denote by (, )’ the induced met-
ric on A7,y (M) and by ((, ))’ the induced pairing fo A7, | /v, . (M) X

FAT e (M) — Ayt (u,0) (y > Jie, un *5) (y € Yo, K,

=f'WnNK).
We prove that u satisfies the following condition (2)’.
(2)": For any ai,...,ar € S, {{ay0 -+ 004, (1), 04,0 -+ 00q, (u))) is
of log growth.
Taking a function h of log growth on X such that ((v,v))’ < sup |h|
1@
((v,0)) for any v € fLA% v (M) ( sup |h| denotes the function
riv triv f"l (y)
yr— sup |h(z)| on Yiiyv), we see that the function in (2)’ is pointwise
zef~1(y)
less than y = sup [h]- (0,0 -+ 0 O, (1), Oy © - - - 0 By, () (Y € Yiriv).
=)
Since f is vertical, sup |h]| is of log growth on Y. Thus u satisfies (2)’.
The rest is to show that this condition (2)' implies that u is of log
growth. Take an orthonormal basis (e;); of M 4|y. Writing u = Y fie;,
we see that (2)’ for u implies (2)’ for each f; by induction on k. Hence
we may assume that M = Ox. Then we may assume that m = 0. By
repeated use of the usual Schwartz’ inequality on the real line, we have

suplu| < cochs«a[(u),al(u)))'T% for a positive constant ¢y. Here
Ky

Or(u) = By,0 - -+ 08y, (u) when we denote by a,. .., oy all the distinct
elements of I. Hence u is of log growth. Q.E.D.

7.7. We prove Theorem 7.3 (1). Let j: Yy — Y be the canonical
morphism. Theorem 7.3 (1) is true in the case Y = Yiy (that implies
X = Xy, since f is vertical) by the classical theory (Deligne, [31]).
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Hence for u € f, A%,y (M), we have a unique decomposition

u = pp(u) + pa(u) +ps(u)  in jj" fL AR,y (M)
where

pr(u) € jxjhary,y (M),
pd(u) € J*]*df*A;/_;(M)’ pé(u) € .7*]*6f*A;7~;(M)

By Proposition 5.1 and Theorem 5.2, H™(f. ;(/Y(M)) = Ay Qoy
R™ f.w% /Y(M) is a locally free Ay-module, and hence the map H™(f.
%7y (M) — 3 H™(f A%y (M)) is injective. Hence we have

771 Gug df AR (M) N fLAR )y (M) = df AR (M),
and (applying the star operator * to this) we also have the similar equal-
ity concerning §. These imply that, for the proof of 7.3 (1), it is suffi-
cient to show that pn(u), pa(u), and ps(u) belong to fL A%y (M). We
prove that pg(u) belongs to f, A%, (M). (Then this will show that
ps(u) = (=1)™ * (pa(*u)) belongs to f. A%,y (M), and hence px(u) =
u — pa(u) — ps(u) also belongs to f, A%y (M).)

Let ay,... ,q be sections of f,Ax; which send A} into Ay. By
Proposition 7.6, it is sufficient to show that

<<80t1° o 'Oaakopd(u)vaalo T Oaakopd(u)>> € j*C?’friv

is of logarithmic growth. Let
lj = (=1)™ % 08a;0 ¥ =8a;: AX )y (M) — A,y (M).

Then I; is a homomorphism of Ax-modules. We have

7.7.2. Oa;opd = pac (Oa; +1lj — ljopq) on j*j*f*A’)’g/Y(M).

We prove 7.7.2. Since 0,, commutes with d, 9., preserves j.j*df ’;/_;
(M) (vesp. Ker(d: juj* %)y (M) — juj* LAY (M) = jij*
har’y,y (M) & j*j*df*Aﬁ/—;(M)), and this shows the following 7.7.3
(resp. 7.7.4).

7.7.3. pgo 8aj°pd = 8aj°pd on j*j*f*A?/Y(M)

7.7.4. (1 = ps)oBa,o (1 = ps) = Dayo (1 — ps) on juj* fu AT (M).

By taking (—1)™ %0 (7.7.4)0 %, we obtain

(1 = pa)o (Oa; +1;)o (1 = pa) = (Oa,; +1;)o (1 — pa),

which can be rewritten as
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7.7.5. pgo (804]- + lj)opd = pgo (8aj + lj)
7.7.2 is obtained by taking (7.7.5) minus (7.7.3).

Now by 7.7.2 and by the fact that 94,00 — @00y, : Q/Y(M) —
A%y (M) is a homomorphism of Ax-modules for any i and any Ax-
homomorphism a: A%y (M) — A% 3 (M), we have:

7.7.6. Ogy0 -+ 00q,9pq is a finite sum of elements of the form

810"'03q0t10"'0t7‘ (qu,TZO)

where each s; is an operator j*j*f*A?/Y(M) — JxJ" fs Q/Y(M) of
the form pgoa; where a; is a homomorphism of Ax-modules A%} /Y(./\/l)
— A%y (M), and each ¢; is O, for some j.

Locally on Y, there exists a log C*>-function b; on Y such that

7.7.7. {{av,a;v)) < |b| - {{v,v)) for any v € JxJ" e A% )y (M).

(16| denotes the function y + [b;(y)| on Yiuiv.) Since j.j*har'y,y (M),
J*]*df*.AX/Y(M) and ]*j*éf*.Aﬁfé( ) are orthogonal under the pair-
ing

(o 0 5ud* ARy (M) X 5™ FoAR jy (M) — 5.CF0

(by the classical theory), we have

7.7.8. {{pa(v),pa(v))) < ((v,v)) for any v € jij* fu ARy (M).

By 7.7.7 and 7.7.8, locally on Y, there exists a log C°°-function b on Y
such that

((310 <+ 08gotqo - ~otr(u), S10 -+ -o08gotio - --otT(u)>>
<IBl - {{tro -0t (), tro -+ -0t ().

Since tyo - --ot.(u) is log C°, ({tjo -+ ot,(u),t10 - ot.(u))) is of log
growth. Hence by 7.7.6, ({(Op 0 + - 00q,0Pd(t), Opy0 -+ 0 Oay 0 palu))) is
of log growth.

7.8. We prove Theorem 7.3 (2), (3). Since (3) is obtained by applying the
star operator * to (2), it is sufficient to prove (2). Let u € f, ’;/Y(M),
and assume du = 0. Then u — pp(u) is in j.j df*.AX/Y(M). By 7.7.1,
this shows that u — py(u) belongs to df*AX/Y( ).

7.9. We prove Theorem 7.3 (4). Since har'yy (M) = Ker (A on e ARy
(M)), the injectivity of A on df*.AX/Y( ) @ 5f*A§7}}(M) is clear.
We prove the surjectivity of A on df. A’y /)}( YD 6 f*A}’;"}}( ). Let
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u € df A% /Y(M) @ 6f*A7;7;(M) Then of course u = duy + duy for
some u; € f*AX/Y(M) and ug € f*A’;f;(M) Write ps(ui) = 6(v1)
and pg(ug) = d(v2) for vy, vy € f*AQ/Y(M). Then

A(pa(v1) + ps(v2)) = (db + 6d)pa(v1) + (d6 + 6d)ps (v2)

= dbpg(v1) + 6dps(vs)

= db(v1) + 6d(v2)

= duq + bus.
Example 7.10. Take f: E — Ain 2.14 as f: X — Y here. Then
X has a log Kahler metric over Y corresponding to the (1,1)-form
dlog(u) A dlog(w) € T'(X Afx}y) (u is as in 2.14). For this log Kahler
metric, *: A%,y — AL Y (m > 0) are Ax-linear maps which operate
on the bases of AX/Y as

* (1) = idlog(u) A dlog(@), *(dlog(u)) = —idlog(u),
* (dlog(n)) = idlog(uw), *(dlog(u) A dlog(u)) = —

and the Laplacian A: A%y, — A%y, (m 2 0) are described as

Alg) = ~2(ugy)(@g)(g) for g € Ax,
A(gdlog(u)) = A(g)dlog(u), A(gdlog(w)) = A(g)dlog(w),
A(gdlog(u) A dlog(w)) = A(g)dlog(u) A dlog(m) for g € Ax.
If we take as (Hz, M, (, )) the “unit object” on X (Hz = Z, M = Ox,
and the filtration on M and (, ) are the evident ones),
harg(/y(M) = Ay,
hark/Y(M) = Aydlog(u) + Aydlog(@),
hargg/y(M) = Aydlog(u) A dlog(u).
Let
g = exp(2mi - log(|u|)/ log(|t])) where t = uv
(t is the coordinate function on Y = A). Then

A(g) = 2n° log(Jt]) ™

The inverse of A (Green operator) on Image(d) + Image(§) (Theorem
7.3 (4)) sends g to (272)~!log(|t|)?g, and we see that Theorem 7.3 (4)
is related to the fact that the inverse (27%)~!log(|t|)? of the non-zero
eigen value 272 log(|t|) =2 of the Laplacian is of log growth.
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§8. Higher direct images of variations of polarized log Hodge
structure

Everything here is in the ket sense except 8.11-8.14. In this section
we prove:

Theorem 8.1. Let f: X — Y be a projective vertical log smooth
morphism between log smooth fs log analytic spaces. Let (Hz, M, (, )
be a VPLH on X of weight w. For m € Z, let

Lm == RmingHz, Vm = Rmf*(w;(/Y(M)),
which are in the log Riemann-Hilbert correspondence ( Theorem 5.2). For
p EZ, let Filp(w;(/y(./\/l)) be the subcomplex (wg(/y ®ox MP1 of
Wy (M), and let grP (W jy (M) =FilP (W (M) /FIPH (@5 (M)).
(1) The Hodge to de Rham spectral sequence

EPY = R”J”qf*grp(w;(/y(./\/l)) = FE2X =Vn

degenerates from Eyi, and each Rmf*grp(w;(/y(./\/l)) (m, p € Z)isa
locally free Oy -module. Consequently, for any m, p € Z, the canonical
map R™f,FilP(wS (M) — R™fi(wk,y(M)) is injective and the
image is locally an Oy -direct summand of R™ f,(w /v (M)).

(2) Fiz an invertible Ox-module L which is relatively very ample with
respect to Y, and for m € Z, let

(, )i Lmo x Lmg —Q
be the pairing below in 8.2 defined by L. Then, with the Hodge filtration
R™ L FilP (W% (M)) on Vi,
(Lrns Vs ()
i¢ a VPLH of weight w+ m onY.

8.2. Let the situation be as in the above theorem.
Define a pairing

(a ): ‘Cm,QX'Cm,Q —>Q

as follows. We will assume that the relative dimension n of X over
Y is constant (the beginning of section 7). The definition is obviously
extended to the general case. In the case m < n, define £, ¢ prim to be
the kernel of

C(ﬁ)n—m+1i ;Cm’(@ — £2n—m+2,Q-
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Then for any m,

D Ljprim — Lm,q ; (a;); — > c(L)m/2 . q;
i 7

is an isomorphism where j ranges over all integers such that j < n,
j < m, and j = m mod 2. (This is proved by restricting to Yiy.) Let
(4 ): Lmg X Lmg — Q be the unique Q-bilinear form such that the
subspaces c(£)(m=7)/ 2L;,0,prim of L, @ for j as above are orthogonal to
each other under (, ) and

(c(ﬁ)(m—j)ﬂu, c(ﬁ)(m—j)/%)

for j as above and for u,v € L; g prim is the image of (—l)j(j_l)/zu Qv
under

Liq® Ljg — RY fi8(Hg ® Hg) — R f2Q (by (, ) of Hz)
— R*™ fl5Q (by ¢(£)"77)
—Q.

8.3. Since f is vertical, Xiriv — Yiriv is projective. Hence, by Deligne
(8], [31]), the restriction of (Lp,, (R™ fuFil"(w% y (M)))pez, ( , )) to
Yiriv is a VPH of weight w + m. By Proposition 2.5, this VPH ex-
tends to a VPLH on Y of weight w + m. This extension must have the
form (L, (V2 )pez, (, )) for some Oy-submodules V2, of V,, such that
each VP is locally free and is locally a direct summand of V,,,. We will
see below that the canonical map R™f.Fil’(w% y (M)) — VI, is an
isomorphism.

For the proof of 8.1, it is sufficient to prove 8.1 (1). In fact, if we
prove 8.1 (1), then we have R™ f.Fil’(w%,y (M)) = VE,, and hence we
obtain 8.1 (2).

Note that 8.1 (1) is a local problem on Y and we may suppose that
the relative dimension is constant.

8.4. Locally on Y, take a blowing up g: Z — X along the log structure
such that Z is a complex manifold and the log structure of Z is given
by a divisor with normal crossings whose irreducible components are
non-singular and the number of whose irreducible components is finite.
Since Rg,g*F = F for any locally free Ox-module F of finite rank, the
proof of 8.1 (1) is reduced to the case X = Z.

In the rest of section 8, we assume that X satisfies the condition on
Z in the above and we fix £. Further, shrinking Y, we take and fix a
log Kahler metric on X over Y related to £ as in section 7.
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8.5. For p,q € Z such that p+ ¢ =w+ m, let

f*AX/y )Pl = @f* T/y R .Ax Mfi)cf* X/Y( )

where 7, s, j, k range integers satisfying r+s=m, j+k=w, r+j =p,
s+ k =gq, and let

hary,y (M)P? = hark y (M) N L ARy (M)PT C fL ARy (M),

Since A: f Q/Y(M) — [ A%y (M) preserves f, A%y (M)P for
any p, ¢ such that p+¢ = w+m (this is reduced to the classical situation
on Y., described in [31]), we have

8.5.1. har)y (M) = @, ey barR )y (M)P9.

8.6. By Griffiths transversality as in [31] pp.420-421, the map d: ‘AX/Y
M) — .A"X”‘;g}(M) sends A%y (M)P? (p + q¢ = w + m) into AE’;
(M)Ptha g AmH(M)”’q“. Hence d can be written as

d=d +d"

in the unique way where d’ and d” are additive maps A%, (M) —

.A;';;L}}( ) such that

d/(A’!}T{L/y(M)paq) C Aﬂxlj-}}(M)p-!-l,q)d//(Ar;{z/Y(M) 9 C Am+1( )P p,g+1
(p+qg=w+m). Let
8 (u)=—xd"*(u), §(u)=—x+d x(u)

for u € A%y (M). Then we have:

8.6.1. dod =0,d"od" =0.

8.6.2. d', d", &', 8" kill har’y,y (M).

8.6.3. A=2(d'§ +¢&d)=2(d"§" +6"d").

8.6.4. Ad =d A, Ad" =d"A, A§ =8 A, As" = §"A.
These 8.6.1-8.6.4 are proved by restricting to Yiyiv.

Proposition 8.7.  The canonical map from har’y,y (M) to the m-th

cohomology sheaf of the complex (f. }/Y(M), d") (resp. (fiA X/Y( ),
d")) is an isomorphism.

Proof. We consider the case of d’ (the proof for the case of d”
is similar.) The injectivity can be checked by restricting to Yi., and
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reducing to the classical theory (Deligne, [31]). We prove the surjectivity.
Let u € f. A%y (M) and assume d'u = 0. By Theorem 7.3 (4), there
exists v € f*.A?/Y(M) such that u — pp(u) = A(v) (pn is as in 7.7).
It is sufficient to prove that u — 2d'6'v belongs to har’y,y (M), that is,
A(u) = 2Ad'6'v. We have

Ad'§'v = d'§ Av (8.6.4)
=d'§ (u— pr(u))
= d'6u (8.6.2)
=(d'8 +8d)u
=2Au (8.6.3).

Q.E.D.
By 8.5.1, Proposition 8.7 shows

Corollary 8.8. Form, p, q € Z, such that p+q = w+m, the canonical
map from har’y )y (M)P? to the m-th cohomology sheaf of the complex

f*(AX(M)w'—q,q jd__> Ak/y(M)w—H—q,q i) A&/Y(M)w+2~q,q i} . )
(resp.
fe (Ax(M)P’w—P ii.é _A}(/Y(M)p,u&l—p d_) A%(/y(M)p,w+2—p .. ))

s an isomorphism.

8.9. By the Hodge decomposition in 2.6 applied to the VPLH (£,,,
(V2 )pez, (, )) onY (8.2), we have a Hodge decomposition

8.9.1. Ay ®0y Vin = @ ptgmwim Venea

where Vf:;’q ', denotes the intersection of Ay ®o, V& and the complex
conjugate of Ay ®o, Vi, If we identify Ay ®o, Vi with har'’y,y (M)
via the canonical isomorphism, the decomposition 8.9.1 coincides with
the decomposition 8.5.1. (To see this, it is enough to show that the
projectors of the direct decompositions coincide, but the coincidence of
the projectors can be checked on Y, and hence we are reduced to the

classical theory on Yi.iv.) In particular, we have
8.9.2. Ay ®o, VB, /VBFL & YPUITMTP o harlt s (M)Pwtm=p,

8.10. Now we prove Theorem 8.1 (1).
Fix p € Z. By the log 0-Poincaré lemma on X (3.1), we have an
exact sequence of complexes
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8.10.1.
0 — g (wk/y (M) —Ax ®oy g (W y (M)
25 AR ®oy g (W) y (M) 2 AV ®o, grf Wy (M) — -+ .

Let H™ be the m-th cohomology sheaf of the complex
f*(.Ax(M)p’""p d_, Ak/Y(M)p’“’“*'l”p d_, A%{/Y(M)p,w—'-?—p N )

From 8.10.1, since A%? (¢ € Z) has a descending filtration whose 7-th
graded quotient is Agé?;,r Ay Ag}r for any r € Z, and since Ax ®oy

w}'}/y = A;'(L}(;/ for m € Z, we obtain a spectral sequence
s,t 0,s m m °
8.10.2. EP = AV @4, H' = B = R™ [t (W y (M)

in which E* — EFtH s
8: AV @4, H! — AV @4, HE

By Corollary 8.8 and 8.9.2, we have
810.3.  H™ = har}, (M)PUHmP = Ay @0, VB, /VEFL,
Hence the complex E;"™ in 8.10.2 is rewritten as

Ay @oy Vi [V S AP @ 4, VEJVEF 25 MY @y VEJVEF — -

Hence by the log 8-Poincaré lemma on Y (3.1), the spectral sequence
8.10.2 satisfies
e Ve /VEXL if 5 =0,
2 7o if s #0.

Hence the spectral sequence 8.10.2 gives a canonical isomorphism
R™ fogr? (W y (M) = VE [VEFL

Hence R™ f,grf(w% /Y(M)) is a locally free Oy-module. The Hodge
to de Rham spectral sequence in 8.1 (1) degenerates on Yy, from Ej.
Since each E;-term is a locally free Oy-module as we have just seen, the
degeneration on Yy, implies the degeneration on Y. This completes the
proof of Theorem 8.1.

The non-ket version of Theorem 8.1 is deduced directly from it as
follows. This is a generalization of results in [23], [25] (but the proof is
different).
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Theorem 8.11. Let f: X — Y be as in Theorem 8.1. Let (Hz, M,
(,)) be a VPLH on X in the non-ket sense (cf. Remark 2.4). Then the
followings hold.

(1) The associated Hodge to de Rham spectral sequence (in the classical
sense) degenerates from Ej.

(2) Assume that the underlying analytic space Y of Y is smooth. Then
each Ei-term of the spectral sequence in (1) is locally free.

(3) Assume that for any x € X, the cokernel of Mlg,f’f(z)/O;’f(x) —
ME, /0% . is torsion free. Then (Lpm,Vm = R™fi(w%/y(M)),(, ),
defined stmilarly as in Theorem 8.1, is a VPLH on Y in the non-ket
sense, and each E1-term of the classical spectral sequence in (1) is locally
free.

Proof. This is obtained by applying Theorem 8.1 to (Hz,e*M, (, ))
as follows. Here and hereafter ¢ denotes the projection from the ket site
to the usual site.

(1) By Proposition 1.7, e, Rf.e*M = Rf.M for any locally free
Ox-module M of finite rank on X, and the Hodge to de Rham spectral
sequence associated to (Hz, M, (, )) is the direct image by € of the one
associated to (Hz,e*M, (, )). Thus the degeneracy follows.

(2) When Yis smooth, the direct image by ¢ of a locally free Ox-
module of finite rank on Xy is locally free ([14]). This proves (2).

(3) By [14], under the assumption in (3), R™fi>*H¢ belongs to
Lunip(Y'). Hence (3) follows. Note that in this case the spectral sequence
in Theorem 8.1 (1) is the pull back to Xy of the classical spectral
sequence in the above (1). Q.E.D.

Remark 8.12. In the case where (Hz, M, ( , )) is the unit ojbect Z,
Theorem 8.11 (1)(2) gives alternative proofs of results of

(a) JHM. Steenbrink [27], [28] and T. Fujisawa [6] without use of
CMHC; and

(b) L. Tusie [13] and M. Cailotto [1] without use of algebraic methods.

8.13. Here we explain a relation between our work and the works of
J.H.M. Steenbrink [27] and T. Fujisawa [6] on limit Hodge structures.
Let Y = A™ endowed with the log structure given by A™ — (A*)™.
By the works of Cattani-Kaplan and Schmid, if (Hz, M, (, }) isa VPLH
on Y of weight w in the non-ket sense, we have a polarized mixed Hodge
structure ([3] Definition (2.26)) as follows. Let y be a point of Y'°8 lying
over the origin 0 € Y. By identifying Hc, with M(0) = C ®0,, , Mo,
define a descending filtration F' on Hc 4 by FP = MP(0). Let W(N) be
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the weight filtration on Hg 4 associated to the nilpotent operator
N=cNi+---4+cplNy; Ho— Hg foreci,...,cn >0

(N1,..., Ny, are as in 2.8), and let W = W(N)[—w] be the —w shift of
W(N). Then W is independent of the choice of N ([2]), and (Hz,,, F,
(, ),W,N) is a polarized mixed Hodge structure for any N as above
(cf. [3] 3.4).

Now let f: X — Y = A" be a projective log smooth vertical
morphism satisfying the assumption of Theorem 8.11 (3). Assume fur-
ther that the underlying morphism of f of analytic spaces is flat. Let
(Hz, M, (, )) be a VPLH on X of weight w in the non-ket sense. By
Theorem 8.11 (3), we have a VPLH (L, Vin,( , )) on Y of weight
w + m in the non-ket sense. Fix a point y € Y'°8 lying over 0 € Y and
fix a point t € (A*)". By fixing a path connecting ¢ and y, we identify
H™(X;, Hz) with L, 4 via the isomorphisms

H™(X;, Hz) = (R™ f.25Hz)y 2 (R™ [,°5Hz)y = Loy,

and identify H™(X;, H¢) with H™(Xo, Ox, ®o« w;(/Y(M)) via the iso-

morphisms
H™(X, He) = Loy = Vi (0) =2 H™ (X0, Ox, Qox w;(/y(./\/l)).

Applying the above result of Cattani-Kaplan and Schmid to the VPLH
(LmsVm,(, )) onY, we obtain the following result.

Proposition 8.14. LetY = A" and let X and (Hz, M, (, )) be as
in 8.13. Then the map

FP:=H"™(Xo, Fil’(Ox, ®0x wk/v (M))) = H™ (X0, Ox,®0x wk/y (M))

is injective for any p, and (H™(X, Hz), F,( , ),W,N) is a polarized
mized Hodge structure for any N as in 8.13, where W = W(N)[—w—m]
which is independent of such N.

In the case where (Hz, M, (, )) is the unit object Z, this result was
obtained by Steenbrink [27] under the assumption that n = 1 and X is
semistable over Y = A. See also Fujisawa’s [6] for the case where X
is multi-semistable over Y. (For such X, the assumption of 8.11 (3) is
satisfied.)

Remark 8.15. The authors hope that Theorem 8.1 would be gener-
alized to the case where the base is not necessarily log smooth over C.
When it would be established, it would give a new proof of Lemma 4.1
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n [21]. For this, they hope to define the ring of log C*°-functions Ax
for an fs log analytic space X which need not be log smooth over C by
the following idea: Locally on X, we can take an exact closed immersion
X — Z with Z log smooth over C. When we have such an embedding,
let I be the ideal of Oz which defines X. Then we define Ax to be the
quotient of Az by the ideal generated by I and the complex conjugate
of I. The authors do not know that Ax does not depend on the local
choice of X — Z. If it is the case, Ax is defined globally and Al)cég is

also defined by A% = (’?g?g Rox Ax.

Appendix. Terminology in log geometry.

Here we give explanations on special terminologies in log geometry.
[18] is a basic reference for what follows.

1. Concerning monoids.

In this paper, a monoid means a commutative monoid with a unit
element and a homomorphism of monoids is assumed to respect the unit
elements. An fs monoid is a finitely generated monoid S satisfying the
following (i) (ii). (i) ab = ac (a, b, ¢ € S) implies b = ¢. (Hence S is
embedded in the associated group S8 := {ab™! ; @, b € S}.) (ii) If
a € S8 and a™ € S for some n > 1, then a € S.

2. Concerning log structures.

A log structure on a ringed space (X, Ox) is a sheaf of monoids
M endowed with a homomorphism a: M — Ox of sheaves of monoids
satisfying a1 (O%) =, O% by a. An fs log analytic space is an analytic
space over C endowed with a log structure satisfying a certain “fs condi-
tion” (see [18]). In this paper, only “log smooth fs log analytic spaces”
appear except in Remark 8.15. A log smooth fs log analytic space is
an analytic space with a log structure which is locally isomorphic to an
open set of (Spec C[S])*® with S an fs monoid. Here Y = (Spec C[S])*"
is endowed with the log structure

{f € Oy ; f is invertible on (Spec C[S8P])*"*} = Oy - S C Oy.

For example, if X is a complex manifold and D is a divisor on X with
normal crossings, and if X is endowed with the log structure {f € Ox ; f
is invertible outside D} (called the log structure given by D), then X is
a log smooth fs log analytic space.
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For a log smooth fs log analytic space X, we denote by My its log
structure. Let Xy = {£ € X ; Mx,, = Ok }. If X is an open set of
(Spec C[S])**, then Xy = X N (Spec C[S&P])>.

3. Concerning (X8, O%%).

For an fs log analytic space X, a topological space X°8 endowed
with a proper map 7: X8 — X is defined (see [18]). If X = (Spec
C[S])*® = Hom (S, C), X'°¢ = Hom (S, RZ§") x Hom (S, S') where
St:={z€CX; |z =1} and 7: X'°8 — X is the map induced by

Rso xSt — C 5 (7, u) — ru.

We have two important sheaves of rings on X'°%, the non-ket version
of Ol)?g and the ket version of (’)l;g (we use the same notation Ol)((’g), In

this paper, Ol;gg is the ket version unless the contrary is explicitly stated.

We explain these two (’)l;g in the case where X is a log smooth fs log
analytic space. The inverse image of Xy, in X log jg isomorphic to Xiyiv
via the canonical projection and hence X, is identified with an open
set of X198, Let jlog: Xiviv — X8 be the inclusion map. If X is a log
smooth fs log analytic space, the non-ket version (resp. ket-version) of
O'% is the subring of ji8(Ox,...) generated over Ox = 7~ 1(Ox) locally
by log(t) for t € Mx (resp. by log(t), t*/™ for t € Mx and n > 1). The
non-ket version of O'%%% is used in [18], [19], [20], [23], [24], [25], but the
ket version of Ol)?g appear and play an essential role in [14].

4. Concerning morphisms between log smooth fs log analytic spaces.

A morphism between analytic spaces with log structures is defined
in the evident way. For log smooth fs log analytic spaces X and Y,
a morphism X —— Y is the same thing as a morphism of underlying
analytic spaces f: X — Y satisfying f(Xiriv) C Yirv. f i said to be
vertical if f _I(Ytriv) = Xtriv- If X and Y are log smooth fs log analytic
spaces, a morphism f: X — Y is log smooth (resp. log étale) if and
only if the following holds locally on X and on Y: There are fs monoids
S and 7 and a homomorphism h: & — 7 which is injective (resp.
which is injective with 78P /h(S®P) finite) such that X is an open set of
(SpecC[T])®>™, Y is an open set of (SpecC[S])*®, and f is induced by
h. For a morphism f: X — Y of log smooth fs log analytic spaces, we
say f is a blowing up along log structure if locally on Y, Y is an open
set of (Spec C[S])*" for an fs monoid S and f: X — Y is the proper
birational morphism associated to a finite polyhedral cone decomposition
A of Hom (S, Q>¢) such that A comes from an ideal of S (cf. 2.9 and
[22] T). We say a morphism f: X — Y of fs log analytic spaces is exact
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at ¢ € X if the induced homomorphism of fs monoids My, / (’);’y —
Mx /0% . (y = f(z)) is exact (a homomorphism S — 7 of fs monoids
is said to be exact if the inverse image of 7 under S8 — 78P coincides
with 8). f is said to be exact if it is exact at any point of X.

5. Concerning the ket site.

An exact log étale morphism is called also a Kummer log étale mor-
phism. Roughly speaking, “Kummer log étale over X” is something
like “nearly étale over X but possibly ramified outside Xy.;,”. For a
log smooth fs log analytic space X, the Kummer log étale site Xy is
the following site: As a category, it is the category of log smooth fs log
analytic spaces over X which are Kummer log étale over X. A covering
is a surjection. The structure sheaf of Xy; U — Oy (U) is denoted by
Ox. The canonical morphism of topoi X8 — X is denoted by 7
(the same notation as 7: X'°8 — X).

Notations.
Ax sheaf of log C*°-functions on X
.Al)?g sheaf of log C*°-functions on X8
AR sheaf of log C* (p, q)-forms
A’;él/oﬁ sheaf of relative log C™ p-forms on X108
Al))é?y sheaf of relative log C*° (p, q)-forms
har’y/y (M) sheaf of harmonic m-forms with coefficients in M
VPH variation of polarized Hodge structure
VPLH variation of polarized log Hodge structure
wh sheaf of analytic p-forms with log poles
wh % sheaf of relative analytic p-forms with log poles
wh 1y(M) sheaf of relative analytic p-forms with log poles and

with coefficients in M

References

[1] M. Cailotto, Algebraic connections on logarithmic schemes, preprint.

[2] E. Cattani and A. Kaplan, Polarized mized Hodge structures and the local
monodromy of a variation of Hodge structure, Invent. Math., 67 (1982),
pp-101-115.

[3] E. Cattani, A. Kaplan and W. Schmid, Degeneration of Hodge structures,
Annals of Math., 123 (1986), pp.457-535.

[4] M. Cornalba and P. Griffiths, Analytic cycles and vector bundles on non-
compact algebraic varieties, Invent. Math., 28 (1975), pp.1-106.



Log C°-Functions and Degenerations of Hodge Structures 319

[5] P. Deligne, Théoréme de Lefschetz et critéres de dégénérescence de suites
spectrales, Publ. Math. THES, 35 (1969), pp.107-126.

[6] T. Fujisawa, Limits of Hodge structures in several variables, Compositio
Math., 115 (1999), pp.129-183.

[7] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New
York, 1978.

[8] A. Grothendieck, Revétements étale et groupe fondamental (SGA1),
Lect. Notes Math., 224, Springer, 1971.

[9] M. Harris, Automorphic forms of 8-cohomology type as coherent cohomol-
ogy classes, J. Diff. Geom., 32 (1990), pp.1-63.

[10] M. Harris and D. H. Phong, Cohomologie de Dolbeault & croissance loga-
rithmique a Uinfini, C. R. Acad. Sci. Paris, 302 (1986), pp.307-310.

[11] M. Harris and S. Zucker, Boundary cohomology of Shimura varieties
I.— coherent cohomology on toroidal compactifications, Ann. Sci-
ent. Ec. Norm. Sup., 27 (1994), pp.249-344.

[12] M. Harris and S. Zucker, Boundary cohomology of Shimura varieties, III:
coherent cohomology on higher-rank boundary strata and applications
to Hodge theory, Mémoires de la Société Mathématique de France, 85,
2001.

[13] L. Illusie, Réduction semi-stable et décomposition de complexes de de
Rham & coefficients, Duke Math., 60(1) (1990), pp.139-185.

[14] L. Illusie, K. Kato, and C. Nakayama, Quasi-unipotent logarithmic
Riemann-Hilbert correspondences, in preparation.

[15] M. Kashiwara, The asymptotic behavior of a variation of polarized Hodge
structure, Publ. Res. Inst. Math. Sci., Kyoto Univ., 21 (1985), pp.853—
875.

[16] F.Kato, The relative log Poincaré lemma and relative log de Rham theory,

" Duke Math. J., 93(1) (1998), pp.179-206.

[17] K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis,
geometry, and number theory (Igusa, J.-I., ed.), Johns Hopkins Uni-
versity Press, Baltimore, 1989, pp.191-224.

[18] K. Kato and C. Nakayama, Log Betti cohomology, log étale cohomology,
and log de Rham cohomology of log schemes over C, Kodai Math. J., 22
(1999), pp.161-186.

[19] K. Kato and S. Usui, Logarithmic Hodge structures and classifying spaces
(Summary), in The Arithmetic and Geometry of Algebraic cycles, CRM
Proc. & Lect. Notes, 24 (1999), pp.115-130.

[20] K. Kato and S. Usui, Logarithmic Hodge structures and their moduli, in
preparation. .

[21] Y. Kawamata and Y. Namikawa, Logarithmic deformations of normal
crossing varieties and smoothing of degenerate Calabi-Yau varieties,
Invent. Math., 118 (1994), pp.395-409.

[22] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal em-
beddings, I, Lect. Notes Math., 339, Springer, 1973.



320 K. Kato, T. Matsubara and C. Nakayama

[23] T. Matsubara, On log Hodge structures of higher direct images, Kodai
Math. J., 21 (1998), pp.81-101.

[24] T. Matsubara, Log Riemann Hilbert correspondences and higher direct
tmages, preprint.

[25] T. Matsubara, Log Hodge structures of higher direct images in several
variables, preprint.

[26] W. Schmid, Variation of Hodge structure: The singularities of the period
mapping, Invent. Math., 22 (1973), pp.211-319.

[27] J. H. M. Steenbrink, Limits of Hodge structures, Invent. Math., 31 (1976),
PP.229-257.

[28] J. H. M. Steenbrink, Mized Hodge structure on the vanishing cohomology,
Nordic summer school, Symp. in Math. Oslo, Aug. 5-25, 1976, pp.525—
563.

[29] S. Usui, Recovery of wanishing cycles by log geometry, Tdéhoku
Math. J., 53(1) (2001), pp.1-36.

[30] S. Usui, Recovery of vanishing cycles by log geometry: Case of several
variables, in Proceeding of International Conference “Commutative Al-
gebra and Algebraic Geometry and Computational Methods”, Hanoi
1996, Springer-Verlag, 1999, pp.135-144.

[31]) S. Zucker, Hodge Theory with degenerating coefficients: Lo cohomology in
the Poincaré metric, Annals of Math., 109 (1979), pp.415-476.

Kazuya Kato

Graduate School of Sciences
Kyoto University

Sakyo-ku

Kyoto, 606

Japan

kazuya@kusm. kyoto-u.ac. jp

Toshiharu Matsubara

Graduate School of Mathematical Sciences
the University of Tokyo

8-1 Komaba 3-chome, Meguro-ku

Tokyo, 153-8914

Japan

matubara@ms357.ms.u-tokyo.ac. jp

Chikara Nakayama

Department of Mathematics

Tokyo Institute of Technology

12-1 Oh-okayama 2-chome, Meguro-ku
Tokyo, 152-8551

Japan

cnakayam@math.titech.ac. jp





