
Advanced Studies in Pure Mathematics 36, 2002 
Algebraic Geometry 2000, Azumino 
pp. 115-143 

Refined Cycle Maps 

Morihiko Saito 

Abstract. 

We explain the theory of refined cycle maps associated to arith­
metic mixed sheaves. This includes the case of arithmetic mixed 
Hodge structures, and is closely related to work of Asakura, Beiliu­
son, Bloch, Green, Griffiths, Miiller-Stach, Murre, Voisin and others. 

Introduction 

One of the most fundamental problems in the theory of algebraic cy­
cles would be Beilinson's conjecture on mixed motives [4], which predicts 
the bijectivity of the cycle map 

(0.1) 

for any smooth projective variety X over a field k. Here CHP(X)IQJ 
is the Chow group of codimension p algebraic cycles modulo rational 
equivalence on X with (()!-coefficients, and Db MM(X) is the bounded 
derived category of the (conjectural) abelian category of mixed motivic 
sheaves on X. By the adjoint relation for the structure morphism ax : 
X --+ Speck, the conjecture would be equivalent to the bijectivity of 

because Qx should be the pull-back by ax of the constant object Qspeck 
on Speck. It is known that this conjecture implies many other important 
conjectures on algebraic cycles, such as those of Murre [36], [37], and 
Bloch [7]. 

In the case when k is embeddable into C (e.g. if k is a number field 
or C), a natural question would be whether MM(Speck) is close to the 
category of MsR(Speck), the category of systems of realizations, which 
was introduced by Deligne [20] (see also [21], [30]). It is expected that 
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the essential image of the natural functor MM(Spec k) -t MsR(Speck) 
would be quite close to the full subcategory MsR(Spec k )go consisting 
of objects of geometric origin (which was introduced in [6] for l-adic 
sheaves). So the first test of the conjecture would be whether the cycle 
map 

is bijective. We can easily show that the surjectivity of (0.3) is equiv­
alent to the algebraicity of absolute Hodge cycles [20] on any smooth 
projective k-varieties. See [45], [48]. Thus the surjectivity is essen­
tially reduced to the Hodge conjecture, which is not easy to prove as 
well-known. (However, during an attempt to solve the conjecture we 
obtained a germ of a new idea by trying to restrict the Leray spectral 
sequence to the generic fiber of a morphism [46].) 

Since the category of mixed motives should be universal as far as co­
homology is concerned, we define the category of systems of realizations 
as an approximation by endowing the cohomology group with as much 
structure as possible. However, it has been realized by many people that 
for a complex algebraic variety (where k =C), its cohomology group has 
more structure. This was first observed by M. Green, P. Griffiths, and 
C. Voisin in the study of the image of the Abel-Jacobi map for a generic 
hypersurface, where we have to use the fact that a complex algebraic 
variety is actually defined over a finitely generated subring of C. See 
[25], [26], [27], [55], [56]. (This fact was also essential for the theory of 
mod p reduction of l-adic sheaves [6].) Then, using the models over the 
finitely generated subrings of C, it is natural to define the category of 
arithmetic mixed Hodge Modules (or more generally, arithmetic mixed 
sheaves) on a complex algebraic variety X as the inductive limit of the 
categories of mixed Hodge Modules (or mixed sheaves) on the models of 
X. In the case the ground field k is a finitely generated field over Q, this 
was already considered in [46] and [47], 1.9 inspired by the arguments 
in the Appendix to Lect. 1 of [7], and it is enough to take further the 
inductive limit over k. In particular, we get for the case X = Spec C the 
category of arithmetic mixed Hodge structures, which is a refinement of 
mixed Hodge structures (see also [1] where the theory of mixed sheaves 
[47] is also used in an essential way). It seems that the term "arithmetic 
mixed Hodge structure" was first used in the work of Green and Grif­
fiths [27], where the Q-structure was not considered because they were 
mostly interested in infinitesimal variations of Hodge structures. 

The main point of the theory of arithmetic mixed sheaves is that the 
injectivity of the refined cycle map of CH2 (X)IQl for a smooth projective 
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complex algebraic variety X can be reduced to the injectivity of the Abel­
Jacobi map for codimension two cycles on smooth projective models 
of X. See (4.2). This shows that an additional hypothesis in [1] is 
unnecessary. See also [26], [27], [28]. The result can be extended to 
some case of higher Chow cycles as in ( 4.5) . However, it should be noted 
that this category is too big, and the forgetful functor to the category 
of mixed Hodge structures is not fully faithful (see [51], 2.5). We would 
have to restrict to the subcategory consisting of objects of "geometric 
origin" for the study of the surjectivity ofthe cycle map although it does 
not seem to cause a big problem for the injectivity. Note that our theory 
applies also to the category of objects of geometric origin, because it is 
equivalent to the limit of the category of objects of geometric origin on 
the models of X. The injectivity of the Abel-Jacobi map for varieties 
over number fields has been conjectured by Beilinson [3] and Bloch (see 
also [9]), and is one of the most interesting problems in this area. See 
also [28]. 

To show that the obtained new category is really better than the 
usual one, we can prove that, restricting the refined cycle map to the 
kernel of the Griffiths' Abel-Jacobi map for codimension two cycles, its 
image is infinite dimensional if X has a nontrivial global two form. See 
( 4.1). This was inspired by [58], and is a consequence of Bloch's diagonal 
argument in [7] combined with Murre's result on the Albanese motive 
[36]. (Some special case is treated in [1] using a different method.) A 
similar assertion can be proved also for ·higher Chow groups. See ( 4.4). 

I would like to thank L. Barbieri-Viale and A. Rosenschon for use­
ful comments and good questions. I also thank the referee for useful 
comments. 

We review the theory of mixed Hodge Modules and cycle maps in 
Sections 1 and 2. We define the category of arithmetic mixed sheaves 
in Sect. 3, and states the main results in Sect. 4. Some examples are 
given in Sect. 5. 

§1. Mixed Hodge Module,s 

1.1. V-Modules. Let X be a smooth algebraic variety over a 
filed k of characteristic zero. Then we have the sheaf of algebraic linear 
differential operators Vxjk which has the increasing filtration F by the 
order of operators. Since Vx;k = Vxjk' for a finite extension k' C k, we 
will write Vx for Vx;k in the sequel. 

Let (M, F) be a coherent filtered Vx-Module. Here we assume al­
ways that F is exhaustive and FpM = 0 for p «: 0. Then the coherence 
of (M, F) means that GrF M (:= EBpGr: M) is coherent over GrFVx. 
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We say that (M, F) is holonomic if it is coherent and dimsupp GrF M = 

dim X, where supp GrF M is a subvariety of the cotangent space of X 
which is naturally isomorphic to SpecGrFVx. We say that a Vx­
Module is holonomic if it is a coherent Vx-Module and has locally a 
filtration F such that (M, F) is holonomic. The category of coherent 
(or holonomic) filtered Vx-Modules will be denoted by MFcoh(Vx) (or 
MFhoi(Vx)). Forgetting the filtration, we have Mcoh(Vx),Mhoi(Vx) 
similarly. 

If k = C and A is a subfield of C, let Perv(X, A) denote the abelian 
category of perverse sheaves on xan with A~coefficients and with alge­
braic stratifications. See [6]. Then we have the de Rham functor 

(1.1.1) DR: Mhol(Vx)---> Perv(X,C) 

defined by M---> 0'1!mx0~xM (using a natural projective resolution of 
the right Vx-Module 0'1!mx). See e.g. [11]. This functor is exact and 
faithful. 

1.2. Direct images. Let f : X ---> Y be a proper morphism of 
smooth k-varieties. Then the cohomological direct image functor Hi f* : 
M Fcoh (V x) ---> M Fcoh ( Vy) is defined by factorizing f by X ---> X X k 

Y---> Y, where the first morphism is the embedding by the graph of J, 
and the second is the projection. 

If i : X ---> Y is a closed embedding of co dimension d, let (y1 , ... , Yn) 
be a local coordinate system of Y (i.e. it defines an etale map of an 
open subvariety of Y to An) such that X = {y1 = · · · = Yd = 0}. Let 
{)i = 8j8yi so that Vy is locally identified with Oy ®c C[81 , ... ,8n]· 
Then the direct image i*M is locally isomorphic toM ®c qa~, ... , 8d] 
using the coordinates (see [11]), and the filtration F on i*M is defined 
by 

(1.2.1) FPi*M = L Fp-lvl-dM 0 av, 
vENd 

where {)V = nl<k<d {)~k for lJ = (vl, 0 0 0' lid) ENd. (This is independent 
of the choice o(the coordinates.) 

If q : X x k Y ---> Y is the projection, we have the relative de Rham 
complex DRxxYfY(M, F) such that FpDRxxYfY(M)i = n~t:~i; ®o 
Fv+i M. Then the cohomological direct image is defined to be the co­
homology sheaf of the filtered direct image of DRxxYfY(M, F) by q. 
(Note that the filtration on the direct image complex is not necessarily 
strict, and we take the induced filtration on the cohomology sheaf.) 
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It is known that holonomic filtered 'D-Modules are stable by the 
cohomological direct image under a proper morphism, and the coho­
mological direct image functors for (filtered) 'D-Modules and perverse 
sheaves are compatible with each other via the functor (1.1.1), see e.g. 
[11], [43]. 

1.3. Mixed Hodge Modules on complex algebraic varieties. 
Let X be a smooth complex algebraic variety. We say that M = 
((Mv, F), MIQ, W, o:) is a bifiltered holonomic 'Dx-Module with ra­
tional structure, if (Mv, F) is a holonomic filtered 'Dx-Module, MIQ is a 
perverse sheaf with rational coefficients, o: is a comparison isomorphism 
DR(Mv) = MIQ 01Q C in Perv(X, q, and W is a pair of finite increas­
ing filtrations on Mv and MIQ compatible with o:. Here Perv(X, A) for 
A = Q or C is the full subcategory of Perv(xan, A) (see [6]) consist­
ing of perverse sheaves with algebraic stratifications, and similarly for 
D~(X, A). A mixed Hodge Module on X is a bifiltered holonomic 'Dx­
Module M with rational structure satisfying the following conditions: 

The first condition is that mixed Hodge Modules are defined Zariski­
locally. The second is that, restricting a mixed Hodge Module M to an 
open smooth subvariety Z of supp M on which K is a (shifted) local 
system, it is isomorphic to the direct image by the closed immersion Z --+ 
X\ (supp M \ Z) of an admissible variation of mixed Hodge structure 
in the sense of [32], [54] (see also (1.4) below) up to a shift of the weight 
filtration. Here the converse is also true, and an admissible variation 
of mixed Hodge structure is a mixed Hodge Module ([44], 3.27). The 
last condition claims that mixed Hodge Modules are locally obtained 
inductively by gluing mixed Hodge Modules supported on a divisor and 
admissible variations of mixed Hodge structures on a smooth closed 
subvariety in the complement on the divisor: 

Let g be a function on X such that the restriction of a bifiltered 
holonomic 'Dx-Module with rational structure M to the complement 
U of g-1 (0) is the direct image of an admissible variation of mixed 
Hodge structure M' on a smooth variety Y by the closed immersion 
i : Y--+ U. Let 'I/J9 ,1 and <p9 ,1 be the nearby and vanishing cycle functors 
with unipotent monodromy [18]. Then the condition is that the nearby 
and vanishing cycles 'l/J9 ,1M, t.p9 ,1 M are well defined and the obtained 
M" := t.p9 ,1 M is a mixed Hodge Module supported on g-1 (0). (The first 
condition consists of the compatibility of the three filtrations F, W, V and 
the existence of the relative monodromy filtration, see [44], 2.2.) 

Here we have canonical morphisms of mixed Hodge Modules 
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satisfying the gluing condition 

(1.3.1) Varocan = N, 

where N = log Tu with T = T 8 Tu the Jordan decomposition of the 
monodromy T. (Here ( -1) denotes the Tate twist.) We can show 
that M is uniquely determined by (M',M",can, Var) satisfying the 
gluing condition (1.3.1). More precisely, we have an equivalence be­
tween the category of mixed Hodge Modules on X and the category of 
(M', M", can, Var) satisfying (1.3.1). See [44], 2.28. Furthermore, the 
corresponding M is uniquely determined by using the above condition 
on the well-definedness of the nearby and vanishing cycle functors. See 
[44], 2.8. 

We denote by MHM(X) the category of mixed Hodge Modules on X. 
It is an abelian category such that any morphism is strictly compatible 
with the Hodge and weight filtrations F, Win the strong sense. See [43], 
5.1.14. 

Now let X be a (singular) complex algebraic variety. We consider 
the category LE(X) whose objects are closed embeddings U ____, V where 
U is an open subvariety of X and V is smooth. The morphisms are 
pairs of morphisms between U and between V making a commutative 
diagram. Here the morphisms of U are assumed to be compatible with 
the inclusions to X. For {U ____, V} E LE(X), let MHMu(V) denote the 
category of mixed Hodge Modules on V supported on U. Then a mixed 
Hodge Module on X is a collection of mixed Hodge Modules Mu_,v E 

MHMu(V) for {U ____, V} E LE(X) (which is called the representative of 
M for {U ____, V}) together with isomorphisms 

v*Mu_,viv'\(U'\U) = Mu'->V'IV'\(U'\U) 

for ( u, v) : { U ____, V} ____, { U' ____, V'} satisfying the usual co cycle condi­
tion. (We can define the category of filtered V-Modules on X similarly.) 

In the case X is smooth, we can show that this definition is equiva­
lent to the previous one (i.e. we have naturally an equivalence of cate­
gories). 

Actually, to define a mixed Hodge Module on a singular X, it is 
not necessary to define Mu_,v for all {U ____, V}; it is enough to do so 
for {U ____, V} such that the U cover X, but the gluing morphisms are 
defined by using the closed embed dings u n U' ____, v X V'. 

1.4. Admissible variation of mixed Hodge structure. Let X 
be a smooth complex algebraic variety, and X a smooth compactification 
of X such that the complement D := X\ X is a divisor with normal 
crossings. Let M = ((Mo; F, W), (MQ, W)) be a variation of mixed 
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Hodge structure on X, where Mo is the underlying Ox-Module with the 
integrable connection V having regular singularity at infinity, and MQ is 
the underlying Q-local system with an isomorphism Ker van = MQ®QC. 
By [32], [54], M is admissible if the graded pieces Grl;" Mare polarizable 
variations of Hodge structures with quasi-unipotent local monodromies, 
and furthermore the following conditions are satisfied: 

In the case the local monodromies around D are all unipotent, let 
M o be Deligne's extension of Mo (see [17]). Then 

- w-
(i) The filtrations F, Won Mare extended toM o so that Gr~Grk M o 
is a locally free Ox-Module for any p, k. 
(ii) The relative monodromy filtration exists for the local monodromy 
around each irreducible component of D. 

Here we can replace M 0 with its restriction to X \ Sing D, i.e. it is 
enough to consider the conditions around the smooth points of D, see 
[32]. 

In general, the above conditions should be satisfied for the pull-back 
of M by a dominant morphism such that the local monodromies of the 
pull-back are unipotent. More precisely, the condition for admissible 
variation is analytic local on a compactification of X, and it is enough 
to take locally a ramified cover of a polydisk as usual. Here we can 
consider M0n instead of M 0 , because Mo is uniquely determined by 
M 0n due to the regularity and GAGA. 

1.5. Mixed Hodge Modules on algebraic varieties. Let k 
be a subfield of C, and X a smooth k-variety. Let Xc = X ®k C. 
Then a mixed Hodge Module M on X consists of ((Mv, F), W), (MQ, W) 
and a such that (((Mo ®k C, F), W), (MQ, W), a) is a mixed Hodge 
Module on Xc, where (Mo,F) E MFhoi('Dx),MQ E Perv(Xc,Q) with 
a finite increasing filtration W, and a is a comparison isomorphism 
DR(M ®k q = K ®Q C in Perv(Xc, q which is compatible with W. 
Here we also assume that polarizations on the graded pieces Grl;" Mare 
defined over k, i.e., they are induced by isomorphisms of filtered 'Dx­
Modules Grl;" (Mv, F)(k) ~ lDlGrl;" (Mv, F) compatible with pairings of 
perverse sheaves, where ]]}) denotes the dual. This is necessary to assure 
that the graded pieces are semisimple. 

We will denote by MHM(X/k) the category of mixed Hodge Mod­
ules on X/k. This is an abelian category such that every morphism is 
strictly compatible with F, W in the strong sense. We have naturally 
the forgetful functors 

MHM(X/k)----> MHM(Xc)----> Perv(Xc, Q), 
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which induce 

(1.5.1) 

using the canonical functor DbPerv(Xc, Q) -+ D~(Xc, Q) in [6]. 
We can define similarly the notion of admissible variation of mixed 

Hodge structures on X (i.e., the underlying filtered 0-Modules and po­
larizations are defined over X.) Then we see that mixed Hodge Modules 
on X are obtained locally by gluing mixed Hodge Modules supported 
on a divisor and admissible variations of mixed Hodge structure on a 
smooth closed subvariety in the complement of the divisor as in (1.3). 

1.6. Mixed sheaves. In this paper we consider more generally the 
category of mixed sheaves M(X/k) in the sense of [47]. However, to 
simplify the explanation, we assume in this paper that M(X/k) is ei­
ther MHM(X/k) defined above or the category MsR(X/k) consisting of 
systems of realizations ((Mv; F, W), (Ma, W), (M1, W)), where (Mv, F) 
is a holonomic filtered V-Module on X endowed with a finite filtration 
W, (Ma, W) for an embedding a : k -+ C is a filtered perverse sheaf 
on (X t5?h,a C)an with Q-coefficients, and (M1, W) for a prime number l 
is a filtered perverse l-adic sheaf on Xr; :=X &Jk k with Q1-coefficients 

which has a continuous action of the Galois group of k/k (i.e. the action 
is lifted to perverse sheaves with Z1-coefficients). Furthermore these are 
endowed with comparison isomorphisms 

for an extension a : k -+ C of a (in a compatible way with the action 
of Gal(k/k), see [30]). Here A= Q, k is the algebraic closure of kin C, 
and ia: Xc -+ Xr; is the canonical morphism. (See [6] forE*.) In the 
case X = Speck, MsR(Spec k) coincides with the category of systems 
of realizations introduced by Deligne [20], [21] (and this formulation is 
due to Jannsen [30]). 

For M(X/k) = MHM(X/k) or MsR(X/k), there exists canonically 
the base change functor 

(1.6.1) M(X/k)-+ M(X &Jk k' /k') 

for a finite extension k C k' in a compatible way with the cohomological 
direct image and pull-back and also with dual and external product, etc. 
There is also the (canonically defined) forgetful functor 

(1.6.2) M(X/k)-+ MHM(X/k), 

which is compatible with the standard functors as above. 
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If X/ k is smooth and purely d-dimensional, we have the constant 
object Qx;k in Db M(X/k) which actually belongs to M(X/k)[-d] by 
the definition of the perverse sheaf [6]. We have also the Tate twist 
Qx;k(j) for j E Z (using the cohomology of IP'-j for j negative, and 
taking the dual for j positive). 

1. 7. Theorem. For a morphism f of algebraic varieties over k, 
there exist canonicalfunctors f*, j,, J*, J1, ][]), 0, Hom, etc. between the 
derived categories Db M(X/k) in a compatible way with the correspond­
ing functors between the derived categories DbMHM(X/k), DbMHM(Xc) 
or D~(Xc, Q) via the functors (1.5.1) and (1.6.2). 

Proof. This follows from the same argument as in [44]. See also 
[47]. Indeed, using Beilinson's resolution, the stability by the direct im­
age is reduced to the one by the cohomological direct image for an affine 
morphism [5]. (Iff is quasi-projective, this is especially simple by tak­
ing two sets of affine coverings of X associated with general hyperplane 
sections and using the co-Cech and Cech complexes.) The pull-backs are 
defined to be the adjoint functors of the direct images. For the existence, 
we may assume f is either a closed embedding i or a projection p. In 
the former case, the assertion is reduced to the full faithfulness of the 
direct image 

i*: DbM(X/k,Q)---> DbM(Y/k,Q), 

which is shown by using the functor ~9 in [44], 2.22. In the latter case 
it is enough to show the existence of a:XQspeck/k (using the duality 
and the external product). But this is represented by any complex M" 
having a morphism Qspec k/k---> (ax;k)*M" in Db M(X/k) such that the 
image of M" in D~(Xc, Q) is isomorphic to Qxc and the image of the 
morphism is identified with the canonical morphism Q---> (axc)*Qxc· 
So it exists locally on open subsets which are embeddable into smooth 
varieties, and we can glue them by using the adjoint morphism for the 
inclusion of open subvarieties, see [44], 4.4. Q.E.D. 

1.8. Definition. For a k-variety X with structure morphism ax;k : 
X ---> Spec k, we define 
(1.8.1) 

Qx;k(j) = aX/kQSpeck/k(j), Hi(X/k,Q(j)) = Hi(ax;k)*Qx;k(j). 

We omit/kin the case k =C. 

1.9. Decomposition of the direct images. If X is smooth proper 
over k, we have a noncanonical isomorphism 

(1.9.1) 
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See e.g. [44], 4.5.3. 

§2. Cycle Map and Geometric Origin 

2.1. Cycle map. Let X be a smooth k-variety. We define an 
analogue of Deligne cohomology by 

(2.1.1) 
Hfv(X/k, Q(j)) = Exti(Qx;k, «J!x;k(j)) 

( = Exti(Qk, (ax;k)*Qx;k(j))), 

where the extension groups are taken in the derived category of M(X/k) 
or M(Speckjk), and the second isomorphism follows from the adjoint 
relation between the direct image and the pull-back by axjk· (In the 
case k = C, we will often omit / k to simplify the notation.) 

Let CHP(X)IQl be the Chow group consisting of codimension p cycles 
modulo rational equivalence on X with rational coefficients. Then we 
have naturally the cycle map 

(2.1.2) cl: CHP(X)IQl -4 HiJ'(Xjk, Q(p)). 

If a cycle ( is represented by an irreducible closed subvariety Z, then 
cl(() is defined to be the composition of 

with its dual, by using the dualities 

where ICz;kQ is the intersection complex, and dx;k = dimX/k. See 
[44], 4.5.15. We can show that the cycle map is compatible with the 
pushdown and the pull-back of cycles. (where a morphism is assumed 
to be proper in the case of pushdown.) See [45, II]. 

The composition of (2.1.2) with the natural projection 

is the usual cycle map. Let CHhom(X)IQl be its kernel (which consists of 
homologically equivalent to zero cycles). Then (2.1.2) induces a gener­
alized Abel-Jacobi map over k: 

where Ext1 is taken in M(Speckjk). 
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Let CHP(X, m)IQ be Bloch's higher Chow group with rational coef­
ficients of a smooth k-variety X [10]. By [47] we have the cycle map 

(2.1.4) 

If X is smooth proper over k and m > 0, then this cycle map induces a 
generalized Abel-Jacobi map over k: 

(2.1.5) 

because the Leray spectral sequence for HiJ'-m(Xjk, Ql(p)) degenerates 
at E2 by (1.9.1), and Hom(Qlk, H2P-m(Xjk, Ql(p))) = 0. 

2.2. Griffiths' Abel-Jacobi map. If k = C and M(X) = MHM(X), 
then H-h(X,Ql(j)) for a smooth projective variety X coincides with 
Deligne cohomology in the usual sense ([22], [23]), and the cycle map 
(2.1.2) coincides with Deligne's cycle map. In particular, (2.1.3) coin­
cides with Griffiths' Abel-Jacobi map 

(2.2.1) 

tensored with Ql, where JP(X) is the Griffiths intermediate Jacobian 
[29], and the last isomorphism follows from [12]. 

2.3. lnjectivity of the Abel-Jacobi map. It is expected that 
higher extension groups Exti (i > 1) should vanish in the (conjectural) 
category of mixed motives over a number field. Since the category of 
systems of realizations is an approximation of the category of mixed 
motives, it is interesting whether the Abel-Jacobi map (2.1.3) is injec­
tive in the case k is a number field. Actually Beilinson conjectures the 
injectivity of the composition of (2.1.3) with the natural morphism: 

(2.3.1) 

at least if we restrict it to the subgroup CH~1g(X)IQ consisting of alge­
braically equivalent to zero cycles [3]. Since the image of CH~Ig(X)IQ by 
(2.1.3) is contained in the algebraic part of the Jacobian, and the re­
striction of (2.3.1) to CH~1g(X)IQ is defined algebraically (3.10), it would 
be natural to conjecture the injectivity of (2.3.1) for the algebraically 
equivalent to zero cycles. However, it may be better to conjecture the 
injectivity of (2.1.3) in general. 

2.4. Geometric origin. We denote by M(Xjk)go the full subcate­
gory of M(Xjk) consisting of objects of geometric origin (see [6] for the 
case of perverse sheaves). This is by definition the smallest full subcate­
gory of M(Xjk) which is stable by the standard cohomological functors 
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Hi f*, Hi fr, Hi f*, Hi J', etc. and also by subquotients in M(X/k), and 
contains the constant object Qspec k/k for X = Speck. (This satisfies 
the axiom of mixed sheaves, see [47], 7.1.) Actually, it is enough to 
assume the stability by the cohomological direct images and pull-backs, 
because the nearby and vanishing cycle functors are expressed by using 
the direct images and pull-backs in the same way as in [18] (see e.g. 
[47], 5.7), and the stability by dual and external product follows from 
the compatibility with those functors. (More precisely we have (2.5) 
below.) 

We define Hb(Xjk, Q(j))go as in (2.1.1) with M(X/k) replaced by 
M(X/k)go. Note that the natural morphism 

(2.4.1) Hfv(X/k, Q(j))go -+ Hfv(X/k, Q(j)) 

is not injective in general. We have the cycle map 

(2.4.2) 

factorizing (2.1.2). Let 

JP(X/k)Q = Ext1t (Q, H 2P- 1 (Xjk, Q(p))), 

JP(X/k)~0 = Ext1tso (Q, H 2P- 1(Xjk, Q(p))), 

where M and Mgo mean M(Speck/k) and M(Speck/k)go. We have a 
canonical injection 

(2.4.3) 

(If k = C and M(X) = MHM(X), we omit jk.) 

We can show the following: 

2.5. Proposition. ForM E M(X/k), it is of geometric origin if 
and only if for any point of X, there exist an open neighborhood U, a 
closed embedding i : U -+ Z, a quasi-projective morphism 1r : Y .-+ Z, 
and a divisor D on Y such that i*Miu is isomorphic to a subquotient of 
Hin*j!Q(Y\D)/k in M(Z/k). Here j : Y \ D-+ Y denotes the inclusion 
morphism, and we may assume that D is a divisor with normal crossings 
on Y. 

(See [47] and also [45, I].) 

2.6. Theorem. Assume M(X/k) = MsR(X/k) in (1.6). Then the 
following assertions are equivalent: 
(i) The cycle map (2.4.2) is surjective for any smooth projective variety 
X over k. 
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(ii) Absolute Hodge cycles on any smooth projective varieties over k are 
algebraic. 

If k = C and M(X) = MHM(X), then the equivalence holds with 
absolute Hodge cycles replaced by Hodge cycles, and these are further 
equivalent to: 
(iii) The images of (2.2.1) and (2.4.3) coincide for any smooth complex 
projective varieties. 

(See [45, I] and [48].) 

2. 7. Remark. By (2.6), the surjectivity of the cycle map (2.4) is 
reduced to the algebraicity of absolute Hodge cycles, and the latter is 
easily reduced to the usual Hodge conjecture. To show the last conjec­
ture, it would be natural to consider a morphism of a variety (which is 
birational to X) to another variety of dimension ~ 2 (e.g. by taking 
Lefschetz pencils successively). In [46] we tried to restrict the Leray 
spectral sequence to each fiber using extension groups. Here the cat­
egory of usual mixed Hodge structures is not good enough because of 
the vanishing of higher extension groups. But it is also unclear whether 
the full subcategory of objects of geometric origin is useful, since their 
higher extension groups are very difficult to calculate, although they are 
not expected to vanish. 

Another big problem in this attempt is that, even if we could get 
cycles on fibers, it is not clear whether they come from one cycle on the 
total space. The difficulty comes from the fact that the higher extension 
classes do not form a sectiori of some geometric object over the base 
space as in the case of normal functions. 

To solve the last problem it would be natural to consider the generic 
fiber of the morphism and try to find ari argument corresponding to 
"spreading out" of algebraic cycles (as in [7], p. 1.20). Then we get 
the idea of taking the inductive limit of the category of mixed sheaves 
on the pull-back of nonempty open subvarieties of the base space. See 
[46] and [47], 1.9. Unfortunately, this idea did not work well for the 
problem mentioned above, because we do not yet have a good category of 
mixed sheaves (which is strong enough to solve the problem). However, 
seeing earlier work of M. Green [25] and C. Voisin [55], we notice that 
the cohomology of a complex algebraic variety has more structure than 
expressed in the systems of realizations, and find that the converse of 
the above argument would be possible. A complex algebraic variety X 
has a model of finite type over a subfield k of C having a morphism 
to another integral k-variety whose geometric generic fiber over Spec C 
is isomorphic to X. Then it is natural to consider the inductive limit 
of mixed sheaves on the models of X. See also [1] and especially [56], 
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p. 194. (Note that a similar idea was essentially used in the theory of 
mod p reduction for perverse sheaves [6].) Thus we get the notion of 
arithmetic mixed sheaf which will be explained in the next section. 

§3. Arithmetic Mixed Sheaves 

3.1. Construction. Let k, K be subfields of C such that k C K. 
Then for a K-variety X, there exists a finitely generated k-subalgebra 
R of K such that X is defined over R, i.e., there is an R-scheme 
XR of finite type such that X = XR ®R K. For a finitely generated 
smooth k-subalgebra R' of K containing R, let XR' = XR ®R R', S' = 
Spec R', dR' = dimk S', and let kR' be the algebraic closure of k in R'. 
Then kR' coincides with the algebraic closure of k in the function field 
k(S') of S' (because S' is normal), and kR' is a finite extension of kR. 
Furthermore, S/kR' is geometrically irreducible and St_ := S' ®kR' Cis 
connected. We define 

where the inductive limit is taken over R' as above. Here we denote by 
M(XR' /kR' )[-dR'] the category of mixed sheaves M(XR' /kR') shifted 
by -dR' in the derived category. Note that the shift is necessary due to 
the normalization of perverse sheaves in [6] which implies that perverse 
sheaves are stable by the usual pull-back f* under a smooth morphism 
f up to the shift of complexes by the relative dimension. 

More precisely, we define the order relation R' < R" by the inclusion 
R' C R" together with the smoothness of R" over R'. Then we have 
natural functors 

(3.1.1) 
M(XR1 /kR1 )[-dR1 ]-+ M(XR' ®kR' kR11 /kR 11 )[-dR1 ] 

---+ M(XR" /kR" )[-dR"], 

where the first comes from (1.6.1). Note that R' ®kR' kR" ---+ R" is 
injective because kR' is algebraically closed in the fraction field of R'. 

We have the canonical functors 

(3.1.2) 

compatible with (3.1.1), because Xc (:=X ®K C) is identified with the 
closed fiber of XR' ®kR' c over the closed point of st_ defined by the 
inclusion R' C C. So we get the canonical functor 

(3.1.3) t: M(Xj K)(k) ---+ MHM(Xc) 
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compatible with (3.1.1), (3.1.2). (We will omit /Kif K =C) 
We denote by Hi the (shifted) cohomology functor from the derived 

categories of M(XR'/kR') and M(X/K)(k) to M(XR'/kR')[-dR'] and 
M(X/K)(k) respectively. It is compatible with (3.1.1-3). 

In the case X= C, we define 

MK,(k) = M(SpecK/K)(k), 

and it will be denoted by M(k) if K = C. In the case M(X) 
MHM(X), it is denoted by MHSK,(k), and by MHS(k) when K =C. 

We have the canonical functor 

(3.1.4) ~ : MK,(k) -+MRS, 

where the target is the category of graded-polarizable mixed Q-Hodge 
structures in the usual sense [16]. 

For j E Z, we have QK,(k) (j) E MK,(k) which is represented by a 
constant variation of Hodge structure of type ( -j, -j) as usual. This is 
denoted by Q(k) (j) if K = C. 

3.2. Remarks. (i) The extension groups in MK,(k) are too big, 
and the natural functor (3.1.4) is not fully faithful, see [51], 2.5 (ii). 

(ii) Let MHSV' /k denote the category of mixed Hodge structures 

whose C-part is endowed with an integrable connection V' over k. Then 
the functor (3.1.4) factors through MHSV'/k' and MHS(k) is a full sub­
category of MHSV'j"k· 

(iii) If K contains k, we have equivalences of categories 

MHM(X/K)(k)-+ MHM(X/K)(k)' MHSK,(k)-+ MHSK,("k)· 

induced by MHM(XR'/kR')-+ MHM(XR' ®kR' k/k). See [51], 2.8. 

3.3. Theorem. The category M(X/ K)(k) is an abelian category, 
and there exist canonical functors f*, f,, f*, J', ]]J), ®, Hom, etc. be­
tween the derived categories Db M(X/ K)(k) in a compatible way with 
the functor L 

Proof. This follows from (1.7) by using an analogue of the generic 
base change theorem in [19]. Q.E.D. 

3.4. Refined cycle map. For a K-variety X with structure mor­
phism ax;K: X-+ SpecK, we define 

Qx;K,(k)(j) = ax;KQK,(k)(j) E Db M(X/K)(k), 

Hi(XjK,Q(k)(j)) = Hi(ax;K)*Qx;K,(k)(j) E MK,(k)· 
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The latter is represented by Hi1r *QXR/kR (j) for a model 1r : XR ____, S = 

Spec R of X. We define an analogue of Deligne cohomology by 

Hip(XIK,Q(k)(j)) = Exti(QK,(k), (ax;K)*«Jx;K,(k)(j)) 

( = Exti(«Jx;K,(k),Qx;K,(k)(j))), 

which is isomorphic to the inductive limit of 

If K = C, we omit I K or K, to simplify the notation. 
If X I K is smooth, we have the refined cycle map 

(3.4.1) 

by taking the inductive limit of the cycle map in (2.1.2) for models 
XRikR of X: 

(3.4.2) 

This means that the cycle map is defined by taking models of cycles. 
For smooth K-varieties X, Y, let 

Ci(X Y) = (T\ ·CHi+dimXj (X· x Y) , IQl WJ J K IQJ, 

where the Xj are the irreducible components of X. Then the cycle map 
induces 
(3.4.3) 

Ci(X, Y)IQJ ____, Ext2i+2 dimX («JxxYjK,(k), «J.xxYjK,(k)(i +dim X)) 

= Hom((ax;K )*«Jx;K,(k), (aY/K )*QY/K,(k) (i)[2i]), 

where X is assumed connected. This is compatible with the compo­
sition of correspondences, see [45], II, 3.3. In particular, the action of 
Ci(X, Y)IQJ on the Chow groups corresponds by the cycle map to the com­
position of morphisms with the image of (3.4.3), i.e. for r E Ci(X, Y)IQJ, 
we have the commutative diagram: 
(3.4.4) 

CHP(X)IQJ ~ Hom(QK,(k)• (ax;K )*«Jx;K,(k)(P)[2p]) 

lr. lr· 
CHP+i(Y)IQl ~ Hom(QK,(k)• (aY/K )*QY/K,(k)(P + i)[2p + 2i]) 

We have similarly the refined cycle map for the higher Chow groups 

(3.4.5) 
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as the limit of (2.1.4). 

3.5. Indecomposable higher Chow groups. Let m = 1. Then 
an element of CHP(X, 1) is represented by Li(Zi,gi) where the zi are 
integral closed subvarieties of codimension p - 1 in X and the 9i are 
nonzero rational functions on Zi such that Li div 9i = 0 in X. In 
particular, we have a well-defined morphism 

(3.5.1) 

Its image and cokernel are denoted by CH~ec(X, 1)Q and CHfnd(X, 1)Q 
respectively. Their elements are called decomposable and indecompos­
able higher cycles respectively. 

3.6. Leray Filtration. We have the Leray spectral sequence 

which degenerates at E 2 • Indeed, by the decomposition theorem (see 
e.g. [44], 4.5.3), we have a noncanonical isomorphism 

(3.6.1) (ax;K)*a~/KQK,(k) c:: EEljH1(XjK,Q(k))[-j] in DbMK,(k)· 

We denote by FL the associated filtration on H~+1 (X/K,Q(k)(P)), and 
also the filtration on CHP(X)Q induced by the cycle map (3.4.1). This 
means that Ff+lCHP(X)Q is the kernel of 

cl: F£CHP(X)Q---+ Extr(QK,(k),H2P-r(X/K,Q(k)(p)), 

and the cycle map induces injective morphisms 

3.7. Remark. By definition, FlCHP(X)Q coincides with the sub­
group CHhom (X)Q consisting of cohomologically equivalent to zero cy­
cles. For p = 2, let CH~J(X)Q denote the kernel of the Abel-Jacobi 
map. Then 

(3.7.1) 

Indeed, for a model 1r: XR ---+ S =Spec R of X, we have a commutative 
diagram 

1 1 
Ext1 (Q, H 2P- 1 (Xc, Q(p))), 
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where the vertical morphisms are induced by Xc ----+ XR which is given 
by the inclusion R----+ CC. For p = dimX, the equality holds in (3.7.1). 
This follows from Murre's Chow-Kiinneth decomposition [36] by using 
the compatibility of the action of a correspondence (3.4.4), see e.g. [51], 
3.6. This can be generalized to algebraically equivalent to zero cycles of 
any codimension, see (3.9). 

We have Gr~L CHP(X)IQl = 0 for r > p using (3.4.4), see [45], II. It 
seems that the filtration FL coincides with a new filtration of M. Green 
which was explained in the conference [28]. It is expected that FL gives 
a conjectural filtration of Beilinson [3] and Bloch (see also [7], [31 ]). 

3.8. Murre's filtration. Assume that a smooth projective variety 
X admits the Chow-Kiinneth decomposition in the sense of Murre [36], 
[37]. Then CHP(X)IQl has Murre's filtration FM. (See also [31].) For FL 
as in (3.6), we can show (see [51], 4.9): 

(3.8.1) 

In particular, FM = FL if the cycle map (3.4.1) for X is injective. 
The injectivity of (3.4.1) can be used for the construction of the Chow­
Kiinneth decomposition. 

In [52], Shuji Saito has constructed a filtration Fsh on CHP(X)IQl by 
induction. If we modify slightly his definition or assume the standard 
conjectures, we can show that his filtration is contained in FL and they 
coincide in the case where the Kiinneth components of the diagonal are 
algebraic and the cycle map (3.4.1) is injective for the given X (see [51], 
4.9, and also [52, II] where we assume the last two hypotheses for any 
smooth projective varieties). 

3.9. Proposition. Let CH~1g(X)IQl denote the subgroup consisting 
of algebraically equivalent to zero cycles. Then we have 

(3.9.1) 

Proof. Let JP(X)alg be the image of CH~1g(X) by the Abel-Jacobi 
map to JP(X). Then it has a structure of abelian variety. Further­
more, if X and a cycle ( are defined over a subfield K of CC which is 
finitely generated over k, then so are JP(X)aig and the image of ( by 
the Abel-Jacobi map (enlarging Kif necessary), see (3.10) below. Since 
the functor (3.1.3) is induced by the inclusion R' ----+ CC which gives a 
geometric generic point of SpeeR', we get the assertion. Q.E.D. 

3.10. Algebraic part of the intermediate Jacobian. Let Y be 
a closed subvariety of X with pure codimension p - 1, and Y ----+ Y a 
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resolution of singularities. We have the Gysin morphism 

(3.10.1) 

We assume that Y is sufficiently large so that the image is maximal 
dimensional. Then JP(X)alg coincides with the image of the induced 
morphism (see (2.2.1)): 

(3.10.2) 

Indeed, for ( E CH~1g(X), there is a one-parameter family {(s} over 
a connected curve S such that ( is the difference of ( 81 and ( 80 for 
s0 , s1 E S, and we may assume that Y contains the supports of (s, 
because the images of (3.10.1-2) do not change by enlarging Y by the 
above assumption on Y. More precisely, { (s} comes from a cycle r on 
S x X, and ( belongs to the image of the composition of a correspondence 
r' E CH1(S X Y) and the pushforward by y----+ X, where r' is obtained 
by pulling back r E CH1 (S x Y). 

In particular, JP(X)alg has a structure of abelian variety as a quo­

tient of Pic(Y)0 . (See also [2]). If X and ( are defined over K, we may 

assume that so are Y and Y by enlarging K if necessary. Then the quo­
tient of Pic(Y)0 is also defined over K. Indeed, the quotient corresponds 

to a quotient system of realizations of H 1 (YK I K, 7L), which is defined 
by using the image of (3.10.1). Here YK is a model of Y over K, and 

H 1 (Y K I K, 7L) is a system of realizations with integral coefficients, which 
is defined in a similar way to (1.6) and (1.8). So the assertion follows 

because the divisor class is defined in Pic(YK)0 . 

3.11. Universal ind-abelian quotient. We can give a more pre­
cise description of CH~1g(X) related to [35], [42], when the base field k is 
an algebraically closed field of characteristic 0. By the above argument, 
we have 

(3.11.1) 

where the inductive limit is taken over closed subvarieties Y of pure 
codimension p- 1, and CH!1g(Y) is the image of CH!1g(Y) = Pic(Y)0 

with 1r : Y ----+ Y a resolution of singularities. As is well-known, Pic(Y)0 

is the group of k-valued points of the Picard variety. The la_!ter will be 
denoted by Py, because it is independent of the choice of Y. It is the 
product of Pyi for the irreducible components Yi of Y. 

Let A be the set of closed subvarieties Y of pure codimension p - 1 
in X. It has a natural ordering by the inclusion relation. For Y, Y' E A 
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such that Y < Y', there is a natural morphism of abelian varieties AY,Y' : 
Py ---> Py'. So we get an inductive system of abelian varieties { Py}. 
We say that an inductive subsystem of closed group subschemes { P{r} 
of { Py} is strict if >.y. \r, ( P{r,) = P{r for any Y < Y'. For example, a 
regular morphism to a~ abelian variety [42] defines a strict subsystem by 
taking the kernel. Let { P{r} be the minimal strict inductive subsystem 
of closed group subschemes { Py} such that P{r ( k) contains the kernel 
of Py(k)---> CH~1g(X) for any Y. Let Py = PyjP{r. Then {Py} is an 
inductive system with injective transition morphisms. Let 

(3.11.2) 

This is called the universal ind-abelian quotient of CH~lg (X). Clearly the 

ind-object { Py} has the universal property for the regular morphisms 
to abelian varieties (see [42]). By Murre [35], AP(X)ab is an abelian 
variety if p = 2. (Indeed, dimPy is bounded by using (19) of loc. cit. 
and taking an abelian subvariety of Py whose intersection with P{r is 
finite.) It coincides with the algebraic part of the intermediate Jacobian 
if furthermore k = C. 

§4. Main Results 

In this section X is assumed to be a smooth complex projective 
variety. The first result is the nontriviality of the refined cycle map 
restricted to the kernel of the Abel-Jacobi map, which is inspired by 
Voisin's result [58] (see also [1]): 

4.1. Theorem. The image of Gr~L cl in (3.6) for p =dim X is an 
infinite dimensional !Q-vector space if f(X, Di) =/= 0. (See [51], 4.4.) 

This follows from Bloch's diagonal argument combined with Murre's 
Chow-Kiinneth decomposition for the Albanese motive. If f(X, Di) = 
0, the latter is not necessary, and the argument is rather simple. It is 
remarked by the referee that a similar assertion holds for the cycle map 
to the arithmetic de Rham cohomology HiJ'R(Xjk) of X which is iso­

morphic to the inductive limit of the de Rham cohomology HiJ'R (XR/ k) 
over the models XR/ R of X/C. 

We say that a smooth (resp. smooth projective) k-variety Y is a 
k-smooth (resp. k-smooth projective) model of a complex algebraic va­
riety X, if Y has a morphism to an integral k-variety whose geometric 
generic fiber over Spec <C is isomorphic to X. The main point in the the­
ory of arithmetic mixed sheaves is that the injectivity of the refined cycle 
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map can be reduced to that of the Abel-Jacobi map for smooth projec­
tive models over number fields (2.1.3). (This shows that an additional 
assumption in [1] is unnecessary.) 

4.2. Theorem. Assume k is a number field. Then the cycle map 
CHP(X)Q --+ HiJ'(X,Q(k)(P)) in (3.4.1) is injective if the above Abel­
Jacobi map (2.1.3) over ky is injective for any k-smooth models Y of 
X, where ky is the algebraic closure of k in r(Y, Oy). In the case p = 2, 
the last assumption is reduced to the same injectivity for any k-smooth 
projective models Y of X. (See [51],4.6.) 

We can describe the image of the usual cycle map to Deligne co­
homology assuming the Hodge conjecture, if H 2P- 1 (X, Q(k)) is global 
section-free in the sense that the local system on Sc underlying the 
representative of H 2P-1 (X,Q(k)) on any S =SpeeR has no nontrivial 
global sections. 

4.3. Proposition. If H 2P-1 (X, Q(k)) is global section-free in the 
above sense, and the Hodge conjecture for codimension p cycles holds 
for any k-smooth projective models of X, then the image of the usual 
cycle map to Deligne cohomology 

(4.3.1) cl: CHP(X)Q--+ Hif'(X,Q(p)) 

coincides with Im(HiJ'(X,Q(k)(P))--+ HiJ'(X,Q(p))), and similarly for 
the Abel-Jacobi map with Deligne cohomology replaced by the intermedi­
ate Jacobian. (See [51],4.1.) 

We can show some assertions for higher Chow groups corresponding 
to (4.1-2). Recall that the coniveau filtration NP Hi(X, Q) for a smooth 
proper variety X is defined to be the kernel of Hi(X, Q) --+ Hi(U, Q) for 
a sufficiently small open subvariety U of X such that dim X \ U ::::; p. 

4.4. Theorem. Assume NP- 2 H 2P-3 (X, Q) =/= 0. Then for any pos­
itive integer m, there exist (i E CH{;;;-~(X)Q for 1::::; i::::; m together with 
a finitely generated sub field K of C such that for any complex numbers 
all ... , am not algebraic over K, the images of (i 0 ai for 1::::; i ::::; m by 
the composition of (3.5.1) and (3.4.5) are linearly independent over Q. 
See [51], 5.2. 

4.5. Theorem. Assume k is a number field. Then the cycle map 
(3.4.5) for p = 2, m = 1 is injective if the generalized Abel-Jacobi map 
(2.1.5) for the same p, m over ky is injective for any k-smooth projective 
models Y of X, where ky is as in (4.2). (See [51], 5.3.) 

Related to the countability of the indecomposable higher Chow 
group CHfnd(X, 1)Q in (3.5), we have 
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4.6. Theorem. If the cycle map (3.4.5) for X is injective for p = 
2, m = 1, then it induces an injective morphism (see [51], 5.7) : 
(4.6.1) 

CH~nd(X, l)IQ ~ Ext1 (Q(k), H 2 (X, Q(k)(2))/N1 H 2 (X, Q(k)(2))). 

For the image of (4.6.1), we can show 

4.7. Proposition. Assume k is a number field. Then (4.6.1) is sur­
jective if H 2 (X,Q(k))/ N 1H 2 (X,Q(k)) is global section-free as in (4.3) 
and if the Abel-Jacobi map (2.1.3) is injective for codimension 2 cycles 
on any k-smooth projective models of X. (See [51], 5.11.) 

4.8. Remark. By (4.6), Voisin's conjecture on the countability of 
CH~nd(X, l)IQ (see [57]) can be reduced to the injectivity of (2.1.5) (i.e. 
to the hypothesis of (4.5)), because we have an analogue of the rigidity 
argument due to Beilinson [3] and Miiller-Stach [34] as follows: 

4.9. Proposition. For a smooth complex projective variety X, let 
iJ"iH2i(X,Q(k)) be the maximal subobject of H 2i(X,Q(k)) which is iso­
morphic to a direct sum of copies of Q(k) ( -i). Then the image of the 
morphism 
(4.9.1) 
CHP(X, l)IQ ~ Ext1 (Q(k), H 2P-2 (X, Q(k) (p))/ NP- 1H 2P-2 (X, Q(k)(P))) 

induced by the cycle map is countable. (See [51],5.9.) 

4.10. Remark. We have the reduced higher Abel-Jacobi map 

in the usual sense, where HdgP-1 (X) denotes the group of Hodge cycles. 
This is an analogue of (4.6.1). By A. Beilinson [3] and M. Levine [33], 
it can be described quite explicitly by using currents in a similar way 
to Griffiths' Abel-Jacobi map (see also [24], [34]). This is generalized to 
the nonproper smooth case [50]. It is not easy to construct nontrivial 
indecomposable higher cycles (see [13], [14], [15], [24], [34], [57], etc.) nor 
nontrivial elements in the image of (4.6.1). An example of a nontrivial 
higher cycle whose support is the one point compactification of C* is 
given in [50]. This is also an example such that its image by (4.10.1) is 
not contained in the image of F 1 H 2 (X, q (see [15] for another example). 
It was originally considered in order to find an indecomposable higher 
cycle on a self-product of an elliptic curve of CM type, where the cycle 
map to real Deligne cohomology used in [24] does not work. 

By [38], [40], the kernel of ( 4.10.1) is isomorphic to 

(4.10.2) 
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where the morphism is given by d log 1\d log at the level of integral log­
arithmic forms, and the inductive limit is taken over nonempty open 
subvarieties U of X. This isomorphism follows easily from the localiza­
tion sequence of mixed Hodge structures together with the fact that the 
residue of d log f 1\ d log g coincides with the logarithmic differential of 
the tame symbol of {!, g} up to sign. It is conjectured by Beilinson that 
(4.10.2) should vanish. 

§5. Examples 

By (4.2) and (4.5), some major problems are reduced to the injec­
tivity of the generalized Abel-Jacobi maps (2.1.3) and (2.1.5), and this 
is the crucial point in the theory of arithmetic mixed sheaves. However, 
it is not easy to verify, for example, the injectivity of (2.1.3) even for 
a surface X unless p9 (X) = 0. The problem seems to be of arithmetic 
nature, because this injectivity does not hold unless the ground field k 
is a number field. We try to illustrate the difficulty of the problem in 
the following example. 

5.1. Product of elliptic curves. Let Ei be an elliptic curve with 
the origin oi defined over a number field k for i = 1' 2. Let X = El X E2 
where the subscript k is omitted to simplify the notation because the 
base change by k ----+ C is not used here. The choice of the origin gives a 
double cover Ei ----+ JID1 ramified over four points ~i C JID1 , which contain 
the image of the origin. 

Let Pi be k-valued point of Ei, and (i =[Pi]- [-Pi] fori= 1, 2. Put 
( = ( 1 x ( 2 • Then it belongs to the kernel of the Abel-Jacobi map (i.e. of 
the Albanese map in this case). So we have to show that a multiple of ( 
is rationally equivalent to zero. Consider the involution a of X defined 
by x ----+ -x. Then ( is invariant by this involution, and is identified 
with a cycle of X'= Xja. This X' is a double covering of S := JID1 x JID1 

ramified over the divisor D = ~1 x JID1 U JID1 x ~2 , and has 16 ordinary 
double points as well-known. Let T be the involution associated with 
the double covering. Then ( is a r-anti-invariant cycle, i.e. r*( = -(. 
(Note that any cycle with rational coefficients on X' coincides with a 
T-anti-invariant cycle modulo r-invariant cycles, and T-invariant cycles 
are essentially trivial modulo rational equivalence.) 

If we consider a curve which is invariant by T, the description of a 
rational function on it is complicated. So we try to find a curve C on 
S together with a rational function g on S such that C can be lifted 
to a curve C' on X' which is birational to C, and the divisor of the 
pull-back g1 of g to C' coincides with a multiple of ( in X'. Since S 
is a self-product of JID1 , a curve on S is described explicitly by using an 
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equation. However, it is not easy to express the condition on birational 
lifting of the curve. Let x, y be affine coordinates of A2 , which is the 
complement of two irreducible components of D in IP'1 x IP'1 . For i = 1, 2, 
let fi be the defining equation of ~in A 1 which is a polynomial of degree 
3. Then the restriction of X' over A2 is given by z2 = fr(x)h(y), and 
an example of a liftable curve by g1 (x,y) 2 = fr(x)h(y)g2 (x,y) 2 , where 
g1 ( x, y), g2 ( x, y) are polynomials with no common factors. However, how 
to choose a rational function on C is still a nontrivial problem. If we 
take x - c for c E k such that { x = c} is not contained in ~1 , then 
we see that [Q] -[OJ and hence [Q]- [TQ] are rationally equivalent to 
zero, where Q is the sum of the points (counted with multiplicity) in the 
intersection of C' with the elliptic curve { c} x E 2 (the sum is taken in 
the elliptic curve E 2 ), and 0 is any of the points in the inverse image of 
D which are rationally equivalent to each other. This Q depends only 
on the bidegrees of gr, g2 , because the parameter spaces are rational. In 
particular, we get only a countable number of Q for each c. It is unclear 
whether Q is a nontorsion point of E 2 . 

5.2. Higher cycles on an elliptic curve. Since the higher exten­
sion groups should vanish in the category of (conjectural) mixed motives 
over a number field, it is expected that a higher cycle of the form ( ® a 
for ( E CH~om(X) and a E k* (see (3.5)) vanishes in CH2 (X, 1)Q if X 
is smooth proper over a number field k (see [8], [39]). 

In the case of an elliptic curve E with origin 0 defined over k, take 
P E E(k), and let Pm = mP E E(k) form= 0, 1,2,3. Then we have 
a rational function f on E such that div f = 2[P1] - [Po] - [P2]. Let 
TQ denote the translation by Q E E(k), and g = T~pf· Considering 
the tame symbol of { c P, cg3 } for an appropriate c E k*, we see that 
([P3 ] - [P0 ]) ®a vanishes in CH2 (X, 1) for some a E k*. We can verify 
that a =f. 1 for a general P as follows. 

We take the Weierstrass equation y 2 = x3 +Ax+B so that the origin 
of E is the point at infinity. Then f is given by the function T~p(x- a) 
where a = x(P) (the value of x at P). Consider the function (x­
a) 2T~px. This can be extended to a function on a neighborhood of P. 
We denote its value at P by h(P). Then h(P) = h( -P) because x(P) = 
x(-P) and h(P) = limQ---+P(x(Q)- x(P)) 2x(Q- P). Furthermore, the 
above cis given by h(P)-1 , and a by x(2P) 9h(P)-3 • It is easy to see 
that the last function of P goes to the infinity when P approaches to 
a point P' such that 2P' = 0. (As remarked by the referee, the above 
h(P) coincides with y(P) 2 by using the Weierstrass p-function. He also 
notes that we get a similar result by calculating simply the tame symbol 
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of {f,g} and using the well-definedness of CH1(X) 0 C-+ CH2(X, 1), 
because the tame symbol is bilinear.) 

With the notation of (5.1), a cycle ( of the form (1 x ( 2 with (i E 
CH1(Ei) is called decomposable. Assume that the (i are homologically 
equivalent to zero. Then ( should be rationally equivalent to zero if the 
ground field k is a number field. But the situation is rather complicated 
in general. We explain here a special case where the cycle is detected by 
the refined cycle map. 

5.3. Strictly decomposable cycles. Let X 1 and X 2 be smooth 
complex projective varieties defined over a subfield k of C, i.e. there 
exist smooth projective k-varieties Xi,k such that Xi = Xi,k 0k C. Set 
X= x1 X x2,xk = X1,k xkX2,k· We say that a cycle (on X is strictly 
decomposable if there exist subfields Ki of C finitely generated over k, 
together with cycles (i on Xi,K, := Xi,k 0k Ki for i = 1, 2 such that 
the algebraic closure k' of k in Ki is independent of i, the canonical 
morphism K 1 0k' K 2 -+ C is injective, and ( coincides with the base 
change of the cycle (1 Xk' (2 on X1,Kl Xk' X2,K2 = xk' 0k' (K1 0k1 K2) 
by K 1 0k' K 2 -+ C. Here we may assume k' = k, replacing kif necessary. 
We say that a strictly decomposable cycle is of bicodimension (p1, p2) if 
codim(i =Pi· Put p = P1 + P2· 

Let Ri be a finitely generated smooth k-subalgebra of Ki such that 
the fraction field is Ki, and (i is defined over ~- Set Si = Spec Ri 0k C 
Let~~ E H 2P;-i(Xi,Q) 0 Hi(Si,Q)(Pi) be the Kiinneth components of 

the cycle class of (i0kC in H 2Pi (Xi X si, Q(pi)). Let Mi be the pull-back 
of 

Mi := H 2P'-1(Xi, Q)(Pi) 

by as,: Si-+ Spec C. If ~f = 0, then (i E FlCHP'(Xi,k 0k Ki)tQ, and 
GrtclR,((i) (see (3.4.2)) gives 

By the Leray spectral sequence, we have an exact sequence 

1 1 ~ 1 
0-+ Ext (Q, Mi) -+Ext (Qs,, Mi) -+ Hom(Q, H (Si, Q) 0 Mi), 

where the first morphism is given by the pull-back by as,. Note that ~[ 
coincides with the image of [[ in the last term. If ~[ = 0, then [l comes 
from Exe(Q,Mi), and we may assume Ri = k as long as Gr}LclR,((i) 
is concerned (e.g. if Pi = 1). 

We say that a strictly decomposable cycle ( is degenerate, if either 
~? =a = 0 for both i, or~? = [[ = 0 for some i. In the case Pi = 1, 
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it is expected that a degenerate ( is rationally equivalent to zero by 
Beilinson's conjecture (2.3) when k is a number field. However, if ( is 
nondegenerate, we can detect it by the refined cycle map as follows. 
(This is by joint work with A. Rosenschon [41].) 

5.4. Theorem. With the above notation, let ( be a strictly decom­
posable cycle of codimension p. Then cl(() =f. 0 in the notation of (3.6). 
More precisely, ( E F£CHP(X)IQl and Gr;,L cl(() =f. 0 if the number of the 
i such that~?= 0 is r. 

5.5. Remark. The assertion (5.4) was first considered in the case 
both ~i and ~~ are nonzero, in order to show the nonvanishing of the 
composition of certain extension classes (see [49]). A. Rosenschon stud­
ied Nori's construction of a cycle [53] in the case of a self-product of 
an elliptic curve without complex multiplication, and obtained a special 
case of (5.4). Then these two were generalized to (5.4), see [41]. This 
can be extended to the higher cycle case (loc. cit.) As an application, 
we can show that CHfn~1 (Xl x X2, 1)1Ql is uncountable if r(X1, 0_\-.) =f. 0 
and the reduced higher Abel-Jacobi map (see (4.10.1)) for X 2 is not 
zero. This is a generalization of a result of Gordon and Lewis [24] (see 
also [14]). 
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