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Abstract. 

We give an overview of some questions and results in integral 
p-adic Hodge theory. A few proofs are supplied. 
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§0. Introduction 

Fix a prime number p, an algebraic closure QP of the field Qp of 

p-adic numbers with ring of integers Zp, and a finite extension F of Qp 
inside QP with ring of integers 0 F. 

Roughly speaking, p-adic Hodge theory (over F) is the study of de 
Rham and p-adic etale cohomologies of (proper smooth) schemes over F. 
The research for relations between these two cohomology groups gave 
birth to Fontaine's theory of semi-stable (and potentially semi-stable) 
p-adic representations of Gal(Qp/ F) and, in the course of time, p-adic 
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Hodge theory also included the study of these Galois representations. 

Integral p-adic Hodge theory could be today defined as the study of 
Galois stable Zv-lattices in semi-stable p-adic representations together 
with their links with the various integral p-adic cohomologies of proper 
smooth schemes over F. Integral p-adic Hodge theory gives back classical 
p-adic Hodge theory (by inverting p), but it also gives rise to completely 
new characteristic p phenomena (by reducing modulo p). Thus, it is 
richer than p-adic Hodge theory. It is also much more complicated. 
Although p-adic Hodge theory is now mostly complete (by the work 
of many people including Tate, Raynaud, Grothendieck, Bloch, Mes­
sing, Fontaine, Colmez, Faltings, Kato, Hyodo, Tsuji ... ), integral p-adic 
Hodge theory is far from being as well understood and there remains 
a great deal to be found before one has a complete theory. Of course, 
if such a theory exists, it should also contain all the results of p-adic 
Hodge theory. 

This text tries to "take stock" of the situation of integral p-adic 
Hodge theory so far, although it certainly couldn't pretend to be fully 
exhaustive. It has two aims: the first is to give the best possible conjec­
tures and results up to now, the second is to prove the minor things which 
were not already proved in order to state these results. It is organized as 
follows. In section 1, we recall the basic definitions and results on semi­
stable p-adic representations. The key role here is played by weakly 
admissible filtered ( cp, N)-modules. In section 2, we give a conjectural 
description of Galois stable lattices in semi-stable p-adic representations 
with small Hodge-Tate weights and we explain the known cases of this 
conjecture. The idea is to define integral structures also on the filtered 
modules side called strongly divisible lattices (or strongly divisible mod­
ules). In section 3, we prove the case where the Hodge-Tate weights are 
between 0 and 1. The crystalline case is a consequence of a link between 
strongly divisible modules (in that case) and p-divisible groups over Op 
(Cor. 3.2.4). To deduce the semi-stable case (§3.5), we need a technical 
result on Galois representations arising from finite flat group schemes 
that we prove via the theory of norm fields (Theorem 3.4.3). In section 
4, we consider the "higher weight" cases and give a link between strongly 
divisible modules and some cohomology groups Hm's with m < p- 1. 
Finally, in section 5, using strongly divisible lattices we compute the 
reduction modulo p of Galois stable Zv-lattices in some two dimensional 
semi-stable p-adic representations and show how variable this reduction 
can be. 
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We have restricted ourselves to finite extensions F of Qp mainly for 
simplicity. All the statements of this paper, except those of section 5, 
should hold verbatim for any complete local field of characteristic 0 with 
perfect residue field of characteristic p. 

This text is an extended version of a talk given in July 2000 at 
the conference "Algebraic Geometry 2000" in Azumino. I would like to 
thank the organizers for inviting me to this conference, and thus giving 
me the opportunity to come to Japan for the first time. I also thank B. 
Conrad and A. Mezard for their comments on an earlier version of this 
text. 

§ 1. Review of semi-stable p-adic representations 

Let Fp be the residue field of Zp (an algebraic closure of the finite 
field Fp) and F C Fp the residue field of F. Let f := [F : Fp] and 
e := [F: F 0 ] where F0 c F is the maximal unramified subfield of F. We 
write Gp for Gal(Qp/F) and a for the arithmetic Frobenius on F0 . If£ 
is any prime number, an £-adic representation of G F is, by definition, a 
continuous linear representation of G F on a finite dimensional Qrvector 
space V. 

Definition 1.1 ([14]). A p-adic representation V of Gp is called 
semi-stable if: 

dimp0 (Est ®QP V)°F = dimQP V. 

Here, Est is Fontaine's ring of p-adic periods defined in [13] (see also 
[20]). It is endowed with an action of Gp. The exponent Gp on the left 
hand side means we take the elements of Est ®Qp V which are fixed by 
Gp. If Vis any p-adic representation of Gp, one has only an inequality 
dimp0 (Est ®QP V)°F :::; dimQP V ([14]). 

Definition 1.1 is not very explicit. Fortunately, a recent result of 
Colmez and Fontaine ([10]) gives an alternative description of semi­
stable p-adic representations which is very explicit and useful. Define 
a filtered ( r.p, N)-module to be a finite dimensional F 0-vector space D 
endowed with: 
• a a-linear injective map r.p: D ~ D (the "Frobenius") 
• a linear map N: D ~ D such that Nr.p = pr.pN (the "monodromy") 
• a decreasing filtration (FiliDF)iEZ on Dp := F @p0 D by F-vector 
subspaces such that Fili D F = D F for i ~ 0 and Fili D F = 0 for i » 0. 
The conditions on r.p and N imply that N is nilpotent. Let D be a fil­
tered (r.p, N)-module and define: 
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• tH(D) := L idimpgriDF where griDF = FiliDF/Fili+1 Dp 
iEZ 

• tN(D) := L adimQP Da where Da is the sum of the characteristic 
aEQ 

subspaces of QP 0p0 D for the eigenvalues of I d 0 cpf having valuation 
a (here the valuation is normalized so that pf has valuation 1). 
It is clear that tH(D) E Z and one can prove tN(D) E Z (see e:g. [1]). By 
definition a filtered ( cp, N)-submodule of D is a filtered ( cp, N)-module 
D' equipped with an injection D' <---+ D that commutes with cp and N 
and for which FiliD~ = D~ nFiliDp. 

Definition 1.2 ([14]). A filtered ( cp, N)-module Dis weakly admis­
sible if tH(D) = tN(D) and if tH(D') :::=; tN(D') for any filtered (cp, N)­
submodule D' of D. 

If V is a semi-stable p-adic representation of G p, one can prove that 
the F0-vector space Dst(V) := (Bst 0Qp V)°F is a weakly admissible 
filtered (cp, N)-module in a natural, although not quite canonical, way 
(see [13]). The aforementioned result of Colmez and Fontaine is: 

Theorem 1.3 ([10]). The functor Dst: V f-+ (Est 0QP V)°F estab­
lishes an equivalence of categories between the category of semi-stable 
p-adic representations of G F and the category of weakly admissible fil­
tered (cp, N)-modules. 

Note that the functor Dst is not canonical since it depends on a 
filtration on F 0p0 Bst (or equivalently of an embedding F 0p0 Bst <---+ 

BdR since the filtration is induced via such an embedding by the filtration 
on BdR) which itself depends on the choice of a uniformizer 7f in F. When 
N = 0 on D st (V), V is said to be crystalline and in that case D st (V) is 
independant of any choice. 

In the sequel, we will instead use the contravariant functor D;t (V) := 
Dst(V*), where V* is the dual representation of V (crystalline/semi­
stable if and only if V is). The reason for this is that the Hodge-Tate 
weights of V are exactly the i E Z such that gri D;t (V) F -:f 0 (with D st, 
it would be the -i such that gri Dst(V)F -:f 0, see [14]). A quasi-inverse 
to n;t is then given by: 

that is to say the Qp-vector space of F0-linear maps f: D---+ Bst being 
compatible with all the structures (Gp acting by (g · f)(x) := g(f(x))). 
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We will use this quasi-inverse in the sequel. 

To finish this section, we remind the reader that a description simi­
lar to 1.3 also exists for semi-stable £-adic representations of G F with 
.e =1- p (i.e. £-adic representations such that the inertia acts unipo­
tently) and that it is essentially trivial: they are described by finite 
dimensional Q£-vector spaces endowed with a continuous linear action 
of Gal(Fnr I F) (which plays the role of the Frobenius) and with a nilpo­
tent endomorphism N (the monodromy) such that Ncp = pfcpN where 
cp is the geometric Frobenius of Gal(Fnr I F) and Fnr the maximal un­
ramified extension of F inside QP. Recall that g = exp(Ntt(g)) if 
g E lp := Gal(Qpl Fnr) and it : lp ---+ Zt(l) ~ Zt is the tame £­
component of lp. 

§2. Lattices in semi-stable representations with low Hodge­
Tate weights 

On the side of p-adic representations of G p, there is an obvious in­
tegral structure, namely the Zp-lattices that are preserved by the action 
of G F (which always exist because G F is compact). Thus, granting The­
orem 1.3, one can ask whether there also exists a corresponding integral 
structure on the filtered module side. 

2.1. Basic assumptions 

Let us first examine the £-adic situation. Let V be a semi-stable £­
adic representation of Gp and D the associated (Gal(Fnr I F), N)-vector 
space defined at the end of the previous section. If N£ = 0, there are 
nice integral structures on D that correspond to G p-stable lattices in V, 
namely the Zt-lattices in D that are preserved by Gal(Fnr I F) and N. 
But if N£ =f. 0, this doesn't work anymore because we cannot use the 
operators ~' when i 2: .e to rebuild the unipotent action of inertia on 
the Galois side (and in that case, one usually works directly with Galois 
lattices). As the p-adic side is much more involved than the £-adic one, 
one can expect to need, at least, the assumption NP = 0 on D . 

Definition 2.1.1. (1) A weakly admissible filtered (cp, N)-module 
D such that Fil0 Dp = Dp, Film Dp =f. 0, and Film+l Dp = 0 (for some 
m E N) has no m-component if, inside the abelian category of weakly 
admissible modules, D has no non zero weakly admissible quotient D 
such that Film Dp = Dp. 
( 2) A semi-stable p-adic representation V of G F with Hodge-Tate weights 
between 0 and m has nom-component if n;t(V) has nom-component. 
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Note that filtered ( c.p, N)-modules arising from unipotent p-divisible 
groups over Op (i.e. p-divisible groups with connected Cartier dual) 
have no 1-component. 

It turns out that in the p-adic setting, one is naturally led to either 
the hypothesis: 

Basic Assumption 2.1.2. Either the Hodge-Tate weights of the semi­
stable p-adic representation V are between 0 and m with m < p - 1 or 
they are between 0 and p- 1 and V has no p- !-component. 

or its equivalent filtered variant: 

Basic Assumption 2.1.3. Either the filtration on the weakly ad­
missible filtered module D is such that Fil0 Dp = Dp and Film+l Dp = 0 
with m < p- 1 or it is such that Fil0 Dp = Dp and FHP Dp = 0 and D 
has no p- !-component. 

Equivalently, one could just say Filp- 1 Dp = 0 in the first case of 
2.1.3, but it's convenient to have an integer m as in 2.1.2 and 2.1.3. 
Twisting by the cyclotomic character, one could also weaken Assumption 
2.1.2 (resp. 2.1.3) to just require that the difference between the extreme 
Hodge-Tate weights (resp. the length of the filtration) is smaller than 
m. Without assumption on m, it is not yet known how Galois lattices 
can be described in general in terms of integral structures on the filtered 
( c.p, N)-modules. The link with our £'-adic prelude is provided by: 

Lemma 2.1.4. Let D be a weakly admissible filtered (c.p, N)-module 
such that Fil0 Dp = DF and FilPDF = 0. Then NP = 0 on D. 

Proof. Let PH(D) (resp. PN(D)) be the Hodge (resp. Newton) 
polygon associated to D, i.e. the convex polygon such that the part of 
slope i EN (resp. a E q+) is of length dimpgriDF (resp. dim-qvD"', 

see §1). The weak admissibility condition implies that PH(D) lies under 
PN(D) and that they have the same endpoints (see [15]). From the 
corresponding drawing and the assumptions on D, one must have a ::; 
p - 1 if D"' # 0 (since p - 1 is the highest possible slope on PH (D)). 
But from Nc.p = pc.pN, we get N(Da) C Da-1 if a 2: 1 and N(Da) = 0 
otherwise. Thus, NP(Da) = 0 for all a, i.e. NP = 0. Q.E.D. 

Note that Assumptions 2.1.2 or 2.1.3 here are really stronger than 
just NP = 0 (for instance; in the crystalline case, N = 0 but m can be 
arbitrary). 
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2.2. Strongly divisible modules 
In this section, we define integral structures for filtered ( <p, N)­

modules satisfying Assumption 2.1.3 and we state the main conjecture. 

From now on, we fix a uniformizer 1r in F and denote by E(u) its 
minimal polynomial (an Eisenstein polynomial of degree e). Let S be 

the p-adic completion of W(F)[u, u.~·]iEN where u is an indeterminate .. 
and endow S with the following structures: 
• a continuous a-linear Frobenius still denoted a : S --> S such that 
a(u) =uP 
• a continuous linear derivation N: S--> S such that N(u) = -u 
• a decreasing filtration (Fili S)iEN where Fili S is the p-adic completion 

L E(u)i ( E(u)i ) of S-.1- one checks-.,- E S. 
J· J· 

j?_i 

Note that Na =paN, N(Fili+1S) c FiliS fori EN and a(FiliS) c piS 
fori E {0, ... ,p- 1 }. 

Let D be a weakly admissible filtered (r.p,N)-module and assume 
that Fil0 DF = DF. Let: 

V := S0w(F) D 

and define: 
• <p := a 0 <p : V --> V 
• N := N 0 Id + Id 0 N: V--> V 
• Fil0V := V and, by induction: 

Fili+1V := {x E V I N(x) E FiliV and J1r(x) E Fili+1 DF} 

where J1r: V--» DF is defined by s(u) 0 x c--t s(rr)x. 

One can show the map J1r induces surjections FiliV--» Fili DF ([8]). 
The filtered module V has the advantage over the filtered module D that 
all of its data are defined at the same level (no need to extend scalars 
to F). Moreover, one can prove that the knowledge of V is equivalent 
to that of D ([8]). It turns out the integral structures will naturally 
live inside the D's. But first, we note that there is a "Bsrcounterpart" 
to this construction, i.e. there is a "period S-algebra", first introduced 
by Kato in [22] and that the author named B;;, such that the couple 
(Est, B;;) is somewhat analogous to the couple (D, V). More precisely, 
if t denotes Fontaine's analogue of 2rri (see [13]), then B;; = -::1;[1/t] 
where A; is (non canonically) isomorphic to the p-adic completion of 
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Acris [X, "i,' ]iEN. Here, Acris is the integral version of Bcris ([13]), X 

is an indeterminate, and Acris[X, "i,']iEN is an S-module via the map 
u f--7 [zr.](1 + x)-1 where [zr.] is a specific element of Acris made out of a 
compatible system of pn-th roots of 1r in Qp- See [3] for details, where it 

is also explained how to endow Acris[X, "i,']iEN with a continuous action 
of GF (which is non trivial on X), Frobenius and monodromy maps, 
and a decreasing filtration, with all of these structures inducing the pre­
vious structures on S, the usual structures on Acris, and ultimately only 
depending, up to isomorphism, on the choice of 1r and not on any other 
choice. 

Now, let us go back to the initial problem of defining integral struc­
tures: 

Definition 2.2.1. Let D be a weakly admissible filtered ( ip, H)­
module such that Fila DF = DF and Film+l DF = 0 with m < p. A 
strongly divisible lattice (or module) in Vis an S-submodule M of V 
such that: 
(1) M is free of finite rank overS and M[~] ~ V 
(2) M is stable under ip and N 
(3) ~P(Film M) c pm M where Film M := M n FilmV. 

One can show this definition doesn't depend on m (provided of 
course Film+lDF = 0 and m < p). Using the weak admissibility of 
D, one can also show that condition (3) in Definition 2.2.1 is actually 
equivalent to the apparent~ stronger condition that ~P(Film M) spans 
pm M over S (see §2.1 of [3]).-

Examples 2.2.2. (1) Let D be the trivial filtered module (i.e. D = 
Fa with Fil1 DF = 0, N = 0 and ip =a). Then Sis a strongly divisible 
lattice in V = S[.!]. 

p 

(2) Let D be as in 2.2.1 and assume F = Fa = W(F)[1/p] and 
N = 0. Recall ([17]) that a strongly divisible module in the sense of 
Fontaine and Laffaille is a W(F)-lattice M in D such that ~P(Fili M) c 
pi M for all i E N where Fili M := M n Fili D. As previously, because 
D is weakly admissible, this is equivalent to M = I:i ~ (Fili M). Let 
M := S ®w(F) M C V, then M is a strongly divisible lattice in V in 
the sense of 2.2.1. 

(3) Assume F = Fa and let D = Fae1 E8 Fae2 with if(el) = pre1 , 

ip(e2) = pr-le1 (r EN, 2r::::; (p- 1)), N(el) = e2, N(e2) = 0, Fili D = 
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F 0 (e1 + .Ce2) if 1 ::; i ::; 2r- 1 (.C E W(F)) and FiliD = 0 if i ~ 2r. 
Then one can check that Be1 EB B(e2/p) is a strongly divisible lattice in 
'D. 

(4) Assume F = F0 (rr) with 1rp-l = -p and let D = F0 e1 EB F0 e2 
with cp(e1) = pe1, cp(e2) = pe2, N = 0, Fil1 Dp = Fil2 Dp = F(e1 +1re2), 
FiliDF = 0 if i ~ 3 and assume p ~ 5. Then one can check that 
Be1 EB B(e2 + uP;;-2) e1) is a strongly divisible lattiCe in 1) where U = 

p-2 (up(p-1) + 1) - 1 E BX. 
p-1 p 

FormE N consider the category Cm of B-modules M endowed with 
a o--linear endomorphism cp, a W(F)-linear endomorphism N satisfying 
N(sx) = N(s)x + sN(x) (s E B, x EM), and an B-submodule Film M, 
with morphisms being B-linear maps that preserve Film and commute 
with cp and N. Form < p, we define the category of strongly divisible 
modules of weight ::; m as the full subcategory of Cm consisting of objects 
that are isomorphic to a strongly divisible module in some B®w(F) D for 
D weakly admissible as in 2.2.1. It turns out one can directly describe 
this category: 

Theorem 2.2.3. The category of strongly divisible modules of weight 
::; m (m < p) is the full subcategory of Cm of objects M satisfying the 
following conditions: 
(1) M is free of finite rank over B 
(2) (Film B)M c Film M 
(3) Film M n pM = pFilm M 
( 4) cp(Film M) spans pm M 
(5) Ncp = pcpN 
(6) (Fil1B)N(Film M) c Film M. 

The point is to prove that M[1/p] ~ B ®w(F) D for a (unique) 
filtered ( cp, N)-module D and that this D is weakly admissible. This is 
done in [8] and [3] for m < p -1 but the proof readily extends to the case 
m < p. Of course, when m grows, these categories are full subcategories 
one of the other. 

Definition 2.2.4. A strongly divisible module of weight ::; m has 
no m-component if the corresponding weakly admissible D has no m­

component ( cf. 2.1.1). 

To a strongly divisible module M of weight ::; m one can associate 
the Zp[Gp]-module: 

T;t(M) := Homs,cp,N,Film (M, ::4;) 
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where one considers S-linear maps from M to A;; that commute with 
r.p, N and preserve Film (this doesnt depend on m < p such that M is 
of weight :S: m). The group GF acts by (g · f)(x) := g(f(x)). 

Proposition 2.2.5. Let M be a strongly divisible module of weight 
:S: m (m < p) and D the corresponding weakly admissible filtered (r.p, N)­
module. Then T;t(M) is a Galois stable Zp-lattice in V8~(D) (see §1 for 
vs~). 

Proof. We only give a sketch here and refer the reader to [3] or [8] 
for details. Let 1J := M[l/p] = S®w(F)D· As T;t(M) is clearly a Galois 

stable Zp-lattice in V8~(1J) := Homs,<p,N,Fii=(V, A;;[ljp]), the real issue 
is to prove that V8~(1J) is isomorphic as a Galois representation to V8~(D). 
Note first that an S-linear map f : 1J --+ Ast[ljp] preserves Film if 
and only if it preserves Fili for 0 :S: i :S: m. There is a ring morphism 

commuting with G F and compatible with the filtration Ast[ljp] --+ BdR, 

X f---> [~ - 1 where [B:] is the "specific" element of Acris previously 
mentionned. Using that D = {x E 1J I Nn(x) = 0 for some n EN}, one 

gets any f E V8~(1J) sends D to B!is[log(l+X)] c Ast[ljp]. Composing 
with the above ring morphism and using the surjectivity of Fili1J --+ 

Fili D F, one ends up with an F0-linear map f : D --+ B~ C BdR that 
commutes with r.p and N, preserves the filtration after extending scalars 
to F and is such that the diagram: 

~ A;;[I/p] 

1 

commutes. This gives an injective Qp-linear map V8~(1J) --+ Vs~(D) 
which is easily checked to be surjective. Q.E.D. 

Our main conjecture is: 

Conjecture 2.2.6. (1) If m < p- 1, the functor M f---> T8*t(M) 
establishes an anti-equivalence of categories between the category of 
strongly divisible modules of weight :S: m and the category of G F-stable 
lattices in semi-stable representations of G F with Hodge-Tate weights 
in {O, ... ,m}. 
( 2) If m = p-1, the functor M f---> Ts*t ( M) establishes an anti-equivalence 
of categories between the category of strongly divisible modules of weight 
:S: p- 1 that have no p- !-component and the category of GF-stable 
lattices in semi-stable representations of G F with Hodge-Tate weights 
in {0, ... ,p- 1} that have no p- !-component. 
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In particular, if Vis a semi-stable p-adic representation of Gp with 
Hodge-Tate weights in { 0, ... , m} (without m-component if m = p - 1), 
then Galois lattices in V should exactly correspond to strongly divisible 
modules in the associated S@w(F)D· The following theorem summarizes 
the known cases of conjecture 2.2.6: 

Theorem 2.2. 7. Conjecture 2.2.6 is true in the following two cases: 
( 1) m < p - 1 and e = 1 
(2) m = 0 or m = 1 and p -=/:- 2. 

Case (1) is proven in [4] using results of [3]. The method is a genera­
lization of that of Fontaine and Laffaille who did the subcase m < p -1, 
e = 1, N = 0 ([17]). At the time of [17], the ringS and S-modules 
like TJ and M were not yet defined, but in that case one can manage 
with W(F)-lattices only, namely those lattices defined in Example (2) 
of 2.2.2. In the other cases, one can not dispense with S, which makes 
the theory much more complicated, even when e = 1. Case (2) is proven 
in the next section using the theory of p-divisible groups. 

There are two other partial results in the direction of 2.2.6. The 
first is that if em < p- 1, then TJ at least always contains a strongly 
divisible lattice ([3]). The second is that for m < p- 1 the restriction 
of r:t to the subcategory of "filtered-free" strongly divisible modules 
ofweight :::; m is fully faithful ([12]). Here, by filtered free, we mean 
there is a basis (eih:Si:Sd of the underlying S-module M and integers 
0:::; r 1 :::; ... :::; rd :::; m such that: 

Film M = (Ef)E(utiSei) + (FilmS)M. 
i 

Unfortunately, most of the strongly divisible modules are not filtered 
free, but they are if m :::; 1 ([5]) or if e = 1 and N = 0 ([17]). In 
particular, the full faithfulness of r:t in case (2) of 2.2. 7 was thus proven 
in [12] (we will derive it below from Tate's full faithfulness theorem). 

§3. Finite flat group schemes, p-divisible groups, and norm 
fields 

In this section, we prove statement (2) of Theorem 2.2. 7. We first 
deal with the case of lattices in crystalline representations using results 
on p-divisible groups (§3.2). Then we derive the general case using the 
theory of norm fields (§3.3, §3.4 and §3.5). 
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3.1. The case m = 0 

This is the case of unramified p-adic representations of G F. Define 
the category of etale (tp, W(F))-modules as the category of free iv(F)­
modules of finite rank equipped with a bijective O"-linear endomorphism 
tp. Then it has long been known (see [16] for instance) that the functor 
M f--7 Homw(F),'P(M, W(Fp)) establishes an anti-equivalence of cate­
gories between etale (tp, W(F))-modules and Gp-stable lattices in un­
ramified p-adic representations of G F. 

View W(F) as an S-module by sending u and its divided powers 
to 0. To a strongly divisible module M of weight 0, one can associate 
M := M ®s W(F) and endow it with the image of tp (the image of N 
being 0). It is clear M is then an etale (tp, W(F))-module. Statement 
(2) of 2.2.7 in the case m = 0 comes down to: 

Proposition 3.1.1. The functor M f--7 M ®s W(F) establishes an 
equivalence of categories between strongly divisible modules of weight 0 
and etale (tp, W(F))-modules. 

This is the well-known "Dwork's trick" ([21]) in a divided power 
context. 

3.2. Classification of group schemes and consequences 

From now on, we assume m = 1 and p # 2. We connect some of the 
strongly divisible modules of weight ~ 1 top-divisible groups over Op. 

As with Galois lattices, it is tempting, using the alternative defi­
nition of strongly divisible modules given by Theorem 2.2.3, to reduce 
strongly divisible modules of weight ~ m modulo arbitrary powers of p. 
Form= 1, we are led to the following category M6. 

An object of M1J is a triple (M, Fil1 M, tpl) where: 
(1) M is an S-module of finite type isomorphic to ffinEZ>o(SjpnSyn for 
integers r n which are almost all equal to 0 
(2) Fil1 M is an S-submodule of M containing (Fil1 S)M 
(3) tp1 : Fil1 M -+ M is an additive map such that: 

Q: ( s) 
'Pl(sx) = ~(E(u)) 'Pl(E(u)x) 

where s E Fil1S and x EM (note that Q:(E(u)) E sx) and such that 
p 

M is generated by tp1 (Fil1M) as an S-module. 



Integral p-adic Hodge Theory 63 

A morphism between two objects of M6 is an S-linear map sending 
Fil1 to Fil1 and commuting with cp1 . The map cp1 has to be thought as 
the p-torsion version of the map ~IFnl. The condition Fil1 M n pM = 

pFil1 M turns out to be automatically satisfied on an object of M6. We 
could define a similar category by requiring the existence of a "mono­
dromy map" Non the S-modules M (as for strongly divisible modules), 
but Lemma 3.2.1 below shows that the objects of M6 are already en­
dowed with a canonical N, and there will be no need here to consider 
more general torsion objects. 

Lemma 3.2.1. Let M be an object of M6. There is a unique addi­
tive map N : M --+ M such that: 
(1) N(sx) = N(s)x + sN(x) for s E S and x EM 
(2) cp1 (E(u)N(x)) = ~(E(u))N(cp1 (x)) for x E Fil1 M 
(3) N(M) c uM. 

Proof. Assume two such N exist and let b. be their difference. Let 
x E Fil1 M, from conditions (2) and (3) we get: 

b.(cp1 (x)) = (~ (E(u))) -l cp1 (E(u)b.(x)) E uP M. 

Since M is spanned by the image of cp1 and b. is S-linear, one has 
b.(M) c uP M. An obvious induction then yields b. = 0. For the 
existence of N, there are 3 possible proofs: (1) one can (tediously) build 
it by pure linear algebra; (2) one can use 3.2.2 below which implies by 
[2] that there must exist a connection V' : M --+ M ®s Sdu and N is 
defined by uV'(x) = -N(x) ®du; (3) one easily builds explicitly such an 
N when M is free overS ([5]), then, using 3.2.2 below and the fact any 
commutative finite flat group scheme is the kernel of an isogeny between 
p-divisible groups, one gets that any object of M6 is the quotient of two 
strongly divisible modules and one takes the quotient N. Q.E.D. 

Note that any morphism in M6 automatically commutes with the 
respective N given by 3.2.1. The main purpose in defining the category 
M ll· . 
-0 leS 1n: 

Theorem 3.2.2 ([5]). There is an anti-equivalence of categories be­
tween M6 and the category of commutative finite fiat group schemes G 
over Op such that Ker(p0) = G for some n E N and Ker(p0) is fiat 
over 0 F for all n E N (where p0 is multiplication by pn on G). 

One can dispense with the last flatness assumption on the kernels 
Ker(p(;), but the price is that one has to consider more complicated 
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S-modules than just ffi(SjpnStn for which I do not know the explicit 
structure (see [5]). This assumption is automatically satisfied if e < p-1. 

Remark 3.2.3. More general objects than those of M6, e.g. objects 
of M6 endowed with an additive map N satisfying (1) and (2) of 3.2.1 
but not (3), may correspond to "log-group schemes" (i.e. group objects 
in the category of log-schemes). 

Taking the projective limit in 3.2.2 and using 3.2.1 yields: 

Corollary 3.2.4 ([5]). There is an anti-equivalence of categories be­
tween the category of strongly divisible modules M of weight ::::; 1 such 
that N(M) CuM and the category of p-divisible groups over Op. 

Using this corollary, one can prove the following special case of (2), 
2.2.7: 

Theorem 3.2.5. The functor M f-+ T;t(M) establishes an anti­
equivalence of categories between the category of strongly divisible mod­
ules M of weight ::::; 1 such that N(M) C uM and the category of 
G F -stable lattices in crystalline representations of G F with Hodge- Tate 
weights in { 0, 1}. 

Proof. The full faithfulness is a well-known theorem of Tate ([27]). 
By [5], one knows that any crystalline V with Hodge-Tate weights in 
{ 0, 1} contains at least one lattice which is isomorphic to the Tate module 
of some p-divisible group over Op. But Raynaud's argument ([24]) then 
shows this must hold for any lattice in such a V. Using 3.2.4, this ensures 
the essential surjectivity. Q.E.D. 

The rest of §3 will be devoted to the rest of the proof of (2), 2.2.7, 
i.e. the case of semi-stable non-crystalline representations. 

3.3. Group schemes of type (p, ... ,p) and norm fields 

In this section, we state a variant of 3.2.2 for group schemes killed 
by p in terms of modules over the ring of integers of the norm field of 
an infinite wildly ramified extension of F. This variant will be used 
in the next section to prove a result on representations of G F coming 
from group schemes. Recall that a group scheme of type (p, ... ,p) is by 
definition a commutative finite flat group scheme killed by p. 

-N 
Choose (nn)nEN E QP such that no= 1r, 1r~H = 1rn and let Fn := 

F(nn), Opn its ring of integers, F00 := UFn and Gp= := Gal(Qp/ F00 ) 

(in particular Fo = F). It is proven in [30] that the projective limit 
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fu!!Fn (resp. fu!!OFJ with the norms as transition maps is in a natu­
ral way a field (resp. a ring) of characteristic p which can be identified 
with F( (1!:)) (resp. F[[11:]]). Here, 1!: is the element ( ... , Kn, 1r n-1, ... , 7ro) E 
fu!! 0 Fn. Such fields as fu!!Fn are called norm fields in [30]. Let F( (1!:) )sep 
be a separable closure ofF( (1!:) ). The main result of [30] is a canonical 
identification Gp= ~ Gal(F((K))sep/F((K))) which gives a surprising 
alternative description of the Galois group G F=. 

Let cr be the Frobenius on F((K)) and F[[11:]]. We introduce two 
kinds of modules: 
• The category of etale ( <p, F( (1!:))) -modules is the category of finite di­
mensional F((K))-vector spaces~ endowed with a cr-linear map <p: ~-+ 
~ inducing an isomorphism (or equivalently a surjection): 

(with obvious morphisms between objects). 
• The category of ( <p, F[[K]])-modules of height:::; 1 is the category of free 
F[[11:]]-modules of finite rank 001 endowed with a cr-linear map <p : 001-+ 
001 such that 11:e001 is contained in the F[[l!:]]-submodule of 001 generated 
by <p(001) (ibid.). 

If 001 is an object of the second category, then 001[1/1!:] is obviously 
an object of the first. The following two theorems give alternative de­
scriptions of these two categories: 

Theorem 3.3.1 ([16]). The functor: 

~ f---+ T*(~) := HomF((B:)),'P(~, F((K))sep) 

establishes an anti-equivalence of categories between the category of etale 
( <p, F( (1!:))) -modules and the category of continuous representations of 
Gp= ~ Gal(F((K))sep /F((K))) on finite dimensional Fp-vector spaces. 

Theorem 3.3.2. There is an anti-equivalence of categories between 
the category of ( <p, F[[11:]])-modules of height :::; 1 and the category of 
group schemes of type (p, ... ,p) over Op. Moreover, if G is such a 
group scheme and 001( G) is the corresponding F [[11:]]-module, one has 
an Fp[GF=]-module isomorphism: T*(001[1/1!:]) ~ G(Qp)lcF=. 

Proof. Granting 3.2.2, it is enough to prove that there is an equiva­
lence of categories between ( <p, F[[K]])-modules of height :::; 1 and objects 
of M6 killed by p, commuting with the functors to Galois representa­
tions. Let 001 be a (<p, F[[l!:]])-module of height:::; 1 and view SjpS as an 
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F[[z!:]]-algebra via II: F[[zr:]]--+ SjpS, L;xiRi f--+ L;xiui. One associates 
to 9Jt an object M of M6 as follows: 
• as an S-module, M := SjpS ®uoiT,F[[zrj] 91t 
• Fil1 M := {y EM I (Id ® cp)(y) E Fil1S/pS ®F[[2Cll wt} 
• <p1 : Fil1 M --+ M is defined as the composite: 

1 Id®<p 1 'f;®Id 
Fil M ----+ Fil SjpS ®F[[2e]] 9Jt ----+ SjpS ®uoiT,F[[2CJl 9Jt ~ M. 

Using the fact 9Jt is of height :::; 1, it is easy to see that the image of 'Pl 
generates everything. This process obviously defines a functor to M6. 
It turns out this functor is an equivalence of categories on objects killed 
by p. Using [5], Lemma 2.1.2.1 and [5], Proposition 2.1.2.2, the proof is 
almost verbatim the proof of [6], Theorem 4.1.1. The only difference is 
that here Ker(II) = ( neP) and Ker( u o II) = ( 1re) instead of ( nP) and ( 1r) 
in lac. cit. and this doesn't change the argument. For the Galois actions, 
let R be the projective limit 

and RDP the Divided Power envelope of R with respect to the ideal 
generated by the image of Ke i.e. by the element ( ... , 7f2, nL 1fo) E R 
where ?fi is the image of 1I"i in Zv/PZv (see [29] for instance). One can 
endow RDP with a Fil1 and a cp1 ([29]) and view it as an S-module 
via u f--+ image(zr:). By [5] and [3] Lemma 2.3.1.1, the restriction to 
G F oo of the Galois representation associated to M is isomorphic to 
Homs,<p,,Fil' (M, RDP) (with left action of GFoo on RDP and obvious 
notations). Thus, one has to compare HomF((2C)),'P(9Jt[1/K], F((zr:))sep) 
and Homs,<p,,Fil' (M, RDP). Using [6], Lemma 2.3.3, the proof is again 
(almost) verbatim the proof of [6], Proposition 4.2.1. Q.E.D. 

Remark 3.3.3. Theorem 3.3.2 implies that representations of GFoo 

coming from ( <p, F[[zr:]])-modules of height :::; 1 can be extended to G F· 

We will see in the next section that this extension is essentially unique. 

Remark 3.3.4. Let ZjpZ and /kp be the usual group schemes of 

rank p. Using [5] and the above proof, one can see that wt(Z/pZ) = 

F[[zr:]]el with cp(el) = e1 and that 9Jt(Mv) = F[[zr:]]e2 with cp(e2) = 
-F(o)-1zr:ee2 where F(O) = _E~O) (recall E(u) is the minimal poly­

nomial of 1r). One of the problems with the category M6 for p = 2 
is that there is no map corresponding to the non-trivial morphism of 
group schemes Z/2Z--+ jJ2 sending 1 to -1. However, for p = 2, there is 
a non-trivial map 9Jt(M2) --+ 9Jt(Z/2Z) that commutes with <p, namely: 
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e2 f----+ F(o)-l1I:ee1 (this map would give 0 in M6 by the functor in the 
proof of 3.3.2). So, one can ask whether statement 3.3.2 still holds for 
p = 2 although statement 3.2.2 doesn't ... 

3.4. A full faithfulness result 

Lemma 3.4.1. Let :!>' "--+ :.D ( resp. :!>' -+> :.D) be an injection ( resp. 
a surjection) of etale ( ip, F( (1I:)) )-modules and assume :.D ( resp. :!>') is 
generated by a ('P,F[[K]])-module 9J1 (resp. 9J1') of height::; 1. Then 
9J1n:.D' (resp. image(9J1')) is a (lfJ,F[[K]])-module of height::; 1. 

Proof. The surjection case is obvious. For the injection, it is clear 
that 9J1' := 9J1 n :.D' is stable under 'P and is a direct factor of 9J1. Let 
(fi, ... ,fd) be a basis of 9J1 (over F[[li:]]) such that (fi, ... ,fd') is a ba­
sis of 9J1' and denote by (Jd'+l' ... ,fd) the image basis of 9J1j9J1'. By 

assumption, there are sij E F[[K]] such that l[e /i = L;~=l Sij'P(fj) for 

1 :S i :S d. Ford'+ 1 :S i :S d, this implies that ('P(Jd'+l), ... ,ip(Jd)) is a 
basis of (9J1/9J1')[1/1I:] since it generates this module, and for 1 ::; i::; d' 

this implies 0 = L;~=d'+l Sij'P(Jj); i.e. Sij = 0 ford'+ 1 :S j :S d (and 
1 :S i :S d'). Hence, 'P(9J1') generates 1[e9J1'. Q.E.D. 

Lemma 3.4.2. Let G1 and G2 be two group schemes of type (p, ... ,p) 

over Op. Then any Fp[GF=]-isomorphism Gl(Qp)lcF= ~ G2(Qp)lcF= 
is an F P [ G F ]-isomorphism. 

Proof. Fix such an Fp[GpJ-isomorphism. Let 9J1i be the ( ip, F[[K]])­
module of height :S 1 associated to Gi by 3.3.2 and let :.D := 9J1i[1/1I:], 
which doesn't depend on i E {1, 2} by assumption and 3.3.1. Then 
9J1 := 9J11 + 9J12 C :.D is obviously still a ( ip, F[[K]])-module of height 
:S 1 and thus corresponds to a group scheme G /0 F. The two injec­
tions 9J1i "--+ 9J1 give morphisms of group schemes G ___, Gi such that 
G(Qp)lcF= ..:::-. Gi(Qp)lcF= by 3.3.2. This implies G1(Qp) ~ G(Qp) ~ 
G2(Qp) and all of these isomorphisms obviously commute with Gp since 
they come from morphisms of group schemes. Q.E.D. 

We say a representation of Gp on a finite length Zp-module is finite 

fiat if it is isomorphic to the representation of G F on G ( QP) for some 
commutative finite flat group scheme Gover Op killed by some power 
of p. The process of schematic closure ([24]) then shows this category is 
abelian and stable under formation of subobjects and quotients. 

Theorem 3.4.3. The fonctor "restriction to Gp=" from finite fiat 
representations of G F to representations of G F = is fully faithful. Its 
essential image is stable under formation of subobjects and quotients. 
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Proof. We first start with the full faithfulness. By a standard de­
vissage, one is reduced to the case of representations on F p-vector spaces. 
Let G1, G2 be two group schemes of type (p, ... ,p), 9J11, W12 the corres­
ponding (cp,F[[n:]])-modules of height:::; 1 and :Di := 9J1i[1/1I] (i = 1,2). 
Assume there is an F p[G Foo]-morphism G2(Qp)lcFoo ---+ G1 (Qp)lcFoo i.e. 
by 3.3.1 a morphism f : :D1 ---+ :D2. By 3.4.1, f(9J1I) and W12 n f(:DI) 
are two ( cp, F[[n:]])-modules of height :S:: 1 that generate f(:DI). They 
correspond to two group schemes G~, G~ such that G~(Qp)lcFoo '::::' 

G~(Qp)lcFoo and we have morphisms of group schemes G~ ---+ G1 and 

G2---+ G~ by 3.3.2. Hence the morphism G2(Qp)lcFoo ---+ G1(Qp)lcFoo 
factorizes through: 

G2(Qp)lcFoo---+ G~(Qp)lcF00 '::::' G~(Qp)lcFoo---+ G1(Qp)lcF00 " 

By 3.4.2, G~(Qp) '::::' G~ (Qp) as Fp[Gp]-modules from which we get 

that the map G2(Qp) ---+ G1(Qp) commutes with Gp. This gives the 
full faithfulness. For the rest of the statement, it is enough to prove 
that any G Foo -subrepresentation of a finite flat G p-representation T is 
preserved by Gp (and hence is finite flat). We proceed by induction on 
n E N such that pnT = 0. For n = 1, this is a consequence of 3.4.1 
(together with 3.3.1 and 3.3.2). Assume this holds for n- 1 and let 
T' C T be a Gp00 -subrepresentation with pnT = 0. Then TI(T' + pT) 
is a quotient of T I pT, hence is preserved by G F by the case n = 1. By 
the full faithfulness, the morphism T ---+ T I (T' + pT) commutes with G F 

hence T' + pT is preserved by Gp. Now (T' + pT)IT' is a quotient of 
pT, hence is preserved by G F by the case n - 1. By the full faithfulness 
applied toT'+ pT---+ (T' + pT)IT', T' is preserved by Gp. Q.E.D. 

Corollary 3.4.4. Let V be a crystalline representation of G F with 
Hodge- Tate weights in {0, 1} and T C V a Zp-lattice which is stable 
under Gp00 • Then Tis stable under Gp. 

Proof. Let T' be a Zp [ G F ]-lattice containing T and recall that by 
3.2.4 and 3.2.5, T' is the Tate module of a p-divisible group over Op. 
By 3.4.3 any Zp[GFoo]-submodule ofT' IPnT' is stable under Gp for any 
n E N. Thus, T ITnpnT' is stable under G F, i.e. g(T) C T +pnT' for any 
g E Gp and n EN, which implies g(T) C nn(T + pnT') = T. Q.E.D. 

3.5. Lattices in semi-stable representations with Hodge­
Tate weights in {0, 1} 

We finish the proof of (2), 2.2.7 using Corollary 3.4.4 above. We 
choose (7rn)nEN as in §3.3 and define Foo and Gp00 in the same way. 
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Let D be a weakly admissible filtered ( r.p, N)-module such that 
Fila DF = DF and Fil2 DF = 0. Let v := vs~(D) as in §1 and v := 

S ®w(F) D as in §2.2. Recall we have defined Vs~(V) in the proof of 

Proposition 2.2.5 and shown that V,~(V) ~ Vs~(D). Define: 

V';,~; 8 (D) := Hom'P(D, Ecris) n HomFn (DF, F ®Fa Ecris) 

and Vc~is(V) := Homs,<p,FiJl (V, Ecris) where we view Ecris as an S­
algebra by sending u to the element [:n::] corresponding to the pn-th roots 

'Trn (§2.2). We have ring morphisms Est ---* Ecris and Ast[1/p] ---* Ecris 
obtained by sending log[;] and X to 0. 

Lemma 3.5.1. (1) The map f f---+ fiD induces an isomorphism of 

QP-vector spaces Vc~is(V) ~ Vc~is(D). 
(2) The ring homomorphisms Est ---* Ecris and Ast[1jp] ---* Ecris induce 
isomorphisms of Qp-vector spaces Vs~(D) ~ Vc~is(D) and Vs~(V) ~ 
V';,~is (V) · 

V,~ (V) 
(3) The diagram 1 l 

Vs~(D) 

Vc~is(V) 
l1 is commutative. 

V';,~is(D) 

Proof. (3) follows from the definition of the various maps. To 
prove (1) and (2), we first note that we can replace everywhere Ecris 
by E!is and Est by E~. For Ecris, this is a direct consequence of [13], 
Theorem5.3.7(i). For Est, one can argue as follows. Let f E V8~(D), 
x E D\ {0} andrE Z>a such that Nr+ 1 (x) = 0 but Nr(x) =/= 0. Then 
f(r.ps(Nr(x))) E Fila E:is for all s E Z which implies f(Nr(x)) E E!is 

by [13], Theorem5.3.7(i). Hence f(Nr-l(x)) E Fila Ecris + E!is log[~. 
Since r.p(log [;]) = plog ~' the same argument shows f(Nr-l(x)) E 

E!is + E!is log~ and we deduce f(x) E E~ by induction. The iso­
morphism in (1) comes from the facts that Fil1V = f; 1 (Fil1 DF) and 
[1!:] - 1r E Fil1 (F ®Fa E"t;J where f1r : V ---* DF is the map of §2.2. 
Note that it exists because there is just Fil1 . One checks the ring ho­
momorphisms E~ ---* E!is and A 8 t[1/p] ---* E!is deduced from the ones 
without+ commute with r.p and preserve Fil1 and hence induce maps of 
vector spaces as in (2). Since we know that Vs~(V) ~ Vs~(D), we only 
have to prove Vs~(D) ~ Vc~is(D) thanks to (1) and the commutativity in 

(3). The inverse map Vc~is (D) ---* V,~(D) is given by f f---+ f +log [~ f oN 

(using E"tis C E~). Q.E.D. 

Remark 3.5.2. One can prove that the above isomorphism ~;(V) ~ 
vc~is(V) does not require Fil2 DF = 0. Also, all the isomorphisms in 
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Lemma 3.5.1 commute with Gp= although they do not commute with 
Gp. 

Lemma 3.5.3. Let D' be the same filtered (cp,N)-module as D but 
with N = 0. Then D' is also weakly admissible. 

Proof. With the notations of §1, we have: 

QP ®F0 N(D) = ffiaN(Da) 

with N(Da) C Da-1 (since Ncpf = pf cpf N). But Da = 0 if a~ [0, 1] 
(weak admissibility condition) so N(D) C Do which implies tN(N(D)) = 
0 and also tH(N(D)) = 0 since 0 ~ tH(N(D)) ~ tN(N(D)). Note that 
N 2 = 0 (same proof as for 2.1.4). Let D° CD be a F0-vector subspace 
stable under cp but not necessarily under N with the induced filtration 
FiliD~ := D~ nFiliDF (i = 0, 1). Define D 1 := D0 +N(D0 ). From the 
exact sequence 0--+ N(D0 ) --+ D1 --+ D0 /(D0 n N(D0 )) --+ 0, the weak 
admissibility condition for D 1 c D, and the additivity property of tH 
and tN, we have: 

where by tJi we mean the tH computed with the filtration on D0 j(D0 n 
N(D0 )) coming from the quotient filtration of D 1 . From the exact se­
quence 0 --+ D0 n N(D0 ) --+ D0 --+ D0 /(D0 n N(D0 )) --+ 0, we deduce 
tH(D0 ) = t~(D0 /(D0 n N(D0 ))) and tN(Do) = tN(D0 /(D0 n N(D0 ))) 

where by t~ we mean the tH computed with the filtration on D0 /(D0 n 
N(D0 )) coming from the quotient filtration of D0 . From the inclusion 
D 0 c D 1 and the above inequality, we get: 

t~(D0 /(D0 nN(D0 ))) ~ tJi(D0 /(D0 nN(D0 ))) ~ tN(D0 /(D0 nN(D0 ))) 

hence tH(D0 ) ~ tN(D0 ). This gives the desired result. Q.E.D. 

Let V' := S ®w(F) D' (with its usual structures) and note that 
V' ~ V except for the operator N. We have Vc~is(D') = Vc~is(D) and 
Vc~is(V') = Vc~is(V) since the definition of these vector spaces do not use 
N. Using (2), Lemma 3.5.1, we deduce isomorphisms V8~(D') ~ V,~(D) 
and V8~(V') ~ V,~(V) such that the diagram: 

V,~(V) 
d 

Vs~(D) 

~ V,~(V') 
! I 

~ V,~(D') 

commutes. We call V the commun underlying Qp-vector space and p', 
p the two different Galois actions G F --+ Aut(V) corresponding to D' 
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and D respectively. Let D( -1) be the filtered ( <p, N)-module defined by 
Film D( -1)p := Film+l Dp, <f!D(-1) := p-1<pn and Nn(-1) := Nn. The 
operator N induces a morphism of filtered modules N : D( -1) ---+ D 
and thus a morphism of Galois representations: 

N: (V,p)---+ (V0Qv(-1),p0x-1 ) 

where Qp(-1) is the Qp-dual of Qp(1) := (fu!!fLvn(Qp)) 0 Qp and 
X is the p-adic cyclotomic character. Working out the isomorphism 
Vs~(D') ~ Vs~(D) from the proof of 3.5.1, we easily obtain: 

Lemma 3.5.4. Let tp: Gp---+ ~fLvn(Qp) = Zp(l) be the 1-cocycle 

defined by tp(g) := (g(nn)/nn)nEN" Then: 

p = (I d + tv 0 N) o p'. 

From this and the results of §3.4, we obtain the following key corol­
lary: 

Corollary 3.5.5. LetT C V be a Zv-lattice which is stable under p. 
Then T is also stable under p', or equivalently N(T) c T 0 Zp( -1). 

Proof. Since tp(g) = 0 if g E Gp00 , it follows from 3.5.4 that Tis 
preserved by p'(Gp=) = p(Gp00 ). By 3.4.4, Tis stable under p'. Q.E.D. 

Now, let M be a strongly divisible lattice in V. We denote by M' 
the image of M in V' under the identification V ~ V'. In particular, as 
S-modules, M and Fil1 M are just the same as M' and Fil1 M'. 

Lemma 3.5.6. (1) The S-module M' is preserved N in V', i.e. M' 
is a strongly divisible lattice in V'. 
(2) Under the isomorphism V8~(D) ~ ~~(D'), the lattice T;t(M) corre­
sponds to the lattice T;t(M'). 

Proof. For (1), we have to prove N(M) C M with N being N01 on 
V' = S0D' = S0D. By Lemma 3.2.1 or by [5] Proposition 5.1.3, there 
is a unique additive map N' : M ---+ M such that N'(sx) = N(s)x + 
sN'(x), N'(M) c uM and N'<p = p<pN'. As D = nnEN<f!n(V) (this 
is easily checked), the last commutativity condition implies N'(D) CD 
and the condition N'(M) CuM implies N'ln = 0. Hence, on M[1/p] = 
S 0 D, N' is exactly N 0 1. This proves (1). Recall from Lemma 3.5.1 
and the foregoing that we have a commutative diagram: 

Vs~(V) 

d 
Vc~is(V) 

---+ V8~(V') 
t I 

v;,~is(V') 



72 C. Breuil 

where the top arrow is the identification V8~(D) ~ Vs~(D'). In order to 
prove (2), it is enough to prove that the two lattices r;t(M) c Vs~(V) 
and T;t(M') c V8~(V') map to the same ZP-module in Vc~is(V) = 

Vc~is(V'). Define Tc*ris(M) := Homs,<p,Fill(M,Acris) c V';,~is(V) and 
likewise for r;ris(M'). Since N is not involved, we have r;ris(M) = 
r;ris(M'). By [3] Lemma 2.3.1.1, T;t(M) (resp. T;t(M)) exactly 

maps to T;ris(M) (resp. T;ris(M')) under Vs~(V) ~ V,~is(V) (resp. 
~~(V') ~ V,~is(V')). This gives (2). Q.E.D. 

Corollary 3.5. 7. Statement (2) of 2.2.7 holds. 

Proof. We can assume m = 1. We first prove the full faithfulness. 
Let M 1, M 2 be two strongly divisible modules of weight ::; 1, T1, T2 
their corresponding lattices and f : T2 --7 T1 a Galois morphism. Let 
Vi := Ti®Qp, Di := n;tC~'i), D~ as before and V:' := V8~(DD (i E {1, 2} ). 
Recall Vi ~ V:' as vector spaces. The map f induces f : V2 --7 V1 and 
f : v~ --7 V{ which is G p-equivariant for both actions of G F (look at 
the corresponding map on Di and D~). By 3.5.5, Ti is Galois stable 
in ~' and thus f : T2 --7 T1 commutes with this "crystalline" Galois 
action. By 3.5.6 and 3.2.5, it induces a morphism M1 --7 M2. It 
remains to prove this morphism commutes with the original N, but this 
is obvious since this is so for M 1 [1/p] --7 M2[1jp]. Let us now prove 
the essential surjectivity. Let V be a semi-stable p-adic representation 
with Hodge-Tate weights in {0, 1} and T C V a Galois stable lattice. 
Let D := n;t (V) and D', V' as before. Since T is also Galois stable in 
V' (Corollary 3.5.5, this is the key point), by 3.2.5 it corresponds to a 
strongly divisible lattice M in V' := S ® D'. By statement (2) of 3.5.6, 
it remains to prove that M is stable under N in V := S ®D. Denote 
by N' the S-derivation on M induced by V', by N(V) the unramified 
quotient of V corresponding to N(D) C D (see the proof of 3.5.3) and 
by N(T) the image ofT in N(V). One has an injection of crystalline 
representations with Hodge-Tate weights in {0, 1}, N(V) ® Qp(1) <.......+ V, 
which induces N(T) ® Zp(1) <.......+ T by 3.5.5. If Mo denotes the strongly 
divisible lattice inS® N(D) corresponding to N(T) (case m = 0) and 
M 0 (1) the obvious one corresponding to N(T) ® Zp(1), then by 3.2.5 
we have morphisms M --7 M 0 (1) and Mo --7 M, the composite of 
which is N - N' : M --7 M(1) (with obvious notation, one checks 
this by looking over 5[1/p]). Forgetting the twist "(1)", this implies 
N(M) c M. Q.E.D. 
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§4. Integral p-adic cohomologies 

In this section, we suggest a cohomological interpretation of strongly 
divisible modules. 

We fix a proper smooth scheme X over Spec(F) and we assume 
X admits a proper semi-stable model X over OF (i.e. etale-locally X 
is smooth over OF[X1 , ... ,Xr]/(X1 · · ·Xr- 1r) for some r). Let Y := 

X Xspec(OF) Spec(F) and xl :=X Xspec(OF) Spec(OF/POF)· Endow X, 
Y and X1 with their natural log-structure ([22]) and formE N denote 
by: 

H;;:(x xF Qp, Zp) 

Hr;:(X XF QP, Qp) 

.- fu!!Hm((X XF Qp)et, Z/pnz) 

·- Hr;:(x xF QP, Zp) 18lzp Qp 

the usual p-adic etale cohomology groups of X. By [28], Hr;:(X XF 
QP, Qp) is a semi-stable p-adic representation of GF with Hodge-Tate 
weights in { -m, ... , 0}. Moreover, if vm := H;;:(x XF Qp, Qp)* (Qp­
dual) and Dm := D;t(Vm) is the associated filtered ( cp, N)-module (see 
§1), then: 

(1) 

where: 

H~g-cris(Y/W(F)) := fu!!H~g-cris(Y/Spec(Wn(F))) 

is the log-crystalline cohomology of Y with respect to the base scheme 
Spec(Wn(F)) endowed with the log-structure (N ---+ Wn(F), 1 1-t 0). 
More precisely this cohomology is naturally endowed with operators cp 
and N and one has an isomorphism (depending on the choice of ?r): 

F 0w(F) H{;:g-cris(Y /W(F)) c:::' H:JR(X) 

where H:JR(X) is the usual de Rham cohomology of X endowed with its 
Hodge filtration. Then (1) is an isomorphism of filtered (cp, N)-modules 
(see [19], [22] and [28] for details). 

Now, let: 
Vm := 8 0w(F) Dm 

and endow it with the same structures as in section 2.2. It is shown in 
[19] that there is an isomorphism of 8[1/p]-modules: 

vm c:::' H{;:g-cris ( xl IS) 0 Fo 
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where: 

is the log-crystalline cohomology of xl with respect to the base scheme 
Spec(SjpnS) endowed with the log-structure (N ____, SjpnS, 1 f---+ u). 
Here the log-scheme X1 is viewed over Spec(SjpnS) via the embedding 
Spec(OF/POF) <----+ Spec(SjpnS), u f---+ 1r. Assume m < p- 1 and con­
sider: 

r= := Zp-dual of (HM:(X XF Qp, Zp)/torsion). 

Then Tm is a Galois stable lattice in vm. Conjecture 2.2.6 predicts there 
should exist a corresponding strongly divisible lattice in vrn. Consider: 

One can prove that M= c vm and that it is stable under cp and N 
([19]). 

Question 4.1. Assume m < p -1. 
(1) Is Mm a strongly divisible lattice in vm in the sense of Definition 
2.2.1? 
(2) If this is so, is r;t(Mm) isomorphic to Tm? 

The following theorem summarizes the known answers to these ques­
tions: 

Theorem 4.2. The answer to questions (1) and (2) of 4.1 is yes in 
the following two cases: 
(1) e = 1 
(2) m ::; 1. 

Case (1) is proven in [7]. The method is a generalization of that of 
Fontaine and Messing (syntomic cohomology) who did the subcase e = 1, 
N = 0 ([18]). However, the proofs are more involved because strongly 
divisible modules when N =/=- 0 are much more complicated than when 
N = 0, even if e = 1 (see [9] for instance). Case (2) is a special case of 
results of Faltings and is proven in [12] using his theory of almost etale 
extensions. 

§5. A glimpse at reduction modulo p 

Integral p-adic Hodge theory has the virtue that we can form its 
reduction modulo p. We provide here some samples of such reductions 
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(Propositions 5.2, 5.3 and Theorem 5.4). More precisely we reduce mod­
ulo p lattices in some 2-dimensional (over Qp) semi-stable representa­
tions of G F for F = Qp. This is the simplest case, although not so 
simple! In the sequel, we denote by IQp the inertia subgroup of GQp, by 
val the p-adic valuation normalized by val(p) = 1 and by ified character 
of GQp sending the arithmetic Frobenius to .A. 

Let us consider semi-stable p-adic representations V of GQp endowed 
with an embedding E '--+ Autaqp (V) where E is a finite (arbitrarily 

large) extension of Qp inside QP such that dimE V = 2. In that case, 
D := Dst(V*) is also a 2-dimensional E-vector space with E-linear r.p, 
N and filtration. We assume moreover Fil0 D = D and Fil1 D =I= 0, and 
we denote by k ~ 2 the smallest integer such that Filk D = 0; Since 
dimED = 2, we have Fil1 D = Fil2 D = ... = Filk-l D. We denote by OE 
the ring of integers of E and by ffiE its maximal ideal. 

Examples 5.1. The following three examples exhaust all the pos­
sibilities of two dimensional semi-stable representations of GQP with 
Hodge-Tate weights (0, k- 1): 

D Ee1 EB Ee2 
r.p(e1) pk-1(.Ae1 + 11e2) 

(1) 
r.p( e2) .A -le2 

N 0 
Filk-l D Ee1 

(.X,/1) E 0£; x E 

D Ee1 EB Ee2 
r.p(e1) pk-le2 

(2) 
r.p(e2) -el + /1e2 

N 0 
Filk-l D Ee1 

11 E ffiE 

r.p( e1) pk/2 .Ael 

r.p(e2) pk/2-l .Ae2 
Filk-l D E(e1 - .Ce2) 

(3) N(e1) e2 
N(e2) 0 

k E 2Z>o 
(.A, .C) E {±1} X E 

(The reader can check . that the above filtered ( r.p, N)-modules are all 
weakly admissible.) 



76 C. Breuil 

Following Serre ([26]), define for n E Z>o and g E JQv: 

g(p1/(pn-1)) _ -X 

Opn-1(g) := p 1/(pn_ 1) E Jlpn-1(Qp) ~ F;n "----+ Fp. 

This turns out to be independent of the choice of p1f(pn- 1) and defines 

a tamely ramified character Opn-1 : IQv ----+ F;. LetT C V be a Galois 
stable 0E-lattice and T := T ®oE (OE/mE) its reduction "modulo p". 
By [26] the semi-simplification of this reduction can be described in 
terms of powers of the characters Opn_ 1. For instance, by noticing that 
the Galois representations associated to the filtered modules of Example 
5.1 (1) are reducible, one immediately gets: 

Proposition 5.2 ([17]). Let V be a semi-stable p-adic representa­
tion of GQv such that D;t(V) is as in Example 5.1(1). LetT C V be a 
Galois stable OE-lattice. Then: 

For cases (2) and (3) of 5.1, one needs integral p-adic Hodge theory. 
By computing explicit strongly divisible lattices in S ® D for D as in 
5.1 (2), (3) and reducing them modulo p, one gets, assuming of course 
k < p + 1 (Basic Assumption): 

Proposition 5.3 ([17]). Let V be a semi-stable p-adic representa­
tion of GQv such that n;t(V) is as in Example 5.1(2) and assume 
k < p + 1. LetT C V be a Galois stable OE-lattice. Then: 

And, finally, the semi-stable non-crystalline case, which is somewhat 
more involved: 

Theorem 5.4 ([9]). Let V be a semi-stable p-adic representation of 
GQv such that n;t(V) is as in Example 5.1(3) and assume k < p + 1. 
Let T C V be a Galois stable OE-lattice. Define f := val(.C), [£] the 
greatest integer :::; £, and, iff E Z, a := .Cjpe. Let H 0 := 0 and, for 
n E Z>o, Hn := ~~=1 1. Define also: 
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and if£ E { -~ + 2, -~ + 1, ... , -1}: 

b := (-1)~-t('5_ -£) (~ -1-i)a. 
2 -2£ + 1 

(1) If val( a) = 0, then: 

T :::=. (oj_1Fro
0
b(a-1X) k 1 * _) 

o;~1 Frob(a.A) 

or 

T :::=. (off_-/Fr
0
ob(a.A) * ) 

off_ 1 Frob(a:-1 X) . 

(2) lfval(a) > 0, then: 

(()~-1+p~ 0 ) 
TIIQp 0 Fp :::=. p 2

- 1 k+ (k 1) . 0 ()2 p :z-. 
p2-1 

(3) lfval(a) < 0 (i.e. £ < 0), then: 

(()k-1 
k - - 2 1 

• if£<- 2 +2, thenTIIQp®Fv:::=. vo- (}p(~-1))' 
p2-1 

• if-~+ 2 ~ £ < 0 and£ tj. Z, then: 

(() ~-[i]+p( ~+[£]-1) 
- - 2 1 
TIIQ 0Fp :::=. p-

p 0 o~+[iJ-1~v< ~ -[£])) , 
p2-1 

or 

Remark 5.5. 
fork> p + 1. 

Proposition 5.3 and Theorem 5.4 are wrong in general 

These results can be applied to modular forms. Fix an embedding 
Q <--+ QP. Let f be a cuspidal eigenform on r 0 ( N) of weight k ;:::: 2 and 
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PJ : Gal(Q/Q) ---. GL2(EJ) the p-adic global representation associated 
to f where Et c QP is a finite extension of Qp. Denote by PJ the semi­
simplification modulo p of PJ and let PJ,p := PtlcQp" By [28] and [25], 
one easily deduces from Propositions 5.2, 5.3 and Theorem 5.4: 

Corollary 5.6 (Deligne). Let f be a cuspidal eigenform of weight k 
for r 0 ( N) with (p, N) = 1. Let ap be the eigenvalue of the H ecke operator 
Tp and assume val(ap) = 0. Then PJ,p is as in 5.2 with A E O'i;1 such 

that pk-1 A+ A-1 = ap. 

Corollary 5.7 (Fontaine, Serre). Let f be a cuspidal eigenform of 
weight k for r 0 (N) with (p, N) = 1 and 2 :S k :S p. Let aP be the 
eigenvalue of the Heeke operator Tp and assume val(ap) -1- 0. Then PJ,p 
is as in 5.3. 

Corollary 5.8 ([9]). Let f be a cuspidal eigenform of weight k for 
ro(N) with PIIN and 2 :S k :S p. Assume f is new at p. Let ap be 
the eigenvalue of the Heeke operator Tp and £p(f) E Et the invariant 
associated to f ([23]). Then PJ,p is as in 5.4 with£ = £p(f) and A =. 

apjpk/2-1 E {±1}. 

Remark 5.9. Corollaries 5.6 and 5. 7 were originally proven in se­
veral letters (letter from Deligne to Serre (28/05/74) for the first and let­
ters from Serre to Fontaine (27 /05/79) and Fontaine to Serre (25/06/79 
and 10/07 /79) for the second). One can find published alternative proofs 
of these corollaries in [11] which don't use neither p-adic Hodge theory 
nor integral p-adic Hodge theory, i.e. don't use nor prove Propositions 
5.2 and 5.3, but show that Corollary 5. 7 also holds in weight k = p + 1 
(integral p-adic Hodge theory cannot yet deal directly with this case 
because of Assumption 2.1.2). 

As a conclusion, let us mention the following fact. In [9], it is 
proven that there is a surprising link between the various cases of The­
orem 5.4 and the Jordan-Holder decomposition of the representation 

Symk-2F~ ®Fp St of GL2 (Zp)· Here St is the Steinberg representation 
of GL2 (Zp) in characteristic p, i.e. the inflation to GL2 (Zp) of the na­
tural representation of GL2 (Fp) on the space offunctions P 1 (Fp)---. Fp 
with average value 0 (with g E GL2 (Fp) acting on a function through 
the usual action of g- 1 on P 1 (Fp)). This gives a mysterious link between 
integral p-adic Hodge theory and the representation theory of GL2 (Zp)· 
I hope more is true in that direction. 
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