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Global and Local Properties of Pencils of 
Algebraic Curves 

Tadashi Ashikaga and Kazuhiro Konno 

§0. Introduction 

Let S be a non-singular projective surface over C, and let f : S --> B 
be a relatively minimal fibration of curves of genus g over a non-singular 
projective curve B of genus b. In this article, we discuss some recent 
developments in the area where its global and local properties interact 
each other, with comments on several interesting open questions. 

From the global point of view, our motivation comes from the study 
of minimal surfaces of general type. In the birational sense, any algebraic 
surface has a fibration over a curve, because it has an algebraic function. 
For surfaces of small Kodaira dimension, we can choose among various 
pencils a "preassigned" pencil such as Mori fibrations or Iitaka fibrations. 
On the other hand, there seems to be no canonical way in finding a pencil 
which reflects well the structure of a surface of general type. However, we 
often see that a pencil structure appears naturally for them as well. In 
the series of papers [42], Horikawa showed that most surfaces which are 
geographically close to the N oether line, K~ = 2x( 0 s) - 6, have a pencil 
of curves of genus 2 which is induced on S from a ruling of its canonical 
image via the canonical map. Similar phenomena can be observed for 
canonical surfaces close to the Castelnuovo line K~ = 3x(Os) - 10 
([22], [10]). In this case, the quadric hull of the canonical image is a 
threefold of small degree and its ruling usually induces on S a pencil 
of non-hyperelliptic curves of genus 3 (see [52], [44]). One can find a 
lot of such observations in literatures (e.g., Xiao's works) indicating the 
importance of a systematic study of fibered surfaces in the study of 
surfaces of general type. 
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In §1, we describe the zone of existence for fibrations of genus g with 
respect to two relative numerical invariants X! and K~; B, where we put 

X! = x(Os)- (g- 1)(b- 1) and Ks;B = Ks- f* KB for a fibration 
f : S ---> B. Recall that we have the fundamental inequality in surface 
geography 

K 2 4(g- 1) 
S/B?: X! g 

called the slope inequality. It was first discovered by Horikawa and Pers­
son for hyperelliptic pencils (Part V of [42], [81]) and proved by Xiao [96] 
in general. In §1.2, we give two different proofs due respectively to Xiao 
[96] and Moriwaki [73]. A general philosophy in geography of fibered 
surfaces is that, if we impose a certain condition on a general fiber, then 
the zone of existence of such pencils is restricted further, and, as a result, 
a sharper slope inequality holds. For example, consider the case g = 3. 
If a general fiber is non-hyperelliptic, then we have K~/B ?: 3XJ ([53]), 
while the bound of genus 3 implied by the slope inequality is 8/3. 

Now, as an ideal model, we recall here Horikawa's works [41] and 
[43]. Let f : S ---> B be a fibration of genus 2, and let F1, · · · , Fz be 
singular fibers of f. Then: 

(i) One can define a nonnegative integer Ind(Fi) for each fiber germ 
of Fi so that the equality 

l 

K~/B = 2XJ + 2:)nd(Fi) 
i=l 

holds. We call Ind(Fi) the Horikawa index of Fi. 
(ii) One can classify the fiber germs with positive Horikawa index. 

(iii) A germ Fi with Ind(Fi) = k > 0 has a local splitting deformation 
to k fibers with Ind = 1 modulo fibers with Ind = 0. 

How to generalize (i), (ii) and (iii) is the motivation of the following 
discussions of the slope equality, classification of degenerations and Mor­
sification, respectively. 

Our first aim is to generalize the equality in (i). Let f : S ---> B 
be a pencil with a certain condition on its general fiber. If there exists 
a rational number >., a finite set of fibers F 1 , · · · , Fz and well-defined 
non-negative rational numbers Ind(Fi) satisfying 

l 

K~/B = AXJ + 2:)nd(Fi), 
i=l 
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we call it the slope equality which, once obtained, has nice geographic 
applications. We describe two known examples, hyperelliptic fibrations 
and Clifford general fibrations of odd genus, in §2.2 and §2.3, respec­
tively. Note that Fi may be a smooth fiber in general. Indeed, iff is a 
non-hyperelliptic pencil of genus 3, then the generic fiber with Ind = 1 
is a smooth hyperelliptic curve (e.g., [52]). 

The essence of the slope equality is the local concentration of the 
global invariants of the surface on a finite number of fiber germs. In §2.1, 
we define the local signature a(Fi) for fiber germs by using the Horikawa 
index and the Euler contribution, which enables us to restate the slope 
equality as the "local concentration formula" of the global signature: 

l 

Sign(S) = _L>(Fi)· 
i=l 

This itself has a certain topological meaning. For example, consider 
hyperelliptic fibrations. The Horikawa index, and therefore the local 
signature, is explicitly calculated in terms of the datum of the singular­
ities of the branch curve of the double covering as in §2.2. On the other 
hand, Endo [31] defined the topological local signature O"tap(Fi) by using 
the Meyer cocycle [68]. Then Terasoma [89] showed that our a(Fi) co­
incides with O"top(Fi)· Furuta [33] defined the topological local signature 
in more general situations. It is interesting to establish relations with 
the Horikawa index. 

The second aim is to develop the classification theory of singular 
fiber germs. Kodaira [51] and Namikawa-Ueno [76], [77] studied genus 
one and two cases, respectively. We recall the classification of genus three 
case obtained in [9], and discuss the method in §3. Here our central tool 
is Matsumoto-Montesinos' theorem ([64], [65]) which characterizes the 
monodromy in the mapping class group r 9 of genus g. To be more pre­
cise, let f : S ---+ ~ be a degeneration of curves of genus g ::;:: 2 over a 
1-dimensional unit disk ~ with a unique singular fiber F = f- 1 (0). If 
we fix t0 E ~ *, then the monodromy action of 1r1 ( ~ *, t0 ) ~ Z induces 
modulo isotopy an orientation-preserving homeomorphism of the fiber 
¢! : F0 ---+ Fo, where Fo = f- 1 (to). Since the change of the base point to 
corresponds to the conjugation in r 9 , f gives us a uniquely determined 

element [¢!] in the set r 9 of all conjugacy classes of r 9 . We call [¢!] 
the topological monodromy of f. Matsumoto-Montesinos' theorem [64] 

states that an element of r g is realizable as the topological monodromy 
of a degeneration if and only if it is the class of a pseudo-periodic map 
of negative twist. Moreover this class is completely determined by cer­
tain invariants called valencies, screw numbers and the action on the 
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extended partition graph ([78], [79], [65]). Therefore, the classification 
of degenerations is reduced to determining these invariants. In §3, we 
describe the method to carry it out. By this method, for any genus in 
theory, we can classify singular fibers, topological monodromies and the 
topological structure of the stable curve corresponding to the moduli 
point of the given degeneration at the same time. 

The last aim is to consider Morsification of degenerations [83]. Let 
f : S--+ ~be a degeneration with a unique singular fiber F = f- 1 (0). 
If their exists a relative deformation {f u: Su --+ ~ }uE~' with fo = f 
such that fu has l ~ 2 singular fibers Fu,l, · · · , Fu,l, then we say that F 
splits into Fu,l, · · · , Fu,l· Starting from a given germ Fu,i (1 :::; i :::; l), 
we seek for its splittings successively. Such a reduction will terminate 
after a finite number of steps. Then we say that F splits into atomic 
fibers via several splitting families. One of the central problems is Xiao 
Gang's Morsification conjecture [83] that any atomic fiber has a simple 
description (see §4.1 for the precise statement). There are two steps to 
be considered for that: The first is to construct splitting families of a 
given germ F. The second is to determine all the atomic fibers in a 
certain category. 

In §4.2, we recaH the construction of hyperelliptic splitting families 
via the splitting deformation of singularities of the branch curve of the 
double cover ([2], [3]). As a result, any hyperelliptic singular fiber is 
reduced to very simple classes of fiber germs via several splitting families. 
Moreover we can give the list of hyperelliptic atomic fibers of genus 3 
[3]. Since hyperelliptic splitting families satisfy the conservation law of 
the Horikawa index, it is also considered as the algebraic Morsification 
defined in §4.1. 

In §4.3, we give and discuss seven open questions concerning the 
Morsification of degenerations. 
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would like to thank here all the people, among others, Professors Miles 
Reid, Eiji Horikawa, Fabrizio Catanese, Xiao Gang, Margarida Mendes 
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pei Usui, Makoto Namba, Noboru Nakayama, Tatsuya Arakawa, Mizuho 
Ishizaka, Shigeru Takamura. Finally but not less deeply, we would like 
to thank the organizers of the very exciting conference "Algebraic Ge­
ometry 2000, Azumino" for inviting and giving us a chance to talk about 
our recent progress. 
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§1. Geography of fibered surfaces 

1.1. Geography 

Though our main interest is in surfaces fibered over a curve, we 
would like to start from recalling some results about surfaces of general 
type [82]. 

Since Bogomolov-Miyaoka-Yau's inequality was established, the ge­
ography of surfaces of general type, introduced by Ulf Persson [81], has 
been one of the main subjects in the surface theory. Recall that the 
numerical characters of a minimal surface S of general type satisfy 

x(Os) > o, K~ > o, 2x(Os)- 6::; K~::; 9x(Os). 

These inequalities enable us to plot the pair (x(Os), K~) as a lattice 
point in the area defined by them in the xy- plane. The upper bound 
y = 9x is the Bogomolov-Miyaoka-Yau line, and it is famous that sur­
faces (whose numerical characters are) on this line can be obtained as 
a quotient of the complex ball. The lower bound y = 2x - 6 is the 
Noether line, and regular surfaces near this line were studied in de­
tail by Horikawa [42]. In the intermediate area, we can also find some 
important lines. We would like to recall, among others, the Casteln­
uovo line y = 3x - 10. Castelnuovo's second inequality [15] says that 
K~ geq3x( 0 s) -10 holds for canonical surfaces S, where a minimal sur­
face of general type is called canonical if its canonical map is birational 
onto the image. Furthermore, it is known that the canonical map of 
surfaces in the region 2x - 6 ::; y < 3x - 10 gives a double covering of a 
ruled surface (cf. [15]). In other words, those who live in this area are of 
hyperelliptic type. Almost all regular canonical surfaces on y = 3x -10, 
3x- 9 have a pencil of non-hyperelliptic curves of genus three (see [22], 
[10], [52], [44]). Therefore, surfaces fibered over curves appear quite nat­
urally through the canonical map. This is one of the main reasons why 
we are interested in pencils of curves. Note also that Persson [81] and 
Chen [24] constructed fibered surfaces whose invariants can almost fill 
the zone of existence 2x- 6::; y ::; 9x (see also [7]). 

Let f: S----> B be a surjective morphism of a non-singular projective 
surface S onto a non-singular projective curve B of ~enus b with con­
nected fibers. We say that f is a relatively minimal fibration if there are 
no ( -1 )-curves (i.e., a non-singular rational curve with self-intersection 
number -1) contained in fibers. We denote by g the genus of a general 
fiber F of f. If g = 0, then f is a lP'1-bundle and there exists a vector 
bundle £ of rank two with S ~ lP'B(£). If g = 1, then it is so called an 
elliptic surface whose structure was studied by Kodaira [51] extensively. 
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In what follows, a fibration means a relatively minimal fibration of genus 
g 2: 2, unless otherwise stated explicitly. 

Let Ks;B be the relative canonical bundle Ks- f* KB. By Arakelov's 
theorem (see [16]), it is a nef line bundle, 

that is, the intersection number Ks;BC is non-negative for any irre­
ducible curve ConS. Furthermore, it is known that Ks;BC = 0 if and 
only if Cis a ( -2)-curve contained in a fiber. Hence one can regard the 
relative canonical bundle as a candidate of the canonical bundle of min­
imal surfaces of general type. Now, we can introduce three numerical 
invariants associated to f. 

1. K~/B 
2. X!:= deg f*WSjB = x(Os)- (g- 1)(b- 1) 
3. ef := e(S)- e(F)e(B), where F is a general fiber off, and e(X) 

denotes the topological Euler number of the space X. 

Note that ef has the following "localization" 

(1.1.1) ef = 2.00.:: ef(f- 1 P), 
PEE 

where ef(f- 1 P) := e(f-1 P) + 2g- 2 (Euler contribution). 
The three invariants are non-negative integers related by Noether's 

formula: 

(1.1.2) 

Hence one can choose any two of them as basic invariants. We choose 
here K~; B and X! as basics, and will consider relations among them, 
usually assuming that f is not a locally trivial fibration (i.e., not an 
analytic fiber bundle). This condition is equivalent to assuming that 
X! > 0. In such a case, the ratio 

(1.1.3) 

is called the slope of the fibration [96]. 
On one hand, it is easy to get the upper bound for K~; B in terms of 

Xt= Since ef 2: 0, we get K~/B :S: 12XJ· The equality holds here if and 
only iff is a Kodaira fibration, that is, f has no singular fibers but with 
variable moduli. On the other hand, the lower bound is non-trivial, and 
it is called the slope inequality: 

(1.1.4) 
4(g- 1) 

K~/B 2: X! 
g 
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shown by Xiao [96] (see also [28] for semi-stable fibrations). 
All the above enable us to plot (Xf, K~;B) on the plane, quite sim­

ilarly as in the case of surfaces of general type. The zone of existence is 
given by 

X > 0, y > 0, ( 4 - ~) X :::; y :::; 12x 

Fibrations on the lower bound y = ( 4 - 4/ g )x are of hyperelliptic type 
with only "simple" singular fibers (see §2.2). Fibrations on the upper 
bound y = 12x are of non-hyperelliptic type also with only beautiful 
(non-singular !) fibers. Then one may ask: 

• What happens in the intermediate area ? How about singular 
fibers? 

• Are there any important lines like the Castelnuovo line ? 

Remark. For hyperelliptic fibrations, Xiao [97] showed 

See also [66]. 

12- 8g+4 
g2 -1 

if g is even, 

if g is odd 

1.2. Proofs of the Slope Inequality 
Here we outline two proofs of the slope inequality both of which 

involve an interesting vector bundle argument. 

(A) The first proof is due to Xiao [96]. Let£ be a vector bundle (or 
a locally free sheaf) on a non-singular irreducible curve. We denote by 
rk£ the rank of £ and by deg £ the degree of the determinant line bundle 
of£. The ratio p,(£) := deg£/rk£ is called the slope of£. Recall that£ 
is said to be semi-stable if p,(V) :::; p,(£) holds for any subbundle V of£. 
Even if £ is not semi-stable, we have a uniquely determined filtration, 
the Harder-Narashimhan filtration [35], 

(1.2.1) 

satisfying the following properties 

(1) Each £d£i-l is semi-stable 

(2) I-Ll>···> J-Ln, where P,i := p,(£d£i-1) 
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If we put ri = rk£i, then 

n 

(1.2.2) deg£ = L ri(P,i- 1-LHI), (where Jln+l = 0). 
i=l 

We consider f*ws;n and its Harder-Narashimhan filtration. Since 
f*ws;B is nef by Fujita's theorem [32], J-Ln is non-negative. The invariant 
X! can be calculated by the formula (1.2.2). 

For each i, the composite of the natural sheaf homomorphisms 

f*£i '----+ f* f*ws;n ~ ws;n 

induces a rational map S ~ 1P'n(£i)· Let p : S ~ S be a minimal 
succession of blowing-ups such that the above map becomes a morphism 
for every i. We denote by Mi the pull-back to S of the tautological line 
bundle Hi on 1P'n(£i)· Put Mn+l = p* KsjB· For simplicity, we denote 
a general fiber of S ~ B also by F. 

Bythe construction, we have effective divisors Zi such that 

where the symbol = means numerical equivalence of divisors. According 
to a theorem of Miyaoka [69], the Q-divisors Hi - Jlir are nef, where r 
denotes a fiber of 1P'n(£i) ~ B. It follows that Ni := Mi - P,iF is also 
nef being the pull-back of a nef divisor. 

Put di = NiF = MiF. Since MiiF is a special divisor on F which 
induces a map into IP'r;-l (a fiber of 1P'n(£i) ~B), we have di ;::: 2ri- 2 
by Clifford's theorem. Note that we have dn = dn+l = 2g- 2. 

Fori> j, we have Ni = Nj + (J-Li- P,j)F + (Zj- Zi) and 

Nl NiNj + di(J-Li- J-Lj) + Ni(Zj- Zi) 
NJ + (di + dj)(J-Li- P,j) + (Ni + Nj)(Zj- Zi) 

> NJ + (di + dj)(J-Li- P,j) 

by the nefness of the Ni 's. Hence we have: 

Lemma 1.1 ([96]). Let {i1,··· ,im} be a sequence of indices with 
1 ::; i1 < · · · < im ::; n. Then 

m 

K~/B ;::: L(dip + dip+J(J-Lip - Jlip+J 
p=l 

where im+l = n + 1. 
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We can now show the slope inequality. First, suppose that f*ws; B 
is semi-stable. We apply Lemma 1.1 to the sequence {1} to get 

K~/B 2: (4g- 4)JL1 = (4- 4/g)XJ 

which is what we want. We can assume that f*ws;B is not semi-stable. 
Applying Lemma 1.1 to {1, 2, · · · , n} and to {1, n }, we respectively get 

and 

K~/B > I:~=l(di + di+l)(JLi- Jli+l) 
> I':(2ri + 2ri+l- 4)(JLi- Jli+l) 
> I:~:1\4ri- 2)(JLi- Jli+l) + (4g- 4)JLn 

4xt- 2(JL1 + JLn) 

K~/B 2: (0 + 2g- 2)(JL1- JLn) + (4g.,... 4)JLn = 2(g- 1)(JL1 + JLn) 

From these two, we get (1.1.4) by eliminating JL1 + Jln· 

(B) The second proof is taken from Moriwaki [73]. We need the 
following two results: 

Lemma 1.2 ([80]). For a general fiber F, the kernel of the evalu­
ation map H0 (F, Kp) ® Op----) Op(KF) is a semi-stable vector bundle. 

Lemma 1.3 (Bogomolov instability theorem [20]). Let F be a tor­
. sion free sheaf on a non-singular projective surface S and put 

8(F) = 2rk(F)c2 (F) - (rk(F) - 1)c~(F). 

If 8(F) < 0, then there exists a non-zero saturated subsheaf Q ofF such 
that 

D := rk(F)c1 (Q) - rk(Q)c1 (F) 

is in the positive cone, that is, D 2 > 0 and DH > 0 for any ample 
divisor H. 

We let F be the kernel of the natural sheaf homomorphism ¢ 
f* f*ws;B ----) WsjB· Since a general fiber F is a non-singular curve 
of genus g 2: 2, Kp is generated by its global sections. Hence ¢ is 
generically surjective. Its image L is torsion free and F is locally free, 
since they are a first and a second syzygy, respectively, on a non-singular 
surface. 

We can find an effective divisor Z which is vertical with respect to f 
and satisfies c1 ( L) = K 8 ; B - Z. It is the fixed part of the linear system 
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IKs; B + f* .q for any sufficiently ample divisor .Con B; we have Z = Zn 
in the notation of (A). Note also that c2(L) is nothing but the length 
of the isolated base points of the variable part (with natural scheme 
structure). 

Lemma 1.4. 8(F) is non-negative. 

Proof. We assume that 8(F) < 0 and show that this leads us to 
a contradiction. Let g and D be as in Lemma 1.3. Since F is nef, we 
always have F D 2: 0. Since D 2 > 0 and F 2 = 0, Hodge's index theorem 
implies that F D > 0. We have 

F D = rk(F) deg(giF) - rk(g) deg(FIF ). 

Thus FD > 0 means that FIF has a destabilizing subsheaf giF· But it 
is impossible by Lemma 1.2. Therefore, 8(:F) 2: 0. Q.E.D. 

We calculate 8(F). From the exact sequence 

we get 
c1(F) = j* det(f*ws;B)- c1(L) 

and x(F) = x(f* f*ws;B) - x(L). Since the Riemann-Roch theorem 
gives us 

we get 
c2(F) = c1(L)2 - 2(g- l)XJ- c2(L). 

Hence, using c1 = c1(L) = Ks;B- Z, we get 

8(:F) 
= 2(g- l)(ci- 2(g- l)xt- c2(L))- (g- 2)(ci- 2xtc1F) 
= gK~/B- 4(g- l)XJ- g(2Ks;B- Z)Z- 2(g- l)c2(L). 

Now, 8(F) 2: 0 is equivalent to 

2 4(g-l) 2(g-l) 
Ks;B 2: X!+ (2Ks;B- Z)Z + c2(L). 

g g 

Here, Ks; B is nef, Z 2 :::; 0 (since z is vertical), and c2(L) 2: 0. Therefore, 
we get the slope inequality (1.1.4) as desired. 
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1.3. Further remarks 

(1) It is known that if At= 4- 4/g, then f is necessarily a hyper­
elliptic fibration (see [96], [54]). Hence the lower bound of the slope of 
non-hyperelliptic fibrations is bigger. Unfortunately, the precise bound 
is known only for small genus: 

• g = 3: )..! 2: 3 ([53], [23], [83], [44], [45]) 
• g = 4: AJ 2: 24/7, and AJ 2: 7/2 if a general fiber has two distinct 

gj 's ( [25], [54]) 
• g = 5: AJ 2: 40/11 for f trigonal1 and AJ 2: 4 for f non-trigonal 

([54]) 

For trigonal fibrations, we gave in [55] a very rough bound 14(g-1)/(3g+ 
1), while it goes up to 24(g- 1)/(5g + 1) when semi-stable [86]. For hi­
elliptic fibrations of genus g 2: 5, Barja [12] has shown At 2: 4. It 
would be very interesting to find the accurate lower bound of the slope 
of non-hyperelliptic fibrations. See §2.3 below for an attempt. 

(2) For a fibration f: S----> B, we put qf = q(S)-b. When qf > 0, we 
call f an irregular fibration. In this case, we can construct an unramified 
covering of S not coming from those of B, inducing fibrations over B 
with slope equals the original >.. f and of an arbitrary large genus. Hence 
the slope inequality (formally letting g----> oo) gives us: 

Theorem (Xiao [96]). If qf > 0, then K~/B 2: 4XJ· 

It is known that the inequality is sharp when qf = 1, but may not when 
qf 2: 2. It would be interesting to have a sharper lower bound for the 
slope of irregular fibrations including g and qf. An attempt along this 
line can be found in a recent paper by Barja and Zucconi [14] (see also 
[13]). For hyperelliptic fibrations, Xiao gave further interesting results 
in [98] and [99]. 

§2. Slope equality and the local invariants 

2.1. Horikawa index and local signature 

Fiber germ. Let ~ be a small open neighborhood of the origin 
0 E CC, usually a disk around 0, and let f ll : S ll ----> ~ be a relatively 
minimal fibration of genus g. We assume that the critical value off ll, if 
exists, is 0. Let f ll' : Sll' ----> ~' be another such fibration. We say that 
fll and fll' are (analytically) equivalent if there exists a biholomorphic 

1 This may not be sharp. 
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map¢: S~bn~' -. s~,l~n~' such that !AI~n~' = J.;.l~n~' o ¢. This 
equivalence relation leads us to the notion of the (singular) fiber germ at 
0. A representative f ~ : S ~ -. ~ of a fiber germ will be simply called a 
degeneration. 

Similarly, we can introduce the notion of topological equivalence by 
considering an orientation preserving homeomorphism ¢. 

Slope equality. Let us consider and fix a certain property (*) for 
curves of genus g, and consider the set C ( *) of all the fiber germs of genus 
g whose general fiber satisfies (*). A function Ind : C ( *) -. Q is called a 
Horikawa index with respect to (*) if the following are satisfied for any 
global fibration f : S -. B of genus g whose general fiber satisfies (*): 

1. Ind(f-1 P) is a non-negative rational number for any P E Band 
is equal to zero if the fiber over P satisfies (*). 

2. there exists a rational number A, which depends only on g and 
(*),satisfying 4- 4/g SA S 12 and 

(2.1.1) K~/B = AXJ + L Ind(f- 1 P). 
PEE 

Suppose that there exists a global fibration f : S -. B of genus g whose 
general fiber satisfies (*) and Ind(f- 1 P) = 0 holds for any P E B. 
When invariants of such fib rations can fill (almost) all the lattice points 
on the line y = AX, the equality (2.1.1) will be called a slope equality. 
Once it is established, A gives us the slope of the line which is the lower 
bound of the zone of the existence of fibrations with property (*), and 
the Horikawa index measures how far it is from the lower bound. 

The equality of type (2.1.1) was first obtained by Horikawa in [41] for 
genus 2 fibrations, and it was applied successfully to surfaces of general 
type near the Noether line [42]. This is the reason why we call Ind by 
his name. 

Definition 2.1. Suppose that a Horikawa index with respect to 
(*) is given. Let f ~ : S ~ -. ~ be a degeneration which represents an ele­
ment in C ( *). We call such a degeneration a (*)-degeneration for simplic­
ity. The central fiber f- 1 (0) is called a critical fiber iflnd(f-1 (0)) > 0. 
As usual, it is called a singular fiber if ef(f-1 (0)) > 0. 

Local signature. Since a projective surface S is an orientable 4-
dimensional differentiable manifold, the signature Sign(S) of the inter­
section form on H 2 is one of the most important topological invariants. 
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A function a : C( *) ---+ Q is called a local signature with respect to 
(*) if the following are satisfied for any global fibration f : S ---+ B of 
genus g whose general fiber satisfies (*): 

1. a(f-1 P) = 0 if the fiber over P E B is non-singular and satisfies 
(*),and 

2. the signature can be expressed as 

(2.1.2) Sign( B)= L a(f-1 P) 
PEB 

Suppose that (2.1.1) is obtained with A < 12. Since the signature is 
given by 

if we put 

(2.1.3) 
4 8-A 

a(f-1 P) := --, Ind(f-1 P)- --, ef(f---, 1 P) 
12- A 12- A 

then (1.1.1) and (2.1.1) give us 

Sign( B) = L a(f-1 P). 
PEB 

Hence, a is a local signature with respect to (*). 
Conversely, suppose that we are given a local signature and that 

we know all values a(f-1 P). If there exists a rational number JL with 
-4- 4/ g :S JL :S 4 such that 

1. the inequality 

(2.1.4) 

holds for all fiber germs f- 1p E C(*), and 
2. the equality holds in (2.1.4) as long as the fiber f- 1 P satisfies 

(*), 
then putting A = JL + 8, we will be able to define Ind(f-1 P) by using 
(2.1.3) and get an equality of type (2.1.1). 

Remark. Though we naturally expect that Horikawa index and 
Local signature are unique if exist, the above definitions can say nothing 
about that. The local invariants will have desired properties if we can 
find a nice condition (*). 

In the following two subsections, we shall describe two cases where 
the equality of type (2.1.1) is known. 
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2.2. Hyperelliptic fibrations-double coverings 

The slope inequality was first proved for hyperelliptic fibrations by 
Persson [81] and Horikawa [42], Part V. They used the double covering 
method which has been one of the important tools in the surface theory. 

Though our concern is in hyperelliptic fibrations, we start from a 
more general setting: Let f : S -+ B be a relatively minimal fibration of 
genus g 2: 2 and assume that a general fiber F has an involution which 
extends to an involution L of the whole S. We are in such a situation 
when f is a hyperelliptic fibration: Since the relative canonical map is a 
generically finite rational map of degree two, S has an involution which 
restricts to the hyperelliptic involution on F. 

Let p : S -+ S be the blowing-ups at all the isolated fixed points of 
(L)-action, and let [be the induced involution on S. Since the fixed locus 

of [is of codimension 1, the quotient space W := S / (£) is non-singular, 
and the quotient map S -+ W is a finite double covering. Then the 
branch locus R is a non-singular divisor on W, and we can find a line 
bundle L on W satisfying [ R] = 2L and such that S is isomorphic to the 
double covering of W constructed in the total space of L in the usual 
way. 

s 
Pl 
s 

f~ ,/n 
B 

w 
l 
w 

Since W has a natural fibration over B, say of genus h, we can take a 
relatively minimal modeln : W -+ B. Such W is unique when h 2: 1. 
On the other hand, if h = 0, that is, W is a ruled surface over B, a 
relatively minimal model is not unique, and we can move from a model 
to another via elementary transformations (that is, blow up a fiber at a 
point and then blow down the proper transform). 

We let R be the direct image of R in W as divisor. Then R is a 
reduced divisor with a natural line bundle L satisfying 2L = [R]. Hence 
we can construct in the total space of L a normal surface S' birational 
to S, in the usual way. Note that, by Hurwitz formula, we have 

(2.2.1) 2g- 2 = 2(2h- 2) + Rr, 

where r is a general fiber of 7f. 

Since S' is a divisor in a non-singular threefold, the dualizing sheaf 
ws' is an invertible sheaf. More concretely, it is induced by K w + L. 



Pencils of Curves 

We can calculate the numerical invariants of f' : S' ---+ B as follows: 

Since 

we get 

x(Ow) + x(Ow(-L)) 
2x(Ow) +R2 /8+KwR/4 

Xi' 2x(Ow) + R 2 /8 + KwR/4- (g -1)(b- 1) 
2xn + R 2 /8 + KwR/4- (b -1)Rr/2 
2Xn + R 2 /8 + Kw;BR/4. 

From these, it follows 

(2.2.2) 

15 

The singularities of S' can be resolved in a natural way by the canon­
ical resolution (or even resolution). Let P be a singular point of R of 
multiplicity m 1. Let 0"1 : W1 ---+ W be the blowing-up at P, E = 0"1 1(P) 
the exceptional (-1)-curve. Then R1 = O"~R- 2[mi/2]E is a reduced 
divisor and [R1] = 2£1, where £ 1 = O"~L- [mi/2][E]. Furthermore, 
the double covering of W1 branched along R 1 (constructed in LI) has a 
birational morphism onto S'. Continuing this process, we get a sequence 

Sn ---+ Sn-1 ____, S' 
(2.2.3) ! ! ! 

Wn ---+ Wn-1 ---+ w 
such that the branch locus Rn of Sn ---+ Wn is non-singular. If we 
choose such a sequence of minimal length, then it can be shown that Sn 
is isomorphic to S. Let m1, ... , mn denote the multiplicity sequence. 
Then a calculation shows that the differences of invariants are given by 

(2.2.4) 
1 n mi mi 

XJ' - XJn = 2 L [ 2] ( [ 2] - 1) ' 
i=1 

(2.2.5) 
n 2 

w~, /B- Kt;B = 2 L ( [~i J - 1) 
i=1 

Therefore, letting E denote the number of blowing-downs to obtain S 
from S, we get 

n 

(2.2.6) K~/B- 4xt = 2(Ktv;B- 4xn) +Kw;BR+ L ( [~i] - 1) + E 

i=1 
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We assume now that f is a hyperelliptic fibration. By (2.2.1), we 
have Rr = 2g + 2. Since we can writeR= -(g + 1)Kw;B +aT with 
some integer a, it follows from (2.2.2) that 

2 4(g- 1) 
WS'/B = XJ' g 

because K'fv18 = X1r = 0. (N.B. Curiously enough, the equality always 
holds in the slope inequality for the singular model f' : S' --+ B.) Then, 
taking the contribution of the resolution into account, we get 

(2.2. 7) 2 4(g -1) 2""" ([mi] ) ( [mi]) Ks;B= g Xt+-gL..t 2 -1 g- 2 +E . 
• 

We can take W so that all the mi satisfy mi::; g+2 (e.g., [99]). It follows 
that all the summands in the correction term are non- negative, and we 
get the slope inequality. It may be clear that the correction term can be 
localized to give us the Horikawa index. Needless to say, the property 
(*) in §2.1 is "hyperelliptic" here. 

Endo [31] defined topologically the local signature for hyperelliptic 
fibrations. In analytic case, it coincides with ours obtained as in §2.1 
using the Horikawa index (see [2] and [31]). 

Remark. When h = 1, it follows from (2.2.6) that K~/B 2: 4xt 
as shown by Barja in [12]. 

2.3. Fibrations of general Clifford index 
-relative canonical algebra 

The second method to get a slope equality is the use ofthe relative 
canonical algebra ({23], [83], [56]). 

For any non-negative integer n, put Rn = f*(w~78 ). These are nef 
locally free sheaves satisfying 

and 

deg'R,. ~ { 

1 
g 

(2n- 1)(g- 1) 

0 

X! 

if n = 0, 
if n = 1, 
if n 2: 2 

!n(n -1)K~/B +X! 

if n = 0, 
if n = 1, 
if n 2: 2. 
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The relative canonical algebra for f is the OB-algebra 

It is attractive for a naive reason that its Proj gives the relative canonical 
model. 

Let X be a non-singular projective curve of genus g ;::: 2. The 
Clifford index of X is defined as 

Cliff(X) = min{degL- 2dim ILl I L E Pic(X), h0 (L) > 1, h1(L) > 1} 

when g;::: 4. If g = 2, we put Cliff(X) = 0. If g = 3, we put Cliff( X) = 0 
or 1 according to whether X is hyperelliptic or not. See [27] for further 
properties of the Clifford index. The Clifford index of a fibration f : 
S ~ B, which we denote by Cliff(!), is defined as that of a general fiber 
F. Then we have 0 ~Cliff(!) ~ (g- 1)/2. 

Let f : S ~ B be a fibration with Cliff(!) > 0. The contraction 
with the identity in H 0 (B, End(R1 )) and the multiplication define an 
OB-linear map di,j: /\iR1@Rj ·~ /\i-1 R 1@Rj+l satisfying Im(di,j) C 

Ker(di-1,j+l)· Hence, as in [34], we can consider a Koszul complex 

0 c+1-n ion -n d;,c+l-; i-1-n -n 
~ 1\ '~1 ~ · · · ~ 1\ '~1 @ '~c+1-i ____. 1\ '~1 @ '~c+2-i ~ 

for c = Cliff(!). We put 

Ki,j = Ker(di,j)/Im(di+1,j-1)· 

Then Ki,c+l-i is a torsion sheaf for 0 ~ i ~ c- 2, because the Koszul 
complex 

(2.3.1) 
f\i+1 H 0 (KF) Q9 H 0 ((c- i)KF) ~ 

1\i H 0 (KF) Q9 H 0 ((c- i + 1)KF) ~ 
/\i-1 H 0 (KF) Q9 H 0 ((c- i + 2)KF) 

is exact at the middle term for any general fiber F by [34]. The differen­
tial dc+l,O : f\ c+l R1 ~ f\ c R1 @ R1 is clearly injective and the quotient 
is locally free. We have 



18 T. Ashikaga and K. Konno 

where dc,1 denote the natural map induced from dc,1· It is locally free 
being a subsheaf of a locally free sheaf on a smooth curve. We have 

By using formulae giving rank and degree of Rn, we get 

(2.3.2) 

K 2 -
SjB-

(g - 1) (g + 2 - 2c) 
g- c XJ 

g- 3 i+1 ( ) 
-1 c+1 

- c- 1 ~(-1) deg(Kc+1-i,i)· 

Note that, if Green's conjecture [34] on syzygies of canonical curves 
holds, Kc-1,2 is a torsion sheaf for c = Cliff(!). If Kc-1,2 is torsion, 
then the rank of Kc,1 is given by 

(2.3.3) 
_ ( g - 1 ) (g - 1 - c) (g - 1 - 2c) 

rk(Kc 1) - 1 . 
' c- c+1 

We now assume that g is odd and Cliff(!) = c = (g- 1)/2. Then 
Green's conjecture is true ([40] and [88]) and we see that /((9 _ 3);2,2 is 
torsion. Furthermore, we have /((g-1);2,1 = 0 because its rank is zero 
by (2.3.3). Hence (2.3.2) gives us: 

2 6(g-1) "' -1 
Ks;B = XJ + LJ Ind(f P), 

g + 1 PEB 

(2.3.4) 

where 

-1 (g+l)/2 

-1 ( g - 3 ) "' i Ind(f P) := (g- 3)/2 ~ (-1) length(JC(9 +1);2-i,i)P· 

We can show ([56]) that Ind(f-1 P) is non-negative, and it is zero only 
if IKFI has no base points and (2.3.1) with i = (g- 3)/2 is exact at the 
middle term for F = f-1 P. Therefore, we get the slope equality (2.3.4) 
with respect to the condition (*): Cliff(F) = (g- 1)/2. 

We can define the local signature as described in 2.1. But, this time, 
it is not known whether our local signature coincides with the topological 
one introduced by Furuta [33]. 

Remarks. (1) We emphasize here that a critical fiber is not nec­
essarily a singular fiber and vice versa. For example, let f : S ___, B be 
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a Kodaira fibration of genus three. Then K~/B = 12Xt· On the other 
hand, since Cliff(!) = 1, we have 

K~/B = 3xt + L Ind(f- 1P) 
PEB 

by (2.3.4). Hence 

L Ind(f- 1 P) = 9Xt· 
PEB 

Recall that any fiber of f is non-singular. It follows that f has ex­
actly 9xt non-singular hyperelliptic fibers (counting infinitely near ones) 
which are critical. 

(2) Beside its importance, the structure of the relative canonical 
algebra is not well understood. Miles Reid conjectured that it is gen­
erated in degrees lesser than or equal to three, and related in degrees 
lesser than or equal to six (1-2-3 conjecture [83]). It is shown in [58] 
that the relative canonical algebra is generated in degrees lesser than 
or equal to four, and that the 1-2-3 conjecture breaks down in one case 
that the fiber is a multiple fiber whose canonical linear system contains 
a ( -1) elliptic cycle as a fixed part. The annoying exception actually 
occurs [59]. 

(3) To prove the uniqueness of the local signature, Nariya Kawazumi 
kindly suggests us to argue as follows. Let M 9 be the moduli space of 
curves of odd genus g geq3, and let D be the locus on which the Clifford 
index drops, that is, D is the "k-gonallocus" in the sense of [38]. Recall 
that H 2 (M 9 , Q) ~ Q by Harer's theorem [36] and is generated by the 
1st Morita-Mumford class ([74], [71]). Let T denote Meyer's signature 
cocycle [68]. Then it is known the class -3[T] E H 2 (M 9 ) is the 1st 
Morita-Mumford class [72]. What we saw above is that [T] goes to 0 via 
the natural map H 2 (M 9 )-+ H 2 (M 9 \D). Since it factors as 

we see that [T] also goes to 0 in H 2 (1r1 (M 9 \D)). It follows that there 
exists a function TJ : 1r1 (M 9 setminusD) -+ Q such that TJ goes to T. 

Then to show the uniqueness, we only have to show that H 1(M 9 \D)= 
0. 

Consider the exact sequence of cohomology groups with coefficients 
in Q: 
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Since we have H 1(Mg) = 0 by [36], it is also sufficient to see that 
H 2 (Mg, Mg \D) :::=: Q. 

For g = 3, the argument works, because M 3 \Dis nothing but the 
moduli of smooth plane quartics. 

(4) We imagined that the Clifford index gives us a good condition 
(*) to get a slope equality. But the above computation implies that the 
answer seems to be negative. For example, consider a fibration of even 
genus with general Clifford index g/2- 1. Then (2.3.2) gives us 

g/2 
2 - 8(g- 1) ( g- 3 ) "'( )i+1 ( ) Ks;B- X!- / 2 2 L.J -1 deg !Cg/2-i i . 

g + 2 g - i=1 , 

However, it contains the part involving 1Cg;2- 1 ,1 which has not been 
localized yet. So, we will need some additional (or even, completely 
different) assumptions. 

Problem. Find a nicer condition (*) giving us a slope equality. 

Recently, Yoshikawa [100] defined the local signature for general Lef­
schetz fibrations. His generality condition (*) is the vanishing of all 
even theta characteristics. However, it seems hard to induce the slope 
equality from his local signature, since we must compute all possible val­
ues a(F) to get>. as in (2.1.1). We hope that his or one of the conditions 
given by Furuta [33] is the right answer to the above question. 

§3. Topological classification of degenerations 

3.1. Moduli point and topological monodromy 
Here we study singular fiber germs, especially their topological na­

ture. 
Let f : S ---> b. be the normally minimal model of a degeneration 

of genus g, with a unique singular fiber F = f-1 (0). That is, it is the 
model such that the singularities of the reduced scheme of F are at most 
normal crossing and any ( -1) curve in the components of F meets other 
components of F at more than two points. Note that such a model 
uniquely exists among the birational equivalence class of f. 

Recall that, in the study of degenerations of elliptic curves by Ko­
daira [51], the notion of the limit of the period and the monodromy in 
SL(2; Z) are essential. We introduce their candidates in our context: the 
moduli point and topological monodromy. 
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Moduli point. Let M 9 be the moduli space of smooth curves of 
genus g. We can associate to our normally minimal model f : S ----> b. 
the moduli map a! : b.* ----> M 9 , where b.* = b.\ {0}. Since b. is 
one-dimensional, a f extends to a morphism 

where M 9 is the moduli space of stable curves of genus g [29]. We call 

at(O) the moduli point of f. Let J: S----> b. be the stable reduction of 
f. (Namely, let b. ----> b. be the cyclic covering between disks branching 
only at the origin so that the desingularization of the pull back of f 
by this map induces a semi-stable family S' ----> b.. We obtain S from 
S' by contracting chains of ( -2) curves. Thus S has at most rational 
double points of type A as its singularity.) Then the stable curve which 

corresponds to the moduli point off coincides with the fiber j-1 (0). 

Topological monodromy. Let r 9 be the mapping class group of 
genus g. Choose to E b.* and put Fo = f- 1 (to). The monodromy ac­
tion of 1!'1 (b.*, t 0 ) ~ Z induces modulo isotopy an orientation-preserving 
homeomorphism ¢ f : Fo ----> Fo. Since the change of the base point t0 

corresponds to the conjugation in r 9 , f determines an element [ ¢ 1] of 

the set f 9 of all conjugacy classes of r 9 . We call [<Ptl the topological 
monodromy of f. 

Obviously, one can associate another monodromy: By choosing a 
suitable symplectic 1-homology basis of F0 , we can define the homomor­
phism ry: r 9 ----> Sp(2g, Z). We call the equivalence class of ry(¢1) in the 
conjugacy class of Sp(2g, Z) the homological monodromy of f. 

An advantage of considering the topological monodromy is that it 
can distinguish degenerations whose ¢/s are contained in the kernel 
of the map ry, i.e. the Torelli group (see also [6]). For instance, we 
consider the degeneration of genus 2 whose singular fiber is a stable 
curve consisting of two nonsingular components with one node. Then 
the topological monodromy is the integral Dehn twist along a separated 
curve, i.e. a simple closed real curve on the Riemann surface whose 
complement is disconnected. Since this curve does not intersect the 
usual symplectic homology basis, the homological monodromy is trivial. 
(See also [76], p. 350.) 

From now on, monodromy means topological monodromy, and we 
sometimes identify it with the representative homeomorphism. 
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3.2. Namikawa-Ueno's example 
Contrary to the case of degenerations of elliptic curves [51], the 

singular fiber F (as a one-dimensional non-reduced analytic space) in 
general can determine neither the analytic structure nor the topological 
structure of the degeneration itself when g ~ 2. In some sense, this 
phenomenon is analogous to the fact that the exceptional curve of the 
good resolution of an isolated surface singularity does not necessarily 
determine the germ of the original singularity itself. 

Namikawa-Ueno found the series of examples implying the above 
fact. Among them, the simplest ones are of type 2!0 _ 0 in [77], p.159, 
and of type IIL0 in [77], p.l72. Namely, there exist two degenerations 
fi :si-t~ (i = 1, 2) of genus 2 such that 

(i) Fi = fi-1(0) (i = 1, 2) are mutually isomorphic and each of them 
is written as 2C1 + 2C2 + C3 + C4 where C1 is a nonsingular elliptic 
curve, Cj (2 :=:; j :=:; 4) are nonsingular rational curves, C? = Ci = -1, 
c; = Cr = -2 and C1C2 = C2C3 = C2C4 = 1, 

(ii) "iifl (0) is a stable curve consisting of two nonsingular components 
with one node, while ah(O) is an irreducible stable curve with one node, 

(iii) ¢!1 (resp. ¢!2) is of order 2, and is the rotation of angle 1r 

around the diameter of a separated curve (resp. a non-separated curve). 
These homeomorphisms are not conjugate each other in r 2 (see also [64], 
§7). 

Here we reconstruct these examples. The method is nothing but the 
"converse process of stable reduction", and is a special case of [87], Part 
II. 

We first construct fi. Let E be an elliptic curve. We fix a point 
Po on E. Let U be a small open disk neighborhood of Po in E. Let 
Ei (i = 1, 2) be two copies of E, and we fix the identification maps 
Ti : E -t Ei. Put pi = Ti(Po) and ui = Ti(U). Let Zi be the local 
coordinate on Ui such that Pi = {zi = 0} and Ui = {lzil < 1}. Let ~i 
(i = 1, 2) be two copies of a unit disk defined by {ti E Clltil < 1}. We 
put 

Vi= {(zi, ti) E ui x ~i 1 o:::; lzil:::; ltin· 

Let W be an analytic subset in a three-dimensional polydisk defined by 

Then W has an A1-singu~rity at Q = {(x1,x2,t) = (0,0,0)}. We 
obtain an analytic surface s1 by patching up three pieces E1 X ~1 \ v1' 
E2x~2\ V2 and Win the following way: Patch W\{Q} and U1 x~1 \V1 
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by X1 = Z1, X2 = ti/z1 and t = t1· Patch W\ {Q} and u2 X L}.2 \ v2 by 
X2 = _:2, :_:1 = t§/ Z2 and t = t2. Then :'!e have a natural holomorphic 
map h : S1 --+ L}.. The general fiber of h is a smooth curve of genus 2, 
since it is a connected sum of two tori. The singular fiber J;_- 1 (0) is a 
stable curv:: of genus 2 consisting of two smooth components with one 
node, and S1 has an A 1-singularity at Q. 

Now we define three maps E1 X L}.1 \ v1 --+ E2 X L}.2 \ v2' E2 X L}.2 \ v2 --+ 

E1 X L}.1 \ v1 and w--+ w by (P, tl) f-7 h 0 T11(P), -t2), (P', t2) f-7 

(T1 o T21(P'),-t1) and (x1,x2,t) f-7 (x2,x1,-t), respectively. These 

maps are well-patched and define an involution :r: 81 --+ 81 . 

Let tr : sf := 8d (:r) ---+ L}. be the quotient of h by T where the 
base disk is the quotient space of the original disk by the involution 
t --+ -t. Then it is easy to see that the resolution space S1 of sf induces 
the desired degeneration h : s1 --+ L}._ 

Next we construct h- Let E' be another elliptic curve so that there 
exists a free action p : E' --+ E' of order 2 such that the quotient 
of E' by p coincides with E. We fix two points Qi (i = 1, 2) on E' 
which satisfy p(Q1) = Q2 so that Qi goes to P0 by the quotient map 
E' --+ E. We fix an open disk neighborhood Uf of Qi which satisfy 
p(U{) = U~ and U{ n U~ = 0. We define the closed region V/ of Uf x L}. 

similarly as in the previous example. We obtain an analytic surface 
82 by patching two pieces ( E' x L}.) \ (V{ U V;) and W along the locus 
(U{ x L}. \ V{) U(U~ XL}.\ V;) and W\ { Q} similarly. We obtain the family 
h : 82 --+ ~where J;- 1 (0) is an irreducible stable curve of genus 2 with 

one node. S2 has ~natural involution so that the resolution space of the 
quotient space of s2 by this involution induces the desired degeneration. 

3.3. Matsumoto-Montesinos' theorem and classification 

In order to study the monodromy of degenerations, we first review 
the theorem of Thurston [92] about the classification of elements in r 9 . 

Let I; be a Riemann surface of genus g with k disk boundaries with 
negative Euler number, i.e. g + k - 2 > 0. Let ¢ : I; --+ I; be a 
homeomorphism. (Homeomorphism is always assumed to be orientation­
preserving.) We call ¢ is reducible by an admissible system of cut curves 
r if; 

(a) r is a disjoint union of simple closed curves on I:, 
(b) any connected component of the complement of r has negative 

Euler number, 
(c) ¢ preserves r as a set. 
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Thurston's theorem Any homeomorphism 1> of I; is isotopic to 
a diffeomorphism 1>' of I; such that, either 

(i) ¢' is periodic, i.e. there exists a positive integer n such that ( 1>')n 
is the identity map, or 

(ii) ¢' is pseudo-Anosov, i.e. there exists a real number A > 1 and 
a pair of transverse measured foliations F 8 and Fu such that 1>'(F8 ) = 

1/ AF8 and 1>' (Fu) = .AFu, or 

(iii) 1>' is reducible by a certain admissible system r of cut curves. 
r has a 1>' -invariant annular neighborhood A(f) so that the complement 
I;\ A(f) has a decomposition llj I;(1) (I;(i) may be disconnected) which 
satisfies; 

(iiia) ¢' preserves each component I;(i), 

(iiib) each component map 1>'1EUJ : I;Ul----+ I;(i) satisfies (i) or (ii). 

If all the component maps of 1>' satisfy (i), we call¢ pseudo-periodic. 
Back to our situation, we consider (local1-parameter) degenerations 

of curves of genus g 2: 2. It is known that the monodromy of degenera­
tion is pseudo-periodic ( cf. [26], [46]). Moreover this map is of negative 
twist, i.e. has a property of one-sided chirality ([85], [30]). More pre­
cisely, the power of this map which stabilize any curve of the admissible 
system induces on its annular neighborhood an integral Dehn twist of 
right-hand direction. 

Let 5 9 be the set of topological equivalence classes of degenerations 

in 2.1, and let :P;; be the subset of rg whose elements consist of the 
conjugacy classes of pseudo-periodic maps of negative twist. By taking 
the monodromy, we have a natural map 

Then: 

Matsumoto-Montesinos' theorem The map p is bijective. 

We summarize the key points of their proof [64]. For any 1> E f3;;, they 
construct the degeneration whose monodromy coincides with 1> in the 
following way. Among the isotopy class of ¢, they choose an extremal 
element which is in some sense "the nearest" to a locally holomorphic 
map, and is called the superstandard form of¢. According to the nature 
of the superstandard form, they construct a certain topological covering 
map 
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form a Riemann surface ~9 of genus g. Vq, is the topological underlying 
space of a Riemann surface with nodes, and a multiplicity is attached to 
each component of it. The map 1rq, is generically finite-to-one, but some 
simple closed curves collapse to points. They call Vq, the generalized 
quotient space of ¢, and call 1r q, the generalized quotient map of ¢. 

They construct a fiber bundle of Riemann surfaces J, : V, ---> s; = 
{ t E C I It! = E} such that the monodromy of J, coincides with the 
superstandard form of ¢ and the "diameter of the vanishing cycle" tend 
to 0 if E f--+ 0. They put the generalized quotient space Vq, over the origin, 
and associate the fiber space 

f naturally admit a complex structure and is the desired degeneration. 
Especially Vq, is nothing but the singular fiber of f (see also [18], [94]). 

We discuss more closely around this theorem. First we assume that 
¢ is a periodic map of order n. Let P be a point in ~9 . There is a 
positive integer a(P) such that the points P, ¢(P), · · · , ¢a(P)-l(P) are 
mutually distinct and ¢o:(P) (P) = P. We have a(P) = n for a generic 
point P. While if a(P) < n, we call P a multiple point of¢. 

Let C be an oriented simple closed curve on ~9 . (We write it as 
C when we want to emphasize its orientation.) Let m = m( C) be the 
smallest positive integer such that ¢m(C) = C, i.e. ¢m(c) = C as a 
set and ¢= preserves the orientation of C. The restriction ¢=ic is a 
periodic map of order, say, ,\ ~ 1. Note that n = m.A. Let Q be any 
point on C, and suppose that the images of Q under the iteration of¢= 
are ordered as (Q,¢="(Q),¢2="(Q), ... ,¢<>--l)=a(Q)) when we view 
in the direction of C, where a is an integer with 0 :::; a :::; ,\- 1 and 
g.c.d(a, .A) = 1. Let 8 be the integer which satisfies 

a8 = 1 (mod .A), 0 :::; 8:::; .A- 1. 

Then the action of ¢m on C is topologically equivalent to the rotation of 
angle 2n8/ ,\ with a suitable parameterization of C as an oriented circle. 
Nielsen [78] called the triple (m, .A, a) the valency of C with respect to 
¢. The valency of a multiple point P is defined to be the valency of 
the boundary curve 8Dp, oriented from the outside of an invariant disk 
neighborhood Dp of P. 

Nielsen's theorem ([78], §11) says that the conjugacy class of a peri­
odic map is completely determined by the order n and the total valency, 
i.e. the set of valencies of multiple points. 
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In order to determine the total valency, the following method is 
useful (cf. [9], §1). By Kerckhoff's theorem [50], we may assume that 
</> is an analytic automorphism under a certain complex structure. Let 
II: ~9 ----+ ~g' be the quotient n-fold cyclic covering of¢, where g' is the 
genus of the base. We denote by ,\1 , ... , Az the ramification indices of II 
and let (n/Ai,Ai,a-i) (1::::; i::::; l) be the valencies of</> of the ramification 
points. By combining the following facts, we can determine the total 
valency: 

(i) (Hurwitz formula) 2(g- 1)/n = 2(g' -1) + ~~= 1 (1-1/Ai). 
(ii) (Nielsen's integral condition [78], ( 4.6)) ~l= 1 a-i/ Ai is an integer. 
(iii) (Wiman [95]) n ::::; 4g + 2. 
(iv) (Harvey [39]) Set M = l.c.m(-\1 , ... , Az). Then; 

(iv-a) l.c.m(-\1 , ... , .\:, ... , Az) = M for all i, where.\: means the omis­
sion of Ai. 
(iv-b) M divides n, and if g' = 0, n = M. 
(iv-c) l -1- 1, and l;::: 3 if g1 = 0. 
(iv-d) If 21M, the number of -\1 , ... , Az which are divisible by the max­
imal power of 2 dividing M is even.· 

Example 3.1. The classification of non-identical conjugacy classes 
of periodic maps of genus 1 and 2 is as follows. The result is classical 
for g = 1. We apply the above criterion for g = 2. For simplicity, if we 
have the total valency (nj Ai, Ai, a-i) (1::::; i::::; l), we symbolically write it 
as a-I/-\1 + ... + a-z/Az. (We do not specify g' when g' = 0.) 

(i) g = 1: 

1. n = 6; 1/6 + 1/3 + 1/2. 5/6 + 2/3 + 1/2. 
2. n = 4; 1/4 + 1/4 + 1/2. 3/4 + 3/4 + 1/2. 
3. n = 3; 1/3 + 1/3 + 1/3. 2/3 + 2/3 + 2/3. 
4. n = 2; 1/2 + 1/2 + 1/2 + 1/2. 
5. g' = 1, n is arbitrary and II is an unramified covering. 

(ii) g = 2: 

1. n = 10; 1/10+2/5+ 1/2. 3/10+1/5+ 1/2.7 /10+4/5+ 1/2. 9/10+ 
3/5 + 1/2. 

2. n = 8; 1/8 + 3/8 + 1/2. 5/8 + 7/8 + 1/2. 
3. n = 6; 1/6 + 1/6 + 2/3. 5/6 + 5/6 + 1/3. 1/3 + 2/3 + 1/2 + 1/2. 
4. n = 5; 1/5 + 1/5 + 3/5. 1/5 + 2/5 + 2/5. 2/5 + 4/5 + 4/5. 3/5 + 

3/5 + 4/5. 
5. n=4,1/4+3/4+1/2+1/2. 
6. n = 3, 1/3 + 1/3 + 2/3 + 2/3. 
7. n = 2, 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2. 
8. g' = 1, n = 2 and 1/2 + 1/2. 
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According to [64], we associate to the valency (m, >.,a) a sequence 
of integers ao > a1 > · · · > az = 1 such that 

ao = >.,a1 = a,aj+I +ai-l= 0 (modaj) (0 ~ j ~ l-1). 

We set mj = maj, and call m1; · · · , mz the multiplicity sequence of the 
valency. Then the "tail part" of the generalized quotient space is the 
open disk with multiplicity m 0 followed by a tree of IP'1 's with multiplicity 
m 1, · · · , mz meeting transversally (see [65], p.72, Figure 1). 

In the case of periodic maps, we can construct the generalized quo­
tient space V,p by patching all the tail parts of the total valency to the 
"body part" E9 ,. 

By this method, we can easily construct all the degenerations of 
genus 1 and 2 with periodic monodromy .;,from the datum in Exam­
ple 3.1. For instance, if g = 1, n = 6 and the total valency is 5/6 + 
2/3 + 1/2, then the multiplicity sequences are (6, 5, 4, 3, 2, 1), (6, 4, 2) 
and (6, 3). We connect the three trees to a rational component of mul­
tiplicity 6. This induces the degeneration of type I I* in [51]. The case 
g = 1, n = 6 and 1/6 + 1/3 + 1/2 corresponds to the normally minimal 
model of type II in [51]. The case g = 2, n = 8 and 5/8 + 7/8 + 1/2 
corresponds to type VI I* in [76], p.340, etc. The moduli points of these 
degenerations are smooth curves. (However we cannot determine the 
limit of the period matrix by this method, while it is possible by [76] for 
g = 2.) 

Next we assume that ¢ is a reducible pseudo-periodic map. We 
identify¢ with its representative ¢' in Thurston's theorem. Let ri be a 
simple closed curve of the admissible system r of ¢. Let f3i the small­
est positive integer such that ¢f3; (I\) = f\, and let Li be the smallest 
positive integer such that ¢L; is an integral Dehn twist (say ei-times). 
According to [78], we define the screw number of ri by s(ri) = eif3d Li. 
If f3i is even and ¢f3;/2 (fi) = -fi (i.e. ¢!3;/2 preserves ri as a set but 
reverses its orientation), we call ri amphidrome. Otherwise, we call it 
non-amphidrome. 

Let Bk be a connected component of E9 \ r. Let bk be the smallest 
positive integer such that </Jbk stabilizes Bk. We call the periodic map 
¢bk IBk the stabilized component map of ¢ for Bk. Let G(r) be the 
extended partition graph ([64]), i.e. the vertex VBk of G(r) corresponds 
to a component Bk and the edge eri corresponds to a curve rj , and 
erJ is connected to VBk if rj is a boundary of Bk. We apriori give an 
orientation on eri in a suitable way. Note that, if rj is amphidrome, 
then the action of ¢f3;/2 to erJ changes its orientation. 
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Nielsen and Matsumoto-Montesinos' theorem ((79], (64]) says that 
the conjugacy class of a pseudo-periodic map is completely determined 
by 

(i) the set of stabilized component maps, 
(ii) the set of screw numbers, 

(iii) the action of the map to the extended partition graph. 

The generalized quotient space Vc/> is constructed as follows: We first 
construct the "parts" of vc/> by the data (i), and then combine these parts 
by the datum (ii) and (iii). 

We explain this process explicitly by the following simple examples 
(compare with (77], pp.158-169): Let r be a separated simple closed 
curve on a Riemann surface ~2 of genus 2. We write 

where ~(i) (i = 1, 2) is a torus with one disk boundary a~(i) and A(r) 
is an annulus around r. The graph G(r) consists of two vertices VE(lJ 

and VE(2J which are combined by an oriented edge er. The action of ¢ 
to G(r) is either (a) the identity, or (b) of order 2 and is generated by 
the permutation ( VE(lJ, VE(2J) reversing the orientation of er. 

Assume (a). We have a closed torus ~(i) by patching a disk U on ~(i) 

along the boundary and have a periodic homeomorphism ([Y) : ~(i) ----+ 

~(i) which is an extension of the component map cf>b,J (i = 1, 2) so that 

ii)lu has a unique multiple point. The total valency of(j}i) is one of the 
table in Example 3.1. For example, we assume that the total valency of 

il) (resp. i 2)) is 5/6 + 2/3 + 1/2 (resp. 2/3 + 2/3 + 2/3). Then the 
valency of the curve a~(l) = au (resp. a~(2) = au) is automatically 
5/6 (resp. 2/3). The two parts of Vcf> are degenerate elliptic curves of 
type I I* and of type IV*. We patch them as follows: Put 

K = -5/6 - 2/3- s(r). 

Note that the screw number s(r) is non-positive since ¢ is of negative 
twist. Then K is an integer which satisfies K ~ -1 ((64]). If K > 0, 
we have the sequence (6, 5, 4, 3, 2, 1, 1, · · · , 1, 1, 2, 3) by adding the the 
multiplicity sequences of 5/6 and 2/3 to (K- 1) times of 1. If K = 0, 
the sequence is (6,5,4,3,2,1,2,3). If K = -1, we shqrten the original 
two sequences and get (6,5,4,3,2,3). We obtain Vcf> by combining the 
above two parts along the tree of smooth rational curves which have the 
above multiplicity sequence. Therefore we have degenerations of type 
II*-IV*-m and of type II*-IV*-a in (77], p.164, 165. 
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Assume (b). Then (¢2 h:,<;> (i = 1, 2) are the stabilized compo­
nent maps. The total valencies of these maps coincide with each other. 
Suppose it is 3/4 + 3/4 + 1/2, for instance. Then the valency of each 
boundary curve is automatically 3/4. Since r is amphidrome, we use 
the "tail of type D", i.e. whose dual graph is a Dynkin diagram of type 
D (see [65], p.73, Figure 2). We obtain Vq, from the double multiple of 
the degenerate elliptic fiber of type II I* by adding the tail of type D. 
We consequently get the degeneration of type 2III*-m in [77], p.168. 
The other cases are similar. 

Lemma 3.2. Matsumoto-Montesinos' theorem induces the stable 
reduction theorem. 

Proof. (cf. [9], §4) Let ¢J be the monodromy of a given degen­
eration f : S --+ .6.. Since ¢J is pseudo-periodic, there exists a positive 
integer N such that ¢f is an integral Dehn twist along the annular 
neighborhood of the admissible system r q, of cut curves of ¢. Since all 
the component maps of ¢f are trivial, the generalized quotient space of 

¢f is a semi-stable curve. Let 1: S--+ .6. be the desingularization of the 
pull back of f by the cyclic covering .6. --+ .6. given by t t--t tN. Since the 
monodromy of 1 coincides with ¢f, 1 is a semi-stable family. There­
~re we obtain the stable family by contracting chains of ( -2) curves on 
S. Q.E.D. 

The proof especially says that the topological type of the stable 
curve which is the moduli point of f can be obtained by shrinking r q, 
to ordinary double points: In other words, the dual graph of the stable 
curve of the moduli point coincides with G(r). 

We can classify degenerations of curves of genus g topologically, 
according to the following steps: 

Step 1: Classify admissible systems r of cut curves on I::9 , i.e. 
classify stable curves of genus g. 

Step 2: Classify cyclic actions on G(r), i.e. classify cyclic actions 
on the dual graph of the stable curve. 

Step 3: Classify periodic maps of Riemann surfaces of genus ~ 
g with disk boundaries, i.e. classify cyclic analytic automorphisms of 
pointed curves of genus ~ g. 

Step 4: Classify pseudo-periodic maps, i.e. classify cyclic automor­
phisms of stable curves. 
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However, we must spend a lot of time in our life for the explicit 
calculations for large g. In the case of g = 3, we have: 

Proposition 3.3 ([9]). We can explicitly classify the singular fibers, 
the monodromies and the open stmta which contain the moduli points 
(i.e. the topological structure of the stable curves corresponding to the 
moduli points) at the same time for g = 3. 

For the proof, we apply the above four steps to each stable curve of 
genus 3. We have 42 types of such curves in total. 

Remarks. (1) If we restrict the map p : Sg ----+ Pi to a certain 
class of degenerations, what happens ? For instance, let S'l-lg be the 
set of topological equivalence classes of hyperelliptic degenerations (i.e. 
degenerations whose general fibers are hyperelliptic curves). Let 7-lg be 
the conjugacy classes of the hyperelliptic mapping class group of genus 
g, i.e. consisting of elements of r g which commute with the hyperelliptic 
involution. Then we have a natural map 

p' : S'l-lg ----+ 7-lg n f3;-. 
Endo's question asks whether p' is bijective. Since Ishizaka [48] has 
classified hyperelliptic degenerations of genus 3, we can expect an answer 
at least in this case. 

(2) Historically Nielsen [79] first studied pseudo-periodic maps un­
der the name "surface transformation class of algebraically finite type". 
From the reconstruction of Thurston's theorem by Bers [17], function 
theorists usually call a non-periodic pseudo-periodic map (resp. peri­
odic map) a map of parabolic type (resp. map of elliptic type). 

Contrary to the local monodromy case, if we consider the global 
monodromy of a !-parameter degeneration, there really appear various 
classes in the above classification of r g ([47], [84]). The systematic study 
in this field seems to be untouched and will be interesting. 

§4. Morsification of degenerations 

4.1. Definition of Morsifications 
{A) Classical Morsification. Let D., D.' be sufficiently small 

open disks. Let f: S ----+ D. be a degeneration of curves of genus g with 
a unique singular fiber F = f-1 (0). Assume that there exist a smooth 
threefold M and a holomorphic map f: M ----+ D. x D.' such that the 
restriction fu : Mu ----+ D. X { u} of f over u E D. satisfies the following: 
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(i) f0 coincides with f, 
(ii) fu ( u =J= 0) has l :2:: 1 singular fiber germs Fu,1, . .. , Fu,l· l is 

independent on u. 

Then we call f a splitting family of the germ F, and we symbolically 
write it as 

F ____, Fu,1 + · · · + Fu,l· 

Moreover, if l :2:: 2, we call fa proper splitting family of F. If l = 1, 
we call f an equisingular deformation of F. IfF has no proper splitting 
families even after equisingular deformations, then we call F an atomic 
fiber. We say that the germ F is morsified to the set of germs Sp 
{FClJ, ... , F(k)} if: 

(a) each F(i) (1:::; i:::; k) is an atomic fiber, 
(b) F is decomposed into the members of Sp via several splitting 

families. 

Namely, ifF is not atomic, F has a splitting family F ____, Fu, 1 + · · · + 
Fu,l· If one of the elements of { Fu, 1, ... , Fu,l} does not belong to SF, say 
Fu,io fl. Sp, then Fu,io has a splitting family Fu,io ____, F~, 1 + · · · + F~,l' 
(It is possible that Fu,io has an equisingular deformation Fu,io ____, F:::o 
and then has a proper splitting family F:::o ____, F~, 1 + · · · + F~,l' ). If 
F~,jo (1 :::; Jo :::; l') does not belong to Sp, then F~,jo has a splitting 
family. Continue this process. After finite steps, all the terminated fiber 
germs belong to SF. 

IfF is morsified to SF via only one splitting family, we say that F is 
directly morsified to SF. The set of atomic fibers S = { _F(l), ... , _F(l)} is 
called the complete system of atomic fibers of genus g if any fiber germ 
of genus g is morsified to a subset of S. 

Now, Xiao Gang's morsification conjecture [83] can be stated as: 

Morsification Conjecture. Any atomic fiber is either a fiber 
germ with only one Morse critical point or a multiple of a smooth curve. 

(B) Algebraic Morsification. We consider a certain condition 
(*) for smooth curves as in §2.1 with respect to which the Horikawa 
index is well-defined. Let f: S ____, ~ be a (*)-degeneration with the 
unique critical or singular fiber F = f- 1 (0). Assume that there exist a 
smooth threefold M and a holomorphic map f: M ____, ~ x ~' such that 

(i) f0 coincides with f, 
(ii) fu ( u =J= 0) is a (*)-degeneration and has l :2:: 1 critical or singular 

fibers Fu,1, ... , Fu,l, where lis independent on u, 
(iii) (conservation of index) Ind(F) = 2:::~= 1 Ind(Fu,i)· 
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Then we call f a (*)-splitting family of F. In a similar way, we define 
(*)-atomic fiber, complete system of (*)-atomic fibers and so on. 

Question. Does the condition (iii) follow from (i) and (ii) ? 

(C) Topological Morsification. Let 1: S ---> D. be a holomor­
phic fibration between a complex surface S with boundary and a closed 
disk D. = { t E Cl Jtl ::; c: }, i.e., 1 is the restriction of a certain holomor­
phic fibration j(O): S(O) ---> D. (o) = { t E CJ Jtl < E + c:'} to D. C D. (O). 

Assume that F = f- 1 (0) is the unique singular fiber. 
Suppose that there exists another holomorphic fibration f': S' ---> 

D. with singular fibers F{, ... , F{ which satisfies the following: There ex­
ists an orientation-preserving diffeomorphism 1{: S ---> S' which com­
mutes with 1 and f' on the boundary, i.e., (!'1 88,) o Hl 8s = Flas· Then 
we say that F splits differentiably into F{, ldots, F{ ([63], Definition 3.4) 

and write F S F{ + · · · + F{. Based on this notion, we can similarly 
define c=-atomic fibers, c=-complete system of atomic fibers and so 
on. 

Lemma 4.1 ([3], §1). A classical splitting F---> Fu,l + · · · + Fu,l 

naturally induces a c=-splitting F S Fu,l + · · · + Fu,l whenever lui is 
sufficiently small. 

The proof is an analogue of the c= local triviality of the deformation 
space of complex manifolds without boundary. 

Historical remark. As to the classical Morsification, Moishezon 
[70] studied elliptic fibrations and proved that any Kodaira singular fiber 
is directly morsified to either: 

(a) an irreducible stable curve with one node, or 
(b) a multiple of a smooth elliptic curve. 

For the study of elliptic fibrations over multi-dimensional base via min­
imal model theory, see Nakayama [75]. 

As to the algebraic morsification, a systematic study has been done 
only for hyperelliptic degenerations. For g = 2, Horikawa [43] proved 
that, modulo fibers with Ind = 0, any critical fiber is directly morsified 
to a several number of a unique atomic fiber, i. e., the stable curve with 
two components with one node. We remark that this can be also shown 
by deforming the canonical algebra, since it is a complete intersection 
[67]. We will discuss further developements for hyperelliptic fibrations 
in §4.2. For non-hyperelliptic degenerations of genus three, we showed 
in Appendix of [57] that, modulo fibers with Ind = 0, any 2-connected 
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critical fiber is morsified to (smooth) hyperelliptic fibers of Horikawa 
index one, by deforming the canonical algebra. Similar calculations may 
be possible by using results in [67]. But, the following conjecture still 
remains open: 

Conjecture ([83]). The complete system of atomic fibers of non-
hyperelliptic degenerations of genus three consists of 

(a) an irreducible stable curve with one node, Ind = 0, 
(b) a smooth hyperelliptic curve, Ind = 1, 
(c) a stable curve with two components with one node, Ind = 2, 
(d) a double multiple of a smooth curve of genus two, lnd = 3. 

As to the topological morsification, topologists consider its analogue 
for a wider class of fibrations, that is, "locally analytic fib rations" ( cf. 
[63]). For instance, a good torus fibration ([62]) is such a generalized 
object of an elliptic fibration, and Matsumoto [62] and Ue [93] studied 
the Morsification problem for good torus fibrations. 

4.2. Hyperelliptic splitting families 

Here, according to [2] and [3], we construct some hyperelliptic split­
ting families and determine the complete system of hyperelliptic atomic 
fibers of genus three. 

We set the condition(*) in §2.1 to be hyperelliptic. Let f: S---> 6. be 
a hyperelliptic degeneration of genus g. Then a (*)-critical fiber off is 
necessarily a singular fiber. In fact, hyperelliptic curves do not specialize 
to a non- hyperelliptic curve via a deformation by the closedness of 
hyperelliptic locus in M 9 . Moreover, the notion of algebraic splitting 
family is almost equivalent to the notion of classical splitting family by 
the following: 

Lemma 4.2 ([3], §1). If a hyperelliptic singular fiber germ F splits 
as F--+ Fu,l + · · · + Fu,l, then 

l 

Ind(F) = 2:: Ind(Fu,l)· 
i=l 

Proof. By (2.1.3) with>.= 4(g- 1)/g, we have 

Ind(F) = 2g + 1 u(F) + g + 1 et(F). 
g g 
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On the other hand, Terasoma [89] shows that 

a(F) = atop(F), 

where atop(F) is the topological local signature of Endo citeEndo. It 
follows from Lemma 4.1 that 

l l 

atop(F) = L atop(Fu,i), eJ(F) = LeJ(Fu,i)· 
i=l i=l 

Therefore, we obtain the assertion. Q.E.D. 

Let f: S ~ ~ be .a hyperelliptic degeneration of genus g with the 
unique singular fiber F = f- 1 (0). As we explained in §2.2, f is deter­
mined by the branch divisor R on W = 1P'1 x ~. Let 1r: W ~ ~ be 
the natural projection. If a point P E R is a singular point of R or R 
has a component which is tangential to the fiber of 1r at P, we call P a 
bad point of R. Since f is smooth over~\ {0} by the assumption, bad 
points of Rare on f 0 = n-1 (0). 

Now one of our main methods constructing splitting families of f is 
to find a reduced divisor R on W = 1P'1 x ~ x ~' such that the restriction 
Ru = Rln>lx~x{u} over u E ~'satisfies the following: 

(a) Ro coincides with the original R, 
(b) The bad points of Ru (u =f. 0) are on several fibers of the projec­

tion 
7r u : JP'1 X ~ X { U} ~ ~ X { U}, 

(c) Let¢: M' ~ W be the singular double cover branched along R 
in the total space of the square root bundle of [R]. The natural 
map f': M' ~ ~ prirne induces a deformation of normal surface 
singularities. Then f' has a simultaneous resolution (after a base 
change if necessary), which gives us a splitting family. 

We describe a sufficient condition for (c). Let mt, ... , mn be the 
multiplicity sequence of the even resolution (2.2.3) of R. We re-order the 
sequence {[mi/2]} according to the usual ordering ;:::: to get a number 
sequence {hi}i=1, h1;:::: · · · geqhn. We put 

and call it the half multiplicity sequence of R. The half multiplicity 
sequence HM(Ru) of Ru is defined in the same way. If we have 

(c') HM(R) = HM(Ru) 
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for any u E ~', then the summation of the geometric genus of singular­
ities on the fiber of f' is preserved via the deformation by the formula 
(2.2.4). Therefore the condition (c') implies the condition (c) by Laufer's 
theorem [60]. 

In order to find R satisfying (a), (b) and (c'), we use the "pertur­
bation method on the way of its resolution process". We explain it by 
using the following example. (See also Example 3.6 and Figure 2 in [2].) 

Let (x, t) be the system of coordinates of W, where x is the inho­
mogeneous coordinate of lP'1 . Let R be the divisor on W defined by 

(x3 + t6n)(x- l)(x- 2)(x- 3) = 0. 

Then R has the unique bad point Q = {x = t = 0}, and we have 
foR = 6. The 2n-th branch divisor Rzn by the composition of blow­
ups cr2n o · · · cr1 : W2n ----t W with their centers are infinitely near to 
Q is nonsingular. We have H M(R) = {2, ... , 2, 1, ... , 1} (1,2 appears 

n-times). The double coverS of W2n branched along R 2n is nonsingular 
and the natural fibration T S ____, ~ has n (-I)-curves on j-1 (0). By 
contracting them, we get a semi-stable degeneration of genus two whose 
singular fiber F = f- 1 (0) consists of two smooth elliptic curves and n 
( -2)-curves. We have Ind(F) = n by (2.2.7). Horikawa [41] called Fa 
singular fiber of type rmln· 

Now let Rzk C Wzk (1 :S: k :S: n- 1) be the 2k-th branch divisor 
on the way of its resolution process. R 2k has an unique singular point 
Qzk on the exceptional curve Ezk by crzk, and the equation of Rzk at 
Qzk is written as (x') 3 + t6 (n-k) = 0 with respect to the natural local 
coordinates on a neighborhood U around Qzk E Wzk· 

We can define the divisor R on W 2k x ~' such that the equation of 
R in U x ~', with coordinates ( x', t, u), is written as 

(x')3 + (t- u)6(n-k) = 0. 

We resolve the singularities on the singular double cover branched along 
R simultaneously with respect to the base ~' by the relative version of 
the canonical resolution. Geometrically, this process is essentially the 
same as the following: 

Let R be the image of R by the contraction map w2k X ~' ----t 

Wx~'. Then the restriction Ru of R toW X {u} (u -=f. 0) has two 
bad points Q' and Q" on n-1 (0) and n- 1 (u), respectively. The typical 
equation of R is 

(x3 + t6k)(x3 + (t- u)6(n-k))(x- l)(x- 2)(x- 3) = 0. 
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We have 
HM(Ru) = {2, ... , 2, 1, ... , 1} = HM(R). 

Note that the contributions to HM(Ru) (u 1- 0) come from both Q' and 
Q", while the contributions to HM(R) come from Q only. Therefore, 
R satisfies the desired conditions (a), (b) and ( c'). The simultaneous 
resolution space induces the splitting family of type In into type Ik and 
type In-k· 

Of course, we can define R directly by the above equation in this 
special case. However, this argument, called a fission in [2], is useful for 
constructing more complicated hyperelliptic splitting families. 

Remark. The idea of the perturbation method on the way of its 
resolution process is originally used by A'Campo [1] for studying the 
Morsification of plane curve singularities. It is also applied to study the 
signature of the Milnor fiber of a type of normal surface singularities [8]. 

Assume that two reduced (possibly reducible) curves C1 and C2 on 
a nonsingular surface meet at a point Q. For a positive integer n, we 
say that C1 is n-tangential to C2 at Q if the following condition holds: 
Blow-up n-times successively at infinitely near points of Q. Then there 
exist a locally analytic component Ci of C1 at Q and a locally analytic 
component C~ of C2 at Q so that the proper transforms of q and C~ 
by the composition of these blow-ups still meet each other. Namely, Ci 
contacts C~ at Q of order at least n. We say that C1 is n-tangential to 
C2 if there exists a point Q such that C1 is n-tangential to C2 at Q. Let 
(W, R) be a representative of the branch curve of a germ F. If R contains 
ro, then we set Rhor := R- r 0 , and otherwise we set Rhor := R. We 
call Rhor the horizontal part of R. 

We call a representative (W, R) trivial if one of the following two 
conditions is satisfied: 
(i) Rhor intersects ro at (just) one point Q1 such that Rhor is not tan­
gential to ro at Ql, or 
(ii) Rhor intersects ro at (just) two points Q1 and Q2 such that Rhor is 
smooth at Q1 meeting transversally to r 0 , and Rhor is not tangential to 
ro at Qz. 

Otherwise, we call (W, R) a non-trivial representative. A trivial 
representaive (W, R) of F becomes a non-trivial representative after a 
finite number of elementary transformations. 

With this notation, we introduce some special classes of singular 
fiber germs. 

(i) Type Oo: R is smooth on Wand meets r 0 transversally except at 
one point P where the order of contact is two. Then the corresponding 
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singular fiber F is an irreducible stable curve with one node. If a rep­
resentative of the branch curve (W, R) has the above property, we call 
the fiber germ Fa germ of type 00 . 

(ii) Class I: R does not contain r 0 and meets r 0 transversally except at 
one point P which is an ordinary singularity of R of multiplicity 2g1 + 2, 
where g' is an integer with 1 :::; g' :::; [(g- 1)/2]. Then F is a stable 
curve of two components of genera g' and g - g' - 1 with two nodes. If 
a representative of the branch curve (W, R) has the above property, we 
say that the fiber germ F belongs to class I. In fact, this class contains 
[(g- 1)/2] types. 

(iii) Class II: R contains f 0 . We can produce a minimal succession of 
blow-ups (2.2.3) such that any singularity of Rn is ordinary. Denote by 
Ej (1 ::::: j ::::: n) the total transform of ro by Oj 0 Oj-1 0 ... 0 (Jl· Then 
the following conditions (a) through (e) hold: 

(a) Rn contains En, 
(b) Any singularity of Rn has even multiplicity, 
(c) For any 0 :::; i :::; n, any singularity of Ri with even multiplicity is 

ordinary, 
(d) If R is not !-tangential to fo at P, then the following condition 

hold: Blow-up at P. Then R 1 - E 1 is 3-tangential to E 1 , 

(e) If R has an ordinary double point, then Rhor is 3-tangential to 
ro. 

We say that a germ F belongs to class II if at least one nontrivial repre­
sentative (W, R) of the branch curve satisfies R =:> fo and moreover any 
nontrivial representative (W, R) of the branch curve with R =:> f 0 has 
the above conditions (a) through (e). 

Proposition 4.3 ([2]). Any hyperelliptic singular fiber germ F 
splits into the germs of members of type Oo, class I and class II via 
several proper splitting families. 

Moreover, ifind(F) = 0, then F splits into several germs of type Oo. 

We use several variations of the method of the fission to prove it. We 
do not know whether class II fibers have further proper hyperelliptic 
splitting families or not. However, if we admit equisingular deformations, 
some of them really split as follows. 

From now, we consider the case g = 3. We have the following list of 
fibers of type 00 , class I and class II (class II has three types II ( i), II ( ii) 
and II(iii)): 

Type 00 : F is an irreducible stable curve with one node. 
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Type I: F is a stable curve with two smooth elliptic components with 
two nodes. 

Type II(i): R = Rhar + r 0 has two bad points Qi (i = 1, 2). Q1 (resp. 
Q2) is an ordinary singularity of multiplicity four (resp. six). F is a 
stable curve consisting of a smooth elliptic component and a smooth 
genus two component meeting at a point. 

Type II(ii): R = Rhar + r 0 has two bad points Qi (i = 1, 2). Rhar has 
two smooth local components at Qi such that each of them contacts to 
r 0 to the second order. We can write F as F = 2C1 + 2C2 + 2C3 , where 
c1 and c3 are smooth elliptic curves and c2 is a smooth rational curve 
with C1C2 = C2C3 = 1, C'f = C~ = -1 and Ci = -2. 

Type II(iii): R = Rhar + ro has a unique bad point Q. Rhar has four 
smooth local components at Q such that each of them contacts to ro 
to the second order. F is a double multiple of a smooth curve of genus 
two. 

The Horikawa indices and the Euler contributions of these germs 
are: 

Oo I II (i) II (ii) II (iii) 
Ind 0 2/3 5/3 10/3 8/3 
ef 1 2 1 4 2 

If there were a proper splitting family of a germ in these classes, the 
possible case would be the following (a) or (b) by the conservation of 
invariants: 

(a) II(ii)---+ 00 + 00 + II(i) + II(i) 
(b) II(ii) ---+ I + II(iii) 

We can show that the case (a) is impossible by a certain monodromy 
argument, while (b) actually occurs. 

Lemma 4.4. There exists a type II(ii) fiber germ F such that F 
splits into type I and type II(iii). 

We have two proofs in [3], one of which is as follows. We first construct 

a hyperelliptic stable family f : M ---+ ~ x ~~ of genus three (where M 
has singularities) such that fu : Mu ---+ ~ x { u} satisfies the following: 

(a) f0 has a unique singular fiber f0 1 (0) of type I so that two nodes 

of f0- 1 (0) are A1-singularities on M, 
(b) fu ( u -=/= 0) has two singular fibers f; 1 ( u) and f; 1 ( -u) of type I 

so that the nodes of them are nonsingular points on M, 
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(c) there exists an involution~= M __:_____. M fiber-wise with respect to 
the base D.' so that r sends f,-;:- 1 ( u) isomorphically onto f,-;:- 1 ( -u) 
and r acts on f,-;:- 1(0) as a fixed point free automorphism. 

Then the resolution space of the quotient space M / (~) induces a desired 
splitting family. Since we can connect any type II(ii) fiber germ and the 
fiber germ Fin Lemma 4.4 via equisingular deformations, we get: 

Proposition 4.5 ([3]). The complete system of hyperelliptic atomic 
fibers of genus three are of type 00 , I, II(i) and II(iii). 

4.3. Questions and remarks 

Morsification of fiber germs may be a new mathematical area in­
volving algebraic geometry, low-dimensional topology, Teichmiiller the­
ory and so on. Many natural and fundamental questions are not settled, 
or, even, are not under consideration. Here we pick up some of them 
and give comments. 

1. Direct Morsification. If a germ F has a splitting F ---+ Fu, 1 + 
Fu,2 + · · · and each Fu,i (i = 1, 2, ... ) has a splitting Fu,i ---+ F~,i, 1 + 
F~,i,2 + cdots. Then is there a family which realizes F ---+ F~, 1 , 1 + 
F~, 1 , 2 + · · · F~,2 , 1 + F~,2 , 2 + · · · directly? If one has a complete system 
of atomic fibers in a certain category, then does a germ F in the category 
have a direct Morsification to atomic fibers ? 

2. General construction of splitting families. As to the clas­
sical Morsification, Takamura began his pioneering work [87]. The main 
method of [87], Parts II and III, is as follows: He first reconstructs 
Matsumoto-Montesinos' families and shows that we can choose a "lin­
ear degeneration" as a representative of the topological equivalence class 
of a given germ F. The linear degeneration is constructed as a hyper-

surface of a certain explicit ambient threefold X -:::; S ~ D.. X is the 
"plumbing space" of the normal bundles of components of F, and is 
a generalization of Hirzebruch-Jung string in some sense. Terasoma's 
theorem [90] says that if two degenerations 11 and h are topologically 
equivalent, then we can connect 11 and h via several equisingular de­
formations. Therefore, the linear degeneration is also a representative 
of the equisingular deformation class of F. 

Now he constructs explicitly relative deformations {fu: Xu -:::; Su ---+ 

D..}uE~' off so that fu (u =/:- 0) has several singular fibers. If we had 
Xu ~ X, then the deformation would behave as an infinitesimal dis­
placement in X. But X really has a jumping deformation similarly as 
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in the case of rational normal scrolls ([37]), and the constructions of 
{fu}uEA' become delicate. 

Takamura announces that he can obtain the complete systems of 
classical atomic fibers of genus g :S 5 by this method. 

As to the algebraic Morsification, our knowledge is very poor except 
for hyperelliptic degenerations. We expect that pioneers will come up 
soon. Another problem to be considered is the Morsification problem for 
the base locus of the canonical linear system of singular fiber germs. We 
imagine that BsiKFI of an atomic fiber F is simple and Kp is ample. The 
last assertion means that ( -2)-curves will disappear along Morsification, 
while it is impossible under deformations of " global" surfaces. 

3. Versal family. Can we describe a versal family of a given fiber 
germ F ? Moreover, can we prove the existence of the Morsification via 
the versal family ? 

This question comes from an analogy of the well-known Morse theory 
on hypersurface singularities (e.g., [5]). For the readers' convenience, we 
review the argument. 

We consider germs of n-dimensional isolated hypersurface singular­
ities. Among them, a singularity with Milnor number J.L = 1 is called 
an A1-singularity. A typical equation is x5 + xi + · · · + x~ = 0. An 
A1-singularity is sometimes called a Morse singularity, because: 

Any isolated hypersurface singularity (V, 0) with Milnor number J.L(V, 0) = 
J.L is directly morsified to J.L A 1 -singularities. 

Indeed, let x = (x0 , x1 , ... , xn) be the system of coordinates on a do­
main u c cn+l containing the origin 0. Let f(xo, Xl, ... 'Xn) = 0 be 
the equation in U of the germ (V, 0). The Kuranishi space of (V, 0) is 
unobstructed and coincides with 

Exe(n~,Ov) ~ Jf = C{xo,xl, ... ,xn}/1, 

where I = (!,of joxo, ... , of joxn)· Since dimcJJ = J.L(V, 0) = J.L, we 
identify Jf with CJL. Let 

F = (1, ?T) : u X CJL ~ c X c 
be the versal family or the universal unfolding of f ([91]). Namely, if 
u = ( u 1 , ... , uJL) is the system of coordinates of mathbbCJL and 1 = 
i(x,u), then {o1foujlu=o}~=l generates Jf. If we fix u E CJL, then the 

map 1(x,u): U x {u} ---+C times{u} is a J.L: 1 finite map for generic u. 
We define the bifurcation locus Bif(1) of 1 as the subset of CJL consisting 
of the elements u such that the map i(x, u) is not J.L: 1. By [61], Bif(1) 
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is a proper analytic subset of CJ.t. Let b. be a local curve on CJ.t passing 
through _the origin 0 such that b. n Bif (J) = { 0}. We restrict the versal 
family F on b.. Then we have the splitting family which includes the 
direct Morsification of (V, 0). 

4. Maximal molecular fiber. If we have a proper splitting F'-----> 
F~, 1 + · · · + Fu':zrime, we say that F~,io (1:::; io :::; l) is a proper deforma­
tion of F'. If a germ F cannot be a proper deformation of any germ F' 
of the same genus, we call Fa maximal molecular fiber. 

Can we prove the existence of maximal molecular fibers and more­
over classify them ? 

As an analogy in singularity theory, we consider deformations of 
a germ (V, P) of a rational double point. Let G(V, P) be the Dynkin 
diagram of (V, P), that is, the dual graph of the exceptional divisor 
on its minimal resolution. Then it is well-known that G(V, P) is one 
of types An, Dn, E6, E1 and Es, and that (V, P) is a deformation of 
another rational double point (V', P') if and only if G(V, P) is a sub­
Dynkin diagram of G(V', P') ([4], [21]). Therefore Es-singularity is the 
only "maximal molecular singularity" in the category of rational double 
points. 

If we determine the complete systems of atomic fibers of genus g, 
then we may ask for the classification of maximal molecular fibers of 
genus g. Especially, the versal family of a maximal molecular fiber seems 
to be interesting. 

5. Monodromy realizable relation. Let f' : M' ----> b." x b."' 
be a proper splitting family of genus g of a germ F, and let V be the 
discriminant locus off'. We choose a closed polydisk b. x b.' C b." x b.111 

which satisfies (8b. x b.') n V = 0, where ob. is the boundary circle of 
b.. Let f: M -----> b. x b.' be the restriction of f' over b. x b.'. We 
fix a continuous section A: b.' -----> {)b. x b.' with pr2 o A = idA'. We 
identify the circle {)b. x { u} ( u E b.') with the oriented simple closed 
curve ifu which starts from A(u), goes in counter-clockwise direction and 
ends with A(u). 

We fix u0 E b.'\{0}. We identify the image A([O, u 0 ]) with the 
oriented path X on b. x b.' which starts from A(O) and ends with A(u). 
Then two paths ifuo and X 0 ifo 0 X-1 are mutually homotopic on (b. X 

b.')\ v. 
Let r,;;, 1 ( d1 ), · · · , f,;;, 1 ( dz) be the set of all singular fibers of fuo : Muo ----> 

b. X {uo}, i.e. v n (b. X {uo}) = {d~,··· ,dz}. Let uj (1:::; j:::; l) be a 
closed connected simple region on b. x { u0 } which satisfies 
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(i) ui n v = {dj}, 
(ii) the boundary 8Uj does not contain dj, 

(iii) >.(uo) E 8Uj. 

We identify 8U i with the oriented simple closed curve 1i which starts 
from >.(u0 ), goes in counter-clockwise direction and ends with >.(uo). 
We change the order of 1t. · · · , 1z if necessary, then two paths §uo and 
1z o · · · o 11 are mutually homotopic on~ x {uo} \ (V n (~ x { uo} )). 

Let c/>j: f~1 (>.(u0 )) -----t f~1 (>.(u0 )) (1 :::; j :::; l) be the monodromy 
diffeomorphism of the closed Riemann surface f~1 (>.(u0 )) of genus g ac­
cording to the path 1i· Similarly, let ¢0 : f0 1 (>.(0)) -----t f01 (>.(0)) be the 
diffeomorphism according to §0 , and let 'l/J>.: f~1 (>.(0)) -----t f;0

1 (>.(u0 )) 

be the diffeomorphism according to X. If we identify these diffeomor­
phisms with their isotopy classes, we have a relation 

in r 9 • Note that the elements ¢0 , ¢1 , • · • , c/>z are contained in the set of 
pseudo-periodic maps of negative twist P;. We call (**) the monodromy 
relation of f. 

Conversely, let a0 , a 1 , · · · , az be elements of P; and b an element of 
r g which satisfy 

in r 9 . If this relation coincides with the monodromy relation of a certain 
splitting family of a certain germ F, we call(***) a monodromy realizable 
relation. Our question is: 

Can we characterize intrinsically monodromy realizable relations ? 

For example, the Birman-Hilden relation ([19]) 

2 
~ = 71 · · · 72g-272g-1 72g-2 · · · 71 

is a monodromy realizable relation, where ~ is the hyperelliptic involution 
and 7i (1 :::; i :::; 2g - 1) is a right-hand full Dehn twist along the i-th 
curve of the Birman-Hilden base. For the proof, see Matsumoto [63], 
Example A, Ito [49], or [2], Examples 3.12 and 3.14. (Note that b is an 
element of the hyperelliptic mapping class group by the construction of 
[63] and [2]. Hence b~b- 1 = ~-) 

By taking the square of both sides of the relation, we get 

"d 2 2 2 
~ = 71 · · · 72g-1 · · · 71 · · · 72g-1 · · · 71· 
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We claim that this is not a monodromy realizable relation. Indeed, 
the degeneration with trivial topological monodromy is a topologically 
trivial degeneration, i.e. the central fiber is a smooth curve. The trivial 
degeneration has no proper splitting family by the closedness of the 
discriminant locus. 

6. Moduli point and monodromy of a two-parameter de­
generation. quad A splitting family f: M -+ ~ x ~' is nothing but a 
two-parameter degeneration of curves. As an analogy of the case of one­
parameter degenerations discussed in §3, we should consider the moduli 
point and the monodromy of f. 

Note that the discriminant locus V off has a bad singularity at the 
origin 0 in general. Therefore the moduli map 

is not necessarily extended to a morphism from~ x ~'to M 9 . More pre­
cisely, if we fix u E ~1 , then the one-parameter degeneration fu: Mu ------+ 

~ x { u} has the extension of the moduli map aru : ~ x { u} ------> M 9 as 
a morphism. If we define the extension Zi"r: ~ x ~' ------+ M 9 of ar by 
ar(t, u) := Zi"ru (t), then the map fails to be continuous at 0 in general. 
We have many examples such that the maps ar "jump" at 0. For in­
stance, the family of Example 3.12 in [2] has such a property. Therefore, 
the moduli point is not well-defined in the usual sense. 

Is the space M 9 too "narrow" to consider this type of problems ? 

We can also consider the topological monodromy 

in a similar way. However, the Matsumoto-Montesinos type arguments 
seem to be unknown. 

7. Global Morsification. We should consider the Morsification 
problem for global pencils f: S ------> B discussed in §§1, 2. We guess 
that this may be the original motivation of Xiao-Reid and Horikawa. 
However, almost nothing seems known. 
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