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On Shafarevich-Tate Sets 

Takashi Ono 

Let K / k be a finite Galois extension of number fields with the Ga­
lois group g = Gal(K/k). Let gp be the decomposition group at a 
prime P in K. Let G be a g-group. For each Pin K, we have the re­
striction map rp : H(g, G) - H(gp, G) of 1-cohomology sets for which 
Ker rp makes sense. The Shafarevich-Tate Set for (K/k,G) is defined 
by III(K/k,G) = npKerrp. 

Let X be a smooth curve of genus ~ 2 over (Q). Then G = Aut Xis 
finite by Schwarz theorem and there is a finite Galois extension K /(Q) so 
that G is a finite g-group, g = Gal(K/(Q)). The set III(K/k, G) becomes 
finite. As is well-known, the determination of the finite set amounts 
to an arithmetical refinement of geometrical classification of curves. In 
this paper, we shall show, among others, that for a hyperelliptic curve 
X : y2 = x 5 - £2x, £ = an odd prime, we have III(K/(Q), G) = 1 (Hasse 
principle) if£= 3, 5 mod 8, but #III(K/(Q), G) = 2 if£= 1, 7 mod 8. 

There is a way to associate an S - T set IIIH(g, G) for any group g 
and a g-group Gonce we specify a family of subgroups of g (such as the 
family of decomposition groups gp when g = Gal(K/k)). E.g., for any 
finite group G, let g = G, acting on itself as inner automorphisms, and let 
H be the family of all cyclic subgroups of G. One checks IIIH ( G, G) = 1 
( "Hasse principle") for some easy groups. Here is an interesting question: 
Does the Monster enjoy the Hasse principle? 

§1. IIIH(g, G). 

Let g be a group and G be a (left) g-group. A cocycle is a map 
f : g - G such that 

f(st) = J(s)f(t)8, s,t E g. 

We denote by Z(g, G) the set of all cocycles. Two cocycles f, f' are 
equivalent, written f ~ f' if there exists an a E G such that 

J'(s) = a- 1 J(s)a 8 , s E g. 
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We denote by [f] the class of a cocycle f. The quotient 

H(g, G) = Z(g, G)/ ~ 

is the cohomology set. Z(g, G) contains a distinguished map 1 defined 
by l(s) = 1 for alls E g. Then a map f ~ 1 is said to be a coboundary. 
Consequently, we have 

f is a coboundary {cc} f(s) = a- 1as for some a E G. 

Now, suppose we are given a family Hof subgroups of g. For each 
subgroup h E H, we have the restriction map 

Th : H(g, G) -+ H(h, G) 

induced by f f---+ flh, f E Z(g, G). This map sends the distinguished 
class in H(g, G) to the one in H(h, G). Hence Kerrh makes sense. In 
this situation, we put 

IIIH(g,G) = nKerrh, 
h 

and call this the Shafarevich-Tate set for (g, G) with respect to H. For 
example, for any finite group G, let g = G, acting on itself as inner 
automorphisms, and let H = Heye the family of all cyclic subgroups 
of G. The determination of Illcyc(G) = IIIH(G,G) seems to be an 
interesting exercise in finite group theory. One verifies that all finite 
abelian groups, dihedral groups D2m and the quaternion group Qs enjoy 
the Hasse principle Illeye(G) = 1. 

Example 1. We shall find a pair (g, G) which fails to have Hasse 
principle with respect to H = Heye. So let 

g (a, T; a 2 = T2 = 1, Ta = aT) ~ Z/2Z x Z/2Z, 

G (a; a8 = 1) ~ Z/8Z, 

with the action 

Note that we have 

H =Heye= {1, (a), (T), (aT) }. 

Let [J] be an element of IIIH(g, G) C H(g, G). Since each cyclic sub­
group (s), s E g, belongs to H, we have f(s) = a(s)- 1a(s) 8 , a(s) E G; so, 
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on replacing f by a cocycle equivalent to it using a(a), we may assume 
that 

f(a) = 1, J(r) = x-1 x 7 , x = ai, 0 ~ i ~ 7. 

Then, we find 

(1.1) 
i: even, 

i: odd. 

If i is even, then obviously f = 1; if i is odd, then we have f ,f 1. In 
fact, if not, there should be y E G such that 1 = f(a) = y- 1y 17 and 
f ( T) = y-1y7 , with y = ai for some j. The first equality implies that 
a2i = 1; hence j must be even. Then we have a4 = f(r) = y-1y7 = 
a-ia5i = a4i = 1, a contradiction. 

Conversely, one can easily construct a cocycle f which takes values 
shown in (1.1) at the generators a,T of g. So we found that 

(1.2) #llitt(g, G) = 2 

with a single nontrivial class[/] given by f(a) = 1, f(r) = a4 . 

§2. ili(K/k, G). 

Let K / k be a finite Galois extension of number fields and g be the 
Galois group: g = Gal(K/k). For a (finite or infinite) prime P in K, 
denote by gp the decomposition group of P for K/k: 

gp = {s E g; P 8 = P}. 

Let 
H = Hdec = {gp; P primes in K}. 

For a g-group G, we can speak of the Shafarevich-Tate set Ilitt(g, G) in 
§1. Since the Galois group and the family H = Hdec are determined by 
the given Galois extension K / k, we can set 

(2.1) ili(K/k, G) = Ilitt(g, G). 

There are two extreme cases where we get the Hasse principle 
ili(K/k, G) = 1 without effort. First of all, let us call K/k trivial if 
g = gp, i.e., if g E Hdec· In this case, we have ili(K/k, G) = 1, 
trivially, for any g-group G. For example, every cyclic extension K/k 
is trivial by Chebotarev theorem. A counterexample for a noncyclic 
abelian extension will be given in the next example. Secondly, if g acts 
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trivially, then Z(g, G) = Hom(g, G) and Z(gp, G) = Hom(gp, G) for all 
P; hence, again by Chebotarev, we have III(K/k, G) = 1. 

The following important relation follows also from Chebotarev the­
orem. 

(2.2) Heye C Hdee. 

Let us call K/k locally cyclic if gp is cyclic for all primes P. Since 
#gp :S 2 for primes at infinity, we have only to check the finite primes. 
For example, if K / k is unramified then K / k is locally cyclic. In view of 
(2.2), we have 

(2.3) Heye = Hdee {:} K / k is locally cyclic. 

Therefore in such a case an arithmetical problem of determining 
III(K/k, G) is reduced to an algebraic problem of IIIH(Y, G) with g = 
Gal(K/k) and H = Heye• The following example discusses these mat­
ters. 

Example 2. Let£ be an odd prime and ( be a primitive 8th root 
of unity. Let k = (Q)( v'f), K = k(() = (Q)(i, \1'2, v'f). The extension K/k 
is Galois with 

g = Gal(K/k) = (a, r; a 2 = r 2 = 1, ra = ar) = Z/2'11, x Z/2Z. 

Let G = (() C Kx. The group g acts on G by the Galois action: 
(u = c-1 = (, (7" = ( 5 . Hence the g-group (g, G) is exactly the one in 
Example 1. Since g = Z/2Z x Z/2Z, the only subgroup of g which is 
not cyclic is g itself. Hence 

(2.4) 
K / k is locally cyclic {:} Heye = Hdee {:} g (/. Hdee 

{:} g-/:- gp for all P {:} K/k is nontrivial. 

From (1.2), (2.3), (2.4), we find 

(2.5) K/k is nontrivial {:} #Ill(K/k, G) = 2. 

Now a criterion for the nontriviality of K/k can be obtained by the 
Kummer theory (cf. [2], Satz 119 and [5],(2.7) Theorem): 
(2.6) 

f = 3 mod 4 and x 2 = £ mod 4(1- () 
K / k is nontrivial {:} 

has a solution in Z[(]. 

In particular, if£= 7 mod 8, the congruence has a solution x = i; so, 
from (2.5) and (2.6), we have 

(2.7) #Ill(K/k, G) = 2 for £ = 7 mod 8. 
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In terms of ordinary Galois cohomology, we have an isomorphism 

(2.8) kx /(kx )8 ~ H 1 (k, G), (similarly for kp for each p). 

The Shafarevich-Tate group of G (in Galois cohomology) is 

(2.9) III(k,G)<l!f Ker(H1 (k,G)-+ ITpH1 (kp,G)). 

It can be shown that there is a natural bijection 

(2.10) III(k, G) ~ III(K/k, G) 

where the set on the right hand side is the one in (2.1). In view of 
(2.7)-(2.10), we find that, when£= 7 mod 8, the Hasse principle for 
the equation 

x 8 = a, a E k = Q( VC) 
does not hold for some a. (In fact, one can take a= 16, as pointed out 
by Prof. Wada.) Instead of K/k, consider the absolute cyclotomic field 
F = Q(() whose Galois group is the same as that for K/k. Since 2 is 
totally ramified in F, the extension F/Q is trivial; hence, unlike (2.7), 
we have III(F/Q, G) = 1 for all£. 

§3. III(K/k,AutX). 

Let X be a quasi-projective variety over a number field k. Assume 
that there is a finite Galois extension K / k so that every k-automorphism 
of X is a K-automorphism. When it is so, we shall call K a (finite) 
splitting field for G = Aut X over k. As in §2, we can talk about 
the Shafarevich-Tate set III(K/k, G) which can be identified with the 
ordinary III(k, G) as mentioned in (2.10). By the assumption on X, we 
have a well-known bijection: 

(3.1) H 1 (k, G) ~ Twist(X/k), (similarly for kp)-

Consequently, determination of III(K/k, G) amounts to an arithmetical 
refinement of a geometrical classification of varieties: 

(3.2) III(K/k, G) = {Y/k; Y ~ X over k and kp for all p}. 

In particular, the Hasse principle for twists means that 

(3.3) Y ~ X over k and kp for all p • Y ~ X over k. 

If X is a smooth curve of genus g ;::=: 2, then G = Aut X is a finite 
group of order at most 84(g - 1) = -42E(X) by Hurwitz theorem. 
Therefore G is split by a finite Galois extension K/k. 
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Example 3. Consider the celebrated quartic 

X: x 3 y + y 3 z + z3 x = 0 over k = Q. 

We have g = 3 and G = Aut X 9c' PSL2 (lF 7), a simple group of order 
168 = 23 • 3 • 7. Klein [3] shows that 

where 

with 

(5 _ (2 
a= ~' v-7 

G = (u, v, w), u, v, w E PGL3(Q(()), 

(3 -(4 
b= ~' v-7 

( = a 7th root of 1 . 

Note that A= (+(4 +(2-(6-(3-(5 (Gauss sum). Consequently, 
K = Q( () splits G. Since K /Q is cyclic, it is trivial and we have the 
Hasse principle III(K/Q, Aut X) = 1 without effort. 

However, Hasse principle cannot always be obtained without effort 
as the following example indicates. As for the details of this example 
see [6]. 

Example 4. Consider the curve over k = Q: 

X : y4 = x 4 - £2 , £ = an odd prime. 

This curve is smooth and of genus 3. We have G = Aut X = A • B, 
An B = l, A normal in G, where A = '11.,/4'11, x '11.,/4'11.,, B = S3, the 
symmetric group on 3 letters. So #G = 96 = 25 • 3. It can be shown 
that K = Q(i, v12, v'£) splits G and g = Gal(K/Q) = '11.,/2'11., x '11.,/2'11., x 
'11.,/2'11.,. The determination of Hdec amounts to the exhibition of the 
Artin reciprocity for the abelian extension K/Q. Thus we find: K/Q 
is trivial {c} g E Hdec {c} £* = (-1(; 1 £ = 5 mod 8. So, if £* = 5 
mod 8, we get the Hasse principle III(K/Q, Aut X) = 1 without effort. 
On the other hand, in the remaining case £* = 1 mod 8, we still have 
III(K /Q, Aut X) = 1, but with some effort. 

Example 5. Let £ be an odd prime and X be a hyperelliptic curve 
of genus 2 over k = Q: 

(3.4) X : y2 = x5 - £2 x . 
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Since X is not smooth, we mean by X the normalization (Riemann 
surface) over (Ql associated to the equation (3.4). When we compute the 
group G = AutX, we can do it in the function field Q(x,y)/Q for the 
equation (3.4). It is natural to seek t E G: t(x, y) = (x', y') such that 

, ax+b 
x=cx+d' 

I ey 
y = 

(ex+ d) 3 

We find, for example, elements u, v E G as follows: 

( a b) (i 0) 
u: c d = 0 l ' 

e _ ( _ l+i - -v'2, 

( a b) ( 1 i~)' 
V: C d = l/../F -z e = -( ./2/()3 ' 

where£*= (-1(;1 £. 
The group G acts on the space 0 1 (X) of holomorphic 1-forms. With 

respect to the standard basis dx/y, xdx/y for 0 1 (X), we obtain a faithful 
representation 

(3.5) G = Aut X-+ GL2(Q). 

The matrices U, V corresponding to u, v by (3.5) are: 

u = , G ~) , U8 = 1, 

V - £_ ( 1 i/v1!_ £*) ' V3 = 1. 
- v'2 -../F . 

Let us put 
S = VU; hence S2 = l. 

Call G' the subgroup of G generated by U, V: 

G :JG'= (U, V) = (V, S). 

Put 

I u2= G 0-)' J2 = -1, 
-i 

J · ( 0 -i -.IF 1/../F) 0 ' J2 = -1, 

K IJ. 
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Then one verifies that Q8 = (I, J) is the quaternion group. Since. VI= 
JV, SI= JS, we see that Qs is normal in G'. Moreover, one verifies 
that 

by the correspondence 

[V] = v mod Q8 <-+ (123), [S] = S mod Qs <-+ (12). 

Hence #G' = 8 • 6 = 48. On the other hand, we have #G ~ 48(g-1) = 
48(2 -1) = 48. Therefore we have G = G' and so 

(3.6) G/Qs 9'! S3 , G = AutX. 

As a splitting field for G = Aut X over Q, we can take 

K = Q(i, h, ff*)= Q((, ff*). 

Then we have g = Gal(K /Q) = Z/2Z x Z/2Z x Z/2Z = (a, r, p) with 

i y'2 ( JF 

a -i y'2 ( ./F 
r i -y'2 -( JF 
p i y'2 ( -./F 

The group G = (U, V) is naturally a g-group and the action of g is given 
as follows: 

a r p 

u sv -U u 
V VI=JV V VJ=-KV 

(3.7) s s -S SK=-KS 

I -I I I 

J -J J -J 

K K K -K. 

Next we have to determine the family Hdec for our- g = Gal(K/Q). 
This amounts to exposing Hilbert's Galois theory and Artin's law ofreci­
procity for the abelian extension K/Q. Note that we have an important 
inclusion Heye C Hdec in (2.2). Hence we have only to determine de­
composition groups gp which are not cyclic. Since this part is the same 
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as the corresponding part of Example 4 (for the curve X: y 4 = x 4 -£2) 
we can copy the table ( 4.4) in [ 6l: 

£ Hdee 

£=1 mod 8 Heye and (u, T) 
(3.8) £ = 3 mod 8 Heye and (uT, p), g 

£ = 5 mod 8 Heye and (T, p), g 

£ = 7 mod 8 Heye and (u, p), (u, T) . 

If£* = 5 mod 8, i.e., if£= 3, 5 mod 8, then, in (3.8), g belongs to 
Hdee and so K/Q is trivial; hence III(K/Q, G) = 1 without worrying 
about the action of g on G. On the other hand, if£* = 1 mod 8, i.e., if 
£ = 1, 7 mod 8, then g is not in Hdeei hence K/Q is not trivial and the 
action of g on G given in (3.7) plays a crucial role. It will turn out that 

(3.9) If£* = 1 mod 8, then #III(K/Q, G) = 2 and the single nontrivial 
cocycle [fl in III(K/Q, G) is given by f(u) = f(T) = 1, f(p) = K = 
JJ E Qs. 

The rest of the paper is devoted to prove (3.9). First of all, notice 
that, in the table (3.8), the subgroup (u, T) appears simultaneously in 
Hdee when £* = 1 mod 8. Hence for any [fl in III(K/Q, G), after a 
normalization, we may assume that 

(3.10) f(u) = f(T) = 1 and f(p) = A-1 AP for some A E G. 

Since ±A give the same f(p), we may assume that A is one of 
24 elements: A = CB, B E {1, V, V 2 , S, SV, SV2 }, C E {1, I, J, K}. 
Hence f(p) = B- 1c- 1CPBP = ±B-1 BP. As one verifies by (3.7) that 
B- 1 BP= 1, J, K, we find 

(3.11) f(p) = ±1, ±J, ±K. 

(i) If f(p) = 1, then f = 1, i.e., [fl is trivial. 

(ii) If f(p) = -1, then from (3.7) we find that K- 1Ka = 1 = f(u), 
K- 1 Kr = 1 = f(T) and K- 1 KP= -1 = f(p); hence f ~ 1, i.e., [fl is 
trivial, again. 

(iii) If f(p) = cl, c = ±1, then we have 

f(up) = f(u)f(pf =(elf= cJO" 

II 
f(pu) = f(p)f(u)P = f(p) =cl, 
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which is absurd as Ju = -J by (3.7). So there is no such cocycle f. To 
prove our assertion (3.9), it remains to verify the following statements 
(iv), (v) and (vi). 

(iv) f(p) = EK, E = ±1, together with f(a-) = f(T) = 1, really pro­
vides us with a cocycle which restricts a coboundary on each subgroup 

in Hdec-

( v) Call f, g the co cycles in (iv) corresponding to E = + 1, -1, re­
spectively. Then f ~ g, i.e., [f] = [g]. 

(vi) The co cycle f in ( v) is nontrivial: f ,f 1. 

Proof of (iv). We need to show that the function f defined as above 
on the generators a, T, p extends on the whole group g consistently. The 
cocycle condition, f(st) = f(s)f(t) 8 , s, t E g, forces us to put f(aT) = 1, 
f(ap) = f(Tp) = f(cnp) = EK. The consistency such as f(ap) = f(pa), 
f(aTp) = f(paT), f(p2 ) = f(l) = 1 follows from relations Ku = KT = 
K and KP = -K in (3.7). E.g., f(p 2 ) = J(p)f(p)P = EK(EK)P = 
K KP = - K 2 = 1. All other cases are checked likewise. Therefore the 
value f(s) is EK or 1 according ass contains p or not, and we verify at 
once the cocyle conditions using (3.7). As for the coboundary condition, 
note that s- 1st = ±K whenever t E g involves p. Replacing, S by 
x(t)S, if necessary, where x(t) = c-1ct = ±1, with C E {1, I, J, K}, 
we obtain EK= A;1 AL At E G whenever t involves p; hence the cocycle 
f stated in (iv) induces a coboundary on each cyclic subgroup of g . 

There is one more group to be considered, i.e., (a, p) E Hdec in case 
£ = 7 mod 8. So let X =Sor SK according as E = +1 or -1. Then 
one finds that x-1 xu = 1 and x-1 XP = EK, which means f restricts 
a coboundary on (a, p) too. 

Proof of (v). By (3.7), we see that X = K is a solution to the following 
simultaneous equations: 

x- 1xu = 1, x- 1xT = 1, x-1 KXP = -K. 

This means that g ~ f. 

Proof of (vi). Suppose, on the contrary, that f ~ 1. Then there is an 
X E G such that 

(3.12) 

f(a) = x-1xu = 1, 

f(T) = x-1xT = 1, 

f(p) = x-1xp = K. 
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Write X = QA with A E {1, V, V 2 ,S,SV,SV2 }, Q E {1,J,J,K}. Since 
Q- 1Qr = 1 for all Q, we have Ar= A by (3.7), and so A= l, V or V2 . 

Now, 
a) A= l =} K = Q-1QP = ±l, absurd, 

b) A= V =} 1 = v-1Q- 1Qo-vo- = ±v-1vo- = ±I, absurd, 

c) A = V 2 =} 1 = v-2Q- 1Qo-v20- = ±vv-o-, absurd because 
ya= VI by (3.7) . So the system (3.12) has no solution as required. 
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Added in Proof. After this paper had been written, I learned from 
Prof. K. Harada that the Monster enjoys the Hasse principle in the 
sense described in the last paragraph of the introduction of this paper. 
Later, Prof. W. Feit communicated to me that any finite simple group 
enjoys the Hasse principle. This is a consequence of Theorem C in the 
paper: W. Feit and G. M. Seitz, On finite rational groups and related 
topics, Illinois J. Math., 33 (1988), 103-131. 
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