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On the Capitulation Problem

Hiroshi Suzuki

In our previous paper [7], we proved a generalization of Hilbert’s The-
orem 94 which also contains the Principal Ideal Theorem. However,
Tannaka-Terada’s Principal Ideal Theorem was not contained in it. The
purpose of this paper is to extend the main theorem of [7] in a natural
way so that it contains Tannaka-Terada’s Principal Ideal Theorem as a
special case. Our main theorem (Theorem 1) now contains all of the
three capitulation theorems: Hilbert’s Theorem 94, the Principal Ideal
Theorem and Tannaka-Terada’s Principal Ideal Theorem.

Introduction.

For an algebraic number field k£ of finite degree, we denote the ideal
class group of k by Clj and the Hilbert class field (namely the maximal
unramified abelian extension) of k by Hj. For a Galois extension K of
k, we denote its Galois group by G(K/k). For a group G, we denote
the commutator subgroup of G by G¢ and we write G = G/G°. We
denote the integral group ring of G by Z[G] , and its augmentation ideal
by I¢ = (g —1: g € G)zg). For a finite group G we denote the trace

of G by Trg = Y. g € Z|G]. For a Z|G]-module M, we denote the
g€G
submodule consisting of G-invariant elements by

MC={mecM:g-m=m forall g € G}.
In Suzuki[7] we proved the following theorem.

Theorem (old version). Let K be an unramified abelian extension
of an algebraic number field k of finite degree. Then the number of ideal
classes of k which become principal in K is divisible by the degree [K : k]
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of the extension K/k. Namely we have
(K : K] | [Ker (Cl — Clg)l,

where i : Cly, — Clg 1s the homomorphism induced by the inclusion map
of corresponding ideal groups.

In the case where K /k is cyclic this theorem is nothing else than Hilbert’s
Theorem 94 (Hilbert[3]).

Hilbert’s Theorem 94. Let K be an unramified cyclic extension of
an algebraic number field k of finite degree. Then the number of ideal
classes of k which become principal in K is divisible by the degree [K : k.

Our old version contains the Principal Ideal Theorem (Furtwingler[2]),
that is the case K = Hj, because the degree [Hy : k] is equal to the
order |Clg|.

Principal Ideal Theorem.  FEvery ideal of k becomes principal in
Hy.

The old version, however, does not contain Tannaka-Terada’s Principal
Ideal Theorem (Teradal8]).

Tannaka-Terada’s Principal Ideal Theorem. Let k be a finite
cyclic extension of an algebraic number field ko of finite degree and K be
the genus field of k/ko (the mazimal unramified extension of k which is
abelian over ko). Then every G(k/ko)-invariant ideal class of k becomes
principal in K.

The purpose of this paper is to prove the following main theorem.

Theorem 1. Let k be a finite cyclic extension of an algebraic number
field ko of finite degree, and let K be an unramified extension of k which
is abelian over ko. Then the number of those G(k/ko)-invariant ideal
classes of k which become principal in K is divisible by the degree [K : k]
of the extension K/k. Namely

[K : K] | [Ker (Cly — Clg )Gk/ko)|,
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Our new theorem obviously contains the old version, that is the case
k = ko. Now, suppose that K is the genus field of k/ko. Then we
have [K : k] = |Clx/Ig(k/k)Clk| = ]Clg(k/k°)|. Therefore our theorem
clearly implies

c1Z®/*) « Ker (Cly — Clk).

This is Tannaka-Terada’s Principal Ideal Theorem. Hence our theo-
rem contains Hilbert’s Theorem 94, the Principal Ideal Theorem and
Tannaka-Terada’s Principal Ideal Theorem.

Tannaka-Terada’s Principal Ideal Theorem was generalized for endo-
morphisms in Miyake[5]. This method gives us an endomorphism version
of Theorem 1. (About the history and the fundamental theorems of the
capitulation problem see Miyake[6].)

Theorem 2 (endomorphism version). Let K/k be an unrami-
fied abelian exiension, and let o be an endomorphism of G(Hg [k) such
that o(G(Hg /K)) C G(Hk /K) and suppose that o induces the identity
map on G(K/k). Then a induces an endomorphism of Cly, through the
isomorphism Cl, = G(Hg/k)®® given by Artin’s Reciprocity Law, for
which we have

[K : k] | |[{a € Ker (Cl — Clk);a(a) = a}|.

To prove Theorems 1 and 2, we consider the group transfer of Ga-
lois groups which corresponds to the homomorphism of lifting ideals
(Artin[1]):

Clk — ClK
el O le
G(Hp/k) = G(Hk/k)* — G(Hk/K)

Thus Theorem 2 is equivalent to the following group theoretical version:

Theorem 3 (group theoretical endomorphism version). Let a
be an endomorphism of a finite group H, and N be a normal subgroup
of H containing H¢. Assume that o(N) C N and that o induces the
identity map on G = H/N. Then the order of the subgroup

{hH® € Ker Vy_n : a(h)h™" € H}

of the transfer kernel is divisible by |G| = [H : N|. Here Vg_n : H® —
N9 denotes the group transfer from H to N.
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Now we summarize the method of Miyake[5] for the convenience of the
reader. Consider the descending series

H>a(H)D*H)D---Da"(H)D---

and take r large enough so that this series becomes stable. Put Hy =
a"(H), No = NN Hp and N’ =Kero". Then we can write H and N as
o -stable semidirect products H = Hg x N’ and N = Ny x N’. In this
case, we have

Ker (Vi,—n, : HE® — N&¥) C Ker (Vy_n : H*® — N).

Moreover, the restriction a|g, of a to Hp is an automorphism of Hy. By
taking Hy instead of H, we may assume that « is an automorphism.

Therefore we have only to prove the following group theoretical version
of Theorem 1 which is the case of Theorem 3 in which « is an automor-
phism.

Theorem 4 (group theoretical version).  Let N be a normal
subgroup of a finite group H containing the commutator subgroup H°
of H. Suppose that a finite cyclic group A of automorphisms of H is
giwen, and assume that N is stable under A and that A acts trivially on
G = H/N. Then the order of the A-invariant part of the transfer kernel
is divisible by the order |G| of G.

|G| | |Ker (Vg n : H® — Ne0)4|.

This theorem contains the group theoretical versions of Hilbert’s The-
orem 94, the Principal Ideal Theorem and Tannaka-Terada’s Principal
Ideal Theorem.

Remark 1. If A is a non-cyclic abelian group, then the group the-
oretical version does not hold in general. For example, take a Z[A]-
module M of finite order such that |M#| < |M/I4M|, and put H = M,
N =14M. (More interesting examples of transfer kernels with an action
of non-cyclic abelian groups are seen in Miyake[6].)

In Section 1, we reduce Theorem 4 to the property for the divisibility
of the order of a cohomology module (Proposition 1). In Sections 2 and
3, we give an annihilation mechanism on Z[G x A]-modules (Proposition
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2) by a careful calculation of determinants in the one-variable polyno-
mial ring Z[G][T) over Z|G]. In Section 4, we dualize this proposition to
obtain Proposition 5. In the final section we translate this annihilation
mechanism into a property for the divisibility of the order of a cohomol-
ogy module by the technique used in Suzuki[7] which may be explained
in the following way: “If a natural number annihilates a cyclic group,
then the order of the cyclic group divides the natural number”. This
completes our proof of Proposition 1.

§1. Reduction to module theoretical version.

We do not bother to introduce Artin’s splitting module, because we only
need its kernel.

Lemma 1. Let H be a finite group and N be a normal subgroup of
H. Put G = H/N and teke a free presentation w : F — H of H. Then
we have a commutative exact diagram

1 — 77 YN)* — F/a7Y (N} —- G — 1

ﬁl,—l(}v)qbl 7‘\'1

1 — Nab — H/N¢ - G — L
Put R = Ker (%|,-1(yyar : 71 (N)® — N). Then
H°(G,R) = Ker (Vg_,n : H® — N).

(Throughout this paper, cohomology is Tate cohomology of a finite

group.)
Proof Since F2 is Z-torsion free, the multiplication by the order |G|,

|G| . Fab VF—'_’f_:l(N) ,n,——l(N)ab _ Fab
is injective. Hence the transfer map
Vi—m-1(y s F® — n 71 (V)2

is injective. Note that m~1(N)? is isomorphic to the kernel

ank F
Ker( @ Z[G] — Ig)
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of the homomorphism which maps the canonical basis e; of ) Z[G]

to w(z;) — 1 for j = 1,... ,rank F, where z; are the canonical free
generators of F' (see Lyndon[4]). Therefore we have

HO(G, n~Y(N)?®) 2 H™Y(G, I¢) = G®.
The group transfer Vp_,»-1(x) coincides with the homomorphism
7~ (N)Fe/Fe — =1 (N)eb
induced by the trace map
Trg : m {(N)® — 7~} ()%,
Then we easily see
G = Vi) (F®)/Vir-iv) (™ (N)FE/F°)

Veon-1v) (F®)/Trg (™ (N)*)
S HYG, 7 H(N)*®).

IR

Hence the image of Vp_,,-1(x) must coincide with (7 ~1(N)®*). From
the commutative diagram

VF—»r—l(N)
—

Fa.b 7T_1(N)ab
xob O J,ﬁl"_l(N)ab
Hab Nab
Vi~
we see
Ker (Vy_n : H® — N%)

IR

VF__,,r—l(N)(Fab) ﬂKeI‘ﬂ'Iﬂ.—l(N)ab /VF_,,T_l(N)(Kerwab)
= RN (@ YN)®)¢ / TreR
= RY/TrgR
H°(G, R).
O

Now assume that a finite group A acts on H as automorphisms and
that N is an A-subgroup. We take a free presentation in the following
manner. Let U = A x H be the semidirect product of A and H. Then
we have a short exact sequence

1-N->U—-AxG—1.
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Take a free presentation pg : Fy —» U of U; then we have a commutative
exact diagram

1 — pgl(N)“b — l7’0/p6'1(N)c - AxG — 1
ﬁoipo_l(m.,b Po H

1 — Nab — U/N¢ - AXG — L

Then the subgroup F = p, L(H) of Fy is a free group, and
polp: F— H
is a free presentation of H. Put
R = Ker (Pol =1 (vya» :pp H(N)® — N9).
Then, by Lemma 1, we have an isomorphism
Ker (Vy_n : H® — N°) =~ H(G,R).

By the choice of the free presentation, the commutative diagram

VF—»p51<N)

Fo 5 pr (V)

(PO'F)abl O lﬁ"'z{l(m“b
Ha,b Nab
VH N

in the proof of Lemma 1 is a commutative diagram of Z[A]-homomor-
phisms. Therefore the above isomorphism is a Z[A]-isomorphism. Hence
the A-invariant parts are also isomorphic:

Ker (Vig_n : H® — N4 = H(G, R)4.
Since |pg ' (N)?*/R| = |N?| is finite, we have
R®zQ=p;' (N)*®2Q

where Q is the rational number field. Since the sequence

1 ab rank Fo
0—-py (N)* - @ Z[AXxG]— Igxa —0

is exact and Q[A x G] is a semisimple Q-algebra, we see that

rankFp—1

R®zQ=( & QAxG)oQ.
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It is now clear that Theorem 4 is equivalent to the following proposition.

Proposition 1 (module theoretical version). Let G be a finite
abelian group and A be a finite cyclic group. Let R be a finitely generated

Z|G x A]-module such that R®7Q = (gQ[G x A])®Q, and suppose that
R is Z-torsion free. Then |G| divides [H°(G, R)*|.

The proof of this proposition will be given in Section 5.

§2. Z-torsion free dual annihilation version.

In the next section, we prove the following proposition. This is a module
theoretical Z-torsion free dual annihilation version of Proposition 1.

Proposition 2 (Z-torsion free dual annihilation version).  Let
G be a finite abelian group and A be a finite cyclic group generated by
a. Let M be a finitely generated Z|G x A]-module such that M @z Q =

gQ[G x A], and suppose that M 1is Z-torsion free. Then

[H=Y(@G, M)4| - MS*4 C Trg((a — 1)~ HgM),

where (a— 1)~ 1gM is the inverse image of IcM by the homomorphism
a—1: M — M which is multiplication by o — 1.

For the proof of this proposition, we need four lemmas.

Lemma 2. Let the notation and the assumptions be as in Proposition
m

2. Since Trg((a—1)"1IgM) = ®Z, we take ay, ... ,am € (a—1)" M

so that their images by Trg form a Z-basis of Trg((a —1)"1IgM). Put

My = {a1,-.. ,am)zjc). Then the order of M | (IexaM + My) is equal

to |A[™[H™(G, M)4|.

Proof. Note that Trg 1(0) N My C IgxaMy C I¢M. Hence

H™YG, M) | I,H (G, M)
= Tre '(0) / (IaTre™(0) 4+ IgM)
(Trg™1(0) + My) / (IaTeg 1 (0) + Ie M + M)
((a = 1) "M + Trg™1(0)) / (IaTrg ™' (0) + IeM + My).

1%
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Now it is clear that the homomorphism given by multiplying o — 1
induces an isomorphism of Z|G x A]-modules of finite order:

(@—=1)""Trg™(0) / (o — 1) IgM + Trg™*(0))

TI’G_l(O) NIgaM / (IAM NIgM + IATI‘G_I(O))
(IaM N Tre™ 1 (0) + IgM) / (IeM + 14 Trg ™ (0)).

RRT

We have T4M N (a — 1)"'Trg ™ 1(0) € IaM N Trg™1(0), because M is
Z-torsion free. Moreover we also have

My N (I4M N'Trg™(0) + IgM) € Mo N'Tre™(0) C IgxaMo C IgM.
Therefore we see

IAM N Teg 2 (0) + IgM | IgM + I, Trg™*(0)

IaM N Trg ™ (0) + IgM + My | IgM + IaTrg ™1 (0) 4+ My

IaM N (a—1)" Teg ™ (0) + IgM + My / InTre™*(0)
+IgM + Mp.

IR

Then we obtain

[HY(G, M)*|

H-'(G, M) | LH (G, M)|

(@ = 1)"HgM + Trg™(0) / IaTre ' (0) + Ic M + My

= [(a=1)"MTrg™(0) / IaM N (a — 1) Tre™(0) + IgM + My
(¢ — 1) Trg " H(0) + IaM / Igx aM + Mo|.

The homomorphism given by multiplying (o — 1)Trs induces an isomor-
phism

IaTrgM | I3Tre M
H_I(A, IATrgM).

1%

M/ (a—1)"1Teg 1 0) + IaM

Since I4TrgM has a submodule of finite index isomorphic to 51 A, Her-
brand’s Lemma shows

[H (A, I TrgM)|

[H72 (4, 814)|[H(A, 4 Tra M)| / [H(4, BL)]

[H'(A, &1a)| = |A™.
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Thus we finally have

|M [ IgxaM + M)
= |M/(a—1)"1Trg™(0) + I, M|

Yo =1) " Tre™(0) + IaM [ IgxaM + M|
A" HTHG, M)A

Il

O

Lemma 3. Let G and A be as in Proposition 2. Let M be a Z|G x A]-
module such that M ®z Q & gQ[G x A] for some m > 0 and take a set

of generators wy, ... ,Wmin. Let (w;) be the column vector and put w =
(w;). Assume that a square matriz Q = (g;;) € M(m +n,Z[G x A]),
that is, Q is of size (m+mn) x (m+n) with entries in Z[G x A], satisfies
Q- w = 0. Then all the minors of Q of size greater than n are zero.

Proof. Let q be a prime ideal of Q[G x A], then the localization
QICG x A], at q is a field. Since M ®; Q = BQ[G x A], (M ®z Q),

is a linear space of dimension m over Q[G x A],. Because Qu = 0 and
Wi, ... Whytn spans (M ®z Q)q, the rank of Q at q is at most n. Thus
all the minors of Q of size greater than n are zero at all prime q of
Q[G x A]. Therefore all the minors of Q of size greater than n are zero
in Z|G x A]. The lemma is proved. a

Let Z|G]|T] be the polynomial ring in T over the group ring Z[G],
and let p : Z[G][T] — Z[G x A] be a surjective homomorphism of Z[G]-
algebras given by p(T) = a— 1. Note that Kerp = (T +1)!4l — Dziayr)-
Write (T + 1)141 — 1 = T - f(T). For a matrix, by abuse of notation, we
denote the homomorphism obtained by applying p to every entry also
by p.

Lemma 4. Let S be a noetherian ring, x be an element of S such
that = is not a zero divisor and (z) is equal to its radical. Let Q be an
m + n square matriz such that Q@ modulo p has at most rank n at every
minimal prime p of (x). Then z™ divides det(Q).

Proof. Let p1,...,ps be the minimal primes of (z). Since the radical
of (z) is equal to (z), () = p1N---Nps, and xSy, = p;S,,. Because
the rank of Q) mod p; is at most n, det Q is contained in the m-th power
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™Sy, of the maximal ideal xSy, for all p;. Then det @ is contained in
x™U~1S, where U = S\ (p1 U---Up,) and U~1S is the localization
of S by U. Therefore fdet(Q) € (z™) for some f € U. Now f is in
no minimal prime over (z), so the multiplication by f is injective on
S/(z). Since z is not a zero divisor, the multiplication by z! induces an
isomorphism S/(z) = (z!)/(z**!) for every I. The multiplication by f is
injective on (z!)/(z!*!) and also on S/(z!) for all I. Thus det(Q) € (z™)
as claimed. o

Remark 2. Let G, A, M, w and Q be as in Lemma 3. Take a matrix
Q = (Gij) € M(m+ n,Z[G][T]) such that p(Q) = Q. Then putting
S =Z|G)[T) and z = (T + 1)!41 — 1 in Lemma 4, we have

(T + )4 —1)™ | det Q.

Furthermore all the cofactors of Q are divisible by ((T' 4 1)l —1)™~1,

For z € Z|G][T), define z(<¥ and z(2V € Z|G][T] by
o=z 4 T2 with degr z(<V < I,
and denote the coefficient of T! by () € Z[G]. For a matrix, we extend

this definition to the whole matrix if it applies to all the entries. Denote
the natural projection by

pr: Z|G x A] - Z[G x A]/{a — 1)ziex 4] = Z[G];
then z(© is the image of = by pr o p.

Remark 3. Under the hypotheses of Remark 2, we have

=0 . =0

9irjn i js v Qivjs
. = pProp
ql(gj)l e ‘iz(gg)s Gi.ji = Gisjs
Qirjy 0 Qigg.
= pr =0 fors>n.

Q51 " Qisge
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Lemma 5. Under the hypotheses of Remark 2, we have
(det @E™ - B = (adj @ VQEY + (adj Q)E™Q,
where E is the unit matriz and adj Q is the cofactor matriz of Q.

Proof. Since the cofactor matrix adj Q is divisible by T™ 1, we have
detQ - E

= adj@-Q

- T GE -G

= T M adj Q)™ - TQEY + T™ }(adj Q)™ 1 Q)
+T™ (adj Q)F™Q

= T ((adi QIR + (adi )™
+T™ ! (adj Q)™ 1 Q).

Since det Q is divisible by T™, (adj @)™~V Q) must be equal to zero.
This proves the lemma. O

§3. Proof of Proposition 2.

We may assume m > 0. Take a1, ... ,am € (@ —1)"'IgM as in Lemma
2, and put

Mo = (a1, .- ,am)ziGxA]-
Take b1,... ,b, € M so that by,... ,b,,a1,...,an, generate M. Put

ay by

a= : ,b= : andvz(b).
: : a

am bn,
Then by Lemma 2, we find a square matrix B € M(n,Z) such that
+n
Bbe"® (IgxaM + M) and
det B=|M / IgxaM + My| = |[A|™H (G, M)4|.

There exist matrices J; € M(n, Igxa) and L € M(n, m,Z[G x A]) such
that Bb = J1b + La. Since (o — 1)My C IgM, there exist J; €
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M(m, (Ig)zigx4]) and J3 € M(m,n,{Ig)zjgx4]) such that (o — 1)a =
Joa + J3b. Put

B-J I
X:( e (a_l)E_JZ)eM(m+n,Z[GxA]).

Then X -v = 0. Write X = (z;;).

Now take a lift J; € M(n, (Ig, T)zg)1}), L € M(n, m, Z[G][TY),
Js € M(m, <IG)Z[G][T]) and J3 € M(m, n, (IG)Z[G][T]) of Jy, L, J; and J3
under the map p, respectively. Put

- (B-J -L
X—( s TE—jz)

and write X = (Zs5). Then X is a lift of X under p. By Remark 2,

det X is divisible by ((T + 1)!4! —1)™. Put D = (det X)(Z™). Then by
Lemma 5,

D-E = (adj X)™ Y XED 4 (adj X)E™ X,
Note that D is divisible by f(T)™ and that

D =det B=|A™H(G,M)* mod (Ig, T)zcm-

m+
Take an element ¢ = (c1,... ,Cm+4n) Of @nZ[G x A] such that c-v €
m+n
MGE*A and take a lift ¢ = (G1,... ,Cmtn) € D Z[G][T] of c. Put
~(0 (0 (m—1)
O @,
D, = T2 1 T T2 m+n ,
-i'm+n 1 tte fim+n m+n
- - -1
T11 T1 m4n (=1
Dpin = | _ ° o € Z[G).
Tm+n—-11 e Tm+4+n—1 m+n
(0 (0
SO

Then we see that
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Dé
= &DE
= Z9DE+Té2VDE
&0 (adj X)m-D XED 4 &0 (adj X)E™ X + TEEVDE

F#(21) 7(21)
—J —-L
= (D1, ,Dmin) - 1 1
(D1 +n) (_Jégl) E_J2@1)>
+&© (adj X )(E™ X
+TEEVDE.
‘We have
Z1 1 T 1 m+n
(a—1)e; -+ (@—1)emyn Jv=0.
Tm+n 1 e Tm+n m+n

Therefore the determinant

11 0 ZT1mtn
Té, -+ Témin
:i'm+n 1 e -'Z'm+n m+n

is divisible by ((T' +1)!4! —1)™, and hence

i1 e Z1 m+n

Té - Témin

Tm4n1 " -’Z’m-l—n m+n
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is divisible by f(T')™. By Remark 3, we have

. ~ 2m)
Z11 tte T1 m4n
Di=| Té& - Témin
m+4n 1 m+n m+n T=0
In fact,
~ ~ (m-1)
T11 Z1 m+n
~(0 ~(0
D = | & ..
"i'm—i-n I -'f:m—!—n m4n
~ ~ (m)
Z11 Z1 m+n
~(0 ~(0
= | & ... T,
-%m-}—n 1 " jm—i—n m+n
~ - (m)
Z11 Z1 m+n
— Tél e T5m+n
-'im-}-n 1 im-}—n m+n
=) .. =)
1151 Tirjs

~(t1) = (t2) =~ (tr)
Cly Tholy ™" Tyl

—dE
~(0) ~(0)
Y R
Here ) is taken over all ¢y,... ,t, > 0 with ¢; +---+ ¢, = m — 1, all
1< ky <--- <k, £m+nexceptiandalldistinct 1 £ 1q,...,l £ m+n.
The indices 1 < i1 < ... < is £ m + n are taken as {i1,...,%s} =
{1,... ,m+n}\{i,k2,... ,kr},and 1 £ j; < ... < js £ m+n are taken
as {j1,---,ds} ={1,... ,m+n}\{l,...,lr}. Sincer Sty +---+t, =
m — 1, we see that s = m + n — r > n. Therefore by Remark 3, all of
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the terms in ) vanish. Hence we have

(m)

Z11 tee T m+n
D; = Tél Tt T6m+n
im—l—n i 0 jm—}-n m+n
~ ~ (zm)
Z11 te 1 m4n
= Té o Téman
T 1 -+ I
m+n m+n m+n T=0

Thus D; is divisible by f(0)™ = |A|™. Moreover since

Z11 L1 m+n
(g—De -+ (9= Vemin |v=0 (g9€G),

Tm+n 1 te Tm+n m+n
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a similar argument to the above also implies

(g—-1)D;
~ ~ (m—1)
Z11 Z1 m+4n
. o . }
= | (e-0&” - (g-Dan
i‘m—i—n 1 Tt i'm—f—n m+n
~ ~ m—1
I11 Tt 1 m4n ( )
= |(g—Da - (9—1)emin
*im—lvn 1 e -'i'm—i—n m4n
~(0) ~(0)
i 7 T ( (
~(t1) ~(t (¢
- Z = : (9-1)g, )ml(c;l)Z " 'wkrl),
-(0) -(0)
$isj1 e xisjs
~ ~ m~-1
I11 e T1 m4n ( )
= | (g-Vé -+ (9—1)emin
jm—f—n 1 e jm+n m+n

(3" is again taken over all ¢y,... ,t, > 0 with ¢; +---+&. =m — 1, all
1< ky <--- < ky £m+nexcept i and all distinct 1 < ly,..., I £ m+n.
The indices 1 < 4; < ... < 45 < m + n are taken as {1,...,is} =
{1,...,m+n}\{i,ke,... ,kr},and 1 £ j; < ... < js £ m+n are taken
as {ji1,---,4st ={1,... ,m+n}\{l,...,l.}.) By Remark 2, we have
that

Z11 j'1 m+n

(@-D& - (G 1imn

-i'm-l—n 1 e jm—{-n m+n
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is divisible by T™. Therefore the coefficient of 7! in the determinant
is equal to zero. Thus we conclude that (g — 1)D; are zero for all g € G.
Hence

Di,...,Dmin € |A™Z[G) N ZTrg = |A|™ZTre.

Since we have

o _ B——jl L _ B"'jl I
”X_( —Js TE—L)‘( 0 TE) mod (Ig)z[a)T),

each D; is congruent to zero modulo I and hence equal to zero for
1 £ i £ n. Take hy € Z such that Dy = hi|A|™Trg for k=1,... ,m.
Now put D = p(D) = p(det X(2™). Then f(T)™ divides D. Since
(e —=1)f(a—1) =0, (¢ —1)D is equal to zero. Moreover X - v = 0.
Therefore

D-cv
= p(Dépw
= (0,...,0,Dpy1,-.+ , Dppyn) p(XED )0
= (0,...,0,h1, ..., )| A|™Trg p(XEV)o.

Since we have
- _jE& _jen
X&) = ( J; L ) mod (I)z(q)(r];

we see that

D-cv = h|A™Trgar + - + b A" Trgam
€ |A™Trg((a—1)"tIgM).
This is true for every cv € MYE*4. Since D = |A|™|H (G, M)4|
mod Igyx 4 and since ¢-v runs through all the elements of MF*4, we see
that
|A|™ - [H™Y(G, M) M4 C |A|™ - Trg((a — 1) IgM).
By assumption M is Z-torsion free. Therefore we conclude

[HY(G, M)A M4 C Trg((a — 1) gM).

Proposition 2 is now proved.
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§4. Dualization of Proposition 2.

In this section, we dualize Proposition 2 through the intermediary of
finite modules.

Proposition 3 (finite dual annihilation version). Let G be a
finite abelian group and A be a finite cyclic group generated by a. For a
Z|G x A]-module M of finite order, we have

[H-Y(G, M)A - M94 ¢ Trg((a — 1) gM).

Proof. Let s be the exponent of M and denote the Pontrjagin dual
of M by M”. Take a sufficiently large natural number m and take a
surjective homomorphism

q: BL/SZ[G x A] - M".

Then, since Z/sZ|G x A" = Z/sZ|G x A], we have an injective homo-
morphism

i M — ®Z/sZIG x Al.

Let us consider M as a submodule of %Z/ sZ|G x A]. Let R be the in-
verse image of M by the natural projection p : gZ[G x Al -
52/ SZ[G x A]. The kernel of p is isomorphic to gZ[G x A]. There-

fore we have an exact sequence
0— @Z[G x A] — R — M — 0.
Then HY(G,R) 2 H (G, M) as Z[A]-modules and
H™Y(G,R)A = H (G, M)A
Moreover, we have
H°(G x A,R) 2 H°(G x A, M).
The exact sequence given above induces an exact sequence

0 — BZ[G x A)/BZ[G x A|NIgR — R/IgR — M/IgM — 0.
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It is clear that
Io-®ZG x A] C ®Z[G x A|nIgR
C @®ZIG x AN Trg™(0)

C Ig LG x A.

Therefore the term %Z[G x A] /gZ[G x Al N IgR in the previous ex-

act sequence is isomorphic to the free Z[A]-module gZ[A]. Thus the

homomorphism R/IgR — M/IcM induced by R — M induces the
isomorphism

H°(A, R/IgR) = H(A, M/IgM).
It is easy to see that

RE*4 /Trg((a — 1) 'IgR)
=~ Cok(Trg : H°(A, R/IcR) — H°(G x A, R))

and

M4 Trg((a — 1) g M)
& Cok(Trg : H(A, M/IcM) — H°(G x A, M)).

Hence we have
R4 | Trg((a — 1) 'IgR) =2 M4 | Trg((a — 1) tgM).

Proposition 2 for R now gives Proposition 3 for M. O
Next we take the Pontrjagin dual of the preceding proposition.

Proposition 4 (finite annihilation version). Let G be a finite
abelian group and A be a finite cyclic group. Let M be a Z[G x A]-
module of finite order. Then

[HO(G, M)A |- Trg (T4 - MC) C IgxaM.

Proof. Take the Pontrjagin dual M”" of M, then H°(G,M)" =
H~Y(G, M™). Since (H*(G, M)*)* = IZ.H™ (G, M"), we have

(H(G, M) =2 H (G, M) /I,H (G, M)
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and
((H°(G, M)")" = [H7H(G, M")/I4H™H(G, M")|
[H™Y(G, M")4].
Since (M©)1 = Ig(M"), we see

(Ia- MOY* = (@— 1) Ia(M"),
(Tra ™ (La - M) = Tra((a — 1) Ia(M™)).

(Here o is a generator of the cyclic group A as before.) Combining this
with (IgxaM)+ = (M")%*4, we have

(Tre™ (I - MC)/IgxaM)" = (M™)*A ) Tra((a — 1) Hg(MM)).

Thus Proposition 3 for M” implies Proposition 4 for M. O

Proposition 5 (annihilation version). Let G be a finite abelian
group and A be a finite cyclic group. Let M be a finitely generated

Z|G x A]-module such that M ®z Q =2 gQ[G x A], and suppose that M

is Z-torsion free. Then we have

[HY(G, M)4| - Tre ™ (Ia - MC) C Iy aM.

Proof. By assumption T]r\L/I contains a Z[G x A]-suimodule of finite index
which is isomorphic to @Z[G x A]. Put N = M/®Z[G x A]. Then
H°(G, M) = H°(G, N)
as Z[A]-modules and
H°(G, M)“ = H°(G, N)A.
Moreover, we have
H G x A, M) =2H (G x A,N).
The exact sequence
0 BZ[Gx A - M —N—0
induces the exact sequence

0 — BZ[A] — M® — N - 0.
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Therefore we have
HO(A, M%) = H(A, N©).
It is easy to see that

Trg (T4 M) /IgxaM
=~ Ker (Trg : HY(G x A, M) — H™ (4, M%)

and

Trg (T4 - N¢)/IgxaN
=~ Ker (Trg : H1(G x A,N) —» H (A, N9)).

Hence we have
Tre  (Is - MC)/IgxaM = Trg (1o - N¢)/IgxaN.

Therefore Proposition 4 for N proves Proposition 5 for M. O

85. Proof of Proposition 1.

In this section, we convert the annihilation property into a compar-
ison property of orders, and this will complete the proof of Theorem 4.
Now we begin the proof of Proposition 1.

Proof of Proposition 1. Denote the homomorphisms given by projec-
tions by

p1: R — (BQIG x A]) & Q — BQ[G x 4]
and
p2: R— (BQIG x A) @ Q— Q
Put Ry = Kerps and R; = pi(R). Then the short exact sequence
0— Kerpy - R— R; — 0

gives us the long exact sequence

- H_I(G7 R) - H_I(Gv Rl) - HO(G1 Kefpl)
— H°%G,R) — H°(G, R;) — H'(G,Kerp;) — -
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Since Ker p; = Z, we have H*(G,Ker p;) 2 Z/|G|Z and H}(G,Ker p;) =
0. Thus we obtain an exact sequence

0 — Cok(H YG,R) - HYG,R))— Z/|G|Z
— H°G,R)* — Im (H*(G,R)* — H°(G, Ry)) — 0.

In the short exact sequence
0 — Ro — R — p2(R) — 0,
p2(R) is isomorphic to Z. Therefore we have
H (G, R) = Trg ' (0)/IcR = Ry N Trg"*(0) / Ry N IgR.
Moreover, since p1|gr, : Ro < Rj is injective, we see that
p1(Ro N Tre™(0)) = p1(Ro) N Trg ™2 (0).
Since IgR; = p1(IgR) C p1(Ro), we have

Cok (H™Y(G, R) — H™Y(G, Ry))
Ry N'Tre™1(0) / p1(Ro) N Tre™*(0)
RiNTrg™1(0) + p1(Ro) / p1(Ro).

Il

I

Since T4R C Ry and R/Ry = Z, we have
TreRNI4R C Trg R,
Hence we obtain
RN (a—1)"'TrgR = RN (a— 1) ' TrgRy,
where « is a generator of the cyclic group A. Note that, for » € R and
g € G, (g — 1)r = 0 is equivalent to (g — 1)p1(r) = 0. Since p1|g, is
injective, (o — 1)r € TrgRy is equivalent to (a — 1)p1(r) € Trgp1(Ry)
for » € R. Hence we have
p1(RE N (a—1)"'TrgRo) = RS N (a — 1) Trep1 (Ro)
and

Im (H°(G, R)* — H°(G, Ry))
= R? N (O{ - 1)‘1Ti‘gp1(R0) / TraR;.
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Since
R¥ N (a—1)"1TrgR; / RY N (a— 1) Trgp:1(Ro)

~ I, -ReNTrgR; /I RSN Trep:(Ro)
>  (I4-R¥NTrgRy) + Trgpi(Ro) / Trapi(Ro)
= pi(Ro) + Tr¢™ ' (Ia - RY) N Ry / p1(Ro) + Trc ™' (0) N Ry,

[H(G, R)*|/|G
= |RY N (a—1)"'Trgpi(Ro)/Trg Rl
/ IR0 Tre™"(0) + p1(Ro)/p1(Ro)|
= |R¥nN(a—1)"'TrgR,/TrgRy|
/ Ip1(Ro) + R1 N Tre ™' (Ia - RY) /p1(Ro)
= [H%G,R1)*|/ Ip(Ro) + R N'Trg ™" (Ia - RY)/p1(Ro)|-

Since Ry /p1(Ro) = Z/rZ for some r € Z, the subquotient

p1(Ro) + RiN'Trg ™' (14 - RY) /p1(Ro)

is a cyclic quotient of Ry N Trg (14 - RS)/IgxaR:. Since R; ®z Q =
gQ[G x A], Proposition 5 shows that

|HY(G, R1)#| - (m1(Ro) + Ri N Trg ™ (Ia - RY)/p1(Ro)) = 0.

Since py(Ro) + Ry N Trg ™' (Ia - RY)/p1(Ry) is a cyclic group, this an-
nihilation means that the order |p;(Ro) + R1 NTrg™ ' (I4 - RY)/p1(Ro)l
divides |H°(G, R;)*|. Thus we have shown that |G| divides |[H*(G, R)*|.

Therefore the proof of Proposition 1 is completely done, and hence The-
orem 4 is proved now. O
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