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Some Congruences for Binomial Coefficients 
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Abstract. 

Suppose that p = tn + r is a prime and that h is the class 
number of the imaginary quadratic field, <Ql( .;=t). If t = 3 (mod 4) 
is a prime, just r is a quadratic residue modulo t and the order of 
r modulo t is t;l, then 4ph can be written in the form a 2 + tb2 for 
some integers a and b. And if t = 4k where k = 1 (mod 4), r = 3 
(mod 4), r is a quadratic non-residue modulo t and the order of r 
modulo t is k - 1, then ph = a 2 + kb2 for some integers a and b. Our 
result is that a or 2a is congruent modulo p to a product of certain 
binomial coefficients modulo sign. As an example, we give explicit 
formulas for t = 11, 19, 20 and 23. 

§1. Introduction 

Let p be a prime number throughout the paper. Gauss [1, 3, 4] 
proved that if p = 4n + 1 then p = a2 + b2 where a= 1 (mod 4) and 

2a = (2:) (mod p). 

Jacobi [4, 6] proved that if p = 3n + 1 then 4p = a2 + 27b2 where a= 1 
(mod 3) and 

a= -(2:) (mod p). 

Eisenstein [1, 2] proved several results. If p = 8n + 3 then p = a2 + 2b2 

where a= (-l)n (mod 4) and 

_ (4n+ 1) 2a=-
n 

(mod p). 
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He also proved that if pis a prime of the form p = 7n + 2 or 7n + 4 then 
p = a 2 + 7b2 where a= p2 (mod 7) and 

2a = {-(3:) (modp) - en: 1) (mod p) 

if p = 7n + 2, 

if p = 7n + 4. 

In this paper we study similar problems for primes of the form p = tn+r. 

§2. t = 3 (mod 4) is a prime 

Since t = 3 (mod 4), the ring of integers of Q( A) is z[i+Fl 
and Q((t) is the extension field of Q( J=t) with degree <l>~t) = t21. Set 

s = <f,~t). Let r be a quadratic residue modulo t such that 1 < r < t 
and the order of r modulo t is s. Ifs is a prime, then the order of a 
quadratic residue r modulo t such that 1 < r < t is s. Let p = tn + r 
be a prime. By Dirichlet's theorem, there are infinitely many primes of 
this type since (r, t) = 1. Then 

(-t) (-1) (t) p-1 ,-1 v-1 (r) p = p p = (-1)-2 (-1)-2 -2 t = 1 

where(-:) is Legendre symbol. Sop splits in Q(J=t) asp= PiP2- Let 
l'i be the prime ideal of Q((t) over Pi· Since the order of r modulo tis 
s, so is the order of p. Hence the residue class degree of PdP is s and Pi 
is inert in Q((t)/Q(J=t). Let q = p 8 • If ~i is a prime in Q((q-i) lying 
above Pi, then the residue class degree of ~dP is also s, hence we can 
identify Z[(q-i]/~1 with IFq where IFq is a finite field with q elements. 
Note that ~dP is unramified. 

Q((q-1) Z[(q-1] ~1 ~2 

I I I I 
Q((t) Z[(t] 1'1 1'2 

Sc I I I I 
Q(R) z[i+Fl Pi P2 

2( I I \/ 
Q z p 



Some Congruences for Binomial Coefficients 447 

2.1. Gauss Sums 

The unit group of the finite field lF; can be identified with the 
( q - 1 )-st roots of unity via Teichmiiller character w: 

satisfying 

w(a) = a (mod l,p1 ) for all a E lF; 

where (q-1 is the primitive (q - 1)-st root of unity. Let x be a multi­
plicative character such that 

q-1 
a f--------, w(a)-,-

where (t is the primitive t-th root of unity. Note that tl(q - 1). Define 
the Gauss sum as follows: 

g(x) == - L x(aK;rca) 
aEIFq 

where tr : lFq ----, lFP is the trace map and (p is the primitive p-th root 
of unity. Note that g(x) E Q((tp) since x(a) E Q((t), 

Definition 2.1.1 (Adler [1]). 

r ·-v .- xv(a) 
aEIF;, tr(a)=l 

Lemma 2.1.2 (Adler). 

=! g(xv) = pr V for X = w t 
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Proof. 

g(xv) 

= - ( L Xv (a) + (p L Xv (a) + · · · + (;- l L Xv (a)) 
aEFii aEFi aEFi 

tr(a)=O tr(a)=l tr(a)=p-1 

=(1-(p)( L xv(a))+···+(1-(;-1)( L xv(a)) 
aeF; aeF; 

tr(a)=l tr(a)=p-1 

( since xv is a non-trivial character, ~ xv(a) = 0) 

aEIFq 

=(1-(p)( L xv(a))+···+(1-(;-1)( L xv((p-l)a)) 
aEF; aEF; 

tr(a)=l tr(a)=l 

=((1-(p) + (l -(;)xv(2) + · · · + (l -(;-1 )xv(p- l))fv. 

1 q-1 

For a E lF;, a q-; = (aP-l) t(p-iJ = 1 because t, (p - l)l(q - 1) and 
(t,p - 1) = 1. Hence 

Therefore 

q-1 

xv(a) = w(a)-t v = w(lf = l. 

g(xv) {(p- l) - ((p + (; + · · · + (!-1)}fv 
pfv. 

Definition 2.1.3 ([1]). 

t-1 

¢(x) := L CjXj 

j=O 

where Cj = #{a E lF; I tr(a) = 1, x(a) = (/}. 

t-1 

Then ¢((n = 2: cj((/f = 2: xv(a) = fv. We know that 
j=O aH/; 

tr(a)=l 

• 
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Cj #{a E lF; I tr(a) = 1, x(a) = (l} 

#{a E lF; I tr(aP) = 1, x(aP) = (fl} 

#{b E lF; I tr(b) = 1, x(b) = (fj} 
Cpj• 

449 

Since Cj is determined by j (mod t) and p = r (mod t), Cj = Cpj = Crj· 

Lemma 2.1.4. 
g(x") E Q( H) 

Proof. The Galois group Gal(Q((t)/Q(H)) is cyclic of orders 
generated by 

Hence 

T: Q((t) ---+ Q((t) 

(t f--------, ([ 

t-1 

T(fv) T(Lcj((l)") 
j=O 

j=O 

t-1 

L Crj((;j)v 

j=O 

fv. 

Sor" E Q( y'=t). By Lemma 2.1.2, the above lemma is proved. D 

Definition 2.1.5 (Washington [10]). 

t-l b 
0 := L tab 1 E Q[Gal(Q((t)/Q)] 

b=l 

where O"b: Q((t)---+ Q((t) such that ab((t) = (%. 

0 is called the Stickelberger element for Q((t)/Q. Since x = w q-;1 
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by Stickelberger's theorem. 
Gal(Q((t)/Q(R)) = {O"blb is a quadratic residue modulo t} fixes Pi, 
and all the other O"bS send Pi to P2- So 

( ( -i)t) __ I:(i)=l b_I:(i)=-1 b 
g X - Pi P2 · 

Let I::m=i b = at, I::m=-i b = f]t for some integers a, /3 2'. 1. Then 

(g(x-i)) = pfpf C Z[(t]­

Note that (g(x)) = pf p~ and PiP2 = (p) in Q((t)­

Lemma 2.1.6. 

(g(x)) pfp~ 

(g(x-i)) Pf Pf 

as ideals in z[Hy:=1]. 

Proof. g(x) E Q( A) by Lemma 2.1.4 and Pin Q( A)= Pi· So 
we are done. 

Consider the analytic class number formula 

for abelian extensions. We know that if 'l/J( -1) = -1 then 

T('l/J) 1 f-i -
L(l,'l/J) = TCiff L 'l/J(a)a 

a=i 

• 

f . 
where f is the conductor of 'l/J and T('l/!) = I:: 'l/J(a)e21ri/f is a Gauss 

a=i sum. 
Apply these formulas to Q( J=t). Then ri = O, r2 = 1, R = l, w = 
2, ldl = t, and 'l/J = (i)- Hence f = t and IT('l/J)I = Jt. So 

~~ = ~ = L(l, (i)). 
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By taking the absolute value 

h 

2.2. p--adic Gamma Function 

Definition 2.2.1 (Lang [7]). 

I'p(z) := lim (-1r II j 
m-+z 

O<j<rn 
(p,j)=l 

where m approaches z p-adically through positive integers. 
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Definition 2.2.2 ([10]). If05:_d5:_q-l andd=do+d1p+ .. ·+ 
ds-IPs-l such that O 5:. d1 < p, define 

s-1 

s(d) := Ld1 . 

j=O 

r P is called p-adic Gamma function. Note that if 5.l}1 is a prime in 
Q( (q-1, (p) lying above 5-lJ 1 then 

where Vsjj 1 is \lJ1-adic valuation. 
Let II be a (p - 1)-st root of -p. Then Gross-Koblitz formula is 
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Lemma 2.2.3. If d = q~l (t -1) =do+ dip+···+ ds-lPs-l and 

d' = q~l = d~ +dip+···+ d~_ 1ps-l, then 

s-1 · 

(-p)a rrrP(1 -( lY__dl) ), 
j=O q 

g(x) 
s-l p1 d' 

(-pt IT r p ( 1 - ( 0)). 
j=O 

Proof. It is sufficient to show that s(d) = (p - 1),8 and s(d') = 

(p - l)a. 
s(d) = % 1 (g(w-d)) = v'll 1 (g(x)). 

Since g(x) E Q( ,/=t), ~1 = $f-1 and ~i/P1 is unramified, % 1 

(p - l)v'-]3 1 = (p - l)vp 1 • So by Lemma 2.1.5 

s(d) = (p- l)vp 1 (g(x)) = (p-1),8. 

Similary s(d') = (p - l)a. So we are done. 

2.3. Main Result 

• 

Theorem 2.3.1. Suppose that t = 3 (mod 4) is a prime and that 
r > 1 is a quadratic residue modulo t and its order is s = <It) = t 21 . 

Let h be the class number of Q( ,/=t) and p = tn + r be a prime. Let 

- · '77[1+_.l=t] h_(a+bR) '°' b- t '°' b-,Bt P - P1P2 in IL, -2- , P1 - --2- , L..,( ¥)=1 - a , L..,( ¥)=-1 - , 
s-1 s-1 

d=(q~ 1 )(t-1)= Ld1p1 andd'=(q~ 1 )= Ldipl asintheprevious 
j=O j=O 

section. Then 

l. 4ph = a 2 + tb2 , 

2. 

(mod p) 

(mod p) 

if a< ,8, 

if ,8 < a. 

In particular, if Pi is principal ideal, Pi = ( A+~R), then 4p = A2 + 
tB2 and Ah= ±a (mod p). 

Remark. Note that h = la - ,Bl, and a and bare unique up to 
sign. Since s(d) and s(d') are multiples of (p - 1), fl(di)! and fl(dD! 
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can be expressed as some products of binomial coefficients by Wilson's 
Theorem. 

Proof. The first statement is trivial. 
For the second, we will prove only a < (3 case because the other 

case is done in a similar manner. By Lemma 2.1.6 and Gross-Koblitz 
formula, 

s-1 · 

(-p)a IJrP(1-(;1__dl) ). 
j=O 

Hence 

a+bR a-bR =±sIJ-ir (i-'-( pid )) 
2 + 2 . P q-1 

Since 

If Pi is principal, then 

as ideals. So 

J=O 

s-1 

a=± IJ (dj)! (mod p). 
j=O 

( A+:R)h =± (a+~R). 

. BR A b...;=l a 
Smee -- = - (mod P2) and -- = - (mod P2), we have Ah = 

2 2 2 2 
±a (mod p). • 
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Example 2.3.2. Let t = 7, then s = 3, a = 1, /3 = 2 so 
h(Q( ../=7)) = 1. Since h = l if 4p = a2 + 7b2 then a and bare unique up 
to sign. Let p be a prime of the form 7n+2 or 7n+4 and d = 6(p3 -1)/7. 
Then 

d _ {3n + (5n + l)p + (6n + l)p2 

- (5n + 2) + (3n + l)p + (6n + 3)p2 

if p = 7n + 2, 

if p = 7n + 4. 

By Theorem 2.3.1, if 4p = a2 + 7b2 , then 

_ {±(3n)!(5n + 1)!(6n + 1)! (mod p) 
a= ±(5n + 2)!(3n + 1)!(6n + 3)! (mod p) 

if p = 7n + 2, 

if p = 7n + 4. 

By Wilson's theorem, if p is a prime and p - l = x + y, then x!y! = 
(-l)Y+l (mod p). So we get the Eisenstein's result. 

1 1 (3n) 
±(3n)! · (2n)! · (n)! = ± n (mod p) 

a= 
1 1 1 _ (3n + 1) ± ( ) 1 • ( 3n + 1). • -( ) 1 = ± 2n + 1. n. n 

if p = 7n + 2, 

(mod p) 

if p = 7n + 4. 

Since a:::; 2-Jp < p/2, the sign can be uniquely determined. 

Example 2.3.3. Let t = 11, then s = 5, a = 2, /3 = 3, and so 
h(Q( v-IT)) = 1. Jacobi[4,5] showed that if p = lln + 1 is a prime and 
4p = a 2 + llb2 where a= 2 (mod 11) then 

1 
(n)!(3n)!(4n)!(5n)!(9n)! (mod p) a = 

(3:) G:) (~:)-l (modp). 

Suppose that p = lln + 5 is a prime. 

By Theorem 2.3.1, if 4p = a2 + llb2 then 

a - ±(2n)!(7n + 3)!(8n + 3)!(6n + 2)!(10n + 4)! (mod p) 

± (3n + 1) (6n + 2) (4n + 1)-l (mod p). 
n 3n+ l 2n 
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Since a 5 2...jp < p/2, the sign can be uniquely determined. In a similar 
manner, we can get the following corollary. 

Corollary 2.3.4. Let p =Un+ r be a prime and 4p = a2 + 11b2 

where r is a quadratic residue modulo 11. Then 

± (3n: l) ( 6n3: 1) ( 4n2: 1) -l (mod p) if r = 3, 

a= ±(3n+ 1) (6n+2) (4n+ 1)-l (mod p) if r = 4 or 5, 
n 3n+ 1 2n 

±(3n+ 2) (6n + 4) (4n + 3)-l (mod p) if r = 9. 
n 3n+2 2n+ 1 

Example 2.3.5. Let t = 19, then s = 9, a = 4, f3 = 5, and so 
h( Q( ,v'=19)) = 1. Since s is not a prime, the order of a quadratic residue 
is not always s(= 9). Suppose p = l9n + 4 is a prime. Then 

d = (l4n + 2) + (13n + 2)p + (8n + l)p2 + (2n)p3 + (10n + 2)p4 

+(12n + 2)p5 + (3n)p6 + (15n + 3)p7 + (18n + 3)p8 • 

If 4p = a2 + 19b2 , then by Theorem 2.3.1 and Wilson's theorem, 

a= ±(6n + l)(lOn + l)(lOn + 2)(6n + 1)-1(10n + 1)-l (mod p). 
n 4n 3n + 1 3n 2n 

Similarly we get the following corollary .. 

Corollary 2.3.6. Let p = 19n + r be a prime where r is a quadratic 
residue and its order is 9. If 4p = a2 + 19b2 , then a is congruent modulo 
p to a product of binomial coefficients modulo sign. 

l. a = ± (6n + 1) (10n + 1) (10n + 2) (6n + 1)-1(10n + 1)-1 

n 4n 3n + 1 3n 2n 
if r = 4; 

2_ a = ± (6n + 1) (10n + 2) (10n + 2) (6n + 1)-l(lOn + 2)-1 

n 4n + 1 3n + 1 3n 2n 
if r = 5; 

3_ a = ± (6n + 1) (10n + 2) (10n + 3) (6n + 1)-1(10n + 2)-1 

n 4n + 1 3n + 1 3n 2n 
if r = 6; 

4_ a = ± (3n + l) (lOn + 4) (13n + 5) (4n + 1)-l(13n + 5)-1 

n 5n + 2 6n + 2 2n 5n + 2 
if r = 9; 
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5_ a = ± (3n + 2) (10n + 8) (13n + 10) (4n + 3)-1(13n + 10)-1 
n 5n + 4 6n + 5 2n + 1 5n + 4 

if r = 16; 

6_ a = ± (3n + 2) (10n + 8) (13n + 11) (4n + 3)-1(13n + 11)-1 
n 5n + 4 6n + 5 2n + 1 5n + 4 

if r = 17. 

Example 2.3. 7. Suppose p = 23n+4 is a prime. Then h(Ql( ,/=23)) 
=3 and 

d = (17n + 2) + (10n + l)p + (14n + 2)p2 + (15n + 2)p3 + (21n + 3)p4 

+(Un+ l)p5 + (20n + 3)p6 + (5n)p7 + (7n + l)p8 + (19n + 3)p9 

+ (22n + 3)p10 • 

If 4p3 = a2 +23b2 for p ,fa, then by Theorem 2.3.1 and Wilson's theorem, 

a=±(:) co:: 1) (11~: 1) c2:: 1) c2~: 1)-l (mod p). 

If Pi is principal, then 4p can be written in the form A2 + 23B2 • For 
example, if p = 211, then 4p = 42 + 23 • 62 . So we can verify Theorem 
2.3.1 that 4p3 = 24682 +23·11702 and 42 = -(2468) (mod p). Note that 
if t i=- 3 (mod 8) then a and b are even. Similarly we get the following 
corollary. 

Corollary 2.3.8. Let p = 23n + r be a prime and 4p3 = a2 + 23b2 

for p }a where r is a quadratic residue modulo 23. Then a is congruent 
modulo p to a product of binomial coefficients modulo sign. 

l. a=±(:) (~o:) C2~) (~:) c52:)-1 
if r = 2; 

2_ a= ±G:) (lOnn+ 1) (~~) (11;: 1) c3o:)-l 
if r = 3; 

3_ a=±(:) co:: 1) (11~: 1) (12:: 1) (12~: 1)-l 
if r = 4; 

4_ a = ± (4n) (10n + 2) (Un+ 2) (12n + 2) (12n + 2)-l 
n 4n + 1 2n 4n 5n + 1 

ifr = 6; 

5_ a= ±(4n + l) (10n + 3) (lln + 3) (12n + 3) (12n + 3)-l 
n 4n + 1 2n 4n + 1 5n + 1 

if r = 8; 
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6_ a=± (5n + 1) (10n + 3) (10n + 3) (lln + 4) (10n + 3)-1 

2n n 4n + 1 3n + 1 3n + 1 
if r = 9; 

7_ a = ± (4n + 1) (10n + 5) (lln + 5) (12n + 5) (12n + 5)-1 

n 4n + 2 2n + 1 4n + 1 5n + 2 
if r = 12; 

8_ a= ± (4n + 1) (10n + 5) (lln + 6) (12n + 5) (12n + 5)-l 
n 4n + 2 2n + 1 4n + 1 5n + 2 

if r = 13; 

9_ a=± (4n + 2) (10n + 6) (lln + 7) (12n + 7) (12n + 7)-1 

n 4n + 2 2n + 1 4n + 2 5n + 3 
if r = 16; 

lO. a = ± (4n + 2) (10n + 7) (lln + 8) (12n + 8) (12n + 8)-l 
. n 4n + 3 2n + 1 4n + 2 5n + 3 

if r = 18. 
§3. t = 4k for a prime k = 1 (mod 4) 

Suppose p = 4kn+r is a prime where k = 1 (mod 4) is a prime and 
r = 3 (mod 4) is a quadratic non-residue modulo k, that is OJ = -1. 

Then the ring of integers of Q( v'="f) is Z[ v'="f] and 

(-k) (-1) (k) E.=2 k-1 E.=2 (r) P = P P = (-1) 2 (-1) 2 2 k = 1. 

Sop splits in Q( 0) asp = p1p2 . Suppose the order of r modulo t 
is k - 1. Then Pi is inert in Q((t)/Q( v'="f). Let Pi be the prime ideal 
of Q((t) over Pi and q = pk-I_ If l.lJi is a prime in Q((q-i) lying above 
Pi, then the residue class degree of l.lJi is k - 1; hence we can identify 
Z[(q-i]/!,p1 with lFq, Note that l.lJi/p is unramified. 

Q((q-1) Z[(q-1] !,p 1 l.lJ2 

I I I I 
Q((t) Z[(t] Pi P2 

k-1 ( I I I I 
Q(R) Z[N] P1 P2 

2( I I \/ 
Q z p 
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3.1. Gauss Sums and p-adic Gamma Functions 

Let x be a multiplicative character such that 

-2..::.! a f-----+ w(a) • 

where w is the Teichmiiller character. g(x), rv, cp(x) and rP are defined 
as in the previous section. 

Lemma 3.1. 1. 
q-1 

g(xv) = pr V for X = w-,-

Proof. It is sufficient to show that for a E IF;, a? = 1 as in the 
Lemma 2.1.2. 

We will show that 4k(p-l)l(q-1). Since r = 3 (mod 4), P21 is odd. 
So 8, k and ~ are relatively prime. Clearly kl(q - 1) and P21 l(q - 1). 

q-1 (4kn+rl-1 -1 

~ e ~ 1)(4kn)irk-1-i -1. 

If i 2: 2, then 8l(4kn)i. If i = 1, then 2w~1) = k - 1 and 4l4kn, and 

hence 8W~1)(4kn). Since r = 3 (mod 4), r 2 = 1 (mod 8), and hence 

(r2 ) k2 1 = 1 (mod 8). So if i = 0, then 8lrk-l - 1. Thus we showed 
8l(q - 1), and hence 4k(p- l)l(q - 1). So we are done. • 

The Galois group Gal(QJ((t)/QJ( H)) is cyclic of order k - 1 gen­
erated by 

T:Ql(Ct) - QJ(Ct) 't f-----+ ([ 

because the order of r modulo t is k - 1. Hence T(r v) = r v since 
Cj = Crj as in the previous section. So g(xv) E QJ( \f-k). Let 0 denote 
the Stickelberger element for QJ((t)/QJ. By Stickelberger's theorem 

(g(x-l)t) = pt0. 

Gal(QJ(Ct)/QJ( H)) = {ablb = ri (mod t), i = 1, 2, · · · , k -1} fixes ih­
Let E7~}(ri (mod t)) = at and (I::(b,t)=l b) - at= (k - l)t - at= (3t 
for some integers a, (3 2: 1. Then 

(g(x-1)) = pf P~ c Z[(t]. 



Some Congruences for Binomial Coefficients 459 

Hence 

(g(x)) pfp~ 

(g(x-1)) Pf P~ 

as ideals in Z[ H]. 
Let 'l/; be a multiplicative character 'l/; : (Z/tZ) x _______, ex such that 

'l/;(a)={l 
-1 

if a= ri (mod t) for some i, 

otherwise. 

Then Q( H) is the field belonging to 'l/;. 

Lemma 3.1.2. 'l/;(-1) = -1. 

Proof. If -1 = ri (mod 4k) for some i. Then i = k21 because the 
order of r is k - 1. But 

r = 3 (mod 4) =} r 2 = 1 (mod 4) =} r 2 ( k:;:i) = 1 (mod 4). 

It is a contradiction. • 
Apply the analytic class number formula to Q( H) and take the 

absolute value. Then 

So h = la - ,61. 
Let II be a (p - 1)-st root of -p. Then Gross-Koblitz formula is 

k-2 · 

g(wd) = (-pl-lrr-s(d) II rp ( 1 - (;'_dl)). 
j=O 

Lemma 3.1.3. If d = q~I (t-1) =do+ dip+··· +dk-2Pk-z and 

d' = q~I = d~ +dip+ · · · + d~_2pk-Z, then 

k-2 .d 

(-p)a rrrp(1-(;'_ 1)) 
j=O 

g(x-1) = 

k-2 pld' 
(-pt IT r p ( 1 - ( q - 1)). 

j=O 

g(x) 
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Proof. See the proof of Lemma 2.2.3. D 

3.2. Main Result 

Theorem 3.2.1. Suppose that t = 4k for a prime k = l (mod 4) 
and that r = 3 (mod 4) is a quadratic non-residue modulo k and its order 

is ¥ = k - l. Let h be the class number of Q( H) and p = tn + r 

be a prime. Let p = P1P2 in Z[H), p~ = (a+ bH), I:7:/(ri 
k-2 

(mod t)) = at, (3 = (k - 1) - a, d = (9i2)(t - l) = I: dipi and 
j=O 

k-2 
d' = ( ~) = I: djpi as in the previous section. Then 

j=O 

l. Ph = a2 + kb2; 
2. 

if a< (3, 

if (3 < a. 

Proof. See the proof of Theorem 2.3.1. D 

Example 3.2.2. Let k = 5, then a= 1, (3 = 3 so h(Q( v'-5)) = 2. 
Let p be a prime of the form 20n + 3 or 20n + 7 and d = 19(p4 -1)/20. 
Then 

{ 

(13n + 1) + (lln + l)p + (l 7n + 2)p2 + (19n + 2)p3 

d = if p = 20n + 3, 
(l 7n + 5) + (lln + 3)p + (l3n + 4)p2 + (l9n + 6)p3 

if p= 20n+ 7. 

By Theorem 3.2.1, if p2 = a2 + 5b2 , then 

2
a = {±(13n + l)!(lln + 1)!(17n + 2)!(19n + 2)! 

±(l7n + 5)!(11n + 3)!(13n + 4)!(19n + 6)! 

By Wilson's theorem, 

(mod p) 
if p = 20n+3, 

(mod p) 
if p = 20n + 7. 

if p = 20n + 3, 

if p = 20n + 7. 
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At the time of the publication of this paper, we could remove the 
sign ambiguity of our results in [8]. Moreover we generalized our results 
to the primes of the form of p = tn + r such that p splits in Q( A) [9]. 
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