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On Classification of Semisimple Algebraic Groups

Ichiro Satake

In this note we give a survey of the classification theory of semisimple
algebraic groups over a number field. As is well known, for a given
field F', the F-isomorphism class of such a group G defined over F is
determined up to F-isogeny by the “I-diagram” ¥.z(G) and by the F-
isomorphism class of the anisotropic kernel of G (see §2; [Sal], [T]). On
the other hand, if G belongs to an inner type of an F-quasisplit group
G with center Z, then the F-equivalence class of an “inner F-form”
(G, f) of Gy corresponds in a one-to-one way to a cohomology class in
H'(F,Go/Z), which in turn determines an element in H2(F, Z), denoted
by vr(G, f) (see §1; [Sa2]).

For F = R (the field of real numbers), it is well known that the R-
isogeny class of GG is uniquely determined only by the I'-diagram Zg(G)
(cf. [A], [Sa3], [T]), while for a p-adic field F, a fundamental result
of Kneser [K1] says that the F-equivalence class of an inner F-form
(G, f) of a simply connected Gy is uniquely determined only by the
cohomological invariant v(G, f). In treating the case of a number field,
the key step is in the so-called local-global principle, or Hasse principle,
which also plays an important role in the class field theory. The Hasse
principle for H!(F, Go) (Go simply connected) had been established by
Kneser and Harder ([K2], [K3], [H1]) except for the case of (Eg), which
was recently settled by Chernousov [Cher] (1989). On the other hand,
for I'-diagrams, one can deduce the Hasse principle from a result in [H2]
(see §4). Combining these results, one obtains a complete picture of the
classification. We can formulate the main result in the following form.

MAIN THEOREM. Let F be an algebraic number field of finite
degree and let Voo 1 denote the set of all real places of F'. Let Gy be an
F-quasisplit simply connected semisimple algebraic group over F and let

Z be the center of Go. Suppose there are given a collection of I'-diagrams
{z®) (v e Vio,1)} overR and c € H%(F, Z) such that, for eachv € Voo 1,
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there exists an inner Fy-form (G®), f()) of Gy with vz (G®™, f®)) = ¢,
and r(GW) = £(). Then there exists an inner F-form (G, f) of Go
(uniquely determined up to F-equivalence) such that vp(G, f) = ¢ and
(G, f) is F,-equivalent to (G™), f(*)) (hence T, (G) = T for all
v € V1. (See, §5, Th. 7, 8.)

It should be noted that this result is quite analogous to the classical
result of Minkowski [Mi] (1891) on the equivalence of quadratic forms
with coefficients in Q. Here we see that the F-equivalence class of (G, f)
is uniquely determined by the cohomological invariant v#(G, f), which
is an analogue of the “Hasse invariant”, and a collection of I'-diagrams
{2(®) (v € Vo 1)} (or more precisely {(G™, f(*))}) satisfying the above
consistency condition, which is an analogue of the “signature(s)” of a
quadratic form.

The above main theorem is essentially contained in a result of Sansuc
([San], Cor.4.5), which was generalized quite recently to the case of
reductive groups by Borovoi ([Bo2], Th.5.11). In §5 of this note, we give a
direct proof of it based on the Hasse principle. An explicit determination
of the relevant invariants is given in §6.

§1. Cohomological invariants ([Se|, [Sa2]).

Let F be a field of characteristic zero and Gy an algebraic group
defined over F. Let Z denote the center of Gg and set Gy = Gq /Z. Then
Go can naturally be identified with the group of inner automorphisms
of Go, Inn(Gy), by the correspondence g «— I, (g € Go), g and I,
denoting the class of g mod Z and the inner automorphism I, : z —
gzg~! (z € Gy), respectively.

By an inner F-form of Gy we mean a pair (G, f) formed of an
algebraic group G defined over F and an F-isomorphism f : G — Gy
such that for all o € I' = Gal(F/F) one has ¢, = f o f~! € Inn(Gy),
F denoting the algebraic closure of F. Two inner F-forms (G, f) and
(G', f') are said to be F-equivalent, if there exists an F-isomorphism
¢ : G — G such that f'ogpo f~! € Inn(Gy). Sometimes, G alone is
called an inner F-form of Gy, or G and Gy are said to be in the same
inner type over F', if there exists an isomorphism f : G — Gy such that
(G, f) is an inner F-form of Gy in the above sense. In that case, two
isomorphisms f, f’ of G onto Gy satisfying this condition are said to be
F-equivalent if (G, f) and (G, f’) are F-equivalent in the above sense.

Let (G, f) be an inner F-form of Gg. Then in the above notation it
is clear that (¢, ) is a (continuous) 1-cocycle of I' in Gy = Inn(Gy), i.e.,
it satisfies the condition ¢ly, = ¢,, for all o, 7 € I'. We denote the
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cohomology class of (¢,) in HY(F,Gy) by ¢(G, f), or by cr(G, f) if F

is to be specified. Writing ¢, = I, with g, € Go(F), one has

Cor = 9a9r9sr € Z,

and it is clear that (¢, -) is a (continuous) 2-cocycle of ' in Z. The coho-
mology class of (co,r) in H2(F, Z) is denoted by v(G, f) or vr(G, f). Tt
is clear that these cohomology classes depend only on the F-equivalence
class of the inner F-form (G, f).

From the exact sequence

1-Z—-Gy—Gy—1
one obtain an exact sequence
(1) oo H'(F,2) % H(F,Go) & H'(F,Go) > H(F, 7).

By the definition one has v(G, f) = 6(¢(G, f)). Note that, since Z is
abelian, H'(F, Z) and H?(F, Z) have a structure of abelian group, while
H(F,Gy) and H'(F,Gy) are just a set with a distinguished element 1.

Now, conversely, suppose there is given an element ¢ € H'(F,Gy).
Let (¢,) be a 1-cocycle representing ¢ and let ¢, = I, . Then one can
define a new action of I on Go(F) by

(2) w[”] — g;llﬁagg— for z € GO(F)v

which defines an F-form of Gy, denoted by (Go)e. Then, writing f for
the identity map (Go)¢ — Go, one has an inner F-form ((Go)g, f) of
Gy, whose F-equivalence class depends only on the cohomology class £,
and one has ¢((Go)e, f) = £ Thus we see that the set of F-equivalence
classes of inner F-forms of Gy is in one-to-one correspondence with the
cohomology set H'(F,Gy). Clearly, one has ¢(G, f) = 1 if and only if f
is F-equivalent to an F-isomorphism.
The following lemma ([Se], Ch.I, 5.7) will be useful later.

Lemma 1. Let (p,) and (o) be 1-cocycles representing &, n €
HY(F,Gy), respectively, and set G = (Go)¢ and G = G/(center). Then
(05 %y) is a 1-cocycle of T in G(F) and, denoting its cohomology class
by £71n, one has (for a fized &) a bijective map

n € HY (F,Gy) — ¢ 'n e H'(F,G).

The proof is straightforward. It is clear that, if (G’, f’) is an inner
F-form of Gy corresponding to 7, then (G’, =1 f’) is an inner F-form of
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G corresponding to £ 7. If one identifies the center of G with Z by f,
then one has

8(€71m) = 6(6)~"6(n)
in H%(F, Z). Since the sequence (1) (for G) is exact, it follows that

®3) €71 671(8(€)) = Im(H'(F, G) — H'(F,G)).

§2. TI-diagrams ([Sa3], [T]).

From now on, we assume that Gy (and hence G, G, etc.) is a
(connected) simply connected semisimple algebraic group defined over
F. Let T be a maximal torus in G defined over F and let X = X(T)
denote the character module of T'. Then one has

X ~7! | =dimT = rank G.

Let ® = ®(G,T) C X be a root system of G relative to T" and let A be
a basis of ®; we call such a pair (T, A) a “coordinate” (defined over F)
in G. Let (T, A’) be another coordinate in G. Then, as is well known,
there exists ¢ € Inn(G) such that one has o(T) = T, ©*(A) = A/,
where ¢* € !(¢|T')1; for simplicity, we write

o (T,A) — (T, A).

The inner automorphism ¢ with this property is uniquely determined
up to a right multiplication by I; with g € T; hence ¢ | T and ¢* are
uniquely determined.
Now, let T' = Gal(F/F). Then for every o € I there exists ¥, €
Inn(G) such that
ot (T,A) - (T%,A%).

We set

(4) X =9y;7 (x7)  forall xe€X,
which is well defined and gives a new action of I' on X leaving A invariant
(as a whole). Moreover, this Galois action, called a [[']-action (or “x-
action” in [T]), is defined intrinsically, independently of the choice of
coordinates (defined over F); it is also inherited to all groups in the
same inner type. In fact, let (G’, f') be another F-form of Gy, (77, A’)

a coordinates (defined over F) in G’, and let

Wl (T, A" — (T'7,A”7)
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with ¢/ € Inn(G’). Then there exists an F-isomorphism ¢ : G — G’
such that one has po f™' o f/ € Inn(G’) and ¢ : (T, A) — (T',A"). If
(G', f') is an inner F-form of G, then from ¢° o o1 € Inn(G’), one has
P! oo = @ o), on T, whence follows that

(5) e () =" (x?))  forall xeX, o€l

ie., ¢* is a [[]-isomorphism of X onto X’ = X (7”) (and the converse is
also true).

We call a coordinate (T, A) in G F-admissible if the following two
conditions are satisfied.

(i) T is defined over F' and contains a maximal F-split torus A in
G.

(ii) Let Xo denote the anmihilater of A in X. Then the basis A is
“adapted to Xy” in the sense that there exists a linear order in X for
which all a; € A are positive and the following condition is satisfied:

X €X, x>0, x=x#20 (mod Xy)= x> 0.
Let (T, A) be an F-admissible coordinate in G and set
By = ®N Xy, Ao =ANX,,

D =7(®— D), A=m(A—Ay),

7 denoting the projection X — X = X/X, = X(A). Then it is known
(e.g. [Sa3]) that ®q is a (closed) subsystem of ®, of which Ay is a basis,
and that @ is a system of F-roots of G relative to A (which becomes a
root system in a wider sense) and A is a basis of ®. The closed (semisim-
ple) subgroup of G corresponding to Ag, denoted by G(Ay), coincides
with the semisimple part of Z(A) (centralizer of A) and is called the
(semisimple) “anisotropic kernel” of G over F (relative to (T, A)). More-
over it is known that, for ¢ = I, with g € N(T') (normalizer of T'), the
coordinate (T, ¢*(A)) is F-admissible if and only if one has g € N(A)T
and that, in particular, for ¢ = 1), one has g € Z(A)T. It follows that
Ag is [I'-invariant and the [I']-orbit decomposition of A — Ag is given
by

(6) A—-Ag= U 7 Y yw) N A.
'YiEZ

Note that, if (7', A’} is another F-admissible coordinate in G with a
maximal F-split torus A" and if ¢ € Inn(G) and ¢ : (T,A) — (T, A),
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then one has automatically p(A) = A’ (see Lem. 2 in §4). Thus Ap-
part of A is also intrinsically determined, independently of the choice of
F-admissible coordinate (T, A).

As usual, the basis A is expressed by a Dynkin diagram. The system
Y = (4, Ay, [I) formed of a Dynkin diagram A, a [I']-action on A, and
Aq will be called a I'-diagram (or “Tits index”, or “Satake diagram”)
of G relative to (T,A). We express o« € Ag by a black vertex and
a € A — Ag by a white vertex. As noted above, the I'-diagram of G is
uniquely determined up to “congruence” (in an obvious sense) only by
the F-structure of G. Hence we write ¥ = X(G) or Xr(G).

One has the following “isomorphism theorem” due to Tits and in-
dependently to the author (cf. [B-T], [T], [Sal], [Sa3]).

Theorem 1. Let G and G’ be two simply connected semisimple
algebraic groups over a field F' of characteristic zero. Let (T,A) and
(T',A") be F-admissible coordinates in G and G', respectively, and let

S =(A,A00,[T]) and X = (4,45, I7)

be the corresponding I'-diagrams. Then G and G' are F-isomorphic if
and only if one has a congruence ©* : ¥ — ¥/ and an F-isomorphism
o : G(Ag) — G'(A]) such that ©* | Ag coincides with .

In the notation of the above theorem, suppose one has an F-iso-
morphism ¢ : G — G’. Then ¢* is a congruence of ¥ onto a I-
diagram (¢*(A), *(Ao), *[T)e* ™) of G, which in turn is congruent to
¥’. Hence, combining these two congruence, one obtains a congruence
Y — Y/, which we call a congruence induced by .

For convenience, we recall here some well-known definitions. G is
called “F-split” (or of Chevalley type), if there is an F-split maximal
torus T = A in G. For such a T, the coordinate (T, A) (with any basis
A) is F-admissible and the corresponding I'-diagram ¥ has the property
that Ag = @ and the [[]-action is trivial. Conversely, if ¥ = Xp(G)
has this property, then G is F-split. G is called “F-quasisplit” (or of
Steinberg type) if one has T' = Z(A), or equivalently &, = 0. In this
case, (T, A) is F-admissible if and only if A is I'-invariant (as a whole);
and of course one then has Ag = @. Conversely, if Ag = 0 in 2r(G),
then G is F-quasisplit. It should also be noted that G is “F-anisotropic”
(ie., F-rank G = 0) if and only if one has A = Ap in Xp(G).

§83. Classification over a local field.

It was shown by Chevalley [Ch1,2] that for any field F' (of any char-
acteristic) and for any Dynkin diagram A there exists uniquely (up to
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F-isomorphism) an F-split semisimple algebraic group of adjoint type
defined over F (the so-called Chevalley group). When F is algebraically
closed, this gives a complete classification of (simply connected) semisim-
ple algebraic group over F. It follows also that for any field F, any
Dynkin diagram A, and for any action of I on A, there exists uniquely
(up to F-isomorphism) an F-quasisplit simply connected semisimple al-
gebraic group Gy defined over F with Xp(G) = (A,0,T) (the unique-
ness follows from Th.1). Therefore, for the classification theory over F'
of characteristic zero), it is enough to fix an F-quasisplit simply con-
nected semisimple algebraic group Gy over F' and to determine all inner
F-forms of Gy.
For F = R, one has the following theorem.

Theorem 2. Let G and G’ be simply connected semisimple alge-
braic groups defined over R. Then G and G’ are R-isomorphic if and
only if the I'-diagrams ¥r(G) and Xr(G’) are congruent.

This follows from Theorem 1 and from the fact that a compact (i.e.,
R-anisotropic) R-form G is uniquely determined (up to R-isomorphism)
only by its (unmarked) Dynkin diagram A (Weyl’s theorem). A direct
method of classifying I'-diagrams over R was given by Araki. (See [A] or
[Sa3], Appendix by Sugiura. For a more general method of classifying
“Tits indices”, see [T]. For the classification over R, cf. also [Mu], [Bol]).
For the determination of the invariant v over R, see §6.

For a p-adic field F (i.e., a finite extension of Q) the following
theorem of M. Kneser is fundamental. (For a uniform proof of it, see
[Br-T17).

Theorem 3 ([K1]). Let F be a p-adic field and G a simply con-
nected semisimple algebraic group defined over F. Then H'(F,G) = 1.

In view of the exact sequence (1), this implies the following

Theorem 4 ([K1]). Let F be a p-adic field. Let Gy be a simply
connected semisimple algebraic group defined over F and let Z be the
center of Gq. Then the map (G, f) — (G, f) gives rise to a bijective
correspondence between the set of F-equivalence classes of inner F-forms
(G, f) of Go and H%(F, Z).

In fact, it is enough to show that the map 6 in the sequence (1) is
bijective. It is known (Lem. 4 in §4) that when F is a p-adic field § is
surjective. The injectivity follows from (3) and Theorem 3.

Theorem 4 shows that over a p-adic field F' the simply connected
semisimple algebraic groups are completely classified by the F-quasisplit
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group Gy (i.e., by the [I']-action on A) and the cohomological invariant
v € H?(F,Z). From the result of classification, one sees that over a
p-adic field F' an absolutely simple “anisotropic” F-form G occurs only
for the type (*A;). Consequently, the cohomological invariant (G, f)
reduces essentially to the classical Hasse invariant of central simple al-
gebras (cf. [K1], [Sa3], and §6).

§4. Scalar extensions and Hasse principles.

Let G be a simply connected semisimple algebraic group defined
over a field F' of characteristic zero. We use the notation introduced in

881, 2.

Let F’ be an extension of F' and let IV = Gal(F,/F’), F' being an
algebraic closure of F’. Identifying F with the algebraic closure of F in
F, we denote the restriction of ¢’ € I” on F by o’

The scalar extension F”/F gives rise in a natural manner to canon-
ical maps (homomorphisms) between cohomology sets (groups), which
make the following diagram commutative:

- HYF,Z) — HYF,G) — HYF,G) — H*F2)
1 ! ! 1
— HYF',Z) — HYF',G) — HYF',G) — H*F'Z)

For instance, for ¢ € H'(F,G) we denote by g the corresponding
element in H'(F’,G). Then, in the notation of §1, for £ = cr(G, f) €
H'(F,Gy) one has ¢p = cpi (G, f).

Let (T, A) be an F-admissible coordinate in G and let

¥ =3Xp(G) = (A, Ao, [I))

be the corresponding I'-diagram. Similarly, let (77, A’) be an F'-admis-
sible coordinate in G with

Y =% (G) = (A, Ao, [I)).

Then there exists ¢ € Inn(Go)(-F/) such that ¢ : (T,A) — (T, A');
then one has automatically ¢(A) C A’, where A and A’ are maximal
F-split resp. F'-split tori contained in 7 and T” (see Lemma 2 below).
Therefore the induced isomorphism ¢* has the following properties:

(7 ©"(A) = A", *(8o) DA%, and
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©* (X)) = o* (x)l'] forall x€X, o €I’

Note that the map ¢* : ¥ — 3’ is determined intrinsically, indepen-
dently of the choice of coordinates (T, A), (T7,A’). The image by ¢*
of a [I'-orbit in ¥ is a union of a finite number of [[V]-orbits in 3.
In particular, the image of a white [I']-orbit is always a union of white
[[V]-orbits.

Lemma 2. The notation being as above, let (T, A) (resp. (T", A"))
be an F- (resp. F'-)admissible coordinate in G and let ¢ € Inn(G) be
such that ¢ : (T, A) — (T',A’). Then, for mazimal F-split resp. F'-split
tori A and A’ contained in T and T’, one has p(A) C A'.

Proof. First there exists 1 € Inn(G)(F”) such that ¢1(A4) C A"
Then there exists @; = I,, g2 € Z(p1(A))(F’) such that o0 (T) = T".
Then one has X C p3¢7(Xo). Let Ay be a basis of ® adapted to both
(p503)71(X4) and Xo; then w5l (A;) is a basis of @ adapted to XJ.
Therefore there exist

g3 € N(A) N N(T)(F) and g4 € N(A') N N(T")(F)

such that, for @3 = I, and @4 = I,;,, one has p3A = Ay and @30T A;
=A’. Then one has

paprp193 : (T, A) — (T', A).

By the uniqueness of such a map, one has ¢ = w4 20193 on T'; hence,
in particular, one has p(A) C A, q.e.d.

Now let F' be a number field (i.e., a finite extension of Q) and let V =
VF denote the set of all places (i.e., equivalence classes of valuations)
of F, and let Vi, ; = V£,1 denote the set of all real places. For v € V
we denote by F, the completion of F with respect to the place v. In
the above notation, we write &, for &g, ; similarly, when ¥ = X (G) we
write X, = X g (G).

For our purpose it is important to consider the canonical map

(8) 0:H'(F,G)— [[ H'(F.,G).
veEV

Since, by Theorem 3, H'(F,,G) is trivial except for v € Vi, 1, the map
0 can also be written as

(8" 0:H'(F,.G)—~ [] H'(F.,G).

VEVeo,1
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Then the “Hasse principle” for H, established by Kneser [K2], [K3],
Harder [H1|, and Chernousov [Cher], can be stated as follows.

Theorem 5. Let G be a simply connected semisimple algebraic
group defined over a number field F. Then the canonical map 6 in (8)
is bijective.

For the proof, see [P-R] (Th. 6.6); the proof for the surjectivity of
0 (due to Kneser) is relatively easy. (It seems that no uniform proof
for the injectivity of 8 is yet known.) For the Galois cohomology of the
center Z, one has the following

Lemma 3. (i) The canonical map

(9) H'(F,Z)— ][] H'(F,2)

VE€EVoo,1

s surjective.
(ii) The canonical map

(10) HY(F,2) - [[ H*(F., 2)
veV
15 injective.

(Cf. [P-R], Prop. 7.8, Cor. 2 and Lemma 6.19.)

Lemma 4. If F' is a p-adic field or a number field, then the map
§: HY(F,G) — H*(F,Z) in the sequence (1) is surjective.
(Cf. [P-R], Th. 6.20.)

In order to formulate another type of Hasse principle concerning the
I'-diagrams, let G be a connected semisimple algebraic group defined
over F. (Note that here the simply connectedness is irrelevant.) Let
(T, A) be an F-admissible coordinate in G and let B = B(A) be the
corresponding Borel subgroup of G. For a subset A; of A we denote by
G(A1) the corresponding (connected) semisimple closed subgroup of G
and set P(A;) = G(A1)B. Then it is known that P(A;) is a parabolic
subgroup of G and all parabolic subgroup of G is conjugate to a subgroup
of this form. We denote by P(A;) the conjugacy class of P(A;), which
can be identified with G/P(A1); thus P(A;) has a natural structure of
a projective variety.

Now, for o € T one has B = B(A°) = ¢, B, ! and hence

(11) P(A1)° = G(A])B? = 4, P(AM )y .
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It follows that P(A;) is '-invariant if and only if A; is [[']-invariant.
Thus, in this case, P(A;) is a variety defined over F.

We call a parabolic subgroup P of G F'-parabolic if it is defined over
F'. From (11) it can be seen that, if A; is [I']-invariant and contains Ag,
then P(A;) is F-parabolic. It is known that all F-parabolic subgroup
of G is conjugate (with respect to an element in G(F')) to a P(A;) with
A having this property. Thus one obtains

Lemma 5 ([T]). The notation being as above, suppose that A is
[[]-éinvariant. Then the variety P(A1) is defined over F. It contains an
F-rational point if and only if Ay contains Ag.

Now, one has the following Hasse principle due to Harder ([H2], Satz
4.3.3).

Theorem 6. Let G be a connected semisimple algebraic group de-
fined over a number field F. Let Aq be a subset of A invariant under [I']
and let P(A1) denote the variety (defined over F) of parabolic subgroup
of G conjugate to P(Ay). Then P(A1) has an F-rational point if and
only if it has an F,-rational point for allv € VF.

By the above observation, one can rephrase this theorem in the
following form.

Theorem 6’ . Let G be a connected semisimple algebraic group
defined over a number field F and let ¥ = (A, Ao, []) and X, =
(A,A(()v),[f’(“)]) (v € VF) be the T'- resp. T)-diagrams of G over F
and F,. Then Ag is the smallest [T']-invariant subset of A containing
al AV (v e VE).

Otherwise expressed, one has the following Hasse principle for the
I-diagrams: a [[']-orbit in a I'-diagram ¥ is white if and only if it de-
composes in ¥, into a union of white [['*)]-orbit for all v € V¥

§5. Classification over a number field.

In this section, let F' be a number field. We fix a simply connected
semisimple algebraic group Go defined over F. (In this section, the
assumption for Gy to be F-quasisplit is irrelevant.) The main results on
the classification of inner F-forms of G can be formulated as follows.

Theorem 7. Let (G, f) and (G', f') be two inner F-forms of a
simply connected semisimple algebraic group Gy over a number field
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F. Then (G, f) and (G, ') are F-equivalent (i.e., there exists an F-
isomorphism ¢ : G — G' such that po f~1o f' € Inn(G")) if and only if
the following two conditions are satisfied.

(i) One has 2(G, f) = 7(G', /")

(i) (G, f) and (G, f') are F,-equivalent for allv € Vi 3.

Proof. The “only if” part is obvious. To prove the “if” part assume
that the conditions (i),(ii) are satisfied. Then, by (i) the 1-cohomology
classes £ = ¢(G, f) and & = (G, f') are in the same fiber of the map
8 : HY(F,Go) — H?(F,Z). Therefore, by the formula (3) there exists
n € H(F,G) such that 3(n) = £¢7¢. By the condition (ii) one has
& = &, for all v € Vo 1, which implies that 3(n,) = £, ¢/ = 1. Hence,
for each v € Vi 1, by the exactness of the sequence (1) (over F)), one
has a(¢®)) = 5, for some ¢(*) ¢ H'(F,,Z). By Lemma 3, (i), there
exists ¢ € HY(F, Z) such that ¢, = ¢ for all v € Veo,1; then one has
a(¢)y = a(l) = M. Hence by Theorem 5 (injectivity of 6) one has
a(¢) =n, whence B(n) =1 and so £ = ¢/, q.e.d.

It is clear that the condition (ii) in Theorem 7 can also be stated in
the following form:

(ii') For v € VL | let &, = X, (G), X, = F,(G’). Then for each
v one has a congruence ¥, — ¥/ induced by an F,-isomorphism (%) :
G — G’ such that p) o f~1 o f’ € Inn(G").

An “existence theorem” for inner F-forms is given as follows:

Theorem 8. Let Gg be a simply connected semisimple algebraic
group defined over a number field F. Suppose there are given v €
H%(F,Z) and, for each v € Vo1, an inner F,-forms (G™), f®) of
Go such that the following consistency condition (C) is satisfied:

(C) One has v, = vr, (G, f®)) for allv € Vi 1.

Then there exists uniquely (up to an F-equivalence) an inner F-form
(G, f) of Go such that (G, f) = v and that (G, f) is F,-equivalent to
(G®, f®)) for allv € Voo ;.

Proof. By Lemma 4 the map 6§ : HY(F,Go) — H?(F,Z) in the
sequence (1) is surjective. Hence there exists an inner F-form (G, f) of
Gy such that v¢(G, f) = 6(cr(G, f)) = 7. Then by the condition (C)
one has yr, (G, f) = v, (G, f)) for all v € Voo,1; this means that,
if one puts ¢ = cp(G, f), £ = cp, (G®), f(), then &, and £() are in
the same fiber of the map § in the sequence (1) over F,. Hence by the
formula (3) one has B(n™)) = £;1¢®) for some 7 ¢ H'(F,,G). By
Theorem 5 (surjectivity of 6) there exists n € H(F,G) such that one
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has 1, = () for all v € V., ;. Then, putting

§ =¢B(n) € HY(F,Go), & =cr(G,f),
one has

(G, f) = 6(¢') = 8(8) =,
cr, (G, f)) =€, = £&,8(n,) = €.

Thus (G, f’) is an inner F-form of Gy satisfying all the requirements.
The uniqueness follows from Theorem 7, q.e.d.

Remark 1. As will be shown in §6, one has H?(F,,Z) = 1 for all
v € Voo,1, if Go is absolutely simple, F-quasisplit and of one the types
(A;) (I even), (Eg), (Eg), (F4), (G2). Hence in these cases, the above
consistency condition (C) is automatically satisfied.

Remark 2. If F is totally imaginary, one has (analogously to Th.4)
that the map 6 : H(F,Gy) — H?(F, Z) is bijective. (For a similar result
in the function field case, see [H3].)

Remark 3. The list of all possible I'-diagrams (“Tits indices”)
3(G) over a number field F' was given in [T]. From our point of view,
the same result can also be obtained by Theorems 6’ and 8, using the
classification over local fields. For groups of exceptional type, a method
of explicit construction of F-forms was also given by Tits (see e.g. [Sc]).

§6. Determination of the invariant.

In this section, G is an F-quasisplit simply connected absolutely
simple algebraic group over a number field F. We give an explicit de-
termination of H?(F, Z). At the end, we also give a list of y(G) for all
R-forms G of Go. (Note that except for the case where Gy is of type
(D;) (I even) the invariant y(G, f) is actually independent of f; hence
we omit f.) For convenience, we treat the case of groups of type (Dy) (I
even) separately.

I) The case where Gy is F-split (except the case (*Dy), I even).
We denote by u,, the group of n-th roots of unity in F' viewed as a
group on which I is acting. Then, in the case of F-split Gy (not of type

(D), I even), one has
(12) Z = pin,

where n is given as follows:
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GO = 1Ala Bl7 Cl7 1Dl (l 0dd)7 1E67 E77 ES) F47 G2

It follows that
(13) HY(F,Z)= F*/(F*)", H*(F, Z) = Br(F),,

where Br(F) is the Brauer group of F' and Br(F'),, denotes the subgroup
of Br(F) counsisting of those elements £ with ™ = 1 (see [P-R], p.73,
Lem. 2.6). Therefore over the local fields F, (v € V') one has

(1/n)Z/Z (v & Veo)
(13a)  H*(F,,Z) 2 Br(F,)n 2 { (1/2)Z/Z (v € Vo1, 1 even)
1 (otherwise).

For the case n even, the invariant yg(G) for all inner R-forms G of
Gy is given in the list at the end of the section. For classical groups,
the determination of this invariant is well known. For the case Go = E-,
this can be done, e.g., by using the results in [Mu], [Sa2].

IT) The case where Gy in not F-split (except the case (*D;), [ even).
There are three cases

Go =2Ay, 2D (1 odd > 3), %Es.

In these cases, there is a quadratic extension F’/F such that Gg is split
over F'. Then one has

(14)  Z=RY) p(a) = {C=(C1,¢2) € Reyr(pa) | GG =1}
and an exact sequence

(15) 1 —»F*/(F*)"Npp(F"") — H*(F, Z) —

— Ker(Br(F'), -5 Br(F),) — 1,

where N stands for Np//p (see [P-R] , p.332, (6.31)).
When n is odd (i.e., Gop = 2A; (I even), 2Eg ), one has

(15 H?(F, Z) = Ker(Br(F'),, 25 Br(F),),

H*(F',Z) = Br(F'),.
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Therefore, if v € V(F) dose not decompose in F'/F (i.e., if v has a
unique extension to F”, denoted again by v, F’ ® F, = F)), one has
N : Br(F!), & Br(F,), and hence

(15'a) H*(F,,Z) =1.

If v decomposes in F'/F (i.e., if v has two extensions w, w' in F”,
F'® F, = F), ® F,), then one has

(15'b) H*(F,,Z) = Br(Fy)n.

In either case, one has H%(F,,Z) =1forv € Veo,1-
When n is even (i.e., Go = 2A; (I odd), 2D; (I odd)), one has an
exact sequence

(15") 1 —F*/Npp(F"™") — H*(F, Z) —

— Ker(Br(F"),, 25 Br(F),) — 1,

and
H*(F',Z) = Br(F'),.

Therefore, if v does not decompose in F’/F, then one has

(15"a) H*(F,,Z) ® F} /[NF:F,(F',) = Br(F,)s.

If v decomposes in F'/F, then one has

(15"b) H*(F,,7) = Br(F,)n.

Thus in view of Lemma 3, (ii) one has actually (instead of (15"))
(16)  H2(F,,Z) = (F*/Np./p(F')) x Ker(Br(F'),, = Br(F),).

For the case n even, the invariant yg(G) for all inner R-forms of Gg
is given in the list below.

ITI) The case where Gy is of type (D;) (I even)

Let F’ be the smallest Galois extension of F' such that Gy is split
over F' and let [F’ : F| = m; we write Gog = ™D;. Then there are the
following four case:

Go =Dy, 2Dy (I even > 4), ®Dy, °Dy.
When Go = 1Dy, one has

(17) Z = Mo X Hha,
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(18) H?(F,Z) = Br(F)y x Br(F)s,

(18a) H?(F,,Z) = Br(F,)s x Br(F,)s.
When Gy = 2Dy, one has

(19) Z = Rpi/r(p2),
(20) H*(F,Z) = Br(F'),, H*(F',Z)= Br(F')y x Br(F'),.
(20a) H?*(F,,Z) = Br(F.), for v not decomp. in F'/F,

(200)  H*(F,,Z) = Br(F,)2 x Br(F,)2 for v decomp. in F'/F.

When Gg = 3Dy, one has

(21) Z = Ry p(a),
(22) H?(F, Z) & Ker(Br(F')y — Br(F),),

H*(F',Z) = Br(F")y x Br(F'),.
(22a) H?*(F,,Z) =1 for v not decomp. in F'/F,
(22b)  H*(F,,Z) = Br(F,)s x Br(F,)z for v decomp. in F'/F.

When Gy = %Dy, we take an intermediate field F} such that F C
Fy C F' and [F; : F] = 3. Then one has

(23) Z = RG), (1),
(24) H?(F,Z) = Ker(Br(F,)2 — Br(F)3),

H?*(F\,Z) = Br(F')s, H?*(F',Z) 2 Br(F")y x Br(F'),.
If v does not decompose in Fy/F, then one has

(24a) H*(F,,Z) =1.
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If v decomposes in F; /F but does not decompose completely in F'/F,
then one has

(24b) H*(F,,Z) = Br(F"),.
If v decomposes completely in F//F, one has
(24c) H?*(F,,Z) = Br(F,)s x Br(F,)s,.

In all cases, one has H?(F,,Z) =1 for v € Veo,1 except for the case
where v decomposes completely in F'/F. Hence for the determination
of yr(G) it is enough to consider only inner R-forms of Go = 'D; (I
even), which is given in the list below.

In the following list, one has [ =rank G, r = R-rank G (which equals
the number of white [I']-orbits in ¥r(G)), and the type of G over R is
expressed by Cartan’s symbol. An element in Br(R) is expressed by
the corresponding Hasse invariant 0, 1/2 € (1/2)Z/Z. As remarked
above, for all Go not included in this list, one has H2(R, Z) = 1. (For a
complete list of [-diagrams over local fields, see [A], [Sa3], or [T].)
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Go/R G/R I'-diagram of G/R R(G)
1A, Al 0—0----- -0—0 0
AIl 1
(lodd) |* %o~ ° 2
o Cene | Oifl-T=0,3(4)
Bu Bl , 1ifl—7~z1,2(4)
g 2
CI O0—0-----=0<¢ 0 0
C
1—2r 2
DI Oifl——'rEO(4)
lodd o—0— —O—.—'< 1 A B
l_,,,even T/ 51fl—7‘:2(4)
DI Oifl—rEO(4)
p, [ even same 11, _
| — r even (§,§)lfl—’l":2(4)
DIII 1 1
Wd - il
(I even) *-O-0—O-- -H\o (270) or (0, 2)
EV o—o—g—o—o—o 0
1
EVI M—i—'—“ -
E, 2
EVII o—o—:—o—o—o 0
compact 0—0—:—0—0—0 %
OO0 - £ — =
A, NI T3 T3 §> ? ifl—2r=3(4)
1-2r(>1)or0 2
DI 0O - 4)—07@ 0
(I —7 odd)
2Dl I—r(=3)or0
DIII 1
(l Odd) O8O0 ---- ﬂ—@ 9
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