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A Dieudonne Theory for p-Divisible Groups 

Thomas Zink 

§1. Introduction 

Let k be a perfect field of characteristic p > 0. We denote by 
W(k) the ring of Witt vectors. Let us denote by ( -----, F(, ( E W(k) 
the Frobenius automorphism of the ring W(k). A Dieudonne module 
over k is a finitely generated free W(k)-module M equipped with an F_ 

linear map F : M ___, M such that pM C FM. By a classical theorem of 
Dieudonne ( compare Grothendieck [ G]) the category of p-divisible formal 
groups over k is equivalent to the category of Dieudonne modules over 
k. 

In this paper we will prove a totally similiar result for p-divisible 
groups over a complete noetherian local ring R with residue field k if 
either p > 2, or if pR = 0. For formal p-divisible groups (i.e. without 
etale part) this is done in [Z2]. 

We will now give a description of our result. Let R be as above 
but assume firstly that R is artinian. The maximal ideal of R will be 
denoted by m. The most important point is that we do not work with 
the Witt ring W(R) but with a subring W(R) C W(R). This subring 
is characterized by the following properties: It is functorial in R. It 
is stable by the Frobenius endomorphism F and by the Verschiebung 
v of W(R). We have W(k) = W(k). The canonical homomorphism 
W(R) -----, W(k) is surjective, and its kernel consists exactly of the Witt 
vectors in W(m) with only finitely many non-zero components. The 
ring W(R) is a non-noetherian local ring with residue class field k. It is 
separated and complete as a local ring. 

If R is an arbitrary complete local ring as above we set W(R) 
lim W(R/mn). 
+-
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Let us denote by JR C W(R) the ideal which consists of all Witt 
vectors whose first component is zero. 

Definition 1. A Dieudonne display over Risa quadruple (P, Q, 
F, v-1 ) where P is a finitely generated free W(R)-module, Q C Pis a 
submodule and F and v- 1 are F-linear maps F : P ........ P and v- 1 

Q ........ P. 
The following properties are satisfied: 

(i) JRp C QC P and P/Q is a free R-module. 
(ii) v- 1 : Q----+ Pis an F-linear epimorphism. 

(iii) For x E P and w E W(R), we have 

(1) 

In contrast with Cartier theory there is no operator V in our theory. 
The strange notation v-1 is explained below by the relationship to 
Cartier's V. But there is a W(R)-linear map 

(2) vn : P - W(R) ®F,w(R) P, 

which is uniquely determined by the relation V#(wV- 1y) = w ® y for 
w E W(R) and y E Q (see [Z2] Lemma 1.5 ). 

If P is a Dieudonne display over k, then . the pair ( P, F) is a 
Dieudonne module, and this defines an equivalence of categories. 

Theorem: There is a functor ]D) from category of p-divisible groups 
over R to the category of Dieudonne displays over R which is an equiv­
alence of categories. 

Let X be a p-divisible group over R and let P = ]D)(X) be the 
associated Dieudonne display. Then heightX = rankw(R) (P). Moreover 
the tangent space of Xis canonically identified with the R-module P/Q. 

I stated this theorem as a conjecture during the p-adic Semester in 
Paris 1997. Faltings told me that I should prove it using Proposition 19 
below. We follow here his suggestion. In the proof we will restrict to an 
artinian ring R because the general case is then obtained by a standard 
limit argument. 

Other generalizations of Dieudonne theory are Cartier theory, and 
the crystalline Dieudonne theory, which was developed by Grothendieck, 
Messing, Berthelot, de Jong and others (compare de Jong (J]). Dieudonne 
displays are explicitly related to both of these theories. More precisely 
we construct functors from the category of Dieudonne displays to the 
category of crystals respectively to the category of Cartier modules. In 
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particular this explains the relationship between Cartier theory and crys­
talline theory completely. So far this relationship was only understood 
in special cases ( compare the introduction of Mazur and Messing [MM], 
and [Z3]). 

We note that our theory works over rings with nilpotent elements, 
while the crystalline Dieudonne functor is not fully faithful in this case. 
From our point of view the reason for this failure of crystalline Dieudonne 
theory is that we can recover from the crystal associated to a Dieudonne 
display P the data P, Q, F but not the operator v-1 . On the other hand 
for a reduced ring the prime number p is a non-zero divisor in W(R) 
and therefore v-1 may be recovered from the relation pv-1 = F. 

Let us explain the relationship to Cartier theory. Like a Cartier 
module a Dieudonne display may be defined by structural equations. 
Take any invertible matrix (aij) E Glh(W(R)), and fix any number 
0 :=:; d :=:; h. We define a Dieudonne display P = (P, Q, F, v-1 ) as 
follows. We take for P the free W(R)-module with the basis e1 , ... , eh. 

We set 

The operators F and v- 1 are uniquely determined by (1) and by 
the following relations: 

(3) 

h 

Fej = L O!ijei, for j = 1, ... , d 
i=l 

h 

v-1ej = L O!ijei for j = d + 1, ... , h 
i=l 

Assume now for simplicity that R is an artinian ring. Let lER be the 
local Cartier ring with respect top (see [Zl]). Then we may consider in 
the free lER-module with basis e1 , ... , eh the submodule generated by 
the elements 

(4) 

h 

Fej - L aijei, for j = 1, ... , d 
i=l 

h 

ej - V(L aijei) for j = d + 1, ... , h 
i=l 

where F and V are now considered as elements of lER. The quotient 
by this submodule is the lER-module which Cartier associates to the 
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connected component of the p-divisible group X with the Dieudonne 
display lDl(X) = P. 

Finally we point out two questions, which we hope to answer in 
another paper. 

Let X be a p-divisible group over R, and let P be the associated 
Dieudonne display. Then we cannot verify in general that the crystal we 
associate to X coincides with the crystal Messing [M] associates to X. 
By [Z2] this is true, if X is connected. 

The other probably easier question is, whether our functor respects 
duality. In [Z2] we proved the following: If X is a connected p-divisible 
group whose dual group xt is also connected, the displays lDl(X) and 
lDl(Xt) are dual to each other. The same is then automatically true for 
the Dieudonne displays. It is not difficult to see that a positive answer 
to the first question gives also a positive answer to the second question. 

§2. Dieudonne Displays 

Let R be an artinian local ring with perfect residue field k. There 
is a unique ring homomorphism W(k)-+ R which for an element a Ek, 
maps the Teichmiiller representative [a] of a in W(k) to the Teichmiiller 
representative of a in R. Let m c R be the maximal ideal. Then we 
have the exact sequence 

(5) 0 - W(m) - W(R) ~ W(k) - 0. 

It admits a canonical section 8 : W(k) -+ W(R), which is a ring ho­
momorphism commuting with F. It may be deduced from the Cartier 
morphism [Z2] (2.39), but it has also the following explicit Teichmiiller 
description: Let x E W(k). Then for any number n there is a unique 
solution of the equation Fn Yn = x. Let Yn E W(R) be any lifting of 
Yn · Then for big n the element Fn Yn is independent of n and the lifting 
chosen, and is the desired 8 ( x). 

Since mis a nilpotent algebra we have a subalgebra of W(m): 

W(m) = {(xo, x1, ... ) E W(m) Xi = 0 for almost all i} 

W(m) is stable by F and v. Moreover W(m) is an ideal in W(R). 
Indeed, since every element in W(m) may be represented as a finite 

N . 
sum I: V'[xi], it is enough to show that [xo]e E W(m) for x0 Em and 

i=l e E W(R). But this is obvious from the formula 

[xo] (fo, 6, ... , ei, ... ) 
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We may now define a subring W(R) C W(R): 

W(R) = {l E W(R) l - 67r(l) E W(m)}. 

Again we have a split exact sequence 

0 _______, W ( m) _______, W ( R) ~ W ( k) _______, 0 

with a canonical section 6 of 7r. 

Lemma 2. Assume that the characteristic p of k is not 2, or that 
2R = 0. Then the subring W(R) ofW(R) is stable under F and v_ 

Proof. Since 6 commutes with F, the stability under F is obvious. 
For the stability under v one has to show that 

(6) b(v x) _ v b(x) E W(m) for x E W(k). 

If we write x = F y and use that W ( m) is an ideal in W ( R), we see that 
it suffices to verify (6) for x = l. For the proof we may replace R by 
WN(k) for a big number N. In W(W(k)) we have the following formula 
using logarithmic coordinates (compare (7) below, and [Z2] 2.11): 

b(vl)- vb(l) = [vl,0, ... ,0, ... ] = [p,O, ... ]. 

Our assertion is, that the Witt components of this Witt vector in 
W (W ( k)) converge to zero in the p-adic topology of W ( k) for p -/- 2 
respectively that they become divisible by 2 in the case p = 2. We write 

[p,0,0 ... ] = (uo,u1, ... ui,••·), Ui E vW(k). 

The ui are determined by the equations 

p Uo 

0 
up 
_Q_ + u1 
p 

0 
uP2 up 
- 0- + __!_ +u2 
p2 p 

An elementary induction shows ordp Un= pn - pn-l - • • • - l. • 
We remark that in the case pR = 0 the section 6 also commutes 

with v. Indeed, in this case taking the Teichmiiller representative is a 
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ring homomorphism k---+ R. We obtain 8, if we apply the functor W to 
this homomorphism. 

Since the ring W(R) has obviously all the properties mentioned in 
the introduction, i.e. the definition 1 has now a precise meaning. 

We consider now a surjection S ---+ R of artinian local rings with 
residue class field k as in the lemma. We assume that the kernel a of the 
surjection is equipped with divided powers 'Yi : a ---+ a. Then we have an 
exact sequence 

o - W(a) - W(S) - W(R) - o, 

and the divided Witt polynomials define an injective homomorphism: 

(7) W(a) ----, aCN). 

If the divided powers are nilpotent in the sense that for a given element 
a E a the divided powers "fvk (a) become zero for big k the homomor­
phism (7) becomes an isomorphism (compare [Z2] (3.4)). In this paper 
a pd-thickening is a triple (S, R, 'Yi) which satisfies this nilpotence condi­
tion. We write an element from the right hand side of (7) as [ao, ... , ai, ... ] 

where ai E a are almost all zero. We call it a Witt vector in logarithmic 
coordinates. 

The ideal a C W(S) is by definition the set of all elements of the 
form [a, 0, ... , 0, ... ] where a E a. Let P be a Dieudonne display over 
Sand P = PR be its reduction over R. Let us denote by Q the inverse 
image of Q by the homomorphism 

P - P = W(R) ®wcs) P. 

Then v-1 : Q ---+ P extends uniquely to v-1 Q ---+ P such that 
v-1aP = o. 

Theorem 3. Let us consider a pd-thickening S ---+ R as above. 
Let Pi = (Pi, Qi, F, v- 1 ) for i = 1, 2 be Dieudonne displays over S. Let 
Pi = (Pi, Qi, F, v-1 ) = Pi,R be the reductions over R. Assume we are 
given a morphism of Dieudonne displays u: P 1 ---+ P 2 . Then there exists 
a unique morphism of quadruples 

A -1 A -1 
u:(Pi,Q1,F,V )-(P2,Q2,F,V ), 

which lifts the morphism u. 
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Proof. For the uniqueness it is enough to consider the case u = 0. 
As in the proof of [Z2] Lemma 1.34 one obtains a commutative diagram 

A 

(VN)# l 
W(S) ®FN,W(S) Pi 

~ W(a)P2 

r(V-N)# 

l®u A A 

------+ W(S) ®FN,W(S) W(a)P2 

. -N - N A Smee V [ao, a1, ... ]x - [aN, aN+l ... ]F x for [a0, ... ] E W(n) and 
x E P2 , any given element of W(a)P2 is annihilated by v-N for big N. 
Since A is finitely generated it follows that v-N u = 0 for big N. Then 
the diagram shows u = 0 which proves the uniqueness. 

As in the proof of [Z2] Theorem 2.5 it is enough to consider the case 
where P 1 = P2 = P and u is the identity, if one wants to prove the 
existence of u. One simply repeats the proof of [Z2] Theorem 2.3 with 
Winstead of W. The proof goes through without changing a word up 
to the last argument showing the nilpotency of the operator U defined 
by loc.cit. (2.16). 

To complete the proof we have to show that for any F -linear map 
W : L1 -----, pNW(a)/pN+ 1w(a) ®w(s) A there exists a number m such 
that umw = 0. 

To see this we consider the following Fm+1-linear map 

(8) 

w N A N+l A 

Tm: L1 ---t p W(a)/p W(a) ®w(s) P2 

v-= N A N+1 A 

- p W(a)/p W(a) ®w<s) P2 

By definition umw factors through the F-linear map obtained from Tm 

by partial linearization to an F-linear map 

A l®T,n N A N+l A 

W(S) ®F=,W(S) L1 ------+ p W(a)/p W(a) ®w(S) P2. 

But as in the proof of the uniqueness any given element of pNW(a) 
/pN+l W(a) ®w(S) P 2 is annihilated by some power of v- 1 . Since L 1 is 

a finitely generated W(S)-module, it follows that Tm is zero for big m. 
This proves umw = 0 for big m. D 

Theorem 3 gives the possibility to associate a crystal to a Dieudonne 
display: Let P = (P, Q, F, v- 1 ) be a Dieudonne display over R. Let 
S-----, R be a pd-thickening. Then we define a functor on the category of 
pd-thickenings: 

Kp(S) = P, 
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where P (P, Q, F, v- 1 ) is any lifting of P to S. The Theorem 3 
assures that P is unique up to a canonical isomorphism. This functor is 
called the Witt crystal. We also define the Dieudonne crystal 

Vp(S) = S ®wa,W(S) Kp(S) 

The filtration 

is called the Hodge filtration. The following statement is similiar to a 
result of Grothendieck and Messing in crystalline Dieudonne theory. 

Theorem 4. Let C be the category of all pairs (P, Fil) where P .is 
a Dieudonne display over R and Fil C Vp ( S) is a direct summand which 
lifts the Hodge filtration of Vp(R). Then the category C is canonically 
isomorphic to the category of Dieudonne displays over S. 

This follows immediately from Theorem 3 (compare [Z2] 2.2). 
To a Dieudonne display P = ( P, Q, F, v- 1 ) we may associate a 3n­

display F(P) = (P', Q', F, v- 1 ) where we set P' = W(R) ®w(R) P. The 

submodule Q' is defined to be the kernel of the natural map W(R)®w(R) 
P----+ P/Q. The operators F and v- 1 for F(P) are uniquely determined 
by the relations 

F(~ ® x) 
v-1(~ ® y) 

v-l(V ~ Q9 x) 

F~®Fx ~ E W(R), x E P 

F~®V-ly yEQ 

~®Fx 

We call a Dieudonne display P over R V-nilpotent, if F(P) is a 
display in the sense of [Z2] 1.6. We recall that this is also equivalent to 
the following condition. Let pk = (Pk, Qk, F, v- 1 ) be the Dieudonne 
display obtained by base change to k. Then the operator V = pF- 1 : 

Pk ----+ Pk is topologically nilpotent for the p-adic topology. 
If P is V-nilpotent a Dieudonne crystal VF(P)(S) was defined in 

[Z2] 2.6. The trivial statement that the functor F respects liftings leads 
to a canonical isomorphism 

(9) 

Theorem 5. The functor F is an equivalence of the category of 
V -nilpotent Dieudonne displays over R with the category of displays over 
R. 
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Proof. If R = k the functor :F is the identical functor. By induction 
it suffices to prove the following. Let S ----t R be a pd-thickening and 
assume that the theorem holds for R. Then the theorem holds for S. But 
the category of Dieudonne displays over S is decribed from the category 
of Dieudonne displays over R and the Dieudonne crystal. Since the same 
description holds for displays by [Z2] 2.7, we can do by (9) the induction 
~ep. • 

Corollary 6. The category of p-divisible formal groups over R is 
equivalent to the category of V -nilpotent Dieudonne displays over R. 

This is clear because the corresponding theorem holds for displays 
by [Z2] Theorem 3.21. The equivalence of the corollary is given by 
the functor which associates to a V-nilpotent Dieudonne display the p­
divisible group BI'(:F(P)). Let us describe this functor which will be 
simply denoted by BI'(P). 

Let X be a p-divisible group over R. It is an inductive limit of 
finite schemes over Spec R. Hence we have a fully faithful embedding 
of the category of p-divisible groups to the category of functors from 
the category of finite R-algebras to the category of abelian groups. We 
describe BI'(P) by giving this functor. 

Proposition 1. Let P be a V -nilpotent Dieudonne display over 
R, and let S be a finite R-algebra. Let Ps = (Ps, Qs, F, v-1 ) be the 
Dieudonne display obtained by base change. Then we have an exact 
sequence: 

v- 1 "d 
0---+ Qs ~• Ps ---+ BI'(P)(S) ---+ 0 

Proof. First of all we note that S is a direct product of local artinian 
algebras satifying the same assumptions as R. Therefore the notion of a 
Dieudonne display makes sense over S. Moreover we may assume that 
Sis local with maximal ideal m8 . In [Z2] we have considered BI'(P) as 
a functor on the category NilR of nilpotent R-algebras. In this sense we 
have: 

BI'(P)(S) = BI'(P)(ms) 

Let Pms = W(ms) ®w(R) PC Ps. We set Qms = Pms n Qs. Then [Z2] 
Theorem 3.2 tells us that there is an exact sequence: 

v- 1 "d 
0 ---+ Qms ~ 1 Pms ---+ BI'(P)(S) ---+ 0 

Let ks be the residue class field of S, and Pks the display obtained by 
base change. Then we have Ps/Pms = Pks and Qs/Qms = Qks· Hence 
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the proposition follows, if we show that the map v- 1 - id : Qks -+ Pks 

is bijective. Indeed, because V is topologically nilpotent on Pks for the 
p-adic topology, the operator - V - V 2 - V 3 - . . . is an inverse. D 

§3. The Multiplicative Part and the Etale Part 

For a p-divisible group G over an artinian ring there is an exact 
sequence: 

Here cc is a connected p-divisible group and cet is an etale p-divisible 
group. The aim of this section is to show that the same result holds for 
Dieudonne displays. 

Let us first recall a well-known lemma of Fitting (Lazard [L] VI 
5.7): 

Lemma 8. Let A be a commutative ring and T : A -+ A a ring 
automorphism. Let M be an A-module of finite length and r.p: M-+ M 
be a T-linear endomorphism. Then M admits a unique decomposition 

M = Mbij EB Mnil 

such that r.p leaves the submodules M 6ii and Mnil stable, and such that 
r.p is a bijection on M 6ii and operates nilpotently on Mnil. 

We omit the proof, but we remark that M 6ii and Mnil are given by 
the following formulas: 

(10) Mbij = n Image r.pn' 
nEJ\I 

Mnil = LJ Kerr.pn. 
nEJ\I 

Here Imager.pn is an A-module because Tis surjective. In order to deal 
with a more general situation we add two complements to this lemma. 

Let A be a commutative ring and a C A an ideal which consists of 
nilpotent elements. We set Ao = A/ a and more generally we denote for 
an A-module M the A0-module M/aM by M 0 . Let T : A-+ A be a 
ring homomorphism such that T(n) C a, and such that there exists a 
natural number r with Tr(a) = 0. We denote by To : Ao -+ Ao the ring 
homomorphsim induced by T. 

Lemma 9. Let P be a finitely generated projective A-module and 
r.p : P -+ P be a T-linear endomorphism. Then r.p induces a To-linear 
endomorphism r.po : Po-+ Po of the A 0 -module P0 . 
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Let Eo be a direct summand of Po such that <po induces a To-linear 
isomorphism. 

<po : Eo - Eo. 

Then there exists a direct summand E C P which is uniquely determined 
by the following properties: 

(i) <p(E) ~ E. 
(ii) E lifts Eo. 

(iii) <p : E-+ E is a T-linear isomorphism. 
(iv) Let C be an A-module which is equipped with a T-linear isomor­

phism '¢ : C -+ C. Let a : (C, '¢) -+ (P, <p) be an A-module 
homomorphism such that a o '¢ = <po a. Let us assume that 
ao(Co) C E0 • Then we have a(C) CE. 

Proof. By our assumption on r we have an isomorphism 

A 0rr,A P = A 0rr,Ao Po. 

We define E to be the image of the A-module homomorphism 

(11) 

It follows immediately that <p(E) c E. 
Let us prove that E is a direct summand of P. We choose a Ao­

submodule F0 C Po which is complementary to E 0 : 

Po= Eo EB Fo. 

Then we lift F0 to a direct summand F of P. We consider the map 
induced by (11) 

(12) 

By assumption the last map becomes an isomorphism when tensored 
with Ao0A- Hence we conclude by the lemma of Nakayama that (12) is 
an isomorphism. We see that E is a direct summand: 

P=EEBF 

Applying Nakayama's lemma to the projective and finitely generated 
module E, we obtain that 

<p# : A 0r,A E - E 

is an isomorphim. 
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Therefore we have checked the properties (i)-(iii). The last property 
follows from the commutative diagram 

A®rr,Ao Ea-E-P 

l®no 1 1 Q 

• 
We have also a dual form of the last lemma. 

Lemma 10. Let A, A 0 , T, To be as before. Let P be a finitely gen­
erated projective A-module and 

rp ; P ------; A ®r,A P 

be a homomorphism of A-modules. Let E 0 C P0 be a direct summand of 
the A 0 -module Po such that rp0 induces an isomorphism 

Po/ Ea ------+ Ao ®r0 ,A0 Po/ Ea. 

Then there exists a direct summand EC P of the A-module P, which is 
uniquely determined by the fallowing properties: 

(i) rp(E) C A ®r,A E. 
(ii) E lifts Ea. 

(iii) rp : P / E ------+ A ®r,A P / E is an isomorphism. 
(iv) Let C be any A-module, which is equipped with an isomorphism 

'ljJ : C ------+ A ®r,A C. Let a : P ------+ C be an A-module homo­
morphism such that Ea is in the kernel of a 0 . Then E is in the 
kernel of a. 

Proof. The proof is obtained by dualizing the last lemma with the 
functor HomA(-,A) except for the property (iv). We omit the details, 
but we write down explicitly the definition of E. Let r be such that 
Tr(a) = 0. From the isomorphism A ®rr,A P = A ®rr,Ao Po we obtain a 
map 

Then E is the kernel of this map. • 
We will apply these lemmas in the situation where A = W(R), 

A0 = W(k) and T is the Frobenius endomorphism of W(R), i.e. TW 

= Fw. For this we have to convince ourself that the kernel W(m) of the 
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map W(R)----+ W(k) is nilpotent and that rw(m) = o for a sufficiently 
big number r. By induction it is enough to prove that for a surjection 
of artinian rings S ----+ R with kernel b such that pb = b2 = 0, we have 
W(b)2 =F W(b) = 0. This we know. Hence the lemmas are applicable 
and give the following: 

Proposition 11. Let P be a finitely generated projective W(R)­
module and cp : P ----+ P be an F -linear homomorphism. 

Then there exists a uniquely determined direct summand pmult C P 
with the following properties 

(i) cp induces an F -linear isomorphism 

cp : pmult -----, pmult 

(ii) Let M be any W(R)-module and 'I/; : M ----+ M be an F -linear 
isomorphism. Let a : M ----+ P be a homomorphism of W(R)­
modules such that a o 'I/; = cp o a. Then a factors through pmult. 

Proof Let us begin with the case R = k. For any natural number 
n the Frobenius induces an isomorphism F : Wn(k) ----+ Wn(k). There­
fore Fitting's lemma is applicable to Pn = Wn(k) ®w(k) P and 'Pn = 
Wn(k) ®w(k) cp. In the notation of that lemma we set pmult = 1!._~P~ij. 

n 

From the definition of p~ij (see (10)) it follows that an : Mn----+ Pn fac­
tors through p~ij. Hence a(M) C pmult + pn P for any n, which proves 
(ii). 

Let us now consider the general case. We set Po= W(k) ®w(R) P. 
Then we have already proved the existence of pgiult. We lift pgiult by 
the lemma (9) to a direct summand pmult of P. Then that lemma states 
that pmult has the desired properties. D 

Proposition 12. Let R be as in the last proposition. Let P be 
a finitely generated projective W(R)-module and let cp : P ----+ W(R) 
®F,W(R)p be a W(R)-module homomorphism. Then there exists a pro­
jective factor module pet of P which is uniquely determined by the fol­
lowing properties. 

(i) cp induces an isomorphism of W(R)-modules 

cp: pet-----, W(R) ®F,W(R) pet 
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(ii) Let M be a W(R)-module and 'l/; : M -t W(R) ®F,W(R) M be 

an isomorphism. Let a : P -t M be a homomorphism of W(R)­
modules such that (id® a) o <p = 'l/; o a. Then a factors through 
pet_ 

Proof. Again we begin with the case R = k. Then F : W(k) -t 

W(k) is bijective. We denote its inverse by T. Then we have a T-linear 
isomorphism 

W(k) ®F,W(k) p -
W Q9 X 1----t 

Hence we consider cp as a T-linear map 

cp:P--+P. 

p 
T(w)x 

To this map we apply Fitting's lemma as in the last proposition. 
We obtain the decomposition P = pbij EEl pnil. Then we set pet = pbij, 

and we obtain the lemma for W(k). 
The general case is obtained, if we apply the lemma 10 to the situ-

ation A= W(R), Ao= W(k) and TW = F w for w E W(R). • 
We will now define the etale part and the multiplicative part of a 

Dieudonne display over R. 

Definition 13. Let P = (P, Q, F, v-1 } be a Dieudonne display 
over R. We say that P is etale if one of the following equivalent condi­
tions is satisfied: 

(i) p = Q. 
(ii) V#: P--+ W(R) ®F,W(R) Pis an isomorphism. 

Proof. Assume (i) is fulfilled. Then we have for any x E P the 
formula V#(tV- 1x) = t ® x where t E W(R). This implies that V# is 
surjective, and hence an isomorphism. Conversly if V# is surjective, we 
consider the composite of the following surjections: 

A w-1)# v# A 

W(R) ®F,W(R) Q --+ p--+ W(R) ®F,W(R) P. 

Since the composite is by (2) induced by the inclusion Q C P, we con­
clude 

W(R) ®F,W(R) P/Q = (W(R)/F JR) ®F,R P/Q = 0. 

But since P/Q is a projective R-module this implies P/Q = 0. Indeed 
FIR= p • W(R) and pis not a unit in W(R). • 
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Definition 14. Let P = (P, Q, F, v-1 ) be a Dieudonne display 
over R. We say that P is of multiplicative type if one of the following 
equivalent conditions is satisfied: 

(i) Q = IRP-
(ii) p# : W(R) ®F;W(R) P-+ Pis an isomorphism. 

Proof. The first condition implies that P is generated by elements 
of the form v-1 (v (x) = (Fx, e E W(R), X E P. This implies the 
second condition. 

Assume that the second condition holds; The image of a normal 
decomposition P = L EB T by F# gives a direct decomposition 

P = W(R)pv- 1 L EB W(R)FT. 

Comparing this with the standard decomposition 

P = W(R)v- 1 L EB W(R)FT, 

we obtain p • W(R)v- 1 L = W(R)v- 1 L. Hence again since p is not a 
unit, we have W(R)v- 1 L = 0. This implies L = 0. • 

Let P = (P, Q, F, v-1 ) be a Dieudonne display. Recall that P is 
called V-nilpotent if the following map is zero for big numbers N: 

The Dieudonne display is called F-nilpotent if the following map is zero 
for big numbers N: 

Proposition 15. Let a: A= (Pi,Q1 ,F, v- 1)-+ P2 = (P2,Q2, 
F, v-1 ) be a homomorphism of Dieudonne displays. Then a is zero, if 
one of the following conditions is satisfied. 

(i) One of the Dieudonne displays A and A is etale and the other 
is V -nilpotent. 

(ii) One of the Dieudonne displays A and A is of multiplicative type 
and the other is F -nilpotent. 

Proof. By rigidity (i.e. the uniqueness assertion of Theorem 3) it 
is easy to reduce this proposition to the case where R = k is a perfect 
field. In this case the proposition is well known. D 
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Proposition 16. Let P be a Dieudonne display over R. Then 
there is a morphism P --+ pet to an etale Dieudonne display over R 
such that any other morphism to an etale Dieudonne display P --+ P 1 

factors uniquely through pet. Moreover pet has the fallowing properties: 

1) The induced map P --+ pet is surjective. 
2) Let pnil be the kernel of P--+ pet. Then (Pnil, pnil n Q, F, v- 1 ) 

is a V -nilpotent Dieudonne display which we will denote by pnil. 

Proof. The map y#: P--+ W(R) ®F,W(R) P determines by Propo­

sition 12 a projective factor module P ~ pet such that y# induces an 
isomorphism pet--+ W(R) ®F,W(R) pet_ We consider the inverse map 

y-1#: W(R) ®F,W(R) pet---+ pet_ 

It is induced by an F-linear map v- 1 : pet --+ pet. We set Qet = pet 
and F = pV- 1 : pet --+ pet_ Then we obtain a Dieudonne display 
pet = (Pet, Qet, F, v- 1 ). We will now check that the map a: P--+ pet 
induces a homomorphism of displays P --+ pet. To see that a commutes 
with F we consider the following diagram: 

W(R) ®F,W(R) p 
p# 

p v# 
W(R) ®F,W(R) p --------; --------; 

l@pa 1 a 1 l l@pa 

W(R) ®F,W(R) pet ~ pet v# 
W(R) ®F,W(R) pet_ --------; 

The right hand square is commutative by definition. Our assertion is 
that the left hand square is commutative. Since y# for pet is an iso­
morphism it is enough to show that the diagram becomes commutative 
if we delete the vertical arrow in the middle. But this is trivial because 
y# op# = p. Since we have trivially a( Q) C pet it only remains to be 
checked that a commutes with v- 1 . For this we consider the diagram 

W(R) ®F,W(R) Q 
cv-'J# p v# 

W(R) ®F,W(R) p --------; 

l@pa 1 a 1 ll@pa 

W(R) ®F,W(R) pet 
cv-'J# pet v# 

W(R) ®F,W(R) P. --------; 

By (2) the composition of the arrows in the first horizontal row is induced 
by the inclusion Q C P, while the composition in the lower horizontal 
row is the identity. We deduce the commutativity of the first square as 
before. 
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Hence we have a morphism of Dieudonne displays o: : P - pet. the 
proposition is known for R = k and in fact easily deduced from Fitting's 
lemma. In this case V exists and Q = VP. It follows that the map 
Q - pet is surjective. In general we conclude the same by Nakayama's 
lemma. To show that (P0 il, pnil n Q, F, v-1 ) defined in the proposition 
is a Dieudonne display, it remains to be shown that pnil / pnil n Q is 
a projective R-module. But because of the sujective map Q - pet we 
have an isomorphism pnil / pnil n Q ~ P / Q. The universality of P - pet 

is an immediate consequence of Proposition 12. • 

Dually to the last proposition we have 

Proposition 1 7. Let P be a Dieudonne display over R. Then 
there is a morphism from a multiplicative Dieudonne display pmult - P 
such that any other morphism P1 - P from a multiplicative Dieudonne 
display P1 factors uniquely as P 1 - pmult - P. Moreover pmult has 
the following properties: 

1) The map pmult - Pis injective and pmult n Q = JRpmult. 

2) (PI pmult' QI JRpmult' F, v-1) is an F-nilpotent Dieudonne 
display. 

Proof. We consider the map F : P - P, and we define the direct 
summand pmult C P according to Proposition 11. We define Qmult = 
JRpmult, and obtain a Dieudonne display pmult = (pmult, Qmult F, v- 1) 

which has the required universal property. To prove 1) we consider a 
normal decomposition P = L E9 T. Let P = W(k) ®w(R) P and let 

I, and Pmult be the images of L and pmult. Since the proposition is 
known (and easy to prove by Fitting's lemma) for R = k, it follows 

- -mult -
that L E9 P is a direct summand of P. By Nakayama's lemma one 
verifies that L E9 pmult is a direct summand of P. Hence we may assume 
without loss of generality that pmult is a direct summand of T. From 
this 1) and 2) follow immediately, except for the F-nilpotence, which 
may be reduced to the case k = R. • 

§4. The p-Divisible Group of a Dieudonne Display 

In this section we will extend the functor BI' of Proposition 7 to 
the category of all Dieudonne displays, and show that this defines an 
equivalence of categories. 

Let R be an artinian local ring with perfect residue class field k, 
satisfying the assumptions in the introduction. We will denote by R the 
unramified extension of R such that R is local and has residue class field 
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k the algebraic closure of k. We will writer= Gal(k/k) for the Galois 
group. Then r acts continuously on the discrete module R. 

Let H be a finitely generated free Zv-module. Assume we are given 
an action of r on H, which is continuous with respect to the p-adic 
topology on H. The actions of r on W(R) and H induce an action on 
W(R) ®zv H. We set 

P(H) = (W(R) ®zv Hf. 

One can show by reduction to the case R = k that P(H) is a finitely 
generated free W(R)-module and that the natural map 

W(R) ®w(R) P(H) -t W(R) ®zv H 

is an isomorphism. We define an etale Dieudonne display over R: 

P(H) = (P(H), Q(H), F, v-1 ) 

Here P(H) = Q(H) and v- 1 is induced by the map 

W(R) ®zv H -t W(R) ®zv H 

w®hi--+Fw®h 

Conversely if Pis an etale Dieudonne display over R we define H(P) 
to be the kernel of the homomorphism of Zv-modules 

1 A - A -v- - id: W(R) ®w(R) p -t W(R) ®w(R) P. 

Hence the category of etale Dieudonne displays over R is equivalent to 
the category of continuous Zp[r]-modules which are free and finitely 
generated over Zp. 

On the category of Dieudonne displays over R we have the struc­
ture of an exact category: A morphism cp : P 1 -t P 2 is called a strict 
monomorphism if cp : Pi -t P2 is injective and Q1 = cp-1(Q2), and it 
is called a strict epimorphism if cp : Pi -t P2 is an epimorphism and 
cp(Q1) = Q2. 

Proposition 18. Let P = (P,Q,F, v-1 ) be a V-nilpotent Dieu­
donne display over R. Let us denote by OR the cokernel of the map 
v-1 - id : QR -t ~ with its natural structure of a r-module. Then we 
have a natural equivalence ofcategories 

(13) 



A Dieudonne Theory for p-Divisible Groups 157 

Proof. Let us start with a remark on Galois cohomology. Let P be 
any free and finitely generated W(R)-module with a semilinear r-action, 
which is continuous with respect to the topology induced by the ideals 
vnW(R). Then we have 

(14) H 1 (r,Homzp(H,P)) = 0. 

Indeed we reduce this to the assertion that for a finite dimensional 
vector space U over k with a semilinear continuous action of r, we 
have H 1 (r, U) = 0, because this is an induced Galois module by usual 
descent theory. To make the reduction we consider first the case R = k. 
Then we have a filtration with graded pieces Homzp ( H, pn P / pn+ 1 P). 
Since the cohomology of these graded pieces vanishes and our group 
is complete and separated for this filtration, we are done for R = k. 
In the general case we consider a surjection R --. S with kernel a and 
argue by induction. We may assume that m · a = p · a = 0. It is 
enough to show that H 1 (r,Homzp(H, W(a)P) = 0. Because W(a)P c:::'. 

ffin a ®Frobn,k P,:;,/I,:;,P,:;, the vanishing (14) follows. 

We will use a bar to denote base change to R, i.e. QR = Q etc. Let 
us start with an extension from the right hand side of (13) : 

(15) 

(16) 

o --. P --. A --. P(H) --. o 

It induces an exact sequence 

0--. Q--. Ql--. W(R) 0 H--. 0 

of r-modules. The same argument as above shows H 1 (r,Homz/H, 
Q)) = 0, ifwe use a normal composition for Q. Hence the sequence (16) 
admits a r-equivariant section over H: 

We consider the function u : H --. P given by 

(17) u(h) = v-1s(h) - s(h) 

Since we may change s exactly by a homomorphism of r-modules 
H--. Q, we obtain that the class of u in the cokernel of the map 

- v-1 id -
Homr(H, Q) __::; Homr(H, P) 

is well-defined by the extension (15). Since the group cohomology van­
ishes this cokernel is exactly Homr(H, CR). This provides an injective 
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group homomorphism 

(18) Ext1 (P(H), P) --c+ Homr(H, Cn) 

Conversely it is easy to construct an extension of Dieudonne displays 
over R: 

(19) o-P-Pu-P(H)-o 

from a homomorphism u E Homr(H, P) by taking (17) as a definition 
for the operator v-1 of Pu. Then one has an action of r on Pu for 
which the sequence (19) becomes f-equivariant. Taking the invariants 
by r we obtain an element in Ext1 (P(H), P) whose image by (18) is u. 
Hence (18) is an isomorphism. D 

Remark. Our construction is functorial in the following sense. Let 
P' be a second V-nilpotent Dieudonne display, and H' be a second 
Zp[f]-module which is free and finitely generated as a Zp-module. Let 
u' E Homr(H, Ci) be a homomorphism to the cokernel of v-1 - id : 

Q' - P'. A morphism of data (P, H, u) - (P', H', u') has the obvious 
meaning. Then it is clear that such a morphism induces a morphism of 
the corresponding extensions: 

o-P-Pu-P(H)-o 

l l l 
0 -- P' -- P~, -- P(H') --0 

and conversely, Moreover, since there are no nontrivial homomorphims 
P - P(H'), we conclude 

Hom((P, H, u), (P', H', u')) = Hom(Pu, P~,) 

We associate to a continuous f-module H, which is free and finitely 
generated as a Zp-module a Barsotti-Tate group as usual. The finite 
f-module p-n H/ H corresponds to a finite etale group scheme Gn. We 
set 

BI'(H) = ~ Gn. 
n 

The following analogue of Proposition 18 seems to be well-known. 

Proposition 19. Let H be as above and let G be a formal p­
divisible group over R. Then there is a canonical isomorphism of cate-
gories 

Homr(H, G(R)) ~ Ext1(BI'(H), G) 
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Moreover this isomorphism is functorial in the sense of the last remark. 

Before we prove this, we remark that it implies the main theorem 
of this paper: 

Theorem 20. There is a functor BT from the category of Dieu­
donne displays over R to the category of p-divisible groups over R which 
is an equivalence of categories. On the subcategory of V-nilpotent Dieu­
donne displays this is the functor BT of Proposition 7. 

Proof By the last proposition the category of p-divisible groups 
over R is equivalent to the category of data ( G, H, u : H---+ G(R) ). But 
since we already know that the category of formal p-divisible groups is 
equivalent to the category of V-nilpotent Dieudonne displays such that 
G(R) is identified with CR we conclude by the remark after Proposi­
tion 18. • 

Proof of Proposition 19. Let us start with an extension 

(20) 0 ---+ G ---+ G1 ---+ BT(H) ---+ 0 

Let S be a local R-algebra such that the residue class field l of S is 
contained in a fixed algebraic closure k of k. Then we obtain an exact 
sequence of f 1 = Gal(k/l)-modules 

(21) 

In fact this sequence is exact because the flat Cech-cohomology of a 
formal group vanishes (use [Z2] 4.6 or more directly [Z3] 5.5). 

Conversely, if we are given for any S an extension of f1-modules (21) 
which depends functorially on S we obtain an extension (20). 

If we pull back the extension (20) by the morphism H ® (Q)p ---+ 

H ® (Q)p(£.p it splits uniquely as a sequence of abelian groups because 
G(S) is annihilated by some power of p. By the uniqueness it splits 
also as a sequence of f1-modules. Hence to give an extension (20) is 
the same thing as to give a homomorphism of f1-modules H ---+ G(S). 
The functoriality in S means in particular that we have a commutative 
diagram 

H -------,.. G ( R) 

II t 
H - G (S), 

which is equivariant with respect to r 1 C rk. Hence to give functorially 
extensions (21) is the same thing as a rk-equivariant homomorphism 
H---+ G(R). D 
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