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This is a brief survey of what is known or unknown about the Galois 
group of the maximal pro-p-extension (p a fixed prime) of a number field 
which is unramified outside a given set of places. We are particularly 
interested in 

• presentation in terms of generators and relations 
• cohomological dimension 

of the Galois group. The contents are as follows. In Section 1 we recall 
basic facts on pro-p-groups. In Section 2 we review the structure of the 
Galois group of the maximal pro-p-extension of a local field. In Section 3 
we state some known facts and unsolved conjectures about the structure 
of the Galois group of the the maximal pro-p-extension of a number field 
which is unramified outside a given finite set of places. In Section 4 we 
introduce some topics in Iwasawa theory. In Section 5 we state some 
known facts about the structure of the Galois group of the maximal 
pro-p-extension of a number field. Finally, as an application of Sections 
3 and 4, we give some examples of free pro-p-extensions of number fields 
in Section 6. 

The author would like to thank the referee for valuable comments. 

§1. Pro-p-groups 

Main references are Serre [54, I §3-§4] and Koch [26, §5-§6]. Let G 
be a pro-p-group. 

1. 1. Generators and relations 

We put d(G) = dimH1 (G, Z/pZ) and r(G) = dimH2 (G, Z/pZ). 
d(G) is the minimal number of generators of G, which we also call the 
rank of G, and r(G) is the minimal number of relations of G. 
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1.2. Cohomological dimension 

The cohomological dimension and the strict cohomological dimen­
sion of G are defined by 

cd( G} = inf{ n; Hq ( G, A) = 0 Vq > n, VA : discrete torsion G-module }, 

scd(G) = inf{n; Hq(G, A)= 0 Vq > n, VA: discrete G-module}, 

respectively. We know the following facts: 

• cd(G) :=:; n if and only if Hn+1 (G,'1L,/p'll,) = 0. 
• cd(G) :=:; scd(G) :=:; cd(G) + 1. 
• If His a closed subgroup of G, then cd(H) :=:; cd(G) and scd(H) :=:; 

scd(G). 
• If G has non trivial torsion, then cd( G) = scd( G) = oo. 
• Suppose cd( G) = n < oo, then scd( G) = n if and only if 

Hn(H, Qp/'ll,v) = 0 for all open subgroups Hof G. 

1.3. Euler-Poincare characteristic 

If cd(G) is finite and Hi(G, 'll,/p'll,) is finite for all i, we define the 
Euler-Poincare characteristic of G by 

<Xl 

x(G) = ~)-l)i dimH\G, 'll,/p'll,). 
i=O 

If x(G) is defined and H is an open subgroup of G, then x(H) is also 
defined and x(H) = [G: H]x(G). 

1.4. Free pro-p-groups 

G is called a free pro-p-group if and only if r( G) = 0, or equivalently, 
cd(G) :=:; 1. If G is a free pro-p-group and His a closed subgroup of G, 
then H is also a free pro-p-group since cd(H) :=:; cd(G) :=:; 1. If, in 
addition, the rank of G is finite and His open in G, then the rank of H 
is also finite and we have Schreier's formula: 

d(H) -1 = [G: H](d(G) - 1), 

which follows from Subsection 1.3. 

1.5. Demuskin groups 

G is called a Demuskin group if it satisfies the following conditions: 

(i) d( G) is finite. 
(ii) r( G) = 1. 
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(iii) The cup-product 

is a non-degenerate bilinear form. 

The structure of Demuskin groups is known as follows. Suppose 
p > 2 for simplicity and let G be a Demuskin group. Then we see by 
(iii) that d(G) = 2n is even and by (ii) that the maximal abelian quotient 
cab is isomorphic to z;n-l X Zp/qZp, where q is either O or a power of 
p. 

Theorem 1.1 (Demuskin [7]). Let p be an odd prime and G a 
Demuskin group with n and q as above. Then there exist generators 
x1, x2, ... , X2n of G such that the single relation for G has the form : 

xnx1, X2l[X3, X4] · · · [x2n-l, X2n] = 1, 

where [x, y] = x- 1y-1xy. 

See Serre [53] and Labute [34] for the case p = 2. 

§2. Local fields 

Main reference is Serre [54, II §5]. Let k be a finite extension of (Qz, 
k(p) the maximal pro-p-extension of k, and G = Gal(k(p)/k) the Galois 
group. The structure of G is determined. We use the following notation: 

N _ { [k : (Qp] (l = p) 
• - 0 (l -/= p) . 
• k : the algebraic closure of k. 
• µP : the group of pth roots of unity in k. 

{: _ { 1 (k-::; µP) 
• u - 0 (k 1> µP) . 

Theorem 2.1. d(G) = N + 1 + 8, r(G) = 8. 

Proof. By local class field theory H 1 (G,Z/pZ) is dual to P /PP. 
The inflation homomorphism H 2 (G, Z/pZ) --t H 2 (Gal(k/k), Z/pZ) is an 
isomorphism and by the local duality theorem this last group is dual to 
H 0 (Gal(k/k), µp)- • 

Corollary 2.2 (Safarevic [47]). If 8 = 0, then G is a free pro-p­
group. 
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Corollary 2.3. If 8 = l, then G is a Demuskin group. 

Proof. Since k :J µp, we have H 1 (G,Z/pZ) ~ kx /PP and the 
cup-product corresponds to the norm residue symbol, which is non­
degenerate on kx /kxP_ • 

Remark 2.4. If 8 = l and p > 2, then; with the notation of Theo-
rem 1.1, the invariant q is the maximal power of p such that k contains 
the group of qth roots of unity. 

Theorem 2.5. cd(G) ~ 2, scd(G) = 2. 

Proof. These follow from Corollaries 2.2 and 2.3. 

Corollary 2.6. x(G) = -N. 

• 

Remark 2.7. Let G be a pro-p-group. It is known that G is a free 
pro-p-group if and only if 

d(H) -1 = [G: H](d(G) -1) 

for all open subgroups Hof G. It is also known that G is a Demuskin 
group if and only if 

d(H) - 2 = [G: H](d(G) - 2) 

for all open subgroups Hof G (Dummit-Labute [8]). These characteri­
zation of free pro-p-groups and Demuskin groups give alternative proofs 
of Corollaries 2.2 and 2.3. 

It would be an interesting problem to consider a pro-p-group G such 
that 

d(H) - c = [G: H](d(G) - c) 

for all open subgroups H of G, where c 2: 3 is a fixed positive integer. 
A trivial example is G = 'll,P x Zp x • • • x Zp ( c times). Are there any 
examples of such G which arise naturally in number theory? See Schmidt 
[50] for related topics. 

§3. Global fields 

Main references are Haberland [13] and Koch [26] (see also [28]). Let 
k be a finite extension of (Q, Sa finite set of places of k, ks(p) the max­
imal pro-p-extension of k unramified outside S, and Gs= Gal(ks(p)/k) 
the Galois group. Suppose that p is odd or that k is totally imaginary. 
Then since no archimedean place can ramify in a pro-p-extension of k, 
we may assume that S is disjoint from the set of the archimedean places 
of k. We use the following notation: 
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• r 1 : the number of real places of k. 
• r2 : the number of imaginary places of k. 
• kv : the completion of k with respect to a place v of k. 
• µP : the group of pth roots of unity in the algebraic closure k. 
• 8 _ { 1 (k ::) µp) 

- 0 (k "j) µp) . 

8 _ { 1 (kv ::) µp) 
• v - 0 ( kv "/) µp) 
• SP : the set of all places of k which are above p. 
• Vs= {x E kx; (x) = l.2(P,x E k;P 1::/v E S}/PP. 

•0= ' { 1 (8 = 1 S = 0) 
0 (otherwise) 

Theorem 3.1 (Safarevic [48]). 

d(Gs) = L8v -8- (r1 +r2 -1) + L [kv: Qp] +dim Vs, 
vES 

r(Gs) :SL 8v - 8 + dim Vs+ 0. 
vES 

Two cases are of particular interest to us: one is the case where S 
is empty, the other is the case where S ::) SP. 

3.1. Case S = (/J 

It has been conjectured that every number field of finite degree can 
be embedded in a number field with class number one ( the class field 
tower problem). In particular, G0 has been conjectured to be finite. 
Golod and Safarevic [11] showed that if G is a finite p--group then r( G) > 
( d( G) - 1 )2 / 4 holds (in fact r( G) > d( G)2 / 4 holds, see, for example, 
Roquette [46, Remark 14]). Using this and Theorem 3.1, they gave 
examples of k (and p) with infinite G0. 

Presentation of G0 in terms of generators and relations is not known 
in general; there seems no single example of infinite G0 whose minimal 
relations are completely known. 

Suppose G0 =/= {1}. It is known that scd(G0) 2: 3 and conjectured 
that cd(G0) = oo (cf. Kawada [22, p.111]). Note that this conjecture is 
trivial if G0 is finite and =/= { 1}. 

Fontaine and Mazur [9, Conjecture 5b] conjectured that G0 has no 
infinite p--adic analytic quotient. See Boston [3],[4], Hajir [14], Nomura 
[44], [45] for related topics. 

If we allow the degree of the number field to be infinite, then inter­
esting examples of unramified pro-p--extensions are known. See Asada [2, 
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Supplement] for a construction of an unramified SL2 (Zp)-extension (note 
that SL2 (Zp) itself is not a pro-p-group, but contains a pro-p-subgroup 
with finite index), and Wingberg [64] for the case where the Galois group 
of the maximal unramified pro-p-extension is a free pro-p-group. 

3.2. Case S =i SP 

In this case, the inequality for r( Gs) in Theorem 3.1 is in fact an 
equality (Brumer [5]). For a proof by using the Poitou-Tate global dual­
ity theorem and a result of Neumann [39, Corollary 1], see Nguyen Quang 
Do [41, Proposition 11]. 

Example 3.2. k is called p-rational if G Sv is a free pro-p-group. 
If k =i µP and S =i Sp, then 

Vs 9c!ker{H1 (Gs, µp) 

-; IT H 1 (Gal(kv(P)/kv), µp)} ~ Hom(Cls, Z/pZ), 
vES 

where Cls denotes the S-ideal class group of k (see, for example, Neu­
kirch [38, 7.3]). Hence if k =i µp, then k is p-rational if and only if 
ISPI = 1 and pf IClsv I (see also [48, §4]). A typical example is k = Q(µp) 
where p is a regular prime. See Movahhedi-Nguyen Quang Do [37], 
Movahhedi [36], Sauzet [49] for more examples of p-rational number 
fields and the arithmetic of such fields, and also G. Gras-Jaulent [12], 
Jaulent-Nguyen Quang Do [20] for related topics. 

Wingberg [62] and [63] showed that in some cases Gs has a free pro­
p product decomposition. Let gv denote the decomposition subgroup of 
a place v in ks(p)/k (defined up to conjugate) and * the free pro-p 
product. 

Theorem 3.3 ([62, Theorem Al). Suppose k =i µP. Then 

Gs 9c! * gv *:F 
vES-{vo} 

for some Vo E SP and for some free pro-p-group :F if and only if v 0 

does not split in ks (p) / k at all. If this is the case, then d( :F) = [kv0 

Qp]+2-ISl-rz. 

Remark 3.4. Wingberg showed more: if Gs does not have a free 
pro-p product decomposition of this form, then Gs is a pro-p duality 
group of dimension 2 which is not Poincare type. See also Schmidt [51]. 
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If Gs has free pro-p product decomposition as in Theorem 3.3, then 
9v coincides with Gal(kv(p)/kv) (Kuz'min [32]), which is a Demuskin 
group. Therefore we know the relations of Gs; in particular, they all 
come from local relations. 

Example 3.5 (essentially due to Kuz'min [32]). Let p 3, k 

Q( A, v'15). Then G Sv is a Demuskin group of rank 4. 

For free pro-p product decomposition of Gs in a different setting, 
see Neumann [40], Movahhedi-Nguyen Quang Do [37], Jaulent-Nguyen 
Quang Do [20] and Jaulent-Sauzet [21]. 

For the case where Gs is a Demuskin group, see Tsvetkov [58], 
Arrigoni [1] and Sauzet [49]. 

In general, presentation of Gs in terms of generators and relations 
is not known. In some cases, the class two quotient Gs/[Gs, [Gs, Gs]], 
where [ , ] denotes the topological commutator, can be described in 
terms of generators and relations. See Frohlich [10], Koch [27], Ullom­
Watt [59] and Movahhedi-Nguyen Quang Do [37]. Komatsu [29] treated 
the case where there is a global relation (i.e. not coming from local 
relations). See also Koch [26, §11.4]. 

The cohomological dimension of Gs is known: 

Theorem 3.6. cd(Gs) ~ 2. 

For proofs, see Brumer [5], Kuz'min [30],[31], Neumann [39] and 
Haberland [13, Proposition 7]. 

Corollary 3.7. x(Gs) = -r2. 

On the contrary, the strict cohomological dimension of Gs is not 
known: 

Conjecture 3.8. scd(Gs) = 2. 

In the cases where the explicit structure of Gs is known (i.e. Gs is 
a free pro-p-group or a Demuskin group or Gs has a free pro-p product 
decomposition), this conjecture is true. See Corollary 4.3 for a relation 
with the Leopoldt conjecture. 

The Galois group Gs is often compared to ( the pro-p completion 
of) the fundamental group of a Riemann surface. For example, free pro­
p product decomposition of Gs is an analogue of Riemann's existence 
theorem (Neumann [40]). See also [67]. 
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§4. lwasawa theory 

We introduce some topics in Iwasawa theory which are deeply con­
nected with Gs. Main reference is Wingberg [61]. See also Washington 
[60] for Iwasawa Theory. We keep the notation of the previous section 
and suppose that S :::> Sp. 

4.1. The Leopoldt conjecture 

The following is Iwasawa's formulation [17, 2.3] of the Leopoldt con­
jecture. 

Conjecture 4.1. k has exactly r 2 + 1 independent Zv-extensions. 

This conjecture has been verified in some cases; for example, k/Q is 
abelian (Ax-Brumer; see [60, 5.25]). 

Proposition 4.2. The Leopoldt conjecture is equivalent to 
H 2 (Gs, '!Jv/Zv) = 0. 

For proofs, see, for example, Haberland [13, Proposition 18] and 
Nguyen Quang Do [41, Proposition 12]. See also [67, §4] for related 
topics. 

Corollary 4.3. scd( Gs) = 2 if and only if the Leopoldt conjecture 
is true for all finite subfields of ks(p)/k. 

Proof. By Subsection 1.2, Theorem 3.6 and Proposition 4.2. • 
Let k00 be the cyclotomic Zv-extension of k and Hs = Gal(ks(p) 

/k00 ) the Galois group. The following is called the weak Leopoldt con­
jecture for k00 • 

Proposition 4.4. H 2 (Hs, '!Jv/Zv) = 0. 

See Schneider [52, Lemma 7] and Wingberg [61, 5.1] for proofs, and 
also Nguyen Quang Do [42, §2] for related topics. 

4.2. lwasawa invariants 

In addition to k00 and Hs as above, we use the following notation: 

• r = Gal(k00 /k) S"! Zv· 
• A= Zv[[r]]: completed group ring. 
• Xs = H't/ = Gal(Ms/k00 ), where Ms is the maximal abelian 

pro-p-extension of k00 unramified outside S. 
• X = Gal(L/k00 ), where L is the maximal unramified abelian 

pro-p-extension of k00 • 
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The Galois group r naturally acts on X 8 and X by conjugation; 
therefore Xs and X are naturally A-modules. Concerning the A-module 
structure of X 8 and X, we know the following facts: 

• X 8 and X are Noetherian A-modules. 
• The A-rank of Xs is r 2 • 

• The A-rank of X is 0, i.e. X is a torsion A-module. 
• The Iwasawa invariants µ(X) and .X(X) for the Noetherian A­

module X coincide with the usual Iwasawa invariants µ(k) and 
.X(k) of k00 /k, respectively. 

Proposition 4.5. The following two statements are equivalent: 

(i) Hs is a free pro-p-group, 
(ii) µ(Xs) = 0. 

If k => µP, then these are equivalent to 

(iii) µ(X) = 0. 

For proofs, see Iwasawa [19, Theorem 2] and Wingberg [61, 5.3 and 
7.9]. It is conjectured that µ(X) = 0 in general, and this has been veri­
fied in some cases; for example, k/Q is abelian (Ferrero and Washington; 
see [60, 7.15]). 

For a CM-field k, let k+ denote the maximal real subfield of k and 
>. - ( k) the minus part of .X ( k). The following is an analogue of the 
Riemann-Hurwitz formula. 

Theorem 4.6 (Kida [23]). If k is a CM-field such that k => µP 
and µ(k) = 0, and if K is a finite Galois p-extension of k which is also 
a CM-field, then we have µ(K) = 0 and 

w 

where w ranges over all finite places of K 00 such that w f p and w splits 
in K 00 / K!, and ew denotes the ramification index of w in K 00 / k00 • 

Proof. (Cf. [61, §7].) Take S large enough so that ks(P) => K. It 
follows from 1.4 and Proposition 4.5 that µ(K) = 0 (see also Iwasawa 
[18, Theorem 3]). The Galois group Hs(k!) is a free pro-p-group since 
µ(k+) = 0, and is finitely generated since it has A-rank 0. Applying 
Schreier's formula to H 8 (k!) => H 8 (K!), we obtain a formula connect­
ing >.-invariants of Xs(k!) and X8 (K!). Then by duality, we obtain a 
formula connecting A - -invariants of X ( k00 ) and X (K 00 ). D 

For other proofs or generalization of this theorem, see, for example, 
Kuz'min [33], Iwasawa [19], Nguyen Quang Do [43] and Wingberg [65]. 
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§5. The maximal pro-p-extension 

Let the notation be as in Section 3 except that S is the set of all 
places of k (S was supposed to be a finite set in Section 3). We drop 
Sin our notation. Hence k(p) is the maximal pro-p-extension of k and 
G = Gal(k(p)/k). 

Both d( G) and r( G) are countably infinite and a minimal presenta­
tion of G in terms of generators and relations is known (Koch [24, §3], 
[25] and Hoechsmann [15]; see also [26, §11.1] and [16]). 

Theorem 5.1 (Serre [54, II.4.4]). cd(G) = 2. 

Theorem 5.2 (Brumer [6, 6.2]). scd(G) = 2. 

See also Haberland [13, Section 6] for proofs of these theorems. 

Corollary 5.3 (see Serre [55, Theorem4]). H 2 (G,Qp/'1Lp) =0. 

Theorem 5.4. Let k= be the cyclotomic Zp-extension of k. Then 
Gal(k(p)/k=) is a free pro-p-group of countably infinite rank. 

For proofs, see Serre [54, II,Propositions 2 and 9] and Miyake [35]. 

§6. Free pro-p-extensions 

We consider the following problem: how large free pro-p-groups can 
be realized as Galois groups? To be precise, let k be a finite extension of 
Q, Pd a free pro-p-group of rank d ( unique up to isomorphism). A Galois 
extension is called an Pd-extension if the Galois group is isomorphic to 
Pd. We define the invariant 

p = max{d; k has an Pd-extension}, 

which depends on k and p. Since k always has the cyclotomic 'lLp­
extension, we always have p ;?: l. 

Lemma 6.1 ([66, 2.1]). An Pd-extension (d;?: 1) of k is unrami­
fied outside p. 

Hence p is the maximal rank of free pro-p quotient of G Sp. Consid­
ering abelianization, we see that if the Leopoldt conjecture is true fork, 
then we have p :::; r 2 + l. Some examples with p = r 2 + 1 and p < r 2 + 1 
are known as follows. 

Example 6.2. If Gsp itself is free (cf. Example 3.2), then p = 
d(Gsp) = r2 + l. 
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Proposition 6.3 ([66, 4.6]). With the notation and assumption 
of Theorem 3.3, if Gsp has a free pro-p product decomposition as in 
the theorem, then we have 

Proof. It suffices to know the maximal rank of free pro-p quotient 
of the Demuskin group Yv- Using a result of J. Sonn [56], which states 
that there exists a surjection from a Demuskin group G to Fd if and only 
if d ~ d( G) /2, we obtain the desired formula. • 

In particular, if G Sp is a Demuskin group and if k is not totally real, 
then we have p < r2 + 1. 

Example 6.4 (cf. Example 3.5). Let p = 3 and k = Q(A, 
Jis). We have p = 2 and r2 + 1 = 3. 

See also [69] and Jaulent-Sauzet [21, 2.8] for related topics. 
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