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The Theorem of Shafarevich or, as it is mostly called, the Theorem 
of Shafarevich-Weil always seemed to me to be the coronation of the 
cohomological approach to class field theory showing that the notion 
of the canonical class is much more than an auxiliary tool for proving 
the main theorems of class field theory. The history of the Theorem of 
Shafarevich and the development of the notion of the canonical class is 
quite interesting and this is the subject of my talk. 

I begin with some remarks about the periodization of class field the­
ory. Thereafter follows the formulation of the Theorem of Shafarevich 
and its background as it presents itself to the mathematician of today. 
Then I will speak about the local case which is the content of Shafare­
vich's paper in Doklady 53 (1946). In the next section we consider the 
paper of Weil of 1951 "Sur la theorie du corps de classes" which had a 
great influence on the further development of class field theory. Then 
follows the development of the notion of the global canonical class and 
the formulation of the global theorem by Hochschild and Nakayama. 

I will conclude the talk with the consideration of the role played by 
Hasse and his school. 

I am very grateful to Jean-Pierre Serre, Sigrid Boge and Gunther 
Frei who read a preliminary version of this paper and made suggestions 
which led to an improvement of this talk in content and form. 

I am very much obliged to Wolfram Jehne who contributed to the 
talk by means of many discussions of the subject with me over the last 
years. 

§ 1. Some remarks about the periodization of class field theory 

The concepts of class field theory grew out of the work of Kro­
necker [Kr1853, 1882] on cyclotomic fields and complex multiplication 
and were formulated by Weber [We1891, 1897] and Hilbert [Hi1898]. 
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Ph. Furtwangler [Fu1907] in the unramified case and Takagi [Ta1920] in 
general proved the conjectures of Weber and Hilbert except for the Prin­
cipal Ideal Theorem. Then Artin [Ar1924, 1927] added his reciprocity 
map to the theory and on its foundation the Principal Ideal Theorem 
was proved by Furtwangler in 1930. 

With this result of Furtwangler the classical theory of class fields 
was established. The proofs were complete but looked very mysterious. 

In the same year a new period of the theory began with three papers 
of Hasse [Ha1930a-c] creating local class field theory out of classical class 
field theory. 

This was a period of reformulation and simplification of the theory 
which was completed by Tate [Tt1952] with the full establishment of the 
cohomological approach. Besides Hasse and Tate the main actors of this 
period were Chevalley, Herbrand, Nakayama, Hochschild and Weil, with 
Emmy Noether and her modern algebra in the background. It is this 
period 1930-1952 in which the Theorem of Shafarevich is placed. But 
before we are going into details I would like to give a brief presentation 
of the cohohomological approach to class field theory as it presents itself 
to the mathematician of today. 

§2. The Theorem of Shafarevich in the Theory of Class For­
mations 

2.1. In our present understanding of class field theory, the Theorem 
of Shafarevich is a theorem about class formations. We have therefore 
to begin with a short consideration of this notion which was introduced 
by Artin-Tate [ArTt1952]. We will use a less abstract definition as is to 
be found in [Ko1992] which is adequate for our purpose. 

Let F be a field and 0/ F a finite or infinite Galois extension. For 
our purpose F will be a local or global field and 0, the separable alge­
braic closure of F. We denote by J'lp the category of finite extensions of 
F contained in 0. The morphisms of this category are the field homo­
morphisms which fix F elementwise. 

A field formation is a functor A from J'lp into the category sit of 
abelian groups such that the following properties are fulfilled. 

(Ia) For any morphism cp of Sip the image A(cp) is injective. 
If K, L are fields in Sip with K ~ L, then we identify A(K) with 
its image in A(L). 

(lb) If L / K is a normal extension in J'lp then 

A(L)G(L/K) := {a E A(L) I ga = a for g E G(L/K)} = A(K). 

In the following we write AL := A(L). 
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The only interesting field formations for our purpose are AK= Kx, 
the multiplicative group of K, if F is a local field, i.e. a complete field 
with discrete valuation and finite residue class field, called the local 
formation, and AK = <tK, the idele class group of K, if F is a global 
field, i.e. F = Q the field of rational numbers or F = lF q ( x), the rational 
function field over the field lF q with q elements. 

2.2. Now we are going to define the notion of a class formation. We 
use the modified cohomological groups H(G, M) of Tate [Tt1952] and 
for any normal extension L/ K in J'tF we write for short 

Hn(L/K) := Hn(G(L/K),A(L)),n 2 0, 

Hn(L/K) := Hn(G(L/K),A(L)),n E Z. 

These cohomology groups have functorial properties. In particular we 
need the following: 

(Ila) Let L/ K be a finite normal extension in J'tF and let M be an 
intermediate field of L / K which is normal over K. Then one 
has the inflation map 

for all n 2 0. 
(IIb) Let L/ K be a finite normal extension in fl/ F and let M be an 

arbitrary intermediate field of L/ K. Then one has the restriction 
and the corestriction map 

ResK_.M: Hn(L/ K)-, Hn(L/M), 

CorM-+K: Hn(L/M)-, Hn(L/K),n E Z. 

(Ile) Let L / K be a finite normal extension ands E G(fl/ F). Then the 
compatible maps A(L) -, A(sL), G(sL/sK) -, G(L/K) given 
by a-, sa for a E A(L) and t-, sts-1 fort E G(sL/ sK) induce 
the map 

s*: Hn(L/K)-, Hn(sL/sK). 

A field formation K -, A( K) is called a class formation if for any 
finite normal extension L/ K in fl/ F the following axioms are fulfilled: 

(Illa) There is a canonical isomorphism 

H 2 (L/K) _, Z/[L: K]Z. 

The preimage of l + [L : K]Z is called the canonical class and 
will be denoted by u L; K. 
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(IIIb) H 1(L/K) = {O}. 
(Ille) For any finite extension M/K let lK-,M be the map 

induced by the compatible maps AL -----+ ALM, G(LM/M) -----+ 

G(L/K). Then LL-,MUL/K = [M: K]uLM/M· 

From these axioms one derives the functorial properties of the canon­
ical class: For L / K a normal extension and M an intermediate field of 
L/K one has 

(IVa) InfM_,LUM/K = [L: M]uL/K if M/K is normal. 
(IVb) ResK-,MUL/K = ULfM, CorM-,KUL/M = [M: K]uL/K· 
(IVc) UsL/sK = s*uL/K withs defined as above. 

2.3. In the cohomological setting the inverse of the Artin map, 
G-----+ AK/NL/KAL, for an abelian extension L/K with Galois group G 
is given by 

(2.1) g-----+ IJ h;K(x,g)NL/KAL 
xEG 

where h I K ( h, g) is a cocycle belonging to the canonical class u LI K. 

The map (2.1) was defined by Nakayama [Na1936] and is called the 
Nakayama map. 

Tate [Tt1952] interpreted (2.1) as the map from _H- 2 (G(L/ K), Z) ~ 
G(L/K) to .H0 (L/K) = AK/NL/KAL given by cup multiplication with 
the canonical class. More generally he proved that for any n E Z and any 
normal extension L/ Kin 0/F the cup multiplication of Hn(G(L/ K), Z) 
with the canonical class gives an isomorphism of Hn(G(L/K),Z) onto 
_Hn+2 ( L / K). (The case n = 0 is axiom (Illa) and the case n = - l is 
axiom (Illb)). For n = - 2 this gives us an isomorphism of G / [ G, G] onto 
AK/NL/KAL. One deduces the functorial properties of the Artin map 
from the functorial properties (IVa-c) of the canonical class. For a finite 
group G we denote by cab the quotient group G / [ G, G] = _H- 2 ( G, Z). 
We keep the notation of (IVa-c). 

The following diagrams are commutative: 

AK --t AK 
(Va) l l 

G(L/K)ab ----+ G(M/K)ab 

if M / K normal, 
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AK 
incl 

AM -----t 

(Vb) ! ! 
G(L/K)ab -----t G(L/M)ab, 

AM 
NM/K 

AK -----t 

! ! 
G(L/M)ab -----t G(L/K)°b 

AK 
8 

AsK -----t 

(Ve) ! ! 
G(L/K)ab -----t G(sL/sK)ab_ 

The bottom maps in (Va) and (Ve) are induced by projection and con­
jugation while the bottom maps in (Vb) are restriction and corestriction 
of iI-2 ( , Z). The restriction map is called transfer or Verlagerung. It 
was introduced by Artin in connection with the Principal Ideal Theorem 
[Ar1929]. But it already appears in Schur's paper [Sul902] as a nameless 
tool in the proofs. The corestriction map is induced by restriction to 
the subgroup. 

For the proof of the fact that A(K) = Kx for local fields K and 
A(K) = <t-K for global fields are class formations one uses apparently 
weaker axioms and proves the axioms above by the mechanism of group 
cohomology (see e.g. [Ko1992]). 

2.4. The Theorem of Shafarevich gives an answer to the following 
question: Let L / K be a normal extension in JtF and let M / L be an 
abelian extension given by the corresponding subgroup U of A(L). It 
follows from (Ve) that the extension M/ K is normal if and only if sU = 
U for alls E G(L/ K) and the conjugation of G(M/ L) with an extension 
s' of s to G(M/ K) corresponds to the action of son A(L)/U. 

Now assume that M / K is normal such that we have a group exten­
sion 

(2.2) G(M/L) ----t G(M/K) ----t G(L/K). 

We put G := G(M/K), H := G(M/L). Then if His given as a G/H­
module, where G / H acts on H by conjugation, the group extension (2.2) 
. is determined by an element of H 2 ( G / H, H), which is defined by means 
of a 2-cocycle f(a,T) of G/H with values in Has follows. Take a set of 
representatives 7' in G for the elements T of G / H. Then 

f(a, T) = a r aT-1. 
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The question is the following: Which element of H 2 ( G ( L / K), G ( M / L)) 
corresponds to this group extension. The answer is given by the following 

Theorem 1 (Theorem of Shafarevich). The class in H 2 ( G(L/ K), 
G(M/L)) corresponding to (2.2) is the image of the canonical class with 
respect to the map from H 2 (G(L/K), AL) to H 2 (G(L/K), G(M/ L)) in­
duced by the Artin map. 

This theorem seems to me to be an example of pre-stabilized har­
mony in the architecture of mathematics, independent of the human 
mind: The canonical class defined in the local case as an auxiliary no­
tion in the theory of simple algebras and afterwards developed as a 
tool in class field theory, appears as the class being associated via the 
Artin map to any extension of Galois groups over the normal extension 
to which the canonical class belongs. Historically this picture is true 
for the local class field theory. But in the global case history is more 
complicated. 

§3. The Local Case 

3.1. Hasse [Ha1930a-c] created local class field theory by means of 
global class field theory. Some assumptions he had to make were proved 
by F.K. Schmidt [Sc1930] to be always fulfilled. The corresponding local 
Artin map was called norm residue symbol, it is now sometimes called 
Hasse map. 

Following almost immediately Hasse, Chevalley [Ch1930] and F.K. 
Schmidt [unpublished] built the theory on the theory of simple algebras, 
avoiding global class field theory. But a self contained definition of the 
local Artin map was only given later in the cyclic case by Hasse [Ha1933] 
and in general by Chevalley [Ch1933]. 

3.2. At the origin of the local canonical class is the notion of in­
variant of a simple central algebra over a local field as defined by Hasse 
[Ha1931]. In this paper Hasse shows that a central simple algebra A 
of dimension n 2 over a local field K has a splitting field L of degree n 
which is unramified, hence L/ K is cyclic. 

Already Dickson [Di1914] considered simple algebras A defined by 
cyclic field extensions L / K in the form 

with un = a for a fixed a E Kx and u~ = s(~)u for a generator s of 
G(L/ K) and~ EL. Such algebras are called cyclic or of Dickson type. 
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In the case of Hasse we can take for s the Frobenius automorphism 
of L / K and since a is determined by A only up to multiplication of a 
by norms of L/ K, we can assume a= 1rv, v = 0, l, ... , n-1, where 1r is 
a prime element of K. Hence A is determined by its dimension n 2 and 
by its invariant ~ mod Z. 

E. Noether [No1929] generalized the construction of Dickson for ar­
bitrary Galois extensions L/ K. Now we get a simple algebra A in the 
form 

A= { L (9 u9 I (9 E L} 
gEG(L/K) 

with u9 ( = g( ()u9 for ( E L and 

u9 uh =a(g,h)u9 h, 

where a(g, h) is a 2-cocycle of G(L/ K) with values in Lx. This con­
struction is determined by A and L / K only up to multiplication by a 
coboundary such that in fact A is determined by an element of 
H 2 (G(L/ K), Lx). These considerations show that the Brauer group 
of algebra classes which are central over K and split by L is isomor­
phic to H 2 ( G ( L / K), L x ) . If in particular K is a local field, then the 
algebra class is determined by its invariant and the canonical class of 
H 2 (G(L/K),Lx) corresponds to the algebra class with invariant [L;K] 

modZ. 
3.3. One of the most important steps towards the cohomological 

foundation of class field theory was a new interpretation of the local 
Artin map by Nakayama [Na1936]: He proved, using local class field 
theory, that the inverse map 

for a local abelian extension L/ K is given by (2.1). 
More generally let L / K be a Galois extension with Galois group G 

and let G' be the commutator subgroup of G. Then (2.1) induces by 
definition a homomorphism of G/G' into Kx /NL;K(Lx). Y. Akizuki 
[Ak1936] showed that this homomorphism is injective for arbitrary base 
fields K, if we use for the definition of (2.1) instead of U£/K an arbi­
trary element in H 2 (G,Lx) of order IG!. This implies NL;K(Lx) = 
NM;K(Mx) for the maximal abelian subextension M/K of L/K if K is 
a local field. 

3.4. The next important step in direction of the cohomological foun­
dation of class field theory came in 1950, when Hochschild eliminated 
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the theory of simple algebras, working only with the corresponding fac­
tor systems [Ho1950]. This was in fact only a reformulation, but soon 
afterwards it became clear that the same procedure is possible in the 
global case. 

3.5. In his paper [Sh1946] Shafarevich proved Theorem 1 in the 
local case. This paper of less than two pages is perhaps the shortest 
paper among the essential papers written about a mathematical subject. 
Besides some functorial properties of the canonical class which at that 
time appeared as functorial properties of the invariant of simple algebras 
he uses the Nakayama map (2.1) and a relation for factor systems by 
Witt [Wi1935]. In the latter paper, which consists only of one and a half 
pages, Witt proved two rules about classes of factor systems. Shafarevich 
used the second rule, which we formulate more generally as a property 
of 2-cocycles a(g, h) of a finite group G with values in a G-module A. 
Let H be a normal subgroup of G and let {gig E G} be a system of 
representatives of the classes of G / H in G. 

Then 

(3.1) J(g,h) := IT xa(g,h)a(x,gh)a- 1 (x,gh), 
xEH 

depends only on the classes of g and h in G / H and f (g, h) is a cocycle of 
G/H with values in AH. Furthermore, the class of f(g,h) in H 2 (G,A) 
is equal to the class of [H: {l}]a(g, h). 

In the case of simple algebras we have A = Lx. Witt shows that the 
algebra corresponding to [H: {l}]a(g,h) with g,h E G, which a priori 
splits already over the fixed field LH of H, is similar to the algebra 
corresponding to f (g, h) considered as factor system G / H with values 
in (LH)x. Witt's motivation was to find an explicit expression for f(g, h) 
in terms of a(g, h). 

Shafarevich's proof is so short that we reproduce it here: He formu­
lates the theorem and the proof in terms of simple algebras over local 
fields and his theorem formulated in 1946 concerns only the local case. 
But if we pass from the simple central algebra with invariant [L~K] + Z 
to the corresponding canonical class, as we will do, then his proof goes 
through for class formations. 

Proof of Theorem 1. We put G := G(M/K), H := G(M/L), 
hence G(L/K) = G/H. Let a(O',T) be a cocycle of G/H belonging 
to the canonical class uLJK, let b(g, h) be a cocycle of G belonging to 
u M; K, and let c(g, h) be a cocycle of H belonging to u M; L. Furthermore, 
let a( O', T) be a cocycle of G / H belonging to the class of (2.2). Fix a 
representative cf E G for O' E G/ H. Then cfT = a(O', T)O'T. By means of 
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the Nakayama map (2.1) for M/L we can write 

(3.2) a(o-, T) = a( II c(x, a(o-, T))) with cr, TE G/ H, 
xEH 

where a denotes the Artin map Lx --+ H. 
We have ResK---->LUM/K = UM/L (IVb) and therefore 

(3.3) a(o-, T) = a( II b(x, a(o-, T))) with cr, TE G/ H. 
xEH 

On the other hand InfL-+MUL/K = [M : L]uM/K (IVa). Hence by the 
property (3.1) of Witt 

a(gH,hH) ~ b(g,h)[M:L] ~ II xb(g,h)b(x,gh)b- 1(x,gh), 
xEH 

where g := gH, which we can write in the form 

(3.4) a(o-, T) ~ II xb(u, 'r)b(x, 7Y'F)b- 1 (x, o-T). 
xEH 

Combining (3.3) and (3.4) we see that our assertion 

a(o-,T) ~ a(a(o-,T)) 

is equivalent to 

(3.5) II b(x, a(o-, T))U ~ II xb(u, 'r)b(x, u'r)b- 1 (x, o-T)U. 
xEH xEH 

Since U = NM/LAM we have IlxEHxb(u,'r) E U. Furthermore, the 
cocycle property 

xb(a(o-, T), o-T)b(x, a(o-, T)o-T) = b(xa(o-, T), o-T)b(x, a(o-, T)) 

implies 

NM;Lb(a(o-, T), o-T) II b(x, u'F) = II b(x, o-T) II b(x, a(o-, T)) 
-xEH xEH xEH 

This proves (3.5). • 
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§4. The Global Case 

4.1. The idele group. Chevalley [Ch1936] considered the generaliza­
tion of global class field theory to infinite abelian extensions. In terms 
of the old formulation of the theory this meant that one has to pass to 
ray class groups for bigger and bigger modules. He avoided this problem 
by passing from ray class groups to a new group which he baptized fun­
damental group and whose elements he called ideal elements. Later this 
group was called idele group and its elements ideles. In his fundamental 
group he introduced a topology such that the closure of the group of 
principal ideal elements, i.e. principal ideles, is the kernel of the nat­
ural map cp K from J K onto G'Jl, where J K denotes the idele group of 
the number field K and G'Jl the Galois group of the maximal abelian 
extension of K. 

The map 'PK is given by Hasse's norm residue symbol (L~o:jKp ), 

where Op E Kp and L'l3 / Kp is an abelian extension of the completion Kp 
of K for the place p (compare 3.1). Let {Knln = 1, 2, ... } be a sequence 

(X) 

of abelian extensions of K such that L = LJ Kn is the maximal abelian 
n=l 

extension of K. Then the value of 'PK at the idele TI op is given by 
p 

(4.1) 

where the product runs over all places p of Kand l.lJn is a fixed place of 
Kn over p. 

( 4.1) shows that the introduction of ideles was prepared by Hasse 
[Ha1930a-c]. In particular the product formula for the norm residue 
symbol in [Ha1930a] means that the principal ideles are in the kernel of 
'PK· In [Ch1940] class field theory is presented with full proofs for the 
first time without using tools from complex function theory. 

4.2. The further development of the global theory was very much 
influenced by Weil's paper [Wl1951]. 

First of all Weil was fully aware of the fact that the fundamental 
object to be considered is the idele class group <tK := JK /PK, where PK 
denotes the group of principal ideles, which one can identify with the 
multiplicative group Kx of K. He uses the topology in JK which is given 
by the product topology of the group UK of unit ideles: UK = TI Up, 

p 

where Up denotes the compact group of units in Kp if p is a prime ideal 
of K, and Up = Kpx if pis an archimedean valuation of K. Now PK is 
a discrete and therefore closed subgroup of J K. 
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Weil states without proof that the Grossencharacters of Hecke [He 
1918] can be identified with the continuous characters of (t.K. The proof 
for this fact goes along the lines of the transition from ray class groups 
to the idele class groups as explained in [Ch1936]. But since Chevalley 
uses another topology for the idele group, he could not find this beautiful 
interpretation of Grossencharacters, which in fact shows that the intro­
duction of infinite components of the idele group as the multiplicative 
groups Kpx for archimedean places p was the "right" definition, while, 
if we are only interested in the interpretation of abelian extensions, the 
complex places, are useless and the real components could be reduced 
to {±1}. In contrast to [Ch1936], Weil considers not only number fields 
but also function fields of one variable over finite fields as base fields. 

In his thesis of 1950 at Princeton University, J. Tate introduced 
Hecke's Grossencharacters in the same way as Weil in 1951. But this 
thesis was published only in 1967 ([Tt1950]). 

The main problem stated and solved in [Wl1951] is related to the 
Theorem of Shafarevich: Let L / K be a finite Galois extension. Is it 
possible to find a natural group extension of G ( L / K) with (! L compatible 
with the natural action of G(L/K) on (t.L? 

Let K first be a function field. Then the Artin map is an iso­
morphism of (t.L onto a dense subgroup of the Galois group G'l of the 
maximal abelian extension Lab of L. Hence we have a natural group 
extension of G(L/K) with (t.L given by the group extension 

ct ---+ G(Lab I K) ---+ G(L/ K). 

The case of an algebraic number field K is different. There we have 
a non-trivial connected component '.l) L of the unit element of (t.L and 
class field theory gives only a natural group extension of G(L/K) with 
!tL/'.l) L· The problem of Weil is the question whether it is possible to 
lift this group extension of(!£. He requires functorial properties for this 
lifting and he shows that there exists one and only one lifting G L,K with 
these properties. Weil's motivation for the construction of this lifting to 
the group extension 

(4.2) (t.K---+ GL,K---+ G(L/K) 

is its application to £-functions. By means of the group GL,K he defines 
a new kind of £-functions, now called Weil £-functions which combines 
the notions of Hecke and Artin (non-abelian) £-function. In his com­
mentaries to his collected works Weil writes: Aussi aurais-je pu intituler 
mon memoire ''le mariage d'Artin et de Hecke". 

4.3. The group extension ( 4.2) defines an element in the group 
H 2 ( G( L / K), !tL), called later on the canonical class. But with respect 



98 H. Koch 

to the Theorem of Shafarevich in the global case Weil has nothing to 
add because he is not looking for an independent description of the class 
belonging to the group extension 

but he takes this class for his purpose of defining the group extension 
(4.2). 

Nevertheless, the paper [Wl1951] by Weil stimulated Nakayama to 
give an independent definition of the canonical class and to prove the 
Theorem of Shafarevich in the global case (together with Hochschild) 
[HoNal952]. 

Weil writes in his commentaries to his collected works that Naka­
yama got the manuscript of [Wll951] before it was published and found 
an essential mistake in it. Weil was able to correct the mistake in time 
and Nakayama gave his independent definition of the canonical class 
already in his paper [Na1951] in the same volume of the Journal of the 
Mathematical Society of Japan in honour to Takagi that contains also 
Weil's paper. 

Nakayama defines the canonical class in complete analogy with the 
local canonical class using the cohomological treatment of local class 
field theory given in [Ho1950]. The canonical class is defined by means 
of "Durchkreuzung" with a cyclic cyclotomic extension of K, a method 
which goes back to Chebotarev [Ce1926] and was used by Artin [Ar1927] 
to prove his reciprocity law. Cyclotomic fields play in the global case 
the same role as unramified extensions in the local case. 

In [Na1952] the cohomological construction of class field theory is 
complete in so far as it is based only on index relations, the theory of 
cyclotomic fields and Hasse's sum relation for the invariants of Brauer 
algebra classes. He proves H 1 (G(Lj K), tx) = {O} for arbitrary finite 
Galois extensions of global fields K, while in [Na1951] this is only proved 
for cyclic extensions Lj K. Furthermore, it is proved that Nakayama's 
canonical class is the same as Weil's canonical class. 

Finally Hochschild-Nakayama [HoNa1952] proved that for any finite 
Galois extension L of a global field K the group H 2 ( G(L/ K), tL) is 
cyclic of degree [L:K] generated by the canonical class. This paper 
contains also a full treatment of the functorial properties of the Artin 
map including the transfer homomorphism (Verlagerung). 

Furthermore, the Theorem of Shafarevich is proved in the global 
case. This proof is identical with Shafarevich's proof (see 3.5) except 
for the fact that the second property of Witt is not used directly. The 
authors give a new and less elegant proof for it. They refer to Sha­
farevich's Theorem and remark that if they apply their procedure to 
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the local case they "obtain a proof for Shafarevich's result". This is of 
course not surprising, since their procedure is identical to Shafarevich's. 

4.4. The ideas of Weil, Hochschild and Nakayama were further devel­
oped in the seminar of Artin and Tate, 1951/52, at Princeton University. 
There is an exposition of class field theory on the basis of group coho­
mology, the notion of class formation is introduced, and the groups G L,K 

of 4.2, called Weil groups, are defined for local and global fields in the 
scope of class formations. The Theorem of Shafarevich is treated as a 
theorem about class formations (exactly as in 2.4) and it is called "The­
orem of Shafarevich-Weil". The notes of the seminar were published 
only in 1967 [ArTt1952]. 

An essential ingredient of the cohomological treatment of class field 
theory is still missing in the Artin-Tate notes: The modified cohomo­
logical groups which put together homology and cohomology groups for 
finite groups G and G-modules A to a sequence of groups {fln(G, A)ln E 

Z}. The modified cohomology groups were introduced by Tate [Tt1952]. 
With these groups we get the picture of class field theory which we briefly 
described in 2.1-2.3. 

4.5. With Tate's paper [Ttl952] the period of reformulation and 
simplification of class field theory was completed. The next period in 
the theory of algebraic number fields was distinguished by the study of 
infinite extensions: Iwasawa's theory of r-extensions and the theory of 
maximal extensions with restricted ramification (Tate, Serre, Shafare­
vich). But the description of this development lays outside the scope of 
this talk. 

From the time after 1952, I mention only two results which are re­
lated to the Theorem of Shafarevich, both belonging to the local theory. 

The first one is the Theorem of Sen and Tate [SnTt1963] which 
clarifies the connection of the Theorem of Shafarevich with the filtration 
given by the ramification groups in the upper numbering. 

We keep the notation of section 2.4. Let F be a local field and let 
D be the division algebra with center K corresponding to the splitting 
field Land the canonical class uL/K· If a(a-,T), o-,T E G(L/K), is a 
cocycle in the class U£jK, then Dis given as in 3.2 in the form 

D = { L laua I la E L} 
aEG(L/K) 

with ual = o-(l)ua for l E L and 
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Hence we have an imbedding of the local Weil group GL,K in Dx 
given by taking Ua as the representative of a E G(L/K) in GL,K· Then 

u 
aEG(L/K) 

We introduce a filtration { GL,K Iv E lR+} in G L,K by means of 

where L denotes the homomorphism of G L,K in G(Lab / K) given by the 
Theorem of Shafarevich. 

Furthermore, let v be the exponential valuation of D, normalized 
such that v(n) = 1 for a prime element Jr of L, and let cp(x) = 'PLjK(x) 
be the Herbrand function of L/ K. Then one has the following 

Theorem of Sen and Tate. Let G be an element of G L,K and 

x E JR, x > 0. Then g E Gf:'lf if and only if v(g - 1) 2: x. 

The second result I want to mention here, belongs to the theory of 
Lubin-Tate extensions giving an explicit construction of the fully ram­
ified extensions of a local field [LuTt1965]. If we apply this theory to 
a normal extension L of K in the notation of 2.4, then the transforma­
tion formula for the change of the prime element Jr of L for the formal 
multiplication by Jr can be interpreted as an explicit construction of the 
group extension 2.2. See [KodS1996] for details, in particular 2.2. 

§5. The Contribution of Hasse and Jehne in the Time After 
the War 

5.1. Hasse worked from 1946 to 1950 in Berlin, where he attracted a 
large group of talented students. In 1950 he went to Hamburg followed 
by almost all his students. His main research project during that time 
was the theory of field embeddings: Given a Galois extension L/ K and 
a group extension 

A---+ G---+ G(L/ K) 

with abelian kernel A. Then one can look for a Galois extension F / K 
containing L / K such that there is an isomorphism tp of G ( F / K) onto 
G such that the diagram 

G(F/K) 
l 
G 

G(L/K) 
II 

G(L/K) 
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is commutative. In [Ha1947] the situation that F /Lis given by class field 
theory is considered but the main interest of Hasse was concentrated on 
the case where F / L is given by Kummer theory. 

The class field theoretic situation is considered in the language of ray 
class groups and the question of the corresponding two-classes is solved 
in some simple cases. In general this is called "Widerspiegelungsprob­
lem" and Hasse writes at the end of the paper that one needs an essen­
tially new idea to solve the problem. 

5.2. One of Hasse's students, Wolfram Jehne, solved the Widerspie­
gelungsproblem in his diploma in the spirit of the theory of simple alge­
bras. In [Je1952] Jehne defined for this purpose the notion of an idele 
of algebras consisting of local algebras A; with center Kp for all places 
p of K such that A; is similar to Kp for almost all p. An idele of alge­
bras is called embedding idele with respect to L / K of a Galois algebra 
A/0 in the sense of Teichmiiller [Tel940] if the components A; are em­
beddings of Ap = A ®K Kp (i.e. one can embed Ap in A; such that 
Ap is the centralizer of Kp in A;). To such an embedding idele Jehne 
associated an element of H 2 ( G ( L / K), rt L) and defined its invariant as 
the sum of the invariants of the local algebras A;. Finally the canonical 
class is the uniquely determined element in H 2 ( G ( L / K), rt L) with in­
variant [/Kl + Z. One finds a similar procedure in cohomological terms 
in [ArTt1952]. With this construction Jehne gave a proof of Artin's reci­
procity law using only Hasse's sum relation for the invariants of algebra 
classes. 

At the end of his paper Jehne proves the Theorem of Shafarevich 
in the global case in the same way as Shafarevich proved it in the local 
case by using the Nakayama map and Witt's second rule. 

§6. Concluding Remarks 

6.1. Shafarevich proved his Theorem in 1945 in the local case. 
Though his paper [Sh1946] was simultaneously published in English and 
Russian it became known rather slowly in the West and in Japan. But 
it is reviewed in Math. Rev. 8 (1947), p. 250, by G. Whaples, and it 
is mentioned in the article of Chevalley [Ch1951]. It could have been 
known therefore also to other mathematicians who worked on class field 
theory around 1951. However, because of the isolation of the mathe­
maticians in Germany at that time, it was unknown to Hasse's group in 
Berlin and Hamburg. Probably Weil did not know it when he wrote his 
paper [Wl1951], otherwise he· would have mentioned it. 

6.2. We have seen that the Theorem of Shafarevich in the global 
case was proved independently by Hochschild-Nakayama [HoNa1952] 
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and Jehne [Je1952] at the same time. A correct name for the Theo­
rem would be therefore Theorem of Shafarevich-Hochschild-Nakayama­
Jehne. Since this is too long and the proof of the Theorem in the global 
case is almost the same as in the local case after one has established the 
notion of a canonical class in the global case, it seems to me that "The­
orem of Shafarevich" is a justified name. In this I follow Serre [Se1962] 
who called (p.172) the Theorem in this way. 

6.3. Hasse and Nakayama both could have proved the Theorem 
of Shafarevich in the local case in 1936 but it seems the time was not 
ripe for asking the question. Hasse finally published the problem in 
1947 but only for algebraic number fields and in a, for that time, old 
fashioned form as a question about ray class groups. Nevertheless, his 
student Jehne solved the problem in terms of idele class groups. But 
Hasse failed to understand or accept the solution of Jehne, such that 
this result remained rather unknown. 

6.4. Hasse [Ha1932] was the first to use factor system classes, i.e. 
elements of the group H 2 (G(L/K),Kx), in the context of algebraic 
number theory in connection with the theory of simple algebras. So he 
should be considered as one of the creators of the homological method 
in algebraic number theory. But he did not like it as a method of co­
homology groups independent of the theory of algebras as can be seen 
from his talk [Ha1967] about the history of class field theory. Maybe, 
the theory of simple algebras was too important and dear to him since 
he was one of its creators in the thirties. He did not want to eliminate 
the simple algebras in the proofs of class field theory as was done in the 
local case by Hochschild [Ho1950]. This elimination paved the way for 
the cohomological approach to global class field theory. We see the coho­
mological method fully developed in the paper of Hochschild-Nakayama 
[HoNa1952]. 
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