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Geometry of cuspidal sextics and their dual curves 

Mutsuo Oka 

§1. Introduction 

Let C be a given irreducible plane curve of degree n defined by 
f ( x, y) = 0 where f ( x, y) is an irreducible polynomial. C is called a 
torus curve of type (p,q) if p,qln and f(x,y) is written as f(x,y) = 
f njp(x, y)P + f n;q(x, y)q for some polynomials f n/p, f n/q of degree n/p 
and n/q respectively. This terminology is due to Kulikov, [K2]. Torus 
curves have been studied by many authors ([Z], [Ol],[K2], [D],[T]). 

In the process of studying Zariski pairs in the moduli of plane 
curves of degree 6 with 3 cusps of type y4 - x3 = 0, we have ob­
served that there exist two irreducible components N3,i/ PSL(3, C) and 
N3,2 / PSL(3, C) which corresponds to torus curves and non-torus curves 
respectively (Lemma 25). Their dual curves are sextics with six cusps 
and three nodes. Starting from this observation, we study the moduli 
space of sextic with 6 cusps and 3 nodes which we denote by M and 
the moduli of their dual curves. It turns out that M has a beautiful 
symmetry. The "regular part" (=Plucker curves) of M is stable by the 
dual curve operation and the moduli of 3 (3,4)-cuspidal sextics N3 is 
on the "boundary" of M in a nice way (Theorem 18). By the dual op­
eration, this moduli is isomorphic to a "singular" stratum M 3 of M, 
which consists of 6 cuspidal 3 nodal sextics with 3 fl.exes of order 2. The 
moduli space M is a disjoint union of torus curves and non-torus curves. 
The generic Alexander polynomial ~c(t) of P 2 - C is determined by 
the type of C. Namely if C is a torus curve, ~c(t) = t 2 - t + I and 
1r1 (P2 - C) = Z2 * Z3, while for non-torus curve C, ~c ( t) = 1. Moreover 
we show that the dual curve C* is a torus curve if and only if C is a 
torus curve. This is striking, as it implies also that the topology of the 
complement is preserved by the dual operation for a torus curve in M. 
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This paper is composed as follows. In section 2, we study dual curves 
and their singularities. We show a simple lemma which enable us to com­
pute the defining polynomials of the dual curves explicitly (Lemma 4) 
and then we introduce a stratification, which is called flex stratification, 
in the focal moduli space of a germ of singularity. This stratification 
enjoys the following property. The defect of a singularity to the number 
of flexes is constant on each stratum and the image of a stratum by the 
dual map is again a stratum. Thus the topological structure of the dual 
singularity is also constant along a stratum (Theorem 14). 

In section 3, we study the moduli space M and other moduli spaces 
which appear on the canonical stratification of the "closure" M of M 
(Theorem 18). In section 4, we compute the moduli space of sextics 
with 3 (3,4)-cusps. In sections 5 and 6, we compute the fundamental 
groups of the complements of 3 (3,4)-cuspidal sextics of torus type and 
non-torus type. In section 7, we give a new Zariski triple of plane curves 
of degree 12 with 12 (3,4)-cusps, · as an application of Theorem 18. 

§2. Dual curves 

In this section, we first recall some basic properties of the dual 
curves. For general references, refer to [Wl], [B-K] and [NJ. We will 
also present several new results on dual curves which will be used in 
later sections (Lemma 4, Theorem 14). 

Let C be an irreducible plane curve in P 2 and let F(X, Y, Z) = 0 be 
an irreducible polynomial which defines C and let f(x, y) = F(x, y, 1). 
Here X, Y, Z are homogeneous coordinates and (x, y) are affine coordi­
nates given by x = X/Z,y = Y/Z. At a simple point P = (a:,{3) E en 
C 2 , the tangent line TpC is given by ~(a:, f3)(x-a:)+U(a:, /3)(y-a:) = 
0. 

Let P*2 be the dual projective space with homogeneous coordinates 
U, V, W. The dual curve C* of C is the closure of the image of the 
mapping P 1----+ TpC for the regular points PE C. More explicitly it is 
given by (X, Y, Z) 1----+ (U, V, W) where U = Fx, V = Fy and W = Fz. 
Thus a defining homogeneous polynomial of C*, denoted by G(U, V, W), 
can be obtained by eliminating X, Y, Z from the above equalities and 
F(X, Y, Z) = 0. 

Let </> : 6 --+ C be a normalization of C and let t be the (local) 
coordinate of 6. Let (x(t), y(t)) be the affine parameterization of C. 

Then the tangent line is given by y - y(t) = ~:m (x - x(t)). Thus the 
dual curve is parameterized in homogeneous coordinates as follows: 

(1) U(t) = y'(t), V(t) = -x'(t), W(t) = x'(t)y(t) - x(t)y'(t) 
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Applying (1) to C* again, we see easily that the dual curve operation 
enjoys the reciprocity law C** = C and thus C and C* are birationally 
equivalent. 

2.1. Action of the automorphism 

The group G:= PSL(3, C) acts on P 2 from the right side as: P 2 x 
G --t P 2 , ( (X, Y, Z), A) f---t (X, Y, Z)A. Let A E G and we denote by 
cp A the automorphism induced by the right multiplication. Then the im­
age 'PA(C) of the curve is defined by the polynomial cp~_ 1 F(X, Y, Z) = 
F((X, Y, Z)A- 1 ). Put CA := 'PA(C). The following is easy to be proved. 

Lemma 2. We have (CA)*= (C*)'r 1
• Thus ifC* is defined by 

G(U, V, W) = 0, (CA)* is defined by cp-:' A G(U, V, W) = G( (U, V, W)t A). 
In particular, if C* is a torus curve, (CA)* is a torus curve for any 
A E PSL(3, C). 

2.2. Class formula 

Assume that C is an irreducible curve of degree n with k singularities 
Pi for i = 1, ... , k. Let mi be the multiplicity, let µi be the Milnor 
number and let ri be the number of irreducible components of Cat Pi 
respectively and let g be the genus of the normalization C. The degree 
n* of the dual curve is called the class number of C and n* is given by 
the formula: 

k k 

(3) n* = 2(g -1 + n) - ~)mi - ri) = n(n - 1) - ~)µi + mi - 1) 
i=l i=l 

The second equality follows from the (modified) Plucker formula: 

2 - 2g = 3n - n 2 + I::=l (µi + ri - 1). 

2.3. Defining polynomial of the dual curve. 

Let F(X, Y, Z), f(x, y) and C be as before. Let G(U, V, W) be 
the defining homogeneous polynomial of C* and let g(u, v) be the affine 
equation, given by g(u, v) = G(u, v, 1). G is given by eliminating X, Y, Z 
from F(X, Y, Z) and Fx - U, Fy - V, Fz - W. However this elimina­
tion involves a tremendous computation. We prefer the following simple 
formula. 

Lemma 4. Assume that the line Z = 0 cuts C transversely. Let 
Pi = (ai, /3i), i = 1, ... , k be the singular points of C and let µi be 
the Milnor number and let mi be the multiplicity of C at Pi. Put 
fi(x1,P,Y1) := f(xi - PY1,Y1) and let h(xi,P) :== Ay1 (f1) be the dis­
criminant polynomial of Ji with respect to Yi- Then h(xi,P) is a poly­
nomial of degree n(n -1). Put g(u,v) = h(-1/u,v/u)un(n-l)_ Then 
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g( u, v) can be written as g( u, v) = g( u, v )L( u, v) where L is given by 
L(u,v) = rt=i(O:iU + /3iv + l)µ;+m;-l and the polynomial g(u,v) is 
a defining polynomial of the dual curve in the affine coordinates u = 
U/W,v=V/W. 

Remark 1. This formula also holds without the genericity as­
sumption of the line at infinity with a slight modification g( u, v) = 
h(-1/u,v/u)udeg(h)_ The defining polynomial g(u,v) is obtained by th­
rowing away all the multiple factors from g( u, v). Therefore for the 
determination of g, we only need an elimination of one variable. Thus 
the computation is very easy. 

Proof. Let f*(u,v) be the defining polynomial of the dual curve. 
Consider pas a fixed constant. (We consider pas a variable later.) First 
observe that h(a,p) = 0 with a:/- -(o:i+P/3i), i = 1, ... , k, if and only if 
x+py-a = 0 is tangent to C. Thus (-1/a, -p/a) EC* when h(a,p) = 
0. Thus g( u, v) = 0 defines C* as a set. By a standard argument of 
discriminant, degx1 h(xi,P) = n(n -1) and the solutions of h(x1,P) = 0 
in X1 are all simple except xi = O:i + /3iP, while the contribution from the 
singular point Pi is given by (x1 -(o:i+/3iP))"; where vi is the intersection 
multiplicity of C and ~ = 0 at Pi, considering pas a constant (see for 
example, [05)). Furthermore we have the equality: vi = µi + mi - 1 
by (Le] for a generic p. We need to show deg h(xi,P) = n(n-: 1) as a 
polynomial of two variables X1, p. 
Step 1. Assume that C is a smooth curve. Then it is well-known that 
f*(u, v) is an irreducible polynomial of degree n(n-1). Let h*(x1,p) := 

f*(-l/x1, -p/xi}x~(n-l). Then h* is also an irreducible polynomial 
of degree n(n - 1) and by the above consideration, h*(xi,P) divides 
h(xi,p). So we conclude that h(x1,P) = h*(xi,P) up to a multiplication 
of a constant. 
Step 2. Our case. Let ft(x,y) = f(x,y)-t. Then fort:/- 0, sufficiently 
small, Ct:= {ft(x,y) = O} is a smooth curve of degree n. Let ht(x1,P) 
be the discriminant polynomial of ft(x1 - py, y) in y. Then ht(x1,P) has 
degree n( n - 1) as a polynomial of x1, p. Thus as ho = h, deg h( x1, p) ~ 
n(n - 1). As we have already seen that degx1 h(xi,P) = n(n - 1), we 
conclude that deg h(x1,P) = n(n - 1). Q.E.D. 

2.4. Flex points 
Let C be an irreducible plane curve of degree n defined by a homoge­

neous polynomial F(X, Y, Z) = 0 and put f(x, y) = F(x, y, 1) as before. 
A regular point P E C is called a flex of order r if the intersection mul­
tiplicity I(C, TpC; P) of C and the tangent line TpC at Pis r + 2. We 
simply say a flex in the sense of a flex of order 1. It is well-known that 
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flex points are defined by H(X, Y, Z) = 0 on C where H(X, Y, Z) is the 
Hessian of F which is a homogeneous polynomial of degree 3(n - 2). 
Using the Euler equality nF = XFx + YFy + ZFz, we can easily ob­
tain Z 2H = -(n - l)2 (Fx,xFf. - 2Fx,yFyFx + Fy,yFf) modulo (F). 
We consider the polynomial :F(f) := fx,xf; - 2fx,yfyfx + fy,yf; (see 
also §5, [05]) and let J be the plane curve defined by :F(f)(x, y) = 0. 
Note that deg :F(f) = 3n - 4. We define the flex defect at P of C by 
the intersection multiplicity I(C, H; P) of C and Hat P and we denote 
this integer by 8(P; f) or 8(P; C). By the above equality, the flex defect 
8(P; f) is equal to the intersection number I(C, J; P) for P E C n C 2 . 

Let A, ... , Pk be the singular points of C. Thus we have 

Proposition 5. The number of flexes i(C), counted with the mul­

tiplicity, is given by 3(n - 2)n - I::=l 8(Pi; C). 

Remark 2. The multiplicity of a flex point is counted by the flex 
defect, which turns out to be equal with the order by Corollary g_ 

2.5. Flex defect formula and flex stratification 

Let a be an equivalence class of an isolated plane curve singularity 
germ. Here two germs ( C, 0) and ( C', 0) at the origin are equivalent if 
they are joined by an equisingular family (i.e., µ-constant family). We 
define the generic flex defect of a by min{ 8(!; O); f E a} and we denote 
the generic flex defect by J"(a). Let f(x, y) be a polynomial and let C(f) 
be the plane curve {f(x, y) = O}. We say that f(x, y) or C(f) is generic 
(at 0) in a if (C(f), 0) Ea and 8(0; f) = J"(a). 

Let P = {(m1, n1), ... , (mt, nt)} be a given set of Puiseux pairs 
and let a(P) be the equivalent class of the irreducible curve singular­
ity having P as Puiseux pairs. Assume that ( C, 0) E a(P) is defined 
by f(x, y) = 0 and y = 0 is the tangential direction. Then y can be 
expanded in a Puiseux series as y = cp( x 11 N), 

(6) cp(xlfN) = I::~s aixi + h1(xl/N1) + ... + ht(xl/Nt), 

Ni := n1 · · · ni, N = Nt 

where hj(xl/N;) = CjXm;/N; + Lm;<k<m;+i/n;+i Cj,kXk/N; and C1, c2, 

... , Ct=/ 0, ko := [mi/n1], gcd(ni, mi)= 1 and mi > mi-lni. Note that 
a1 = 0 by the assumption on the tangent direction. Let S = {j; ai =/ 
0,j 2:: 2}. We.call the orders of cp(x) in x the Puiseux order off and we 
denote it by Puiseux ord(f). Note that sN = I(C, y = 0; 0) where y = 0 
is the tangential direction. Thus the Puiseux order does not depend on 
the choice of linear coordinates. 
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Let s = Puiseux order(!). By the definition, s = min{j E S} if 
S =I= 0 and s = mt/n1 if S = 0. As a function of x, cp is well-defined in 
the region, say -1r ::; arg(x) < 1r, when a branch x 1/N is fixed. We fix 
a branch of x 1/N hereafter. We consider the canonical stratification of 
a(P) given by { a(P; 2) ... , a(P; [mi/n1]), a(P; mi/n1)} where 

a(P;s) = {(C(f),O) E a(P);Puiseux order(!)= s}. 

We call this stratification the flex stratification of a(P). 

Theorem 7. Assume that f(x,y) E a(P;s). Then we have 

(8) 8(0; f) = (s - 2)n1 · · · ni + E~=l 3(n; -J)m;(n;+1 · · · ni)2 

and f is generic if and only ifs ::;; 2, namely if either s = 2 or mi/ n 1 ::; 2 
ands= mt/n1. 

The formula (8) seems to be equivalent to Satz 2, p. 780, [B-K]. 
Proof. Put w = exp(21rH/N) and consider functions of x 1/N 

defined by cp;(x1fN) := cp(x1fN wi) for j = 0, ... , N - l. Note cp0 = cp. 
The defining function f(x, y) is given by the product f(x, y) = U g where 
U is a unit and g(x,y) = (y- cp0 (x1fN))···(y- 'PN-i(x1IN)). The 
intersection number I( C, J; 0) is given as valt.r(f)(x(t), y(t) ), using the 
parameterization x 1/N = t (so x(t) = tN) and y(t) = cp0 (t). First it is 
easy to show: 

Assertion 1. .r(J)(x(t),y(t)) = U3.r(g)(x(t),y(t)) and valt(.r(f) 
(x(t), y(t))) is equal to valt(.r(g)(x(t), y(t))). 

Composing the parameterization mapping t 1-+ 1/J(t) := (x(t),y(t)), 
we have: 

9x,x9;('1/J(t)) = ( 2 Ef=11 ~~ nk#o,;('Po - 'Pk) 

-~~o nf=11(cpo - cp;)) X (nf=11(cpo - 'P;))2 (1/J(t)) 

-2gx,y9x9y('I/J(t)) = 2( Ef=11 ~ nk#o,;('Po - 'Pk) 

+ Ef=11 ~ nk#o,;{'Po - 'Pk)) X (-~) (nf=11(cpo - 'P;)) 2 (1/J(t)) 

9y,y9~ = ( 2 Ef=11 nk#o,;('Po - 'Pk)) ( ~) 2 (nf=11(cpo - cp;)) 2 (1/J(t)) 

Thus by an easy computation we get .r(f)(x(t),y(t)) = -U3('1/J(t)) 8;~0 

(x(t)) TT!~1(cpo(x(t)) - 'Pi(x(t))3• As the number of {0 < k < N; k = 
0(N;-1)} is n; · · · ni-1, the assertion follows from the equalities valt a;~0 
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(x(t)) = (s - 2)N and valt('Po - 'Pk)(x(t)) = miN/Ni, if k = 0 (Ni_i) 
and k ¢. 0 (Ni)- Q.E.D. 

Corollary 9. For flex point P of order k, we have f, = 0 and 
s = k + 2. Thus c5(P; J) = k. 

We can generalize Theorem 7 to reducible singularities. To avoid 
the complexity of notations, we do this only for the class of singularity 
which is equivalent to the Brieskorn singularity Bp,q : yP - xq = 0 with 
2 ~ p ~ q at the origin. We denote this equivalence class by /3p,q· Put 
r = gcd(p,q) and write p = rn1 and q = rm1. Then each irreducible 
component has the unique Puiseux pair {(m1, n1)}. Take a function 
germ f(x, y) which defines such a singularity at the origin. As the reso­
lution complexity of a Brieskorn singularity is one ( [L-O)), after a linear 
change of coordinates, we may assume that f(x, y) = fi(x, y) · · · fr(x, y) 
where f;(x,y) = (y - I:2:::,i<[q/p] aixi)n1 + Cj,m1 Xin1 + (higher terms) 
where ai, 2 ~ i < [q/p], are independent of j and c1,mu ... , Cr,m1 are 
mutually distinct non-zero complex numbers. In particular, the Puiseux 
orders of f;, j = 1, ... , r, are the same. Let a (/3p,q; s) be the set of 
f E /3p,q whose irreducible components have the Puiseux orders. 

Theorem 10. Assume that p < q and f E a(f3p,qi s). Then the 
flex defect and the generic flex defect are given as follows. 

8(0; J) = 3pq - 3q + (s - 2)p, 8(/3p,q) = { :: = ~~ + q), 
q > 2p 

q ~2p 

Proof. Let y = 'Pi(x1fni) be the Puiseux expansion of y in x 
for J;(x, y) = 0. By the assumption, it is written as 'Pi(x1fn 1 ) = 
'°' i+'°'oo k/n1 h ( )n1 ( )n1 L..,s:::,i<[q/p] aix L..,k=mi Cj,kX w ere c1,m1 , ••• , Cr,m1 are mu-
tually distinct complex numbers. Let us consider 'Pi,k(x1fni) = 'Pi 
(x1fn 1 wk) with w = exp(21r✓-=T/n1 ). Then f;(x, y) is given by the 
product (y - 'Pj,o) · · · (y ,- 'Pi,ni-1)- Denote the i-th branch fi(x, y) = 0 
by Ci. To compute the intersection number J(C1, J; 0), we consider 
the parameterization x(t) = tn1 and y(t) = cp1(t). Then by the same 
computation as in the proofofTheorem 7, we obtain :F(f)(x(t),y(t)) = 
- a~~~,o (x(t), y(t)) n(i,k)~(l,O) ( 'Pl,0 - 'Pi,k)(x(t) )3 • Therefore we obtain 
the formula 

(11) J(C1, J; 0) 

= valt(:F(f)(x(t),y(t))) = 3rn1m1 - 3m1 + (s - 2)n1 
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The other intersection numbers I(C;, J; O),j = 2, ... , r, are the same. 
Thus as 8(0; 0) is the sum 1(01 , J; 0) + • • • + I(Cr, J; 0), the assertion 
follows immediately. Q.E.D. 

Now we consider the case p = q. Then r = p and we may assume that 
f;(x, y) = y - E~1 c;,kxk where { c1,1, ... , Cp,i} are mutually distinct 
complex numbers. Put Si = {j; j ~ 2, Ci,; =/ O}. We assume that Si =/ 0 
for each i = 1, ... ,p. (Otherwise, C contains a line and it is contained 
in J.) Put Si be the minimum of Si. Unlike the previous cases, 8(0; /) 
is not bounded. 

Corollary 12. Assume that ( C, 0) E /3p,p+l, i.e., a cusp singular­
ity of type (p,p+l) at the origin. Then 8(0; C) = 8(/3p,p+l) = 3p2-p-2. 
For A2p-1 = /32,2p, we have 8(A2p-,-1) = 6p for p = 1, 2 and Sp - 4 for 
p~ 3. 

By a similar computation, we have 

Theorem 13. The flex defect of the singularity (C(f), 0) E /3p,p 
is given by 8(0;!) = 3p2 - 3p+ Ef=1 (si - 2) and 8(/3p,p) = 3p2 - 3p. 

Let ai, i = 1, ... , k, be equivalence classes of plane curve singularity 
and let E = { 0-1, .•. , O"k}. Consider the set of plane curves M ( n; E) of 
degree n with k singularities which are equivalent to ai, i = 1, ... , k. 
Take a curve CE M(n; E) and let Pi, ... , Pk be the singular points of 
C. C is called generic in M(n; E) if the following conditions (1),(2),(3) 
are satisfied. 
(1) (C,Pi) is a generic in ai and the tangent lines at Pi intersect C 
transversely except at Pi. (2) The flexes are of order one. (3) The 
multi-tangent lines are ordinary bi-tangent lines. 

A Plucker curve is a generic curve in the case that E contains only 
nodes or cusps. The set of generic curves is an open subset of M(n; E) 
but it might be empty. See Example 17. 

2.6. Dual singularity 
Let P E O and P* be the corresponding point of C*. As is well­

known, Pis a (k -1, k)-cusp if and only if P* is a flex of order k - 2. If 
P is a generic node, P* consists of two tangent points with a bi-tangent 
line. We study the correspondence for other singularities. Take a point 
0 E O and let 0 1 , ... , Ck be the local irreducible components at O and 
let £1, ... ,fr be the corresponding tangent line at 0. Then the dual 
image c; of Ci passes through fi E P*2 for i = 1, ... , k. In the case of 
C being irreducible at 0, we simply denote £1 by 0*. We call the germ 
( c;, fi) the dual singularity of the germ of (Ci, 0). 
(1) Irreducible case. Let P = {(m1, n1), ... , (mt, nt)} and let N; = 
n1 · · · n; (N = Nt) and assume that ( C, 0) E a(P; s) is an irreducible 
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germ at O defined by f(x, y) = 0 whose Puiseux series is given by 
cp(x1IN) = E~;2 Co,ixi + h1(x1/Ni) + · · · + he(x1/Nt) where ko < mi/n1 

and hj(xl/N;): Em;::C:k<m;+i/n;+i Cj,kXk/N;, c1,mu c2,m2 , ••• , ce,mt -=f 0. 
Let s be the Puiseux order. Let S = {j; Ci,o -=J 0,j ~ 2}. The dual 
singularity is described by the following. The case £ = 0 with s ~ 3 ( a 
flex of order s - 2) is also contained in the argument. 

Theorem 14. (Local Duality) Leta(P;s)* := {(C*,O*);(C,O) 
E a(P; s)}. Then the dual operation gives a well-defined mapping on the 
set of the strata of the flex stratification. More precisely, 

(1) Assume that S I- 0. Then a(P; 2)* = a(P, 2) and a(P; s)* = 
a(P+; 8 ~ 1) ifs> 2 where p+ := {(s, s-1), (m1, n1), ... , (me, ne)}. The 
first equality says that the dual map* gives an involution on a(P; 2). 

(2) Assume that S = 0. Thens = mifn1 and a(P; ~ )* = a(P*; 

_.!!!J.._), if m1 - n1 > 1 and a(P; !!!.l.n )* = a(P-; m1), if m1 = n1 + 1, m1-n1 1 
where P*:={(m1, m1 - n1), (m2, n2), ... , (me, ne)} and p-:={(m2, n2), 
... , (me, ne)}. 

There is a related result by Wall [W2]. The cases £ = 0, s ~ 3 or 
f = 1 and m1 = n1 + 1 are special cases of (1) and (2) respectively. It 
follows from (2) that a cusp of type (k, k + l) and a flex of order k - l 
corresponds each other by the dual operation. 

Proof. Put Nj = n1 • · · nj, N(j) = nj · · · ne and N = Ne. Putting 
x 1IN = t, we can parameterize C as x(t) = tN and y(t) = cp(t) = Ej bjtj 

where the coefficients are given by bk= cj,k/N<Ht), if mj:::; k/N(Hl) < 
mj+i/nH1 and k/N(Hl) E Z. Otherwise bk = 0. By (1), we can 

"b . 
parameterizeC* asu(t) = -Ej 1JtJ-N, w(t) = Ej(-iJ,-l)bjtj where 
(u,w) is the affine coordinates defined by u = U/V, w = W/V. Note 
thatvaltu(t) = (s-l)N. Wetakeachangeofparameterrsothatu(r) = 
r<s-l)N. Write t = T E~o >.(k)rk. The coefficients >.(0), >.(1), >.(2), ... 
are inductively determined from the equality u(t(r)) = r<s-l)N after 
fixing >.(0) which satisfies >.(o)<s-l)N = -l/sbsN· 

Assertion 2. For p < mkN(k+l) - sN, >.(p) = 0 if p -::J. 0 modulo 
N(k)_ The first non-trivial coefficient >.(p) with p -::J. 0 (N(k)) is >.(mk 
N(k+l) - sN) and it is given by 

m N(k+l) b < l 
(15) >.(mkN(k+l) - sN) = - s(:- l)N2 ffik::+1) >.(orkN k+I -sN+l 

Proof. Assume that we have shown >.(p) = 0 for p ¢. 0 modulo N(k) 
and p < p' for some p' :::; mkN(k+l) - sN. Consider the equality: 
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(PC) : 7(s-l}N = - Lj"?,sN j':J Tj-N (Lq >.(q)Tq)j-N. We compare the 

coefficients of 7P'+sN-N_ Assume first that p' -=/=. 0 (N(k}) and p' < 
mkN(k+l) - sN. Then the term 7P'+sN-N in the right side comes only 
from the first term (j = sN) of the summation and the coefficient is 
-s(s - l)NbsNA(0) 8 N-N-l >.(p'). Thus >.(p') = 0. By an induction, we 
get >.(p) = 0 for p < mkN(k+l} - sN with p-=/=. 0 modulo N(k). 

Now we consider the case p'=mkN(k+l}_sN The term TmkN(k+i)_N 
in the right side summation comes from j = sN and j = mkN(k+l). 
Comparing the coefficient of TmkN<k+t)_N in (PC), we have 

and the assertion follows from this equality. Q.E.D. 
The other coefficients >.(j)'s are complicated but they are not im­

portant. To determine the Puiseux pairs of the dual curve, we write 
w(T) = Lj d(j)Tj. Then by a similar argument, 

Assertion 3. (1) The coefficient d(j) vanishes for any j < sN 
and d(sN) = (s - l)bsNA(O)sN_ 
(2) The coefficient d(j) for j-=/=. 0 (N(k)) vanishes for j < mkN(k+l) and 
the first non-vanishing coefficient d(j) with j -=j=. 0 ( N(k}) is d( mkN(k+l}), 
which is given by d(mkN(k+l)) = -bmkN<k+1)A(O)mkN<k+i). 

Proof. As w(t) = "'E,j(-11 - l)bjtJ, the first assertion of (2) follows 
immediately from Assertion 2. The second equality follows from 

d(mjN(Hl}) = (8: - l)bsNA(0) 8 N-lsN>.(mjN(Hl} - sN) 

mjN(j+l} m-N<i+I) 
+( N - l)bmiN(i+l)A(O) 1 

( ) m·N(i+l) 
-bmiN(i+l)A O 1 Q.E.D. 

Assume that S -/- 0. Assume first that s = 2. Then u = TN and 
(C*, O*) E a(P; 2). Ifs > 2, u(T) = T(s-l}N and the assertion follows 

m-N<i+l) m· 0 
from c:-l}N = (s-i)n"i-··ni. Assume that S = ands= mi/n1. Then 

u(T) = 7(mi-ni)N<2 l and gcd(m1 - n 1,n1) = 1. Thus the assertion 
follows. This completes the proof. 
(2) Reducible case. A similar assertion can be proved for reducible 
curve germs. We do this for Brieskorn singularities. Let us consider a 
germ of a Brieskorn singularity ( C, 0) E f3v,q defined by a polynomial 
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f(x,y) with the tangential direction y = 0. Let r = gcd(p,q) and write 
p = rn1 and q = rm1. Let f =Ji··· fr be the factorization and let Ci 
be the irreducible component of C defined by fi(x, y) = 0. Recall that 
the Puiseux expansions of fi(x, y) in x for i = 1, ... , rare the same up 
to the term xmifni. 

Theorem 16. (Local Duality-bis) Assume that p<q and (C, 0) 
E a(f3v,qi s). Thens= q/p and (C*, 0*) E a(/3q-p,q; q~p) if q::; 2p. If 
2p < q ands = 2, then (C*, 0*) E a(f3v,qi 2). If 2p < q and s > 2, 
(C* 0*) = ur (C'!' 0*) and (C* 0*) E a(P+- _s_) with p+ = {(s s-' i=l i , i , , s-1 , 

l),(m1,n1)}. The Puiseux expansions ofC; in u1f(s-l)n1,i = 1, ... ,r 
coincide up to the term umif(s-l)n1. 

Proof. Assume first that m1 > 2n1. Then Ci is defined by a poly­

nomial fj(x, y) of the form fi(x, y) = (y - L~~s aixi)n1 - c"_;1xm1 + 
(higher terms) where ko = [mi/nil, as =/= 0 and s ~ 2. Here as, ... , ako 
are independent of j. In the proof of Theorem 14, we have shown 
that (CJ, 0*) E a(P+; s~l) with p+ = {(s, s - 1), (m1, n1)} and CJ 

is parameterized as u(t) = T(s-l)ni and w(t) = Ls:<c;i<mi/ni d(i)Tini + 

I::m1 d(j,i)Ti. Thus the assertion follows from the observation d(s) =/= 

0 and d(s), ... , d(ko) are independent of j and d(j, m 1) = Cj x A(0)m1. In 
particular, this implies that ifs= 2, (CJ,O*) E a(/3m1,n1;2) and CJ is 
defined by a polynomial of the type gj(u, w)=(w- I:2:<oi<mi/ni d(i)ui)n1 

-d(j, m 1)n1wAum1 + (higher terms) where w = exp(21ry'-1/n1) and 
A= n 1(n1 - l)mi/2. Thus the assertion follows immediately. The case 
m 1 :::; 2n1 can be treated similarly. Q.E.D. 

Example 17. Let us consider a rational curve C = {f(x, y) = O} 
of degree 6 where f (x, y) = (x2 + y3)2 - 4y3x3. In the affine coordinate 
(u, v) = (Z/ X, Y/ X), C is defined by (u + v3 ) 2 - 4v3 = 0. Thus C is a 
Jung transform of the rational curve u2 - 4v3 = 0 (See Example (6.6}, 
[04]}. Chas two singularities. One (2,3} cusp at P := (1,0,0) and one 
irreducible singularity of Puiseux pairs {(3, 2), (9, 2)} at Q := (0, 0, 1). 
By Theorem 7, the flex defect at Q is 61 and the Milnor number is 18. 
Thus the dual curve should have three cusps and 3 nodes if C is generic 
in the moduli. The dual curve is given by C* = {g(x,y) = O} where 
g(x, y) = 16y6 +27y3+540y3x-216y3x2 +729x+2187x2+2187x3+729x4 . 

Thus C* is a rational curve of degree 6 and it has three cusps and one 
singularity at Q* := (1, 0, 0) of Milnor number 8 which is in the moduli 
a( {(9, 2)}; 3) by Theorem 14. The discriminant of g in y is given by 
cx2 (x + l)6 (8x - 1)9 , c =I= 0 and C* has a /33 ,3 singularity at (-l, 0, 1). 
C is not generic as C* does not have three nodes but a /33,3. The reason 
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is, C has a tri-tangent line x = -1. In fact, by computing the moduli 
space explicitly, we can show that there does not exist any generic curve 
in the moduli of C but every member has a tri-tangent line. 

§3. Moduli of certain sextics and their dual 

In this section, we consider various moduli spaces of sextics. Unless 
otherwise stated, n, n*, g are the degree, the class number and the genus 
of the curve in discussion respectively. 

3.1. Moduli space M := M(6; E). 

Let :E = {3,82,2, 6,82,a} and consider the moduli space M := M(6; :E) 
of sextics with 6 cusps and 3 nodes. Let us denote the subset of M whose 
curves are generic (i.e., Plucker) by M'. It is easy to see that g(C) = 1 
for any C E M by the modified Plucker formula. By the class formula 
(3), the dual curves C* has degree 6. By Theorem 10 and Proposition 
5, the dual curve C* has also 6 cusps for CE M'. AB g(C*) = 1, they 
have 3 nodes. Thus we have the self-duality: M'* = M'. However 
M* =I- M. The reason is that there exists an interesting degeneration in 
this moduli as we will see below. First, the number of flexes on CE M 
is 6 counting the multiplicity by Proposition 5. Thus the possible types 
of flexes are (0) 6 flexes of order 1, (i) 4 flexes of order 1 and one flex 
of order 2, (ii) 2 flexes of order 1 and 2 flexes of order 2, (iii) 3 flexes of 
order 2 and (iv) 3 flexes of order 1 and one flex of order 3. There do not 
exist other types as the dual curve has genus 1 and the sum of Milnor 
numbers of the singular points of C* is less than or equal to 18 by the 
modified Plucker formula. The moduli space with these flex types are 
difficult to study directly. So we consider their dual moduli spaces. 
(1) Let :E1 = {2,82,2, 4,82,a, .Ba,4} and let N'1 := M(6; :E1). The genus of a 
curve in N'1 is 1 and the class number is 6. Thus we have the inclusion: 
N'{* C M. Here we denote by N'{ the submoduli of N'1 which consists 
of the generic curves. A curve C E N'{* is not a Plucker curve but it 
has 4 flexes of order 1 and a flex of order 2. We put M 1 := N'{*. By 
reciprocity law, C E M is in M 1 if and only if C has 4 flexes of order 
1, one flex of order 2 and two bi-tangents. 
(2) Let :E2 = {,82,2, 2,82,a, 2,Ba,4} and N'2 := M(6; :E2). For C E N'2, the 
genus g( C) = 1 and n* = 6. The generic dual Nt consists of curves C 
with 6 cusps and 3 nodes and 2 flexes of order 1 and 2 flexes of order 2. 
We denote this dual image Nt by M2. 
(3) Let :Ea= {3,Ba,4} and let N'a := M(6; :Ea). We see that g(C) = 1 for 
any C E N'a and the generic dual Nt is again 6 cuspidal 3 nodal sextics 
with 3 flexes of order 2. The moduli of such curves is denoted by M 3 • 
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(4) Finally let E4 = {,84,5,3,82,3} and let N4 = M(6;E4). We see that 
g = 1, n* = 6 and the generic dual Nf is again 6 cuspidal 3 nodal 
sextics with 3 ordinary flexes and one flex of order 3. Put M 4 := N:._*. 

Let T be the moduli space of (2,3)-torus curves of degree 6 and 
of type (2,3). The respective submoduli of torus type Mn T, Min T 
and M nT are denoted simply by Mtorus, Mi,torus, M,torus respectively. 
Non-torus moduli are denoted as Mgen, Mi,gen, M,gen respectively. The 
main result about the structure of the moduli spaces M is: 

Theorem 18. 1. The union M := M' uf=1 Mi uf=1 Nf is in­
variant by the dual operation. Namely the dual operation C t--t C* gives 
an involution on M. Furthermore the dual operation preserves curves 
of torus type and non-torus type. Namely M~ * = M~, Nf,a. * = Mi,a. 

and Mi,a. * = Nf,a. for i = 1, ... , 4 and a=torus or gen. 
2. (Stratification)Mtorus=M~orus u~=l Mi,torus and Mgen=M~en ut=l 
Mi,gen• Thus M4 = M4,gen and N4 = N4,gen• The moduli spaces 
M~orus,Mi,torus,M,torus, i = 1,2,3 and N3,gen are irreducible. For 
the moduli of the curves of torus type, we have the adherence relation: 

M~orus :::) M1,torus :::) M2,torus :::) M3,torus, 

M~orus :::) N{,torus :::) N{torus :::) N{torus 

3. (Alexander polynomial) For CE Mtorus, the Alexander polynomial 
~c(t) is given by t2 - t + 1 ([Lil],[D]). For non-torus curve CE Mgen, 

it is given by 1. 
4. (Fundamental ![oups) 1r1(P2 - C) ~ Z2 * Z3 or 1r1(P2 - C) ~ Z6 
according to C E Mtorus or C E M3,gen respectively. 

Remark 3. We do not know if the other moduli spaces of non­
torus type are irreducible. If this is the case, the adherence relations and 
the commutativity of the fundamental group holds for other non-torus 
type sextics Mi,gen,M,gen, i = 1, 2, 3. The moduli space N4 seems to be 
irreducible. 

3.2. Alexander polynomial 

Let C be an irreducible plane curve of degree n and L00 be the line 
at infinity. We assume that L00 intersects C transversely. We consider 
the Alexander polynomial ~c(t) with respect to L00 and we call it the 
generic Alexander polynomial. It has integral coefficients. For the defi­
nition of the Alexander polynomial, we refer to [Li2]. We recall several 
basic properties of ~c ( t). 
(1) ~c(t) divides the Alexander polynomial at infinity (tn - l)n-2(t-1) 
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and also the product of the local Alexander polynomials at singular 
points of C ([Li2] and [Lill). 

Let p : Y -+ P 2 be the embedded resolution of the singularity of 
CU£=. Let qm : Xm -+ P 2 be them-cyclic covering branched along 
C U L= and let Pm : Zm -+ Y be the desingularization of the pull­
back of qm by p. Let A:= Q[t, r 1]. Then H 1(X=; Q) is a A-module 
where t acts as the Deck transformation. Thus there are polynomials 
A1(t), ... , Ak(t) with AilAi+l, i = 1, ... , k - l, such that H1(X=; Q) is 
isomorphic to the direct sum I:7=1 A/(Ai) and L\c(t) = A1(t) · · · Ak(t). 
(2) The first Betti number b1(Zm) of Zm is equal to the sum I:7=1 O:i 

where ai is the the number of different m-th roots of unity in the roots 
of Ai(t) = 0 ([Li2]). 
(3) L\c(t) is a cyclotomic polynomial and L\c(l) = ±1 (see for example, 
[R]). 

Consider the case m = n and we write Z := Zn for simplicity. 
Combining these properties, the determination of the Alexander poly­
nomial is reduced to the calculation of the first Betti number of Z, or 
equivalently to the calculation of the irregularity of Z. 

For the calculation of the irregularity q(Z), the method by Esnault 
([El) and Artal ([All) is convenient. Let us recall it. Let Pi, ... , Pv be 
the singular points of C. Let £(k) be the divisor on Y introduced in 
[E]. Then b1(Z) = 2q(Z) = 2 I:~:i dimH1(Y; 0(£{kl)) by [E] and 
H 1(Y; O(L(k))) can be identified by the cokernel of the natural ho­
momorphism <Ik-3,k : H0 (P 2 ; O(k - 3)) -+ Lpi Op2,pjIPi,k,n where 
Ipi,k,n is an ideal described as follows ([All). Let Ei,1, ... , Ei,li be the 
exceptional divisors over Pi and let mi,j be the multiplicity of p* f along 
Ei,j· Let K = -3L + Li,j ki,jEi,j be a canonical divisor, where L is 
a generic line, not passing through any of Pi, ... , Pv. Then the ideal 
Ipi,k,n is generated by the function germs g such that the pull-back p*g 
vanishes along Ei,j at least with the multiplicity -ki,j + [kmi,1/n]. 

No~ we are ready to compute the Betti number of Z6 for the sec­
tics in M. For the computation, we use canonical toric modifications at 
singular points ([06]). Assume that the singularity Pi is non-degenerate 
and the restriction of p : Y -+ P 2 to a neighbourhood of P; is a toric 
modification. Let Ef be a regualr fan subdividing the dual Newton di­
agram r*(f; Pi) at Pi which is used to construct the toric modification 
and let Pi,j = t ( ai,j, bi,j), j = 1, ... , Ci be the primitive covectors which 
generate I-dimensional cones and let E(Pi,j) be the corresponding ex­
ceptional divisor. Then using the equality dx A 1:Ji. = & A 'El..!!.., we have 

X Y Xu Yu 

a simple formula: K = -3L + Li)ai,j + bi,j - l)E(Pi,j). Here (x,,., y,,.) 
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are the toric coordinates of the coordinate chart C; and E ( Pi,j) is the 
exceptional divisor corresponding to Pi,J· Refer to Chapter III, in [06] 
for detail. 

(a) For a cusp, y 2 - x 3 + (higher terms) = 0, the exceptional di­
visors correspond to covectors Q1 = t(l, 1), Q2 = t(2, 3), Q3 = t(l, 2). 

We have K = -3L + E(Q1) + 4E(Q2) + 2E(Q3) and (p* f) = C' + 
2E(Q1) + 6E(Q2) + 3E(Q3) (locally at each Pi)- Here C' is the strict 
transform of C. Recall the equivalence: a curve C E M' is of torus 
type if and only if six cusps are on a conic (see [D]). Let C E M and 
let Pi, ... , P6 be the cusps. The nodes have nothing to do with the 
Alexander polynomial. The non-trivial case is H 1(Y; 0(£(5))). The 
kernel of 0-2,5 : H0 (P2 ; 0(2)) --+ Ef=l Op2 p./IP;,5,6 consists of conics 

, ' 
passing through Pi, ... , P6. Thus dim Ker( a 2,5) = 1 or O and therefore 
b1(Z6) = 2 or O depending on whether C is of torus type or not. By (1), 
this also implies ~c ( t) = ( t2 - t + 1) °', a ~ 1, or 1 respectively. 

(b) Now we consider (3,4)-cusp, y 3 - x 4 + (higher terms) = 0. We 
have four exceptional divisors, corresponding to Q1 = t(l, 1), Q2 = 
t(3, 4), Q3 = t(2, 3), Q4 = t(l, 2). K = -3L + E(Q1) + 6E(Q2) + 
4E(Q3) + 2E(Q4) and (p* f) = C' + 3E(Q1) + 12E(Q2) + 8E(Q3) + 
4E(Q4). 

Let C E N3 be a sextic with 3 (3,4)-cusps. The non-trivial case 

is again 0-2,5 : H0 (P2 ; 0(2)) --+ E~=l Op2 p./IP;,5,6· Locally IP;,5,6 is 
generated by function germs g(x, y) such 'that either it has no linear 
term in a coordinate centered at Pi or the conic g = 0 is tangent to the 
tangent cone of Cat Pi. Thus dim Op2,p/IP;,5,6 = 2. q is in the kernel 
of 0-2,5 if and only if the conic q = 0 passes through Pi, P2, P3 and is 
tangent to (the tangent cones of) C at Pi, i = 1, 2, 3. Thus b1 (Z6) = 2 
(~c(t) = (t2 - t + 1)13, f3 ~ 1) if and only if C is of torus type (cf. 
Corollary 24). Otherwise b1(Z6) = 0. To show a = f3 = 1, we need a 
little more discussion but in our case, this follows immediately from the 
assertion on the fundamental group (see §5) and the Fox calculus. The 
computation of b1(Z6) for curves in N1,N2 are similar. 

(c) We consider a (4,5)-cusp, y4 -x5 + (higher terms)= 0. We need 
5 exceptional divisors, corresponding to the covectors Q1 = t(l, 1), Q2 = 
t(4, 5), Q3 = t(3, 4), Q4 = t(2, 3) and Q5 = t(l, 2). The canonical divisor 

is locally given by K = E(Q1) + 8E(Q2) + 6E(Q3) + 4E(Q4) + 2E(Q5) 
and (p* f) = C' + 4E(Q1) + 20E(Q2) + 15E(Q3) + IOE(Q4) + 5E(Q5). 

Now we compute the Alexander polynomial of CE N4 . Thus Chas 
a (4,5)-cusp singularity at Pi and 3 (2,3)-cusps at P2 , P3 , P4 . Observe 
first that any two of Pi, i = 2, 3, 4 can not be colinear with Pi by the 
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Bezout theorem. Again we only need to compute Ker(a2,s). We can see 
easily that IPi,5,6 is generated by the functions without any linear term 
at Pi and IP;,5,6 is generated by functions vanishing at Pi for i = 2, 3, 4. 
Thus the dimension of the target is also 6. A conic q = 0 is in the kernel 
of a2,s if q = 0 has multiplicity 2 at Pi and passes through P2, P3, P4. 
This is impossible. Thus ~c(t) is trivial. See also Proposition 27. We 
thank to Anatoly Libgober for communicating us that the computation 
can be also made using quasiadjunction formula as in [Lil]. 

3.3. Moduli space M 
We first compute the moduli space Mtorus = M n T where M = 

M(6; 6/'h,3 + 3,82,2)- We start from the expression f(x, y) = h(x, y)3 + 
fa(x, y)2 where 

h(x, y) = y2 + y(a1,o + a1,1x) + ao,o + ao,1x + ao,2x2 and 
fa(x, y) = b3,oy3 + y2(b2,o + b2,1x) + y(b1,o + b1,1x + b1,2x2) + bo,o+ 

bo,1x + bo,2x2 + bo,3x3 
First we may assume that the nodes are at O = (0, 0), A= (1, 1), B = 
(1, -1) by the action of PSL(3, C). The submoduli of Mtorus consist­
ing of curves with three nodes at O, A, B is denoted by Mforus. As 
PSL(3, C) orbit of Mforus is M, it is enough to see the irreducibil­
ity of Mforus· Introducing the variables to, ti, t2 such that h(O) = 
-t5, h(A) = -t~ and h(B) = -t~, we can explicitly solve the equa­
tions f(Q) = ~(Q) = U(Q) = 0, Q = O,A,B as they are linear 
conditions. We can solve these equations, one by one so that the moduli 
has 6 free parameters a1,o, ao,2, b2,1, to, ti, t2 and the other coefficients 
are uniquely determined as follows. 

ao,o 

ao,1 

a1,1 

bo,o 

bo,1 

b1,o 

bo,2 

= -tfi, 
= -1 - ½t~ - ½t~ + t5 - ao,2, 

= -a1,o - ½t~ + ½t~, 

= tg 
= -!to(-1 - ½ti - ½t2 + to - ao,2), 

-!toa1,o, 

b2,1 + !t2 - 3to + !t1 - !toa1,o + ~~tf - 3toao,2 

-£tot~+ ¾t1t5 + ¾t1ao,2 + ¾t1a1,o + !ti(-a1,o - ½t~ + ½t~) 

-!to(-a1,o - ½t~ + ½t~) + l6t2 - l6 t1t2 

-¾tot~+ ¾t2t5 + ¾t2ao,2 + ¾t2a1,o + (6t2tt 
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bo,3 

Thus the moduli space Mforus is a Zariski-open subset of C6 and this 
proves the irreducibility of the moduli Mforus and Mtorus· 

Remark 4. Let Mtorus,col be the submoduli space of Mtorus for 
which three nodes are colinear. Mtorus,col is a codimention one sub­
variety of Mtorus and Mtorus - Mtorus,col is Zariski dense in M. To 
see this, first we consider the submoduli Mf'orus col whose curves have 
theree nodes on O and D := (1,0) and E = (o', 1). They are defined 
by h(x, y) = 0 where h(x, y) = h2(x, y) 3 - h3(x, y)2 and h2(x, y) := 
y2 + (A10 + Aux)y + TJ + 3TJx2 and h3(x, y) := B3oy3 + y2 (B20 + 
B21x) + y(!ToA10 - 3xToAu - ~ToA10x2) + TJ - 9TJx2. 

For a given generic curve Co E Mf'orus,col' we can explicitly find 
a family of curves Cs := {f(x, y, s) = O} in M such that three nodes 
of C8 are at D, E and Os := (0, s). We omit the explicit polynomial 
equation as it is long and the computation is boring. Instead we give an 
example. f := fr - fl where h := 1 + y2 - s2 + 3x2 + ~syx + s2 x2 and 
h = 2y3 + 6y2 + 3s2 - 2yx2s2 + 1- 9x2 + y2x - jsyx - 3s2x2 + 9yx2s -
9ys - 4y2s + 2ys2 • 

3.4. Moduli spaces M,torus and the degeneration 

We consider the moduli spaces Ni,torus, N2,torus and N3,torus· Let 
0 = (0,0),A = (1,1),B = (1,-1) be as above. We compute the sub-

moduli spaces Nf,torus, Nttorus, Nttorus · 
(1) Moduli space N1,torus• Consider first Nf,torus, the moduli of 
torus sextics h(x, y)3 + h(x, y)2 = 0 with a (3,4)-cusp singularity at 
0 and 2 nodes at A, B and four ordinary cusps. As the sum of the 
intersection multiplicity of h = h = 0 is 6, it is necessary that h(O) = 
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0 and four other cusps are also on the conic h(x, y) = 0. The condition 
for O to be a (3,4)-cusp is given by the following four linear equations: 

/2(0) = fa(0) = ~(0) = ~(0) = 0. 

Proposition 19. The above (3,4)-cusp condition is the same as 
the limit of the node condition at O for to - 0: f(O) = U(0) = 
U(O) = 0. 

Proof. In fact, using /2(0) = -t~ and fa(0) = tJ, we have U(0) = 

tJ(3t0 ~(O) + 2~(0)). Thus the limit for to - 0 gives ~(O) = 0. 
The same argument applies for ~(O). Q.E.D. 

Therefore the moduli is given by substituting to = 0 in M and 
it has 5 free parameters a1,o, ao,2, b2,1, t1, t2 where h(A) = -t? and 

h(B) = -t~. We see that Nftorus and (thus N1,torus also ) is irre­
ducible. Geometrically this implies the following. Let ft(x, y) be the 
family given by fixing generic a1,o, ao,2, b2,1, t1, t2 and to =tin the mod­
uli space Mtorus• Then the conic h,t(x,y) = 0 approches to the node 
at O when t - 0. Actually one can see by a direct computation that 
there are two cusps among six cusps on a conic which approach to O so 
that they produce a (3,4)-cusps on Co = {/o = 0}. 

(2) Moduli space N2,torus• Now we consider the moduli space 

.Nf:torus· The curves in this moduli have 2 (3,4)-cusps at A and B (and 2 
other cusps) on the conic h(x, y) = 0 and a node at 0. By Proposition 
19, the conditions at A, B are replaced by t1 = t2 = 0 in M. Thus 
it has 4 free parameters a1,o, a2,o, b2,1, to where /2(0) = -t~. and the 
moduli space coincides again to the one which is obtained by substituting 
t1 = t2 = 0 in the moduli space Mf'orus· Thus we see that Nftorus and 
N2,torus are irreducible. ' 

(3) Moduli space Na,torus• Finally the moduli space .Nftorus 
with three (3,4)-cusps are given by Mn {to = ti = t2 = 0}. 'The 
corresponding polynomials are given by f = n + fl where /2 = y2 + 
y(a1,o-a1,ox) + (-l-ao,2)x+ao,2x2 and fa= b2,1(y2 -x2)(x-1). This 

is equal to the subspace of Mf'orus given by Mf'orus n { to = ti = h = 0}. 
We have shown in the above argument that M,torus is on the bound­

ary of Mtorus• By the same argument, we can see that M,torus ::) 
M+1,torus for i = 1, 2. This proves the stratification assertion in Theo­
rem 18. The fact N4,torus = 0 will be proved in 4.2. 

3.5. Proof of (Mtorus)* = Mtorus• 

A polynomial f(x, y) is called even in y if f(x, y) = f(x, -y) for 
any (x,y). To prove the assertion, it is enough to show that there is 
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a Co E M~orus such that C 0 E M~orus. In fact, assuming this for a 
moment and taking C E Mtorus, we can connect C and Co by a piecewise 
analytic path Cr(t), 0 :s; t :s; l such that Cr(O) = Co, Cr(l) = C and 
Cr(t) E M~orus for any t < I. For O :s; t < 1, the topology of the 
complements C2 - Cr(t), t < 1 and C2 - c;(t) is independent of t as 
they are locally µ-constant family at every singular point. Thus they 
have the same topology and therefore they have the same Alexander 
polynomial. In particular, they are torus curves. By Lemma 4, the 
polynomial Yt(u,v) which defines the dual curves c;(t) can be assumed 
to be analytic in t at t = 1. Thus this implies that 91 ( u, v) is also 
a torus curve. By the reciprocity law, this implies that the dual of a 
non-torus sextic in .M is again a non-torus curve. Now we prove the 
existence of Co. In fact, we can take any torus curve C defined by an 
even polynomial f(x, y) E M~orus· Even curves are given by putting 
a1,o = 0 and t2 = t1 in the moduli parameters. It is easy to see that the 
dual curve C* is also even. Thus it has six cusps which are symmetric 
with. respect to the y-axis and generically these 6 cusps are not on the 
x-axis. Thus there exists a conic which passes through these 6 points. 
Now by [D], C* is a torus curve. Or more directly, we can give Co as 
the following curve. Q.E.D. 

Example 20. For example, we take an even polynomial f = n + 
fl where h(x,y) = y2 -1- 2x + x2 and fa(x,y) = 1 + y2(-~ + x) + 
3x - ½x2 ~ x3 • The dual curve is defined by Lemma 4 by the polynomial 
g( x, y) = 484x6 + 720y2x 4 + 357y4x2 + 59y6 + 2068x5 + 962y2x3 - 24y4x -
761x4 + 11516y2x2 -1486y4 -14078x3 + 14620y2x - 24661x2 + 12699y2 -
21924x - 6728. Now the torus decomposition is obtained as follows: 
g(x, y) = 59g2(x, y)3 - 34~ 1ga(x, y)2 where g2(x, y) = y2 + 25\ 1 + :~x + 
1f92x2 an g3 (x, y) = -6117 -7463x-4639x2+362x3 +2773y2 + 177y2x. 

§4. Moduli space of three cuspidal sextics of type {3,4} 

In this section , we study the moduli space Na of plane curves of 
degree 6 with 3 {3, 4) cusps which are not necessarily of torus type. To 
study the moduli of sextics with 3 {3,4)-cusps, we may assume hereafter 
that the cusps are on O = {O, 0), A= (1, 1) and B = (1, -1). 

Lemma 21. Let Q be the set of smooth conics which pass through 
0, A, B and let 1r : Q -+ P 1 x P 1 x P 1 be the mapping defined by 
1r(Q) = (ToQ, TAQ, TBQ), Q E Q. Here TpQ is the tangent line of Q 
at P. Then 1r is an embedding and the image 1r(Q) is characterized as 
follows. Let a, /3, 'Y E P 1 be the respective tangent directions of Q at O, A 
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and B. Then we can write /3 = (b, 1), 'Y = (c, 1) and a = (a1, a2) and 
they satisfy the equality: (b + c)a - (2 - b + c) = 0 {respectively b + c = 0) 
if a2 f:- 0 with a:= aifa2 {resp. if a2 =. 0). The corresponding conic is 
defined by q(x, y) = y2 + y(c + b)(l - x) + (-2 - c + b)x + (1 + c - b)x2. 

Lemma 22. Assume that C = {(x,y) E C 2;r(x,y) = O} be a 
reduced plane curve of degree 3 which has singularities at O, A, B. Then 
C is the union of 3 lines (x - l)(y2 - x2) = 0. 

The proofs of Lemma 21 and Lemma 22 are elementary and omitted. 

Lemma 23. Assume that C1 = {(x, y) E C2 ; f(x, y) = 0} a germ 
of a smooth curve at the origin. Let C2 = {(x,y) E C;g(x,y) = 0} 
be another germ of a curve at the origin. Let d be the multiplicity of 
g at the origin and let gd(x, y) be the homogeneous part of g of degree 
d, which defines the tangent cone of C2. Let p, q be positive integers 
such that p < dq. Consider the germ of a plane curve C = {(x, y) E 
C2 ; f(x, y)P - g(x, y)q = O}. Assume that each irreducible component of 
gd(x, y) = 0 intersects C1 transversely at the origin. Then (C, 0) E /3p,dq 
and the tangential direction at the origin coincides with that off= 0. 

Proof Changing local coordinates if necessary, we may assume that 
f(x, y) = y and gd(x, y) = "£,1=0 aiyixd-i_ The assumption implies that 
ao f:- 0. Thus fP(x, y) = yP and gq(x, y) = gd(x, y)q + R where orderR 2::: 
dq+l. Thus we can write f(x, y)P-g(x, y)q = yP-agxdq+R'(x, y) where 
the order of R'(x, y) with respect to the weight wt(x) = p and wt(y) = dq 
is strictly larger than pqd. Thus the assertion follows. Q.E.D. 

Corollary 24. Let C = {(x, y) E C2 ; f(x, y) = O} be a reduced 
sextic with 3 {3,4)-cusps at 0, A, B. The following conditions are equiv­
alent. 
(1) f(x, y) is written as c1x2 (y2 - x2)2 + c2q(x, y)3 for non-zero c1, c2 E 
C* and the conic q(x,y) = 0 is smooth and passes through O,A,B. 
(2) There exists a conic q(x, y) = 0 which passes throuh 0, A, B such that 
the respective tangent line of the conic is equal to that of C at O, A, B. 
(3) C is a torus curve of type {2,3). 

Proof. The implication (2) ~ (3) follows from Degtyarev [D] or 
Tokunaga [T]. Q.E.D. 

4.1. Moduli space Na. 
Now we compute the moduli space Nf of sextics with 3 (3,4)-cusps 

at 0, A, B. Assume that C E Nf. By Bezout theorem, the tangent 
cone at 0 is not y ± x = 0. The stabilizer H# of Nf in PSL(3, C) 
has dimensioin two. Thus under the action of H#, we may assume also 
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that the tangent cone of C at 0 is given by x = 0. So we compute 
the submoduli Nf # of Nf whose tangent cone at O is x = 0. Let 
H## be the stabilizer of Nf #. It has dimension one. We start from 
the expression f(x, y) = 'Ei+i'.5,6 ai,jyixi. We can normalize the coef­
ficient a6,o = 1 and we have 27 coefficients. The multiplicities of f at 
0, A, B are 3 by the assumption. Thus at each of these three points, 
the partial derivatives of order :'.S 2 must vanish. This gives 3 x 6 = 18 
linear relations and we can eliminate 18 coefficients and we have still 
9 coefficients left. For the other computation, we consider the projec­
tion 7r : M --+ P 1 x P 1 x P 1 which is defined by the tangent cone 
directions at O,A,B. We fix (a,/3,'Y) E P 1 x P 1 x P 1 and we study 
the fiber 7r-1(a,/3,7). First we observe that /3,'Y-:/ (1,0), i.e., /3 and 
'Y are transverse to the vertical line x = 1 by Bezout theorem. Thus 
we can put /3 = (b, 1), 'Y = (c, 1). By the assumption, a = (1, 0). Let 
ha(!) ( Q) ( u, v) be the following homogeneous polynomial of degree 3: 
1.{t1(Q)ua + 1. asr(Q)u2v + 1. as'(Q)uv2 + 1.asr(Q)va. 
6 8:,:3 2 ~ 2 &ay2 6 ay'J 

The condition for 0, A, B to be (3,4)-cusps with the above tangent 
cones is ha(f)(A) = cA(v-bu)a, ha(f)(B) = cB(v-cu)a and ha(/)(O) = 
coua for some non-zero constants CA, CB, co E C*. By an easy compu­
tation, we have CA = 8, CB = -8. Solving ha(J)(A) = 8(v - bx)a, 
ha(f)(B) = -8(v - cu)a and ha(/)(O) = cou3, we can eliminate the 
remaining coefficients so that the moduli space Nf # is given by 

Nf# := 'TC'-1( {((1, 0), (b, 1), (c, 1)) E pl X pl X P 1; 

(b + c)(b2 - 3b - be+ 3 + 3c + c2) = 0}) 

The other coefficients are given by 

a5,o = 3(b + c), as,1 = -3(b + c), 

a4,o -1 + ao,6 - 6(b2 + c2) - 4(ba - ca)+ 3(b - c), 

a4,1 = -4 - 2ao,6 + 12(b2 + c2) + 3(c - b) - 8(ba - ca), 

a4,2 2 + ao,6 - 6(b2 + c2), +4(ba - ca), 

aa,1 = -12(b + c) + 6(b2 - c2}, aa,2 = 18(b + c) - 12(b2 - c2), 

aa,a -6(b + c) + 6(b2 - c2), 

a2,2 14 - 18(b - c) + 18(b2 + c2) - 8(ba - ca) - 2ao,6, 

a2,a = -16 + 4ao,6 - 36(b2 + c2) + 30(b - c) + 16(ba - ca), 

a2,4 = 5 + 8(ca - ba) + 18(b2 + c2) + 12(c - b) - 2ao,6, 

a1,2 12(b + c) + 12(c2 - b2 ) + 4(ba + ca), 

a1,a = -24(b + c) + 30(c2 - b2) - 12(b3 + ca), 
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a1,4 = 15{b + c) - 24{b2 - c2 ) + 12(b3 + c3), 

a1,5 = -3(b + c) + 6{b2 - 6c2) - 4(b3 + c3), 

ao,3 -8 - 4{c3 - b3) - 12{b2 + c2) + 12{b - c), 

ao,4 = 11 + ao,6 + 24{b2 + c2) + 21{c - b) + 8(c3 - b3), 

ao,5 -4 - 2ao,6 - 12{b2 + c2) - 9(c - b) - 4{c3 - b3 ) 

where ao,6 is a free parameter. The quotient of the moduli Nf# / H## 
has two irreducible components, given by the respective quotients of 
Nff := 1r-1{{b+c = O}) and .Nf:t := 1r-1({b2 -3b-bc+3+3c+c2 = 
O} ). Therefore the quotient of moduli space N3/PSL{3; C) has also 2 
irreducible components N3,if PSL{3; C) and N3,2/PSL{3; C). 

Remark 5. The moduli space Nft consists of two irreducible 
components L± := 1r-1( {(a0,6, b, c); c-{b,-3)/2± {b- l)v'3I/2} ). How­
ever taking a 'i/J EH## such that 'i/J(0) = A,'i/J(A) = 0 and 'i/J(B) = B, 
we can easily see that 'i/J(L+) = L_, 'i/J(L_) = L+ and thus Nft /H## 
is irreducible. ' 

Lemma 25. The component Nf 1 coincides with the submoduli of 
sextics of torus type C E N3,torus which has 3 {3,4)-cusps at 0, A, B. 
Nf,2 coincides with Nf:gen defined in the section 3. 

Proof. The assertion follows from Lemma 21 and Corollary 24. In 
fact, for f corresponding to the above parameters and c = -b , the 
torus decomposition is given by f(x, y) = h(x, y)3 + kh(x, y) 2 where 
h(x, y) = y2 + {2b - 2)x + {1 - 2b)x2 , h(x, y) = (y2 - x 2 )(x - 1) and 
k = 6b - 1 + 8b3 - 12b2 + ao,6• 

4.2. Moduli space ,N'4. 
We consider the moduli space of sextics with one ( 4,5)-cusp at the 

origin and 3 {2,3)-cusps. First we will show that N4,torus = 0. In fact, 
assume that there exists asextic f(x, y) = h(x, y)3+ h(x, y)2 = 0 inN4. 
It can be easily observed that 0 must be on the conic h(x, y) = 0. As 
the multiplicity of f at O is 4, h has multiplicity at least 2 at the origin 
and thus h also has multiplicity 2 at 0. Thus h(x, y)3 has multiplicity 
6 at 0 and 0 can not be a ( 4,5)-cusp. 

By Bezout theorem, any two of 3 cusps and the origin can not be 
colinear. Therefore by the action of PSL{3, C), we can assume that the 
locus of 3 cusps are either A= (l, 1), B = (l, -1) and C = {1, 0) if they 
are colinear or A= (l, 1), C = {1, 0) and C' = {O, 1). The moduli space 
N4 seems to be irreducible but we only give examples in this paper. 
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Example 26. 1. Let Co = {f (x, y) = O} where 
f(x, y) := y6 -6y5 +6y5x+ 16y4 - 22y4x+4y4x 2 -32y3x+68y3x 2 -

36y3x3 + 24y2x 2 - 58y2x 3 + 35y2x4 - 8yx3 + l8yx4- l0yx5 + x4 - 2x5 + x6 . 

Co has a (4,5)-cusp singularity at the origin and 3 (2,3)-cusps at A= 
(l,1),B=(l,-1) andC=(l,O). 

2. Let C1 E N4 be defined by f(x, y) = 0 where 
f(x, y) = y6 +y4 -2y5 -2x5 +6y5x- l0y4x-5y4x 2 +4y3x-4y3x 2 + 

12y3x3 + 6y2x 2 - 4y2x 3 - 5y2x4 + 4yx3 - l0yx4 + 6yx5 + 4I y5x - 4I y4x -
8Iy4x 2 + l2Iy3x 2 - l2Iy2x 3 + 8Iy2x4 + 4Iyx4 - 4Iyx5 + x6 + x4 where 
I = .;=I. Then C1 has three cusps at A, C, C'. 

We can check that the dual curve has 6 cusps and 3 nodes in both 
examples. We assert that 

Proposition 27. For any C in the irreducible component of N4 
containing C1, 1r1(P2 - C) ~ Zfi. 

Proof We show that n 1 (P2 - C1 U { x = 0}) ~ Z, using a pencil lines 
through O where C1 is in 2 of Example 26. Identifying P 2 -{ x = 0} with 
C2, the generic pencil line intersect the affine curve C1 nC 2 at two points 
and therefore n 1 (P2 -C1 U{x = O}) is generated by two generators. Thus 
it is enought to show the existence of a pencil line which is tangent to C. 
This can be done by taking y = 2/7x or y = (-3 + 4i)/5 x respectively. 
Now the surjectivity n1 (P2 - C1 U {x = O} -t n1 (P2 - C1 ) proves the 
commutativity of 1r1(P2 - C1). Q.E.D. 

We thank to Artal Bartolo for the suggestion of this choice of the 
pencil. 

§5. Fundamental group of torus curves 

In this section, we prove that 

Theorem 28. 1r1(P2 - C) ~ Z2 * Z3 and 1r1(C2 - C) ~ B3 for a 
generic C E N3,l · 

Here B3 is the braid group of three strings. This theorem implies 
the next stronger assertion. 

Theorem 29. 1r1(P2 - C) ~ Z2 * Z3 and 1r1(C2 - C) ~ B3 for 
any C E M~orus, Nf,torus and Mi,torus for i = l, 2, 3. 

Proof. This can be proved by a direct computation. Here is another 
proof. Take C E M~orus for example. Then we can take a family 
Ct so that Co = C and Ct is a 6 cuspidal sextic (without nodes) for 
t -:/ 0. We can also find another family Dt such that D1 = C and 
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lf.s 

Fig. 1. Graph of g = 0 

Do E Na,1 and Dt E M~orus for t =f 0. By a standard argument, 
we have surjective homomorphisms t/J1 : 7r1(P2 - Do) -+ 7r1(P2 - C) 
and t/J2 : 7r1{P2 - C) -+ 7r1(P2 :- C1) which are isomorphisms on the 
first homology groups. Thus they induce surjections on the commutator 
groups. On the other hand, we know that 7r1{P2 - C1) ~ Z2 * Za and 
the commutator group D(Z2 * Za) is a free group F{2) of rank two 
([Z],(01]). Thus we obtain a surjective homomorphism t/J2 o t/J1 : F{2) = 
D(7r1(P2 - D0)) -+ F{2) = D(7r1(P2 - Ci)). This implies that the 
kernel of t/J2 o t/J1 is trivial by Theorem 2.13, [M-K-S]. Thus t/J1, t/J2 are 
isomorphisms. Q.E.D. 

Proof of Theorem 28. For the proof, we take the following sextic 
curve Ci := {(x, y) E C2 ; f(x.y) = O} E Na,1 where f(x, y) = h(x, y)3+ 
1g3 fa(x, y)2 and h(x, y) = y2 + x2 - 2x and fa(x, y) = (x - l){x2 -y2). 
Our curve Ci is even in y. Let us consider a polynomial g(x,y) defined 
by g(x,y) := f(x,-Jy). Then C1 is obtained by the double covering 
branched along y = 0 of the curve g(x, y) = 0 and the singular fiber 
for g( x, y) = 0 with respect to the pencil { x = r-,; r-, E C} is defined by 
the roots of ay(g) = -42436x3{130x - 103){x - 1)8 = 0. The graph 
of the real curve C(g) := {g(x,y) = O} is given in Figure l. It has 
two compact components in its real graph. By Lemma 2.2 of (05] and 
by the equality g(x, 0) = 1/2 • x3 (-16 + 127x - 218x2 + 105x3), we get 
ay(f)(x) = cx9{-16 + 127x - 218x2 + 105x3){130x - 103)2 (x - 1)16 , 

with some constant c E C*. Let p : C 2 -+ C be the first projection and 
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p' p 

Fl.g. 2. Generators (x = {33 - e) 

we consider the pencil given by Lr, = p-1(77) as usual. We have chosen 
f so that the singular pencil lines are all real and given by {30 < • • • < {35 
where /3o = 0, /31 = 0.173 · · · ,/32 = 0.792 · · ·, {33 = 103/130, {34 = 1, 
{35 = 1.110 · · ·. Here f3i, i = 1, 2, 5 are non-zero roots of g(x, 0) = 0 
and the corresponding line x = f3i is simply tangent to O at (/3i, 0) 
for i = 1, 2, 5. Hereafter e is assumed to be a sufficiently small positive 
number. We use the notation {a,r} := arar-1a-1r-1. Thus {a, r} = e 
is equivalent to ara = rar where e is the unit. We often use the 
equivalence: {a,r} = e ~ {a,ara-1} = e ~ {a,a-1ra} = e. We 
compute the fundamental group 1r1 ( C 2 -01) by Zariski's pencil method. 
We first take generators p,fa,6,p',ei,e2 of 1r1(L/ja-e - L[j3-e n 01) as 
in Figure 2. In the following figures, for simplicity of drawing pictures, 
we denote a small lasso oriented counterclockwise by a path ending by 
a bullet • as in [05]. As the monodromy relation at x = {33, 
we get tangent relations e1 = 6, ei = e2- At X = /32, we also get a 
tangent relation 6 = ei- Thus we can put e := 6 = 6 = ei = e2. The 
generators are reduced toe, p, p'. For further computation, we freely use 
the relations which have been obtained. Figure 3 shows the situation 
of our generators at x = {34 - e. We get the monodromy relations at 
X = {34: e = (e2p)(epe-1)(e2p)-1 and epe- 1 = (e2p)e(e2p)-1 at (1, 1) 
and e = (p'e2)(e-1p'e)(p'e2)-1 and e- 1p'e = (p'e2)e(p1e2)-1 at (1, -1) 
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Fig. 3. X = /34 - C: 

which reduce to: 

(30) {e,p} = e, {e,p'} = e 

At X = {35 we get a tangent relation: (e2p)e(e2p)-1 = (p'e2)- 1e(p'e2) 
which reduces to 

(31) 

Put p = eµe- 1. Then we can take e, p as new generators. The relation 
(30) gives the relation {e,p} = e. We can see that the monodromy 
relation at x = {30 is derived from the above relations. Thus we have 
shown that 

(32) 1r1(C2 - 01) = (e,fJ;efJe = fJefJ} ~ Ba 

The fundamental group 1r1(P2 - 01) is obtained by adding the rela­
tion p'e4 p = e which is equivalent to (efJe)2 = e. Thus this group is 
isomorphic to Z2 * Za. See (03] for the proof. 

§6. Non-torus sextic with three (3,4)-cusps 

In this section, we will show that the fundamental groups 1r1 ( C2 - 0) 
and 1r1 (P2 - 0) are isomorphic to cyclic groups Z and Z6 respectively 
for a generic member O of Na,2- The main difficulty is that, it seems, 
there does not exist a generic curve in Na,2 which is defined over real 
numbers for which the singular points are real and the singular fibers 
are all real. Thus we have to admit some singular points which are not 
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Fig. 4. Graph of C2 

real points or some non-real singular fibers. We take the following curve 
C2 defined by 

f (x, y) = y6 + y 4 (18 - 30x + 9x2 ) 

+y3(3V3J - 9V3Ix + 9V3Ix2 - 3V3Ix3 ) 

+y2 (9x - 51x2 + 63x3 - 18x4 ) 

+y(-3V3Ix2 + 9V3Ix3 - 9V3Ix4 + 3V3Ix5 ) - x3 + 9x4 - 9x5 

where I= A. We can easily see that C2 E N3 ,2. By the construction, 
C2 has three (3,4)-cusps at 0, A, B. Now we change the affine coor­
dinates by (x,y) 1-+ (x,yl), to make the defining polynomial to have 
real coefficients. Thus in the new coordinates, C2 has three cusps at 
O,A',B' where A'= (1,I),B' = (1,-J) and the defining polynomial 
F(x, y) is a real polynomial given by F(x, y) = f(x, yl). The discrim­
inant of F(x, y) in y, ~y(F)(x), which describes the singular fibers is 
given by cx8 (9463x6 + 135838x5 -1346423x4 + 3270132x3 - 2370951x2 + 
364014x + 22599)(x - 1) 16 with some c -1- 0. The singular pencil lines 
are on the real line and correspond to x = 'Tli, i = 1, ... , 8, where 
"11 < "12 < "13 < "14 < "15 < "16 < "11 < "18 and "11 = -21.678 · · ·, 
"12 = -0.468 · · ·, "13 = 0, "14 = 0.287 · · · "15 = 0.872 · · · , "16 = 1, 
ry7 = 2.580 • • • and ry8 = 3.629 • • •. The real graph is given as in Figure 4. 
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Fig. 5. Generators of 1r1(C2 - C2) 

We observe that in the real graph of F, there is a small oval passing 
through the origin and 4 non-compact components. (One branch is far 
left outside of the figure.) The singular fibers x = 'T/1, 'T/2, 'T/4, rJ5 , 'T/7, 'T/s are 
tangent to C2 in the real graph. The lines x = 'T/2, 'T/4 are tangent to the 
oval. The singular fiber x = 'T/3 passes through a cusps at the origin and 
x = 'T/fi passes through two cusps at A', B'. By an easy computation, the 
principal part of the defining polynomial at three cusps O, A', B' ( with 
respect to the coordinates centered at the singular points) are given by 
( ./?,y - x)3 + 16x4 = 0 at 0, -8(2x + yl)3 + (54 - 6./3I)x4 = 0 at A' 
and 8(2x - yl)3 + (54 + 6./3I)x4 = 0 at B'. First we take generators 
o:, {3, 'Y, p, (, v in the fiber x = 'T/3 + c = c as in Figure 5. 

The monodromy relations at x = 'T/2, 'T/4 are tangential relations and 
they are given by 
( Rl) : {3 = (, {3 = 'Y · Eliminating the generators 'Y, ( using (Rl), the 
monodromy relation at x = 'T/3 is given by f3({3p{3) = ({3p{3)p, p({3p{3) = 
({3p{3)( which reduces to the cusp relation: (R2) : {3p{3 = p{3p. To read 
the monodromy relations at x = 'T/5 and 'T/fi, we need to know how the 
six roots Yi(x), · · · , Y6(x) of F(x, y) = 0 in y move when x moves on the 
real axis from x = 'T/4 + € --t 'T/5 - c and then on the circle Ix - 'T/5 I = c 
clockwise to x = 'T/5 + c and then on the real line from x = 'T/5 + c to 
x = 'T/6 - c. Here we have chosen Yi(x) to be continuous on x so that 

1. the imaginary parts 's(yi(x)), 's(y2(x)) are positive and y3 (x) = 
Y1(x) and y4(x) = Y2(x) on 'T/4 +c:::;; x::;; 'T/5 -€ and 'T/5 +c:::;; x::;; 
'T/6 - c. We assume that 's(yi('T/4 + c)) < 's(y2('T/4 + c)). 
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Fig. 6. Generators in x = 1/5 + e 

2. y5(x) and Y6(x) are real and y5(x) < Y6(x) for 774 +c '.5: x '.5: 775 -€ 

and 
3. <s(y5(x)) > 0 and Y6(x) = y5(x) for 775 + c '.5: x '.5: '176 - c. 

The most delicate part of the argument is the determination of the braid 
of these six roots Y;(x),j = 1, ... ,6 over 774 + c::;; x '.5: 775 - c and over 
775 + c '.5: x '.5: '176 - c. We claim that 

Assertion 4. The ordering by the real part on non-real solutions 
is preserved on 174 + € '.5: x '.5: 775 - c and 175 + c ::;; x '.5: '176 - c. Namely we 
have 

(33) ?R(y1 (x)) < ?R(y2(x)), 174 + c '.5: x '.5: 175 - c 

(34) ?R(y1(x)) < ?R(y5(x)) < ?R(y2(x)), 775 + c '.5: x '.5: '176 - c 

We assume this for a while. Then braids over the intervals ( 774 + 
c, 775 - c) and (775 + c, '176 - c) are uniquely determined. Thus in the fiber 
of x = 175 + c, the generators are deformed as in Figure 6. Then the 
monodromy relation at x = 175 is given by 
(R3) : p-1vp = (30(3- 1 . Now we have to read the monodromy relations 
at x = 176(= 1). Thus we start from the fiber x = 175 + c as in Figure 
6. The local equation of our curve at A', B' are given by the equations 
-8(2x + y/)3 + (54 - 6v13J)x4 and -8(2x - y/)3 + (54 + 6v13J)x4. Thus 
the topological behaviors of three roots Y1, Y2, y5 or y3, y4, Y6 over the 
circle Ix - '1761 = c look like satellites going arround the earth ( = ±2xJ). 
The generators are deformed as in Figure 7 on the fiber x = 176 - c and 
the monodromy relations are given by 0(pf30) = (pf30)(3, (3(pf30) = 
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Fig. 7. Generators at x = 'f/6 - c 

(pfi0)p at A' and (o:-1fio:)(mo:- 1fio:) = (mo:-1fio:)cr, cr(Tcro:-1fio:) = 
(Tcro:- 1fia)T, at B'. As 0 = p-1p- 1vpfi = a by (R3), er = a and 
T = (vpfi)- 1vfiv-1(vpfi) = p-1p- 1fipfi = p by (R2), the above relations 
reduces to: 

(35) o:(pfio:) = (pfia)fi, fi(pfia) = (pfia)p 

(36) (a-1fio:)(pfio:) = (pfio:)o:, a(pfia) = (pfia)p 

The second relation of (35) reduces to pa = ap by (R2). By the last 
relation, the first relation of (35) reduces to the braid type relation: 
o:fio: = fio:fi. As o:(pfio:) = pafia = pfiafi, we get from (36) that fi = p. 
Thus fio: = o:fi by (35). Combining the last braid relation, we get 
o: = fi. By (R3), we obtain the relation v = a. Therefore 7r1(C2 - C) is 
generated by a single generator o: and thus 7r1 ( C 2 - C) ~ Z and therefore 
7r1(P2 - C) ~ ZB- Q.E.D. 
Appendix. Outline of the proof of Assertion 4. The following proof 
is essentially due to Maple. We consider the polynomial h(x, u, v) := 
F(x,u+vl) for x,u,v real and let Fe(x,u,v) and F0 (x,u,v) be the real 
and the imaginary part of h(x, u, v) respectively. They are given by 

(37) 
Fe(x, u, v) := v6 + b4v4 + b2v2 + bo, 

Fo(x,u,v) := dsv5 + d3v3 + div 
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where the coefficients are polynomials of x, u. We omit their explicit 
forms: 

Suppose that there exists an xo E (1J4 +c:, 'f/5 -c:) U (1Js +c:, 'f/6 -c:) so 
that either !R(y1(xo)) = !R(y2(xo)) or !R(y2(xo)) = !R(y3(xo)). We may 
assume !R(y1 ( xo)) = !R(y2 ( xo)) for example and put uo = !R(y1 ( xo)) E R. 
This implies that the equation h(xo, uo, v) for v has four real solu­
tions ±~(Y1(xo)), ±~(y2(xo)). Therefore the equation Fe(xo, uo, v) = 
F0 (xo, uo, v) = 0 has four real solutions. As Ay(F)(x) = 0 has no solu­
tions on the intervals ('f/4 +c:, 7J5-c:)U(1Js +c:, 'f/6-c:), v can not be 0. Thus 
putting F~(x, u, v) = F0 (x, u, v)/v, Fe(xo, uo, v) = F~(xo, uo, v) = 0 has 
four real solutions ±~(y1(xo)),±~(y2(x0 )). As F~(x0 ,u0 ,v) has degree 
4 in v, this implies that F~(xo, uo, v) divides Fe(xo, uo, v). Thus the re­
mainder R(x, u, v) of Fe by F~ as a polynomial of v must be identically 
zero for x = xo, u = uo. Put R = c2v2 +eo. c2 and Co are polynomials of 
x, u. Thus (xo, uo) is a common real solution of c2 = co = 0. Let S(x) 
be the resultant of c2, Co as polynomials of u. We do not give the explicit 
forms of eo(x, u), c2(x, u), S(x) here but S(x) is a polynomial of degree 
48 and (x-1) has the multiplicity 27. Note that S(xo) = 0 is a necessary 
condition to have a real partner uo so that c2(xo, uo) = eo(xo, uo) = 0 
but it is not a sufficient condition as the possible partner u0 might be 
not real. Similarly even if we have a real solution (x0 , u0) E R2 of 
c2 = eo = 0, the four roots of F~(xo, uo, v) = 0 might not be real num­
bers. Anyway Maple gives the unique real solution on the interval (0, 1): 
xo = .29572934753 · · ·. We check the solutions of F(xo, y) = 0. We see 
that this does satisfy our requirement. Q.E.D. 

§7. Application 

In our previuos paper, we have constructed a Zariski's triple for 
plane curves of degree 12 with 27 cusps. In this section, we construct a 
new example of Zariski's triple {Fi, F2, F3}. They have degree 12 and 
12 (3,4)-cusps. 

(1) Let F1 be a torus curve of type (3,4) defined by fa(x, y)4 + 
f4(x, y)3 = 0 where fa and f4 are generic polynomials of degree 3 and 
4 respectively. The Alexander polynomial Ap1 (t) is given by (t2 - t + 
l)(t4 - t2 + 1). The fundamental groups are given by 

1r1(C2 - Fi) ~ (p1, P2, p3; p1(p3p2p1) = (p3p2p1)P2, 

P2(p3p2p1) = (p3p2P1)p3) 
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(2) Let F2 be a generic cyclic (2,2)-covering C2,2(C1) where C1 is a 
torus sextic of type (2,3) with three (3,4)-cusps which is, for example, 
defined by f(x, y) used in the proof of Theorem 28. Then F2 is defined 
by f((x-a) 2 +a, (y-b) 2 +b) for generic a,b. The Alexander polynomial 
.6.p2 (t) is given by t2 - t + 1 by Theorem 3.4 of [04]. The fundamental 
group 7!"1(C2 -F2) is isomorphic to the braid group B3 and 11"1(P2 -F2) 
is a central extention of Z2 * Z3 by Z2 ( Theorem 3.4, [04]). 

(3) Let F3 be a generic cyclic (2,2)-covering of non-torus three (3,4)­
cuspidal sextic C2 , constructed in Section 4. The fundamental groups 
7!"1(C2 - F3) and 7!"1(P2 - F3) are isomorphic to cyclic groups Z, Z12 
respectively. 

Thus there are at least three connected components in the moduli 
of 12 (3,4)-cuspidal plane curves of degree 12. 
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