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Abstract. 

For an arrangement with complement X and fundamental group 
G, we relate the truncated cohomology ring, H 9 (X), to the second 
nilpotent quotient, G/G3. We define invariants of G/G3 by count­
ing normal subgroups of a fixed prime index p, according to their 
abelianization. We show how to compute this distribution from the 
resonance varieties of the Orlik-Solomon algebra mod p. As an appli­
cation, we establish the cohomology classification of 2-arrangements 
of n ~ 6 planes in R4 . 

§0. Introduction 

1. Two basic homotopy-type invariants of a path-connected space 
X are: the cohomology ring, H*(X), and the fundamental group, G = 
n 1 (X). Given X and X', one would like to know: 

(I) Is there an isomorphism H:5oq(X) ~ H:5oq(X') between the coho­
mology rings, up to degree q? 

(II) Is there an isomorphism G / G q+l ~ G' / G~+l between the qth 

nilpotent quotients? 

We single out a class of spaces-including complements of complex 
hyperplane arrangements, complements of 'rigid' links, and complements 
of arrangements of transverse planes in JR4-for which the above ques­
tions are amenable to a detailed study, capable of yielding classification 
results. The invariants that we use have a dual nature, being able to 
capture both the ring-theoretic properties of the cohomology of X, and 
the group-theoretic properties of the nilpotent quotients of G. Our main 
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result is an explicit correspondence between two sets of invariants--one 
determined by the vanishing cup products in H,::, 2 (X), the other by the 
finite-index subgroups of G /G3. 

2. For q = l, questions (I) and (II) are equivalent, provided H 1 is 
torsion free. Indeed, H 1(X) = G/G2 under that assumption. For q = 2, 
the two questions are still equivalent, under some additional conditions: 
If H2 is also torsion-free, and the cup-product mapµ: H 1 /\ H 1 --+ H 2 
is surjective, then: 

H9(X) ~ H9(X') if and only if G/G3 ~ G' /G;. 

Section 1 is devoted to a proof of this fact. A key ingredient is the 
vanishing of the Hurewicz map 1r2(X) --+ H2 (X), which permits us to 
identify H9(X) with H9(G). The other ingredient is the interpreta­
tion of the k-invariant of the extension 0 --+ G2/ G3 --+ G / G3 --+ G / G2 --+ 

0, in terms of the cup-products of G. 
In Section 2, we use commutator calculus to describe the nilpotent 

quotients of G. We restrict our attention to spaces X, for which G = 
1r1 ( X) has a finite presentation G = 'IF/ R, with R C ['IF, 'IF]. The cup 
products in H,::,2 (G) can then be computed from the second order Fox 
derivatives of the relators. 

3. The invariants of the cohomology ring that we use are the reso­
nance varieties, first introduced by Falk [11] in the context of complex hy­
perplane arrangements. The tfh resonance variety of X, with coefficients 
in a field OC, is the set 'Rd(X, OC) of cohomology classes >. E H 1 (X, OC) for 
which there is a subspace W C H 1 ( X, OC), of dimension d + l, such that 
µ(>. I\ W) = 0. 

In Section 3, we prove that 'Rd(X, OC) equals Rd( G, OC), the resonance 
variety of the Eilenberg-MacLane space K(G, 1). Moreover, we exploit 
the Fox calculus interpretation of cup products to show that the varieties 
'Rd(G,OC) are the determinantal varieties of the 'linearized' Alexander 
matrix of G. 

4. A well-known invariant of a group G is the number of normal 
subgroups of fixed prime index. For a commutator-relators group, that 
number depends only on n = rankG/G2, and the prime p. In order to 
get a finer invariant, we consider the distribution of index p subgroups, 
according to their abelianization. The v-invariants of the nilpotent quo­
tients G/Gq+l are defined as follows: 

{ I [G/Gq+1: K] = p and } 
llp,d(G/Gq+i) = # K <l G/Gq+l dimzr(TorsH1(K)) © Zp = d . 
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In Section 4, we show how to compute the v-invariants of G / G3 from 
the stratification of J(D(Z;) by the projectivized Zp-resonance varieties of 
X: 

This formula makes the computation of the v-invariants practical. It 
also makes clear that the mod p resonance varieties of X, which are 
defined solely in terms of H9(X), do capture significant group-theoretic 
information about G/G3. 

5. In the case where X is the complement of a complex hyperplane 
arrangement, the varieties Rd(X, C) have been extensively studied by 
Falk, Yuzvinsky, Libgober, Cohen, and Suciu [11, 33, 19, 20, 7]. The 
top variety, R1(X,C), is a complete invariant of the cohomology ring 
H9(X). Moreover, R 1(X, q is a union of linear subspaces intersecting 
only at the origin, and Rd(X, C) is the union of those subspaces of 
dimension at least d + I. 

In Section 5, we use these results to derive a simple consequence. 
Since Rd(X, C) has integral equations, we may consider its reduction 
mod p. If that variety coincides with Rd(X, Zp), we have: 

pd - l 
vp,d-1(G/G3) = p- l md, 

where md is the number of components of R 1 (X, C) of dimension d. 
In general, though, this formula fails, due to a different resonance 

at 'exceptional' primes. For such primes p, the variety Rd(X, Zp) is 
not necessarily the union of the components of R1 ( X, Zp) of dimension 
~ d + l. Furthermore, R1(X,C) mod p and R1(X,Zp) may differ in 
the number of non-local components, as well as in the dimensions of 
those components. Most strikingly, R1(X, Zp) may have non-local com­
ponents, even though R1 (X, C) mod p has none. 

6. Much of the original motivation for this paper came from an 
effort to understand Ziegler's pair of arrangements of 4 transverse planes 
in IR4 • Those arrang~ments have isomorphic lattices, but their comple­
ments have non-isomorphic cohomology rings, see [34]. In an earlier 
work [23], we investigated the homotopy types of complements of 2-
arrangements, obtaining a complete classification for n :=:; 6 planes. This 
left open the problem of classifying cohomology rings for n > 4. 

In Section 6, we start a study of the varieties Rd(X, C), where X 
is the complement of a 2-arrangement. The resonance varieties of real 
arrangements exhibit a much richer geometry than those of complex 
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arrangements. Most strikingly, R1(X,q may not be a union of linear 
subspaces, and it may not determine H*(X). 

Using the v-invariants of G/G3 , we establish the cohomology clas­
sification of complements of 2-arrangements of n ~ 6 planes in IR4 • 

With one exception, this classification coincides with the homotopy­
type classification from [23]. The exception is Mazurovski'i'.'s pair [24]. 
The two complements, X and X', have isomorphic cohomology rings, 
and thus G/G3 ~ G' JG;. On the other hand, V3,2(G/G4) = 162 and 
V3,2(G'/G~) = 172. 

As this example shows, the v-invariants of the third nilpotent quo­
tient cannot be computed from the resonance varieties of the cohomology 
ring. To arrive at a more conceptual understanding of these invariants, 
one needs to look beyond cup-products, and on to the Massey products. 
This will be pursued elsewhere. 

Acknowledgment 

We wish to thank Sergey Yuzvinsky for valuable discussions regard­
ing the material in Section 5, and the referee for carefully reading the 
manuscript. The computations for this work were done with the help of 
the packages GAP 3.4.4 ([30]), Macaulay 2 ([14]), and Mathematica 3.0. 

CONTENTS 

0. Introduction 
1. Cohomology ring and second nilpotent quotient 
2. Generators and relators 
3. Resonance varieties 
4. Prime index normal subgroups 
5. Complex arrangements 
6. Real arrangements 

§ 1. Cohomology ring and second nilpotent quotient 

185 
188 
193 
197 
200 
204 
209 

In this section, we introduce a class of spaces that abstract the 
cohomological essence of hyperplane arrangements. We then relate the 
cohomology ring of such a space X to the second nilpotent quotient of 
the fundamental group of X. 

1.1. Cohomology ring 

All the spaces considered in this paper have the homotopy type of 
a connected CW-complex with finite 2-skeleton. Let X be such a space. 
Consider the following conditions on the cohomology ring of X: 
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(A) The homology groups H*(X) are free abelian. 
(B) The cup-product map µx : /\. * H 1(X) -, H*(X) is surjective. 

If conditions (A) and (B) only hold for 1 ~ * ~ n, we will refer to them 
as (An) and (Bn)-

Example 1.2. The basic example we have in mind is that of the 
complement, X = ce \ LJHEA H, of a central hyperplane arrangement 
A in cc. As shown by Brieskorn [3] (solving a conjecture of Arnol'd), 
such a space X satisfies conditions (A) and (B). Moreover, as shown 
by Orlik and Solomon [25], the intersection lattice of the arrangement, 
L(A) = {nHE6 H IB <::;; A}, determines the cohomology ring of X, as 
follows: 

H*(X) = /\* zn I (aee I codim n H < IBI )-
HEB 

Here /\. * zn is the exterior algebra on generators e1 , ... , en dual to the 
meridians of the hyperplanes; and, if B = {Hi,, ... , Hir} is a sub-
arrangement then ee = e· • • • e· and 8e6 = '°' (-l)qe· • • • e- • • • e· . , i1 Zr, L.-iq i1 iq 'l.r 

See [26] for a thorough treatment of hyperplane arrangements. 

Let X be a space satisfying conditions (An) and (Bn)- The first 
condition and the Universal Coefficient Theorem (see [2], Theorem 7.1, 
p. 281) imply that H*(X) = H*(X), for* ~ n. Write H = H1(X) = 
H 1 (X). Denote by I* the kernel of the cup-product map. Condi­
tion (Bn) can be restated as saying that the following sequence is exact: 

(1) 0 _, I* _.:..; (\* H ~ H*(X) _, 0, for*~ n. 

By condition (An), this is in fact a split-exact sequence. 

1.3. Hurewicz homomorphism 

The following lemma was proved by Randell [27] in the case where 
X is the complement of a complex hyperplane arrangement. 

Lemma 1.4. If X satisfies conditions (An) and (Bn), then the 
Hurewicz homomorphism, h : 11"i(X) _, Hi(X), is the zero map, for 
2 ~ i ~ n. 

Proof. The proof is exactly as in [27]. Let p : X _, X be the uni­
versal covering map. Recall that p* : 11"i(X) _, 11"i(X) is an isomorphism, 
for i 2'. 2. By naturality of the Hurewicz map, universal coefficients, 
and condition (An), it is enough to show that p* : Hi(X) _, Hi(X) is 
the zero map. This follows from H 1 (X) = 0, condition (Bn), and the 
naturality of cup products: p* o µx = µx o Aip*. Q.E.D. 
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1.5. Group cohomology 
Let G be a group. The ( co )homology groups of G are by defini­

tion those of the corresponding Eilenberg-MacLane space: H*(G) = 
H*(K(G, 1)) and H*(G) = H*(K(G, 1)). Consider the following homo­
logical conditions on G: 

(A') The homology groups H1 (G) and H2 (G) are finitely generated 
free abelian. 

(B') The cup-product map µa : H 1(G) A H 1(G) -+ H 2(G) is surjec­
tive. 

Proposition 1.6. Let X be a space satisfying conditions (A2) and 
(B2), and let G = 7!"1 ( X) be its fundamental group. Then the following 
hold: 

(a) H1(G) ~ H1(X) and H2(G) ~ H2(X). 
(b) The rings H9(G) and H'.5:2(X) are isomorphic. 

Therefore, G satisfies conditions (A') and (B'). 

Proof Recall X has the homotopy type of a connected CW-complex 
Y with finite 2-skeleton. A K ( G, 1) space may be obtained from Y by 
attaching suitable cells of dimension ~ 3. The resulting map, j : X -+ 
K(G, 1), induces an isomorphism H1(X) ~ H1(G). From the Hopf 

h exact sequence 7r2(X) -+ H2(X)-+ H2(G)-+ 0 and Lemma 1.4, we get 
H2(X) ~ H2(G). This finishes the proof of (a). 

By universal coefficients, the map j* : Hi(G) -+ Hi(X) is a group 
isomorphism, for i ::; 2. By naturality of cup products, we have j* µa(aA 
b) = µx(j*a Aj*b). This proves (b). Q.E.D. 

Remark 1.7. The above conditions on X also appear in [1, 29]. 
The surjectivity ofµ: H 1(X) A H 1(X) -+ H 2(X) is stated there dually, 
as the injectivity of the holonomy map, µ T : H2(X) -+ f\.. 2 H1 (X). 

1.8. Nilpotent quotients 

Let G be a finitely generated group. The lower central series of G is 
defined inductively by G1 = G, Gq+l = [G, Gq], where [G, Gq] denotes 
the subgroup of G generated by the commutators [x, y] = xyx-1y-1 

with x E G and y E Gq. The quotient Gq/Gq+l is a finitely generated 
abelian group, called the qth lower central series quotient of G. The 
quotient G/Gq+l is a nilpotent group, called the qth nilpotent quotient 
of G. See [21] for details. 

We will be mainly interested in the second nilpotent quotient, G/G3 . 

This group is a central extension of finitely generated abelian groups, 

(2) 



Cohomology rings and nilpotent quotients of arrangements 191 

The extension is classified by the k-invariant, x E H 2(G/G2 ; G2 /G3 ). 

The isomorphism type of G/G3 is determined by G/G2 , G2/G3, and X, 
as follows. 

Let G and G' be two groups. Then G/G3 ~ G' ;c; if and only 
if there exist isomorphisms rp : G/G2 --+ G' /G2 and '1/J : G2/G3 --+ 
G2/G; under which the k-invariants correspond: '1/J*(x) = r/>*(x') E 

H 2(G/G2; G2/G;). 
Now suppose H = G/G2 is torsion-free. As is well-known, H*(H) ~ 

I\* H. The classifying map for the extension (2), 

is the image of x under the epimorphism 

provided by the Universal Coefficient Theorem (see [9]). It is given by 
x(x I\ y) = [x, y] (see [4], Exercise 8, p. 97). The condition that the k­
invariants of G / G3 and G' / c; correspond translates to '1/J ox = x' o I\ 2 ¢>. 
We shall write this equivalence relation between classifying maps as x ~ 
x'. 

Suppose now that G2 /G3 is also torsion-free. Then, the universal 
coefficient map is an isomorphism, and so x and x determine each other. 
Thus, for a group G with G / G2 and G2/ G3 torsion-free, the isomorphism 
type of G / G3 is completely determined by the equivalence class of the 
classifying map X. 

1.9. Cup product and commutators 

The 5-term exact sequence for the extension O -+ G2 -+ G ~ 
G / G2 --+ 0 yields: 

(3) 

Under the identification H 2 ( G / G2) ~ /\ 2 H, the boundary map o corre­
sponds to the classifying map x (see [4], Exercise 6, p. 47). The next 
lemma interprets the map o:* in terms of the ring structure of H*(G). 

Lemma 1.10. The map o:* : H2( G) --+ /\ 2 H is the dual of the 
cup-product map µ 0 : H 1(G) /\ H 1(G)--+ H 2(G). 
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Proof. Follows from the commutativity of the diagram 

ct" -
and the fact that the top and left arrows are isomorphisms. Q.E.D. 

The following proposition generalizes a result proved by Massey and 
Traldi (22) in the case where G is a link group. 

Proposition 1.11. Let G be a group satisfying conditions (A') 
and (B'). Then G2/G3 is torsion-free, and the following is a split exact 
sequence: 

(4) 

Proof. The proof follows closely that in (22). By Lemma 1.10, 
, /J,T 2 X 

sequence (3) can be written as H2(G) ------+ I\ H -+ G2/Ga ---+ 0. By 
condition (B'), the mapµ T is a monomorphism, whence the exactness 
of (4). 

Sinceµ : A 2H ---+ H 2(G) is an epimorphism between finitely gen­
erated free abelian groups, it admits a splitting. Hence µ T is a split 
injection, and so x T is a split surjection. Since A 2 H is torsion-free, 
G2/G3 is also torsion-free. Q.E.D. 

Remark 1.12. The injectivity ofµ T : H 2 (G) ---+ A 2 His equiva­
lent to the vanishing of <l>a(G), where H2(G) = <l>2(G) ::::> <l>a(G) ::::> • • • is 
the Dwyer filtration, <l>k(G) = ker(H2(G)---+ H2(G/Gk-1)), see (9). 

1.13. Isomorphisms 

The next result is an immediate consequence of Proposition 1. 11: 

Proposition 1.14. Let X be a space satisfying conditions (A2 ) 

and (B2), and let G = rr1(X). Then 12 = G2/Ga, and the exact sequence 

(5) 

is the dual of sequence (4). 

We are now ready to establish the correspondence between the 
truncated cohomology ring of X and the second nilpotent quotient of 
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G = 7r1(X). A version of the equivalence (b) {::} (c) below, with x re­
placed by µ T, was first established by Traldi and Sakuma [32], in the 
case where X is a link complement. 

Theorem 1.15. Let X and X' be two spaces satisfying conditions 
(A2) and (B2), and let G and G' be their fundamental groups. The 
following are equivalent: 

(a) H*(X) ~ H*(X') for*::; 2; 
(b) G/G3 ~ G' /G;; 
(c) x~x'. 

Proof. (a) {::} (c). By Proposition 1.14, sequence (5) is exact, and 
x = £ T. The equivalence follows from the definitions. 

(b) {::} (c). By Propositions 1.6 and 1.14, the first two lower central 
series quotients of G and G' are torsion-free. The equivalence follows 
from the discussion in 1.8. Q.E.D. 

1.16. Invariants of H9(X) and G/G3 

In view of Theorem 1.15, an invariant of either the truncated co­
homology ring H9(X), or the second nilpotent quotient G/G3 , or the 
classifying map X, is an invariant of the other two. We will define in 
subsequent sections a series of invariants of both H9(X) and G/G3, 
and relate them one to another. For now, let us define invariants of x, 
following an idea of Ziegler [34], that originated from Falk's work on 
minimal models of arrangements [10]. 

Let µH : NH®// H --+ I\ i+i H be the multiplication in the exterior 
algebra/\* H. Consider the following finitely generated abelian group: 

Zi,j(X) 

= coker ( /\iH ® /\j G2/G3 _id_®_/\_;_xT--. /\iH ® f\ 2j H µu /\i+2j H )-

Clearly, if x ~ x' then Zi,i (x) ~ Zi,i (x'). Thus, the rank and elementary 
divisors of Zi,j(X) provide invariants of both H9(X) and G/G3. 

§2. Generators and relators 

In this section, we write down explicitly some of the maps introduced 
in the previous section. We start with a review of some basic facts about 
Hall commutators and the Fox calculus. 
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2.1. Basic commutators 

Let IF( n) be the free group on generators x1, ... , Xn- A basic com­
mutator in IF= IF(n) is defined inductively as follows (see [12, 21]): 

(a) Each basic commutator c has length .e(c) EN. 
(b) The basic commutators of length 1 are the generators x1, ... , Xn; 

those of length > 1 are of the form c = [c1, c2l, where c1, c2 are 
previously defined commutators and .e(c) = .e(c1) + .e(c2)-

( c) Basic commutators of the same length are ordered arbitrarily; if 
£(c) > £(c'), then c > c'. 

(d) If £(c) > 1 and c = [c1, c2l, then c1 < c2; if .e(c) > 2 and c = 
[c1, h, c3]], then c1 2::: c2. 

The basic commutators of the form c = [xii, [xi2 , [ ..• [xi0 _ 1 , Xiq] ... ]]] 
are called simple. We shall write them as c = [xi,, Xi 2 , ••• , xiJ. For 
q :::; 3, all basic commutators are simple. 

The following theorem of Hall is well-known (see loc. cit.): 

Theorem 2.2. The group IFq/IFq+I is free abelian, and has a basis 
consisting of the basic commutators of length q. 

In particular, if w E IF and c1 , ... , Cr are the basic commutators of 
length < q, then w(q) := w mod IFq may be written uniquely as w(q) = 

c?c;2 • • • c:r, for some integers e1, ... , er. 
The Hall commutators may be used to write down presentations for 

the nilpotent quotients of a finitely presented group G = IF/ R. Indeed, 
if G = (xi, ... , Xn I r1, ... , rm), we have the following presentation for 
G/Gq = IF/RIFq: 

(6) GIG - ( I (q) (q) ) 
q - XI,···,Xn rl , ... ,rm ,cl,···,C/, 

where riq) = rk mod IFq, and {ch} 1:,s:h:,S:! are the basic commutators of 
length q. 

2.3. Fox calculus 

Let ZIF be the group ring of IF, with augmentation map E : ZIF--+ Z 
given by E(xi) = 1. To each xi there corresponds a Fox derivative, 
ai: ZIF--+ ZIF, given by 8i(l) = 0, 8i(xj) = Jij and 8i(uv) = 8i(u)E(v) + 
uai(v). The higher Fox derivatives, ai,, ... ,ik, are defined inductively in 
the obvious manner. The composition of the augmentation map with 
the higher derivatives yields operators Ei,, ... ,ik := E o ai,, ... ,ik : ZIF--+ Z. 

Let a: IF(n)--+ zn be the abelianization map, given by a(xi) = ti. 
The following lemma is left as an exercise in the definitions. 

Lemma 2.4. We have: 
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(a) 8i[u,v] = (1-uvu- 1 )8iu+ (u- [u,v])8iv. 
(b) a(8i[xii,Xi21 .•• ,xiq]) = (ti1 -1) · · · (tiq- 2 - l)((ti,1_ 1 -1)<\,iq -

(tiq -1)£\,iq-1). 
(c) t1(w) = 0, if w E lFq and III < q. 
(d) t1(uv) = t1(u) + t1(v), if u, v E lFq and III= q. 

2.5. Commutator relations 

We now make more explicit some of the constructions from section 1, 
for the following class of groups. 

Definition 2.6. A group G is called a commutator-relators group 
if it admits a presentation G = lF( n) / R, where R is the normal closure 
of a finite subset of [lF, lF]. 

In other words, G has a finite presentation G= (x1, ... , Xn lr1, ... , rm), 
and G/G2 = zn. Commutator-relators groups appear as fundamental 
groups of certain spaces that we shall encounter later on. The following 
proposition gives sufficient conditions for this to happen. 

Proposition 2. 7. Let X be a space that is homotopy equivalent to 
a finite CW-complex Y, with I-skeleton y(I) = V~=l Sf. If H1(X) = zn, 
then G = 1r1 (X) is a commutator-relators group. 

Proof. The 2-skeleton y< 2) = v~=l Sf U U;;'=l e~ determines a pre­
sentation G = (x1, ... , Xn I r1, ... , rm)- A presentation matrix for 
the abelianization of G is E = (ti(rk)). Since H 1(X) = zn, we have 
H 1(G) = zn. Thus, Eis equivalent to the zero matrix, and hence Eis 
the zero matrix. Thus, all relators rk are commutators. Q.E.D. 

Now let ¢ : lF -----, G be the quotient map, and let a : G -----, G/G2 

be the abelianization map. Set ti= a(cp(xi)). Then {t1 , ... , tn} form a 
basis for H 1(G), and their Kronecker duals, {e1 , ... ,en}, form a basis 
for H 1 (G). 

By the Hopf formula, we have H2(G) = R/[R,lF]. Assume that 
H2 (G) is free abelian, and let 0k = rk mod [R,IF]. Then {01, ... ,Bm} 
form a basis for H2 (G), and their duals, {'n, ... ,,m}, form a basis for 
H 2 (G). 

Proposition 2.8. Let G be a commutator-relators group, such 
that H2 (G) is free abelian. In the basis specified above, the cup-product 
mapµ: H 1(G) /\ H 1 (G)-----, H 2 (G) is given by 

m 

µ(ei I\ ej) = L ti,j(rkhk­
k=l 

Proof. This follows immediately from [13], Theorem 2.3. Q.E.D. 
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2.9. Links in § 3 

We conclude this section with a classical example. Let L be an 
oriented link in § 3 , with components L1, ... Ln. Its complement, X = 
§ 3 \ LJi Li, has the homotopy type of a connected, 2-dimensional finite 
CW-complex. The homology groups of X are computed by Alexander 
duality: H1(X) = zn, H 2(X) = zn-1. It follows that Condition (A) 
is always satisfied for a link complement. If L = ~ is the closure of a 
pure braid /3 E Pn, then X satisfies the assumption of Proposition 2. 7, 
and so G = n1 (X) is a commutator-relators group, with presentation 
G = (x1, ... ,Xn I /J(xi)x-; 1 = 1, 1 Si< n). 

For an arbitrary link L, let { e1, ... , en} be the basis for H 1(X) dual 
to the meridians of L. Choose arcs Ci,i in X connecting Li to Li, and let 
'Yi,j E H 2(X) be their duals. Then {'Y1,n, ... , 'Yn-1,n} forms a basis for 
H2(X). Let li,i = lk(Li, Li) be the linking numbers of L. A presentation 
for the cohomology ring of X is given by: 

(7) H *(X) _ ( . . · I eiej = li,i'Yi,j, 'Yi,i + 'Yi,k + 'Yk,i = 0 ) - ei, 'Yi,3 • 
'Yi,i = 'Yi,jek = ek'Yi,j = 'Yi,j'Yk,l = 0 

Let g be the "linking graph" associated to L: It is the complete 
graph on n vertices, with edges labelled by the linking numbers. If g 
possesses a spanning tree T with n vertices, and all edges labelled ±1, 
we say that Lis (cohomologically) rigid. The complement of such a link 
satisfies condition (B), see (22, 17, l]. Moreover, G2/G3 is free abelian 
of rank (n;1), with basis {xii I ij (/.Tandi< j}. The classifying map 

x: l\2 H -t G2/G3 is given by 

( ) {
Xij if ij (/. T, x e· l\e· = 

i J E{klikjlT} li,kXik if ij E T, 

where Xik = -Xki, for i > k. 
We will be mainly interested in those rigid links for which li,j = ±l. 

Examples include the Hopf links, and, more generally, the singularity 
links of 2-arrangements in R.4 (see 6.1). For such links, the presenta­
tion (7) simplifies to: 

(8) H*(X) = (ei I e~ = 0, eiei = -eiei, ) . 
li,jeiei + lj,kejek + lk,iekei = 0 

Moreover, the transpose of the classifying map, x T : G2 /G3 -t A 2 H, is 
given by the simple formula 

(9) 
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§3. Resonance varieties 

In this section, we define the 'resonance' varieties of the cohomology 
ring of a space X. We then show that, under certain conditions on X, 
these varieties are the determinantal varieties of the linearized Alexander 
matrix of the group G = 7r1(X). 

3.1. Filtration of first cohomology 

Let X be a space that satisfies conditions (A2) and (B2) of Section 1, 
and the hypothesis of Proposition 2.7. We thus have: H 1(X) = zn, 
H 2(X) = zm, the cup-product mapµ: H 1(X) /\ H 1(X)--. H 2(X) is 
surjective, and G = 11"1 (X) is a commutator-relators group. 

Lemma 3.2. Let X be as above, and let 1K be a commutative field. 

(a) The lK-cup products may be computed from the integral ones: 
µoc = µ 0 idoc. 

(b) If H9(X) ~ H9(X') then HS2(X,1K) ~ HS2(X',JK). 

Proof. Let K, : Z --. 1K be the homomorphism given by K,(l) = 1. 
From the definitions, the coefficient map,,,,* : H*(X,Z)--. H*(X,lK), 
and the map id 0,,,, : H* (X) 0 Z --. H* (X) 0 1K commute with cup 
products. By the Universal Coefficient Theorem (see [2], Theorem 7.4, 
p. 282), the map v: H*(X) 0 lK--. H*(X, JK), v([z] 0 k) = [z 0 k] is an 
isomorphism for* :S 2. Since vo (id 0 ,,,,) =,,,,*'the map v also commutes 
with cup products. The conclusions follow. Q.E.D. 

Definition 3.3. Let d be an integer, 0 :S d :S n. The dth reso­
nance variety of X (with coefficients in JK) is the subvariety of H 1(X, JK) 
= ocn, defined as follows: 

Rd(X, lK) = {,\ E Hl(X, JK) I :3_subspace WC H 1(X, JK) such that}. 
dim W = d + 1 andµ(,\ I\ W) = 0 

The resonance varieties form a descending filtration ocn = Ro ::> 
R1 ::> · · · ::> Rn-1 ::> Rn = 0. The ambient type of the lK-resonance 
varieties depends only on the truncated cohomology ring HS2(X, lK), 
and thus, by Lemma 3.2 (b), only on H9(X). More precisely, if 
H9(X) ~ H9(X'), there exists a linear automorphism of ocn taking 
Rd(X, lK) to Rd(X', lK). 

For a group G, define the resonance varieties to be those of the 
corresponding Eilenberg-MacLane space: Rd(G, JK) := Rd(K(G, 1), JK). 

Proposition 3.4. Let X be a space satisfying conditions (A2 ) and 
(B2). Let G = 7r1(X). Then Rd(X,JK) = Rd(G,JK). 
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Proof. By Proposition 1.6, the inclusion j: X---, K(G, 1) induces 
an isomorphism j* : H"5.2(G) ---, H"5.2(X). The conclusion follows from 
Lemma 3.2 (b) above. Q.E.D. 

3.5. Alexander matrices 

Let G = (xi, ... , Xn I r1, ... , rm) be a commutator-relators group. 
Recall the projection map ¢ : lF(n) ---, G, and the abelianization map, 
a: G---, zn, given by a(xi) = ti. 

Definition 3.6. The Alexander matrix of G is the mxn matrix A 
=(a¢8i(rk)) with entries in the Laurent polynomials ring Z[tr1 , ... , t; 1]. 

Now let 'ljJ : Z[tt1, ... , t; 1] ---, Z[[s1 , ... , sn]] be the ring homomor­
phism given by 'lj;(ti) = l+si and 'lj;(t-; 1) = Eq~0 (-l)qsJ. Also, let 'lj;(q) 

be the graded qth piece of '1/J. Since all the relators of Gare commutators, 
the entries of A are in the ideal (ti - 1, ... , tn - l), and so 'ljJ(O} A is the 
zero matrix. 

Definition 3. 7. The linearized Alexander matrix of G is the m x n 
matrix 

M = 1j;<1lA. 

Note that the entries of M are integral linear forms in s1, ... , Sn. 

By Lemma 2.4 (a), (b) we have 1j;< 1la¢8i(rk) = '1jJ< 1la¢8i(r13)). Thus, 
M depends only on the relators of G, modulo length 3 commutators. 
By Lemma 2.4 (c), (d) those truncated relators are given by r13) = 
ni<j[xi,Xj]''··i(rk)_ Thus, the entries of Mare: 

(10) 
n 

Mk,j = L>,i,j(rk)si. 
i=l 

The linearized Alexander matrix of a link was first considered by 
Traldi [31]. If the link L has n components, then M has size n x ( n - l), 
and its entries are Mk,j = lk,jSk - 8k,i(Ei lk,isi)-

3.B. Equations for resonance varieties 

We now find explicit equations for the varieties Rd ( X, IK). In view 
of Proposition 3.4, that is the same as finding equations for Rd ( G, IK), 
with G = 7r1(X). Moreover, in view of Lemma 3.2 (a), the formula for 
the integral cup products from Proposition 2.8 may be used to compute 
the IK-cup products. We will use the notations of that proposition for 
the rest of this section. 
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Let M be the linearized Alexander matrix of G. Let Moc be the 
corresponding matrix of linear forms over OC, and let M(A) be the matrix 
MK evaluated at A= (A1, ... , An) E ocn. 

Theorem 3.9. For G a commutator-relators group with H2 (G) 
torsion free, 

nd(G, OC) = {A E ocn I rankK M(A) < n - d }. 

Proof. Let A= E~=l Aiei E H1 (G,OC) = ocn. We are looking for 
v = E~=l viei such that µ(A Av) = 0 in H 2 (G, OC) = ocm. Recall from 
Proposition 2.8 that µ(ei A ei) = E;:'=1 Ei,j(rkhk- It follows that 

We thus obtain a linear system of m equations in v1, ... , Vn: 

with coefficient matrix M(A). 
Now A belongs to nd(G, OC) if and only if the space W of solutions 

of the linear system M (A) • v = 0 is at least ( d + l )-dimensional. That 
translates into the condition rankK M(A) < n - d of the statement, and 
we are done. Q.E.D. 

We will be mainly interested in the coefficient fields ][{ = (C and 
][{ = Zp, for some prime p. By the above theorem, the C-resonance 
varieties have integral equations. As we shall see in Section 5, although 
µ,z,p : H 1(X, Zp) A H 1(X, Zp) -+ H 2 (X, Zp) is the reduction modp of 
µ: H 1(X) A H 1(X)-+ H 2 (X), the variety nd(X,Zp) is not necessarily 
the reduction mod p of nd (X, q. 

Example 3.10. Let X be the complement of an n-component 
rigid link. The matrix M(A) has entries M(A)k,j=lk,jAk-8k,i(Li lk,iAi)­
The variety 'R-1 (X, OC) is the zero-locus of a degree n - 2 homogeneous 
polynomial obtained by taking the greatest common divisor of the (n -
1) x ( n - l) minors of the matrix M (A). At the other extreme, we have 
'R-n-1 ( X, OC) = { 0}. Indeed, the off-diagonal entries of M (A) correspond­
ing to the edges of the maximal spanning tree generate the maximal ideal 
(A1, ... , An) of OC[A1, ... , An]-
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3.11. Projectivized resonance varieties 

The affine variety nd(X, IK) c ocn is homogeneous, and so defines 
a projective variety 'Pd(X,IK) C IP'(!Kn). If H9(X) is isomorphic to 
H9(X'), there is a projective automorphism IP'(!Kn) -t IP'(!Kn) taking 
Pd(X, IK) to 'Pd(X', IK). The rest of the above discussion applies to the 
projective resonance varieties in an obvious manner. In particular, we 
have: 

Corollary 3.12. 'Pd(G,IK)={.>. E IP'(JKn)irankKM(.>.) < n-d-1}. 

§4. Prime index normal subgroups 

In this section, we consider nilpotent quotients of commutator-rela­
tors groups. We show how to count the normal subgroups of prime 
index, according to their abelianization. 

4.1. Counting subgroups 

Let G be a group. For a prime number p, let Ep( G) be the set 
of index p normal subgroups of G, and let Np(G) = IEv(G)I be its 
cardinality. 

Proposition 4.2. For the free group IF(n), the set Ep(IF(n)) is in 
bijective correspondence with the projective space IP'(z;). 

Proof Every index p normal subgroup of IF(n) is the kernel of an 
epimorphism .>.: IF(n) -t Zp. Such homomorphisms are parametrized by 
z; \ { 0}. Two epimorphisms .>. and >..' have the same kernel if and only 
if>..= q ·>..',for some q E z;. Q.E.D. 

Corollary 4.3. Let G = IF( n) / R be a commutator-relators group. 
For all primes p, 

N (G) = Pn - 1. 
p p-1 

Proof. Since R consists of commutators, 

Hom(G, Zv) ~ Hom(IF(n), Zv)-

Thus, Ep(G) is in one-to-one correspondence with Ep(IF(n)) = IP'(Z;). 
Q.E.D. 
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4.4. Abelianizing normal subgroups 

Let G = (xi, ... , Xn I r1, ... , rm) be a commutator-relators group. 
Let K <l G be a normal subgroup of index p, defined by a representation 
>. : G--+ Zp, >.(xi) = Ai. Let 5. : ZG --+ ZZp be the linear extension of>. 
to group rings. More precisely, we view here Zp as a multiplicative group, 
with generator (. Then >.(xi) = ("'. Finally, let {3 : ZZp --+ Mat(p, Z) 
be the ring homomorphism defined by the (left) regular representation 
of Zp. 

Definition 4.5. For a given representation >. G --+ Zp, the 
twisted Alexander matrix of G is the pm x pn matrix 

obtained from (5.¢8i(rk)) by replacing each entry e with /J(e). 

Proposition 4.6. Let G be a commutator-relators group, and let 
K = ker(>.: G--+ Zp)- The matrix A,x is a relation matrix for the group 
H1(K) E&ZP-l_ 

A proof can be found in [16]. The matrix A,x is equivalent (via row­
and-column operations) to a diagonal matrix, from which the rank and 
elementary divisors of H 1(K) can be read off. 

4. 7. Nilpotent quotients 

We now apply the above procedure to a particular class of groups: 
the nilpotent quotients G /Gq, q 2: 3, of a commutator-relators group 
G = IF(n)/R. 

Let >. : G /Gq --+ Zp be a non-trivial representation. To describe 
explicitly the presentation matrix A,x of Proposition 4.6, we need to 
examine more closely the Fox derivatives of the relators ch and riq) in 
the presentation (6) for G/Gq. 

If c is a non-simple basic commutator, then Lemma 2.4 (a), (b) gives 
>.¢( 8ic) = 0. If c = [xi1 , Xi 2 , ••• , xi.] is a simple commutator, then it 
follows from Lemma 2.4 (b) that 5.¢ (8ic) is either zero or of the form 
e = ±((a1 - 1) ... ((a•- 2 - 1) E ZZp, for some integers 1 :S: aj $ p - 1. 

Recall that the truncation rkq) is a product of basic commutators 

of length < q. The same argument shows that 5.¢(8irkq)) is a linear 
combination of elements in ZZp of the form ((ai1 - 1) •••((a'; - 1), for 
j < q- 2. 

The following lemma shows the typical simplifications that we will 
perform on (>.¢(8ch)/3 and (>.¢(8rkq))),6. 
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Lemma 4.8. The integral p x p matrix ef3 corresponding to e = 
( (a1 - 1) ... ( (ak - 1) E ZZp has diagonal form 

( r-1 r-1 r r o) p , ... ,p ,p , ... ,p' ' 

'-...----' --------p-1-1 l 

where r = r;=! l, and l = k - 1 - (r - l)(p- 1). Moreover, there is a 
sequence of row and column operations, independent of the particular e, 
that brings ef3 to that diagonal form. 

Proposition 4.9. Let K be an index p normal subgroup of the 
free nilpotent quotient IF(n)/IF(n)q- Then: 

H1 (K) = zn EB (Z/pr-lz)(n-l)(p-1-1) EB (Z/prz)(n-1)1, 

where r = r !=i l, and l = q - 2 - ( r - 1) (p - 1). 

Proof. In this case, only commutator relators are present, so Lemma 
4.8, applied to each entry >.¢(8ch), shows that the matrix A.x is equiva­
lent the following diagonal matrix: 

D ( r-1 r-1 r r O o) = p , ... ,p ,p , ... ,p' , ... , . 
'------' -------- ...____..., 

(11) Q.E.D. 
(n-l)(p-1-1) (n-1)1 n+p-1 

Theorem 4.10. LetG = IF(n)/R be a commutator-relators group. 

Let K be an index p normal subgroup of G/Gq. Set r = r !=il. Then: 

r 

H1(K) = zn EB E9(Z/piz)d;, 

i=O 

for some positive integers do, ... , dr such that do+·· ·+dr = (n-l)(p-1) 
and dr ~ l(n - 1). 

Proof. Let K = ker(>. : G/Gq -+ Zv)- Consider the relation ma­
trix Ax, corresponding to the presentation G / G q = IF/ RIF q from ( 6). 
Partition A,x into two blocks, A.x = (~~),where B.x corresponds to the 
relators R, and C,x corresponds to the basic commutators. 

Assume that the row and column operations of Lemma 4.8 have 
already been performed. Then, after moving all the zero columns to 

the right, A.x is equivalent to ( ~~ ~), where D = (D' 0) is the diagonal 

matrix (11). Since the number of zero diagonal elements of Dis n+p-1, 
the rank of K is n. Since the non-zero diagonal elements of D are either 
pr-l or pr, the elementary divisors of Kare among p,p2 , ..• ,pr. The 
conclusion readily follows. Q.E.D. 
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4.11. v-Invariants 
In view of Theorem 4.10, we define the following numerical invariants 

of isomorphism type for the nilpotent quotients of a group. 

Definition 4.12. Let G be a commutator-relators group, and let 
G/Gq be the (q - l)st nilpotent quotient of G. Given a prime p, and a 
positive integer d, define 

{ I [G/Gq: K] = p and } 
vp,d(G/Gq)=# K<JG/Gq dimzp(TorsH1(K))©Zv=d . 

Example 4.13. If q = 3, then H1 (K) = zn EB Z~, for some O ::; 
d ::; n - l. So we have invariants 1/p,o( G /G3), ... , vp,n-1 ( G /G3) for the 
second nilpotent quotient of G. Since I:~:~ vp,d = P;~/, it is enough to 
compute 1/p,1, ... , Vp,n-1· 

Example 4.14. If q = 4, and p;::: 3, then H 1(K) = zn EB Z~, for 

some O::; d::; 2n - 2. If p = 2, then H1(K) = zn EB Z~1 EB zt2 , for some 
0 ::; d = d1 + d2 ::; n - l. 

4.15. Second nilpotent quotient 
We now restrict our attention to G/G3. From (6), for q = 3 we 

obtain the presentation: 

(12) G/G3 = (x1, ... ,Xn I rP>, ... ,r~>,c1,--·,C!), 

where l = 2(nf), and c1, ... ,c1 are the basic commutators [xi, [xj,Xk]], 
with j < k and i ;::: j. 

Theorem 4.16. Given an epimorphism >. : G/G3 -+ Zp, with 
kernel K >., we have 

dimzp(TorsH1(K>.)) © Zp = n - l - rankzp M(>.). 

Proof. Recall from the proof of Theorem 4.10 that the relation ma­

trix of the abelian group H1(K>.) has the following form: A>.= (~t ~)­
We have already seen in Proposition 4.9 that Cl is equivalent to a diag-
onal matrix D' = ( 1<n-l){p- 2) O ) . 

0 p•J,._1 

Recall also that ri3) = ni<j[xi,Xj]<i,j(rk)_ A computation using 
formula (a) in Lemma 2.4 shows: 

(13) 
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for 1 < l < n and 1 < k < m. 
d~nskler e = f::Cau((u - 1) E ZZp. Set a = I:::~ au. It is 

readily seen that the matrix ef3 is equivalent to: 

(! 

... * p•a 

~) (14) ... * p·a 

* 
I:p-1 

u=l au. a 

Now (10), together with (13) and (14), imply that B~ is equivalent 
to (: M~.X)'), where M(>.)' is some codimension 1 minor of M(>.). Hence, 
A.x is equivalent to: 

( 
* 0 0) * M(>.)' 0 

I(n-l)(p-2) 0 0 · 
0 p·In-1 0 

The theorem now follows from the following fact: An integral matrix 
of the form ( /t ) is equivalent to ( 1i' Pt ) , where r = rankzv Q © idzv, 
and d = n - r. Q.E.D. 

Corollary 4.17. Vp,d(G/G3)=#{K>. E Ep(G/G3) I rankzv M(>.) 
=n-d-1}. 

4.18. Resonance varieties and subgroups of G/G3 

The following theorem relates the distribution of index p normal 
subgroups of G/G3, according to their abelianization, to the number of 
points on then-dimensional projective space over Zp, according to the 
stratification by the resonance varieties. 

Theorem 4.19. For G a commutator-relators group with H2(G) 
torsion free, 

Proof. Follows from Corollary 3.12 and Corollary 4.17. Q.E.D. 

§5. Complex arrangements 
I 

We illustrate the techniques developed in the previous sections with 
the main example of spaces satisfying conditions (A) and (B): comple­
ments of complex hyperplane arrangements. 
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5.1. Cohomology and fundamental group 

Let A' be a complex hyperplane arrangement, with complement X'. 
Let A be a generic two-dimensional section of A', with complement 
X. Then, by the Lefschetz-type theorem of Hamm and Le [15], the 
inclusion i : X -+ X' induces an isomorphism i* : 1r1 (X) -+ 1r1(X') 
and a monomorphism i* : H2 (X') -+ H2 (X). By the Brieskorn-Orlik­
Solomon theorem, the map i* is, in fact, an isomorphism. So, for our 
purposes here, we may restrict our attention to A. 

Let A = { H1, ... , Hn} be an arrangement of n affine lines in C2 , in 
general position at infinity. Let vi, ... , V 8 be the intersection points of 
the lines. If vq = Hi1 n · · · n Hi,,., set Vq = {i1, ... ,im} and Vq = Vq \ 
{ max Vq}. The level 2 of the lattice of A is encoded in the list L2 ( A) = 
{Vi, ... , Vs}, which keeps track of the incidence relations between the 
points and the lines of the arrangement. 

The following properties hold: 

(i) The homology groups of X = C2 \ LJi Hi are free abelian, of ranks 
bi = n, b2 = E;=l IV q I, and bi = 0 for i > 2. The cohomology 
ring is determined by L2(A) (see [261): 

(ii) The fundamental group G = 1r1 (X) is a commutator-relators 
group: 

G = (x1, ... ,xn I {3q(xi)x; 1 = 1 for i E Vq and q = 1, ... ,s). 

The pure braid monodromy generators /31, ... , /38 can be read 
off from a 'braided wiring diagram' associated to A (see [51). 
Moreover, the space X is homotopy equivalent to· the 2-complex 
given by this presentation (see [181). 

(iii) The second nilpotent quotient is determined by L2(A): 

G/Ga 

_/ l[xi,I1jEVqxi] foriEVq, 1::::;q::::;s ) 
-\xi, ... ,Xn [xi,[Xj,Xk]] forl::::;j<k::::;n, j:::;i:::;n · 

This follows from the presentation in (ii), together with (12) (see 
also (281). 

(iv) The linearized Alexander matrix is determined by L2(A). It is 
obtained by stacking Mv1 (.~), ••• , Mv.(.~), where Mv(.X) is the 
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IV I x n matrix with entries 

Mv(A)i,j = 8j,V ( Ai - 8i,j L Ak), 
kEV 

for i EV and 1 S j Sn. 

For a detailed discussion of the Alexander matrix and the Alexan­
der invariant of A, see [6]. 

From properties (i) and (ii), we deduce that X satisfies the condi­
tions from Proposition 2.7. 

5.2. Resonance varieties over C 

The resonance varieties of a complex hyperplane arrangement were 
introduced by Falk in [11]. Let A be an arrangement of n affine lines in 
C2, in general position at infinity. Set Rd(A) := Rd(X, C). By Theorem 
3.1 in [11], this definition agrees with Falk's definition. 

Qualitative results as to the nature of the resonance varieties of 
complex arrangements were obtained by a number of authors, (33, 11, 
7, 19, 20]. We summarize some of those results, as follows. 

Theorem 5.3. Let R 1(A) C en be the resonance variety of an 
arrangement of n complex hyperplanes. Then: 

(a) The ambient type of R1(A) determines the isomorphism type of 
H9(X). 

(b) R1(A) is contained in the hyperplane ~n := n=:=1 Ai= 0}. 
(c) Each component Ci of R1(A) is a linear subspace. 
(d) Ci n Ci = {O} for i # j. 
(e) Rd(A) = {O} u udimG,;;::d+l Ci. 

Proof. Part (a) was proved in [11]. Part (b) was proved in [33] 
and (11]. Part (c) was conjectured in (11], and proved in (7] and (19]. 
Part (d) is proved in (20]. Part (e) follows from [20], Theorem 3.4, as 
was pointed out to us by S. Yuzvinsky. Q.E.D. 

By Theorem 3.9, the resonance varieties Rd(A) are the determi­
nantal varieties associated to the linearized Alexander matrix, M. For 
another set of explicit equations, obtained from a presentation of the 
linearized Alexander invariant, see [7]. 

All the components of 'R.1 (A) arise from neighborly partitions of sub­
arrangements of A, see [11], [20]. To a partition II of A' CA, such that 
a certain bilinear form associated to II is degenerate, there corresponds 
a component Cu of 'R.1 (A). For each V E L2(A) with !VI ;:::: 3, there 
is a local component, Cv = ~n n {Ai = 0 I i ¢. V}, of dimension 
!VI - 1, corresponding to the partition (V) of Av = {Hi Ii E V}. The 
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other components of R 1 (A) are called non-local. For more details and 
examples, see [11, 7, 19, 20]. 

5.4. Resonance varieties over 'l/.,P 

We now turn to the characteristic p resonance varieties, Rd(A; Zp)­
Recall that the variety Rd(A) has integral equations, so we may consider 
its reduction mod p. As we shall see, there are arrangements A such that 
Rd(A; Zp) does not coincide with Rd(A) mod p, for certain primes p. 
Indeed: 

• The number of irreducible components, or the dimensions of the 
components may be different, as illustrated in Examples 5.9 and 
5.10 below. 

• The analogues of Theorem 5.3 (a) and (e) fail in general, as seen 
in Examples 5.8 and 5.10 below. 

On the other hand, it seems likely that the analogues of Theorem 5.3 
(b), (c) and (d) hold for every prime p. 

Now let llp,d(A) = llp,d(G/G3 ) be the number of normal subgroups 
of G/G3 with abelianization znEBzt, for O::; d::; n-l. By properties (i) 
and (ii) above, Theorem 4.19 applies, and so llp,d(A) can be computed 
from the Zp-resonance varieties. 

Corollary 5.5. If Rd(A, Zp) = Rd(A) mod p, for all d 2: 1, then 

pd - l 
llp,d-1(A) = --1 md, 

p-

where md is the number of components of R1 (A) of dimension d. 

Proof. From the assumption, properties (c)-(e) hold for Rd(A, Zp)­
Therefore, Pd ( X, 'll.,P) \Pd+ 1 ( X, 'll.,P) consists of md disjoint, d-dimensional 
projective subspaces in IP'(Z;). The formula follows from Theorem 4.19. 

Q.E.D. 

If all the components of R1 (A) are local, then md = #{V E L2(A) I 
IVI = d + 1}, but the Corollary may not apply, see Example 5.9. 

5.6. Examples 

We conclude this section with a few examples that illustrate the 
phenomena mentioned above. The motivation to look at Examples 5.8 
and 5.10 came from S. Yuzvinsky, who was the first to realize that there 
are exceptional primes for these arrangements. His method of computing 
the corresponding non-local components is different from ours, though. 
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Example 5.7. Let A be the reflection arrangement of type A3, 
with lattice 

L2(A) = {123,145,246,356, 16, 25, 34}. 

The variety "R.1(A) has 5 components of dimension 2. The non-local 
component, Crr = {A1 - A6 = A2 - A5 = A3 - A4 = O} n ~6, corresponds 
to the partition II= (16 I 25 I 34), see [11, 7, 19]. 

For all primes p, Corollary 5.5 applies, giving vp,1 = 5(p + 1). 

Example 5.8. Let A be the realization of the non-Fano plane, 
with lattice 

L2(A) = {123, 147,156,257,345,367, 24, 26, 46}. 

The variety "R.1(A) has 9 components of dimension 2. The non-local 
components are given by the partitions II1 = (13 I 46 I 57), II2 = 
(15 I 24 I 37), II3 = (17 I 26 I 35) of the corresponding type A3 sub­
arrangements, see [7]. 

For p > 2, Corollary 5.5 applies, and so vp,1 = 9(p + 1). 
For p = 2, though, "R.1(A,Z2) has a single, 3-dimensional non-local 

component, Crr = {A1 +A4+A1 = A2+As+A1 = A3+A6+A1 = 0}n~1, 
corresponding to II = (1 I 3 I 5 I 7 I 246). Furthermore, R2(A, Z2) 
has a single, I-dimensional component, Crr, = { A1 + A7 = A3 + A7 = 
A5 + A7 = A2 = A4 = A6 = O}, corresponding to II' = (1 I 3 I 5 I 7), and 
°R.3(A,Z2) = {O}. Thus, v2,1 = 24 and V2,2 = 1. 

Example 5.9. Let A be one of the realizations of the MacLane 
matroid, with 

L2(A) = {123,456, 147,267,258,348,357, 168, 15, 24, 36, 78}. 

The variety "R.1(A) has 8 local components. Despite the fact that A sup­
ports many neighborly partitions, "R.1 (A) has no non-local components, 
since Falk's degeneracy condition is not satisfied, see (11]. 

For p =I- 3, Corollary 5.5 applies, and so vp,1 = 8(p + 1). 
For p = 3, though, the degeneracy condition is satisfied, and the 

variety "R.1(A,Z3) has a non-local, 2-dimensional component, 

Crr = { A2 + As + As = A3 + As - As = A4 - As - As 

= A5 - A6 - As = A1 + As = A7 + As = O}, 

corresponding to II= (15 I 24 I 36 I 78). Moreover, "R.2(A,Z3) = {O}. 
Hence, V3,1 = 36. 
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Example 5.10. Let A be the realization of the affine plane over 
Z3, with lattice 

L2(A) = {123,456, 789,147,258,369,159,357,168,249,267,348}. 

The variety 'R-1 (A) has 12 local components, and 4 non-local components 
of dimension 2, see [11, 7, 19, 20]. 

For p-/= 3, Corollary 5.5 applies, and so vp,l = 16(p + 1). 
On the other hand, 'R-1 (A, Z3) has a single, 3-dimensional non-local 

component, On = {A1 + A6 + As = A2 + A4 + Ag = A3 + A5 + A7 = 
A3 + A4 + As = A3 + A6 + Ag = A7 + As + Ag = O}, corresponding to 
TI = (123 I 456 I 789), or any other of the partitions that give rise to 
the 4 non-local components of 'R-1 (A). Moreover, 'R-2 ( A, Z3) = On, and 
'R,3(A,Z3) = {O}. Thus, V3,1 = 48 and V3,2 = 13. 

Example 5.11. Let A1 and A2 be generic plane sections of the 
two arrangements from [11], Example 4.10. Each arrangement consists 
of 7 affine lines in C2, and each resonance variety has only local com­
ponents. Thus, the v-invariants of A1 and A2 coincide. On the other 
hand, as shown by Falk, there is no linear automorphism C7 -. C7 
restricting to an isomorphism 'R-1(A1) -. 'R-1(A2). The same 'polyma­
troid' argument shows that there is no automorphism JP(z;) -. JP(z;) 
restricting to 'Pi(A1, Zp) -. Pi(A2, Zp)- Thus, the ambient type of the 
(projective) resonance varieties carries more information than the count 
of their points. 

§6. Real arrangements 

We conclude with an application to the classification of arrange,­
ments of transverse planes in R.4. Though similar in some respects to 
central line arrangements in C2 , such arrangements lack a complex struc­
ture. That difference manifests itself in the nature of the resonance 
varieties. 

6.1. Arrangements of real planes 
A 2-arrangement in R.4 is a finite collection A = {H1, ... , Hn} of 

transverse planes through the origin of R.4. Such an arrangement A is a 
realization of the uniform matroid U2,n; thus, its intersection lattice is 
solely determined by n. Let X = R.4 \ LJi Hi be the complement of the 
arrangement. The link of the arrangement is L = § 3nLJi Hi. Clearly, the 
complement of A deform-retracts onto the complement of L. The link 
Lis the closure of a pure braid in Pn, see [24], [23]. Hence, G = 11"1(X) 
is a commutator-relators group. 
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The linking numbers of A are by definition those of the link L. 
They can be computed from the defining equations of A: If Hi = 
{ ai = a: = O}, for some linear forms ai, a: : IR4 - IR, then li,j = 
sgn(det(ai, a~, Ocj, aj)), see [34]. A presentation for the cohomology ring 
of X in terms of the linking numbers is given in (8), see also [34]. 

Arrangements of transverse planes in IR4 fall, in the terminology 
of [8], into several types: horizontal and non-horizontal, decomposable 
and indecomposable. A 2-arrangement A is horizontal if it admits a 
defining polynomial of the form f(z,w) = I1~= 1(z+aiw+biw), with ai, 
bi real. From the coefficients of f, one reads off a permutation T E Sn. 
Conversely, given T, there is a horizontal arrangement, A( T), whose 
associated permutation is T. A 2-arrangement is decomposable if its 
link is the (1, ±1)-cable of the link of another 2-arrangement, and it is 
completely decomposable if its link can be obtained from the unknot by 
successive (1, ±1)-cablings. See [23] for details. 

6.2. Resonance varieties 

Let R.d(A) := R.d(X, <C) be the dth resonance variety of A. Recall 
that the resonance varieties form a tower en = R.0 :) R.1 :) · · · :) 

Rn- l = { 0}. Moreover, they are the determinantal varieties of the 
n x (n -1) matrix M(>..), whose entries are given by M(>..)k,j = lk,jAk -
5k,j(Ei lk,i>..i)-

If A is decomposable, the top resonance variety, R.1 (A), contains as 
a component the hyperplane ~n = {>..1 +· • -+>..n = O}. Moreover, if A is 
completely decomposable, R.1 (A) is the union of a central arrangement of 
n-2 hyperplanes in en (counting multiplicities), with defining equations 
of the form t::1>..1 +· · ·+t::nAn = 0, where Ei = ±1. If A is indecomposable, 
though, R.1 (A) may contain non-linear components (see Example 6.5). 

At the other extreme, all the components of the variety R.n_ 2(A) 
are linear. It can be shown that a horizontal arrangement A is indecom­
posable if and only if R.n-2(A) = {O}. 

Example 6.3. In [34], Ziegler provided the first examples of 2-
arrangements with isomorphic intersection lattices, but non-isomorphic 
cohomology rings. Those arrangements are: A = A(1234) and A' = 
A(2134). We can distinguish their cohomology rings by counting the 
components of their resonance varieties: 

The example A' shows that the analogues of Theorem 5.3 (b), (d), (e) 
do not hold for 2-arrangements: 
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• The second component of R 1 (A') does not lie in the hyperplane 
~4-

• The two components of R 1 (A') do not intersect only at the origin, 
but rather, in the 2-dimensional subspace {A1 +A2 = A3+A4 = O}. 

• We have R2(A1 ) = {A1 + A2 = A3 = A4 = O} u {A1 = A2 = 
A3 + A4 = O}, and thus the stratification of R 1 by Rd's is not by 
dimension of components. 

Example 6.4; Let A= A(321456) and A' = A(213456). Then: 

Ri(A) = R1(A1 ) = ~6 U {A1 + A2 - A3 - A4 - As - A6 = O}, 

R2(A) = Ri(A), R2(A1 ) = ~6-

This example shows that the analogue of Theorem 5.3 (a) does not hold 
for 2-arrangements: The variety R 1 fails to determine R 2, and thereby 
fails to determine the cohomology ring of the complement. 

Example 6.5. The horizontal arrangement A(31425) is indecom­
posable. Its resonance varieties are: 

R1 = Pf - A~ - A~+ Al - Al+ AiA2 - A1A§ + AiA3 - A1A5 - AiA4 -
A1A~ + Ai As - A1Ag + A§A3 + A2A5 - A§A4 +A2A~+ A§As + A2Ag -
A5A4 + A3A~ + A5As + A3Ag + A~As - A4Ag + 2A1A2A3 - 2A1A2A4 + 
2A1A2As - 2A1A3A4 + 2A1A3A5 - 2A1A4A5 + 2A2A3A4 - 2A2A3A5 + 
2A2A4A5 + 2A3A4A5 = O} 

R2 = {A1 + A2 = A3 = A4 =As= O} u {A1 + A3 = A2 = A4 =As= O} u 
{A2 + A4 = A1 = A3 =As= O} u {A3 + A4 = A1 = A2 =As= O} u 
{A1 + As = A2 = A3 = A4 = O} U {A4 + As = A1 = A2 = A3 = O} U 

{A1 - A4 = A2 = A3 =As= O} U {A2 - A3 = A1 = A4 =As= O} U 

{A2 - As= A1 = A3 = A4 = O} U {A3 - As= A1 = A2 = A4 = O} 

R3 = {O} 

This example shows that the analogue of Theorem 5.3 (c) does not hold 
for 2-arrangements: The variety R 1 is not linear. 

6.6. Ziegler invariant 

The cohomology rings of the arrangements in Example 6.3 were 
distinguished by Ziegler by means of an invariant closely related to one 
of the Z-invariants introduced in 1.16. 

Recall the sequence O - G2/G3 - G/G3 - H - 0. This central 
extension is determined by the map x T : G2/G3 - /\ 2 H, given explicitly 
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by (9). The invariant Z0 ,1(x) = cokerx T equals H 2(G) = zn-l_ More 
information is carried by the next invariant, 

Zo,2(x) = coker (µHo// x T: (\.
2 G2/G3 ......, (\. 

4H). 
Set Z(A) := Zo,2(x). It can be shown that Z(A) = z("31)-r EBZ2, where 
r is some integer that can be read off from the linking graph Q of the 
link of A. 

For example, Z(A(1234)) = Z and Z(A(2134)) = Z2, showing 
again that the two arrangements have different cohomology rings. But 
Z(A) is not a complete invariant of the cohomology ring. For example, 
Z(A(21435)) = Z(A(31425)) = zt although the two arrangements are 
distinguished by the v-invariants ( see below). 

A I 1/3,0 I 1/3,1 I 1/3,2 I v3,3 I v3,4 I 
3 A(l23) 9 4 
4 A(1234) 27 0 13 

A(2134) 18 20 2 

5 A(l2345) 81 0 0 40 
A(21345) 54 27 35 5 
A(21435) 36 66 17 2 
A(31425) 51 60 10 0 

6 A(123456) 243 0 0 0 121 
A(213456) 162 81 0 107 14 
A(321456) 162 0 162 32 8 
A(215436) 108 126 87 38 5 
A(214356) 108 108 121 24 3 
A(312546) 72 186 90 14 2 
A(341256) 81 162 112 6 3 
A(314256) 117 162 74 10 1 
A(241536) 108 200 48 8 0 

£, 81 162 112 6 3 

M 144 160 60 0 0 

TABLE 1. Arrangements of n :S: 6 planes in IR4 : Number 
v3,d of index 3 subgroups, according to their abelianiza­
tion, zn EB Z~. 
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6.7. Classification for n ~ 6 

Let G the group of an arrangement of n transverse planes in R.4, 
and G/G3 its second nilpotent quotient. As can be seen in Table 1, the 
v3,d-invariants completely classify the second nilpotent quotients (and, 
thereby the cohomology rings) of 2-arrangement groups, for n ~ 6, with 
a lone exception. 

The exception is Mazurovski'i'.'s pair, K, = A(341256) and £. The 
corresponding configurations of skew lines in R.3 were introduced in 
(24]. Explicit equations for K, and £ can be found in (23]. As noted 
in [24], the links of K, and £ have the same linking numbers. Thus, 
H*(X,c; Z) ~ H*(Xc,; Z), and G,c/(G,c)3 ~ Gc,/(Gc,)3. On the other 
hand, G,c/(G,c)4 1 Gc,/(Gc,)4, as can be seen from the distribution of 
the abelianization of their index 3 subgroups, shown in Table 2. 

d 11 o I 1 I 2 3 

G,c/(G,c)4 81 0 162 0 112 0 6 0 3 
Gc,j(Gc,)4 81 0 172 24 78 6 0 0 3 

TABLE 2. The groups G,c/(G,c)4 and Gc,/(Gc,)4: Num­
ber of index 3 subgroups, according to their abelianiza­
tion, Z6 EB zg. 

We summarize the above discussion, as follows: 

Theorem 6.8. Let (A, A') =/ (K, £) be a pair of 2-arrangements 
of n ~ 6 planes in R.4 • Then H*(X) ~ H*(X') if and only if X ~ X'. 

In other words, up to 6 planes, and with the exception of Mazurov­
ski'i'.'s pair, the classification of complements of 2-arrangements up to 
cohomology-ring isomorphism coincides with the homotopy-type classi­
fication. As shown in (23], the latter coincides with the isotopy-type 
classification, modulo mirror images. 
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