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Abstract. 

We relate the cohomology of the Orlik-Solomon algebra of a dis­
criminantal arrangement to the local system cohomology of the com­
plement. The Orlik-Solomon algebra of such an arrangement (viewed 
as a complex) is shown to be a linear approximation of a complex aris­
ing from the fundamental group of the complement, the cohomology 
of which is isomorphic to that of the complement with coefficients 
in an arbitrary complex rank one local system. We also establish 
the relationship between the cohomology support loci of the comple­
ment of a discriminantal arrangement and the resonant varieties of 
its Orlik-Solomon algebra. 

Introduction 

Let A be an arrangement of N complex hyperplanes, and let M(A) 
be its complement. For each hyperplane H of A, let !H be a linear 
polynomial with kernel H, and let AH be a complex number. Each point 
A = ( ... , AH, ... ) E c,N determines an integrable connection v' = d+O.:\ 
on the trivial line bundle over M(A), where 0.:\ = LHEA AHd log f H, 
and an associated complex rank one local system £ on M(A). Alter­
natively, if t E (C*)N is the point in the complex torus corresponding 
to A, then the local system £ is induced by the representation of the 
fundamental group of M(A) which sends any meridian about HE A to 
tH = exp(-21riAH ). 
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Due largely to its various applications, the cohomology of M(A) 
with coefficients in.Chas been the subject of considerable recent interest. 
These applications include representations of braid groups, generalized 
hypergeometric functions, and the Knizhnik-Zamolodchikov equations 
from conformal field theory. See, for instance, the works of Aomoto, 
Kita, Kohno, Schechtman, and Varchenko (1, 2, 21, 28, 30], and see Orlik 
and Terao (25] as a general reference for arrangements. Of particular 
interest in these applications are the discriminantal arrangements of [28], 
the complements of which may be realized as configuration spaces of 
ordered points in C punctured finitely many times. (Note that our use 
of the term "discriminantal" differs from that of (25].) 

The local system cohomology H*(M(A); .C) may be studied from 
a number of points of view. For instance, if A is real, that is, defined 
by real equations, the complement M(A) is homotopy equivalent to the 
Salvetti complex X of A, see (26]. In this instance, the complex X 
may be used in the study of local systems on M(A). This approach 
is developed by Varchenko in (30], to which we also refer for discussion 
of the applications mentioned above, and has been pursued by Denham 
and Hanlon (13] in their study of the homology of the Milnor fiber of an 
arrangement. 

If A is K(rr, 1), that is, the complement M(A) is a K(rr, 1)-space, 
then local systems on M(A) may be studied from the point of view of 
cohomology of groups. Any representation of the fundamental group G 
of the complement of a K(rr, 1) arrangement gives rise to a G-module 
L, and a local system of coefficients .C on M(A). Since M(A) is a 
K(rr,1)-space, we have H*(M(A);.C) = H*(G;L) and H*(M(A);.C) = 
H*(G; L), see for instance Brown (8]. The class of K(rr, 1) arrangements 
includes the discriminantal arrangements noted above, as they are exam­
ples of fiber-type arrangements, well-known to be K(rr, 1), see e.g. Falk 
and Randell (17]. 

For any arrangement A, let B(A) denote the Brieskorn algebra of 
A, generated by 1 and the closed differential forms d log f H, H E A. As 
is well-known, the algebra B(A) is isomorphic to H*(M(A); C), and to 
the Orlik-Solomon algebra A(A), so is determined by the lattice of A, 
see [7, 24, 25]. If .C is a local system on M(A) determined by "weights" 
~ which satisfy certain Aomoto non-resonance conditions, work of Es­
nault, Schechtman, and Viehweg (14], extended by Schechtman, Terao, 
and Varchenko (27], shows that H* (M(A); .C) is isomorphic to the co­
homology of the complex (B(A), O~/\). Thus for non-resonant weights, 
the local system cohomology may be computed by combinatorial means, 
using the Orlik-Solomon algebra equipped with differential µ(~), given 
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by left-multiplication by W>., the image of n,. under the isomorphism 
B(A) -t A(A). 

For arbitrary (resonant) weights, one has 

dimHk(A(A),µ(>.)) ~ dimHk(M(A);.C) ~ dimHk(M(A);C) 

for each k. See Libgober and Yuzvinsky [23] for the first of these in­
equalities. The second is obtained using stratified Morse theory in [9], 
and resolves a question raised by Aomoto and Kita in [2]. For resonant 
weights, the precise relation between H*(A(A),µ(>.)) and H*(M(A);.C) 
is not known. 

However, recent results suggest that Hk(A(A),µ(>.)) may be viewed 
as a "linear approximation" of Hk(M(A); .C), at least for small k. The 
resonant varieties, 'R.;:1(A(A)) = {A E c,N I dimHk(A(A),µ(>.)) 2:: m}, 
of the Orlik-Solomon algebra were introduced by Falk in [16]. Fork= 1 
and any arrangement A, it is known that 'R.f(A(A)) coincides with 
the tangent cone of the cohomology support locus of the complement, 
E~(M(A)) = {t E (C*)N I dimH1(M(A);.C) 2:: m}, at the point 
(1, ... , 1), see [11, 22, 23]. For certain arrangements, we present fur­
ther "evidence" in support of this philosophy here. 

If A is a fiber-type arrangement, the fundamental group G of the 
complement M(A) may be realized as an iterated semidirect product of 
free groups, and M(A) is a K(G, 1)-space, see [17, 25]. For any such 
group, we construct a finite, free ZG-resolution, C.(G), of Z in [10]. 
This resolution may be used to compute the homology and cohomol­
ogy of G with coefficients in any G-module L, or equivalently, that of 
M(A) with coefficients in any local system .C. We have H*(M(A); .C) = 
H*(C.(G) ®a L) and H*(M(A);.C) = H*(1ioma(C.(G),L)), see [8]. 

Briefly, for a fiber-type arrangement A, the relationship between the 
cohomology theories H*(A(A),µ(>.)) and H*(M(A);.C) is given by the 
following assertion. For any>., the complex (A(A),µ(>.)) is a linear ap­
proximation of the complex 1ioma( C. ( G), L). We prove a variant of this 
statement in the case where A is a discriminantal arrangement here. We 
also establish the relationship between the resonant varieties 'R.;:1(A(A)) 
and cohomology support loci E!;,.(M(A)) of these arrangements, analo­
gous to that mentioned above in the case k = 1. 

The paper is organized as follows. The Orlik-Solomon algebra of a 
discriminantal arrangement admits a simple description, which fascili­
tates analysis of the differential of the complex (A(A),µ(>.)). We carry 
out this analysis, which is elementary albeit delicate, in section 1, and 
obtain an explicit (inductive) description of the differential µ(>.). In 
section 2, we recall the construction of the resolution C.(G) from [10] 
in the instance where G is the fundamental group of the complement of 
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a discriminantal arrangement, and exhibit a complex (C•, o•(t)) which 
computes the cohomology H*(M(A),£) for an arbitrary rank one local 
system. We then study in section 3 a linear approximation of ( c•, o• ( t)), 
and relate it, for arbitrary A, to the complex (A(A),µ(A)). We con­
clude by realizing the resonant varieties of the Orlik-Solomon algebra of 
a discriminantal arrangement as the tangent cones at the identity of the 
cohomology support loci of the complement in section 4. 

§1. Cohomology of the Orlik-Solomon Algebra 

Let Mn = {(xi, ... , Xn) E en I Xi -:/- Xj if i -:/- j} be the configura­
tion space of n ordered points in e. Note that Mn may be realized as the 
complement of the braid arrangement An = { Xi = Xj, 1 S i < j S n} 
in en. Classical work of Fadell and Neuwirth [15] shows the projection 
en .- ee defined by forgetting the last n - f coordinates gives rise to a 
bundle map p: Mn .- Me. From this it follows that Mn is a K(Pn, 1)­
space, where Pn = rr1 (Mn) is the pure braid group on n strands. 

The typical fiber of the bundle of configuration spaces p : Mn .­
Me may be realized as the complement of an arrangement in en-e, a 
discriminantal arrangement in the sense of Schechtman and Varchenko, 
see [28, 30]. The fiber over z = (z1, ... , ze) E Me may be realized as 
the complement, Mn,e = M(An,e), of the arrangement An,e consisting 
of the N = (~) - @ hyperplanes 

H- . _ {ker(xi - xi) f + 1 S i < j S n, 
••1 - ker(xj - zi) 1 S i S £, f + 1 S j Sn, 

in en-e (with coordinates Xe+i, ... , xn)- Note that Mn,e is the config­
uration space of n - f ordered points in e \ { z1, ... , ze}, and that the 
topology of Mn,e is independent of z, see [15, 5, 20]. We first record 
some known results on the cohomology of Mn,e-

1.1. The Orlik-Solomon Algebra 

The fundamental group of the configuration space Mn,e may be real­
ized as Pn,e = rr1(Mn,e) = ker(Pn .- Pe), the kernel of the homorphism 
from Pn to Pe defined by forgetting the last n - f strands. From the 
homotopy exact sequence of the bundle p : Mn .- Me, we see that Mn e 
is a K(Pn,e, 1)-space. The cohomology of this space, and hence of this 
group, may be described as follows. 

Let £ = ffi:=o £q be the graded exterior algebra over e, generated 
by ei,j, f + 1 S j S n, 1 S i < j. Let I be the ideal in £ generated, for 
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1 ::; i < j < k ::; n, by 

ei,j I\ ei,k - ei,j I\ e3,k + ei,k I\ e3,k if j?_f + 1, and ei,k I\ e3,k if j::;£. 

Note that t:q C I for q > n-:-- f. The Orlik-Solomon algebra of the 
discriminantal arrangement .An,t is the quotient A = £ /I. 

Theorem 1.2. The cohomology algebra H*(Mn,li C)=H*(Pn,li C) 
is isomorphic to the Orlik-Solomon algebra A= A(.An,t). 

The grading on £ induces a grading A = EB;,:i Aq on the Orlik­
Solomon algebra A = A(An,t)- Let ai,j denote the image of ei,j in A, 
and note that these elements form a basis for A 1 and generate A. From 
the description of the ideal I above, it is clear that all relations among 
these generators are consequences of the following: 

(1.1) { 
a · · I\ (a · k - a · k) if 1· > f + l I\ i,3 J, i, _ , 

a·k a·k-
i, J, - 0 if j ::; f, 

for 1 ::; i < j < k ::; n. 
This observation leads to a natural choice of basis for the algebra 

A. Form::; n, write [m, n] = {m, m + 1, ... ,n}. If I= {i1 , ... ,iq} and 
J = {j1 , ... , )q} satisfy the conditions J ~ [f + 1, n] and 1 ::; ip < ]p for 
each p, let a1,J = ai1 ,j1 /\ • • • /\ ai.,j •. If IJI = 0, set a1,J = l. 

Proposition 1.3. For each q, 0 ::; q ::; n - f, the forms a1,J with 
IJI = q and I as above form a basis for the summand Aq of the Orlik­
Solomon algebra A of the discriminantal arrangement An,l• Further­
more, the summand Aq decomposes as a direct sum, Aq = EBIJl=q AJ, 

where AJ = ffi1Ca1,J. 

Remark 1.4. These results are well-known. For instance, if A= 
An is the braid arrangement, Theorem 1.2 follows from results of Arnol'd 
[4] and Cohen [121, which show that H*(Mn; C) is generated by the forms 
ai,j = dlog(x3 - xi), with relations (1.1) (with f = 1). For any discrim­
inantal arrangement An,l, Theorem 1.2 is a consequence of results of 
Brieskorn and Orlik-Solomon, see [7, 24, 25]. 

As mentioned in the Introduction, the discriminantal arrangements 
.An,t are examples of (affine) fiber-type or supersolvable arrangements. 
The structure of the Orlik-Solomon algebra of any such arrangement 
A was determined by Terao [29]. The basis for the algebra A(.An,t) 
exhibited in Proposition 1.3 above is the nbc-basis (with respect to a 
natural ordering of the hyperplanes of An,t), see [25]. The Orlik-Solomon 
algebra of any supersolvable arrangement admits an analogous basis, 
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see Bjorner-Ziegler [6], and see Falk-Terao [18] for affine supersolvable 
arrangements. 

1.5. The Orlik-Solomon Algebra as a Complex 

Recall that N = (~) - m, and consider c,N with coordinates Ai,i, 
i + l ::; j :s; n, 1 ::; i < j. Each point >. E c,N gives rise to an 
element w = w:,,. = L Ai,j • ai,j of A 1 . Left-multiplication by w induces 
a map µq(>.) : Aq --+ Aq+l, defined by µq(>.)(ry) = w I\ T/· Clearly, 
µq+l(>.) o µq(>.) = 0, so (A•,µ•(>.)) is a complex. 

We shall obtain an inductive formula for the boundary maps of the 
complex (A•,µ•(>.)). The projection c,n-e--+ !C onto the first coordinate 
gives rise to a bundle of configuration spaces, Mn,e--+ Ml+1,e, with fiber 
Mn,Hl, see [15, 5, 20]. The inclusion of the fiber Mn,Hl <-+ Mn,e induces 
a map on cohomology which is clearly surjective. This yields a surjection 
7r: A(An,e) --+ A(An,e+1)-

Write A= A(An,e) and A= A(An,e+1), and denote the generators 
of both A and A by ai,j. In terms of these generators, the map 1r 

is given by 1r(ai,Hl) = 0, and 1r(ai,j) = ai,j otherwise. Let w E .A 
denote the image of w E A 1 under Tr. Ifwe write w = I:~=Hl wk, where 

Wk = E:::f Ai,k "ai,k, then w = L~=l+2 Wk. As above, left-multiplication 
by w induces a map µq(>.) : _Aq --+ _Aq+l, and (.A•,µ•(>.)) is a complex. 
The following is straightforward. 

Lemma 1.6. The map 1r: (A•,µ•(>.))--+ (A•,µ•(>.)) is a surjec­
tive chain map. 

Let (B•, µ8(>.)) denote the kernel of the chain map 1r. The terms are 
of the form Bq = EBA'k, where i + l EK and IKI = q. In particular, 
B0 = 0. We now identify the differential µ8(>.). If k < m :s; n and 
J ~ [m,n], let {k,J} denote the (ordered) subset {k} U J of [k,n]. For 
a linear map F, write [F]k for the map EBtF. 

Proposition 1.7. The complex (B•, µ8(>.)) decomposes as the di­
rect sum of i copies of the complex A•, shifted in dimension by one, with 
the sign of the boundary map reversed. In other words, (B•,µ8(>.)) ~ 
((_A•-ll, -[µ;•-1(>.W). 

Proof. For 1::; q :s; n-i, we have Bq = EBA{Hl,J}' where the sum 
is over all J ~ [i + 2, n] with IJI = q-1. Each summand may be written 

Aq - al . I\ Aq-1 Th Bq - trl Aq-1 . as {l+l,J} - Wi=l ai,l+l J • us, - Wi=l ai,l+l I\ lS 

isomorphic to the direct sum of i copies of _Aq-l via the map Bq --+ 

[_Aq-l Ji, ai,Hl I\ a1,J ~ (0, ... , a1,J, ... , 0). 
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Now consider the boundary map µ'1(>-.) : Bq - Bq+I of the complex 
B•, induced by left-multiplication by w = L~=l+I Wk- Let 'f/ = ai,l+I I\ 
ar,J be a generator for Bq. Since ai,k I\ aj,k = 0 for all i,j < k, we have 
Wt+1 I\ 'f/ = 0. Thus, 

µ'1(A)('f/) = w I\ 'f/ = (w -Wt+1) I\ 'f/ = -ai,l+I I\ (w -Wt+1) I\ ar,J• 

Write (w -We+1) I\ a1,J =fa+ 6 in terms of the basis for A specified in 
Proposition 1.3, where 6 E EBe+lEK A'k and 6 E EBt+l~K A'k. Then 
wehavew/\'f/ = -ai,t+1/\(fa+6) = -ai,t+1/\6. Checkingthatw/\ar,J = 
6 in A, we have µ'1(>-.)(ai,Hl /\ar,J) = -ai,e+I /\µ'1- 1(>-.)(ar,J). Thus, 
with the change in sign, the boundary map µ8(>-.) respects the direct 
sum decomposition B• ~ (.A•-1)t. Q.E.D. 

1.8. Boundary Maps 

We now study the differential of the complex (A•,µ•(>-.)). The di­
rect sum decompositions of the terms of the complexes A•, A•, and B• 
exhibited above yield 

Aq = EBIJl=q Aj = ( EBHlEJ Aj) EB ( EBHl~J Aj) = Bq EB ..4q_ 

Let 7rB : Aq - Bq denote the natural projection. With respect to 
the direct sum decomposition of the terms Aq = Bq EB Aq, the boundary 
mapµ•(>-.) of the complex A• is given by µq(A)(v1, v2) = (µ'1(A)(v1) + 
wq(>-.)(v2),µ'1(A)(v2)), where wq(A) = 7rB o µq(>-.) : Aq - Bq+l_ In 
matrix form, we have 

(1.2) 

Since A• is the complex associated to the discriminantal arrange­
ment An,e+I in cn-£-l and B• ~ (.A•-l t decomposes as a direct sum 
by Proposition 1. 7, we inductively concentrate our attention on the maps 
\Jl"q(>-.). Fix J ~ [.e + 2, n], and denote the restriction of wq(A) to the 
summand Aj of A'l by Wj(A). For 'f/ E Aj, since 7rB(Wk I\ 'fJ) = 0 if 
k ¢ {.e + 1, J}, we have Wj(A)('fJ) = W£+1 I\ 'f/ + LjEJ 7rB(wi I\ 'fJ). Thus, 

Wj(A) : Aj - A{iJI,J} = EB~=l am,Hl /\ Aj. 

For 1 ::::; m ::::; .e, let 'Trm,Hl : A{iJi,J} - am,Hl /\ Aj denote the 

natural projection. Then (the matrix of) Wj(A) : Aj - (A}-)£ may be 
expressed as 

(1.3) 

Wj(A) = (1r1,e+1 o Wj(A) 
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and we focus our attention on one such block, that is, on the composition 

(1.4) 'll"m,e+l o '11}'(.X) : Aj -+ A{i.~} -+ am,i+l I\ Aj. 

Write J = {j1, ... ,jg} and for 1 :Sp :Sq, let Jp = {j1, ... ,jp} and 
JP = J \ JP. If p = 0, set J0 = 0 and J 0 = J. Then for a1,J E Aj, it 
is readily checked that 'll"m,e+l o Wj(A)(a1,J) = 'll"m,e+l o 71"B(w I\ a1,J) is 
given by 

(1.5) 

'll"m,e+l o Wj(A)(a1,J) = z::=O 'll"m,e+l o 71"B(WjP I\ a1P,JP) I\ a1v,Jv, 

where j 0 = £ + 1. In light of this, we restrict our attention to 'll"m,e+l o 

71"B(Wjq I\ a1,J). We describe this term using the following notion. 

Definition 1.9. Fix J = {j1, ... ,jg}~ [£+2, n] and m:::; £. If I= 
{ii, ... , ig} and 1 :S ip < Jp for each p, a set K = {ksu ... , ks,, ks,+il is 
called I -admissible if 

1. {is" ... , is,} ~ I\ { ig} and is,+1 = ig; 
2. {kspis1 } = {m,£+1}; and 
3. {ksp, isp} = {ks,,-uJsp-l} for p = 2, ... , t + 1. 

Note that the last condition is vacuous if K is of cardinality one. Note 
also that 1 :S ksp < j 8 P and ksp -=/ isp for each p. 

Lemma 1.10. We have 

'll"m,e+l o 71"B(Wjq I\ a1,J) = LK Akq,jqam,e+l I\ bii I\··· I\ bj,1 , 

where the sum is over all I-admissible sets K ={ ks 1 , ••• , ks,, ks,+i = kg}, 
and 

{
a· · -ak · bip = iv,Jv ,J,Jp 

a· . 
'tp,Jp 

ifpE {s1, ... ,St,q}, 

ifp¢ {s1, ... ,St,q}. 

Proof. Let ai,j and ak,i be elements of A{j}· Writer= min{i, k} 
ands= max{ i, k }. From (1.1), we have either ai,j I\ ak,j = ar,s I\ (lik,j -
ai,i) if s 2: £ + 1, or ai,j I\ ak,i = 0 if s :S £. It follows from these 
considerations, and a routine exercise to check the sign, that summands 
Akq,i.am,e+l I\ bii I\··· I\ bj0 of 'll"m,e+l o '11"B(Wj0 I\ a1,J) arise only from 
I-admissible sets K. Q.E.D. 

Now write 'll"m,e+l o '11"B(Wj0 I\ a1,J) = ER Ak,1am,e+l I\ aR,J, where 
the sum is over all R = {r1, ... , rg}, 1 :S rp < Jp, 1 :S p :S q, and 
Ak,I EC. 
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Proposition 1.11. The coefficient >..'k,,1 of am,e+1 I\ aR,J in 
7l"m,e+l 07l"B(w1,, /\a1,J) is given by 

>,.J = (-l)IR\Rnlj ~ A . 
~I ~K ~~ 
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where the sum is over all I -admissible sets K such that R \ R n I ~ K. 

Proof. Let K = { ks 1 , ••• , ks,, kq} be an I-admissible set. As­
sociated with K, we have the term Akq,Jqam,l+l I\ bJi I\ · · · I\ b1q of 
7l"m,e+l O 7l"B(a1,J I\ WjJ from Lemma 1.10. If R \ Rn I rz K, it is 
readily checked that this term contributes nothing to the coefficient 
>..'k, 1 of am,e+l I\ aR,J· On the other hand, if R \Rn I ~ K, then 
th~ above term contributes the summand (-I)IR\Rnll>..kq,J. to the coef­
ficient >..'k,,1. Q.E.D. 

We now obtain a complete description of the map 7l"m,e+l o 'Pj(A) : 
Aj -+ am,e+I I\ Aj from (1.4). Write 

7l"m,e+l o 'Pj(.X)(a1,J) = LRA'k,,1am,e+l /\aR,J, 

where, as above, the sum is over all R = {r1, ... , rq}, 1 $ rp < Jp, 
1 $ p $ q, and A'k,,1 EC. Let fR,J = 1 if R = I, and fR,I = 0 otherwise. 

Theorem 1.12. The coefficient A'k,,1 of am,e+l I\ aR,J in 
7l"m,e+l o 'Pj(A) is given by 

A'k,,1 = (-l)IR\Rnlj(fR,JAm,e+l + LjEJLKAk,j), 

where, if j = Jp, the second sum is over all Ip-admissible sets K = 
{ksw .. , ks., k} for which R \Rn I ~ K. 

Proof. From (1.5), we have 

7l"m,e+l o 'Pj(a1,J) = L:=O 7l"m,e+l o 7l"B(w1P I\ a1p,Jp) I\ a1v ,JP, 

and the summand corresponding top= 0 is simply Am,e+1am,e+1 /\aJ,J. 

For p ~ l, write 7l"m,e+l 07rB(w1v /\a1p,Jp) = ERv Xif'v,I,,am,e+l /\aR,,,Jp, 
where the sum is over all Rp = { r 1, ... , r P}. For a fixed R, the coefficient 
of am,l+l I\ aR,I in 7l"m,e+l o 7l"B(w I\ a1,J) may then be expressed as 

Aki= fRJAme+l + ~q ARJP J, , , , .L,_tp=l v, P 

where R = Rp LJIP. Note that we have R\RnI = Rp \Rv nip for such 
R. 
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By Proposition 1.11, we have >.*;,,I,, = (-I)IRv\R,.nivl EK >.k,.,j,., 

where the sum is over all Iv-admissible sets K with Rp \ Rp n Ip ~ K. 
Thus, 

ARJ I= ER JA •+1 + '°'q (-I)IR,.\R,,nI,.I '°' Ak . , , m,c. L....tp=l ~K p,J.,,, 

and since R = Rp uJP, we have R\Rnl = Rv \Rvnlp ~ K. Q.E.D. 

Remark 1.13. In light of the decomposition of the boundary maps 
of the complex (A•,µ•(.~)) given by (1.2) and (1.3), the above theorem, 
together with the "initial conditions" 

0 0 1 Ln Ln Lk-1 µ (~) : A ---+ A , I t--t Wk = . Ai,kai,k, 
k=i+l k=i+l i=l 

provides a complete description of the boundary mapsµ•(~). 

§2. Resolutions and Local Systems 

The fundamental group of the complement of a discriminantal ar­
rangement, and more generally that of any fiber-type arrangement, may 
be realized as an iterated semidirect product of free groups. For any 
such group G, in [10] we construct a finite free ZG-resolution C.(G) of 
the integers. We recall the construction of this resolution in notation 
consonant with that of the previous section. 

Denote the standard generators of the pure braid group Pn by 'Yi,j, 
1 ~ i < j ~ n, and for each j, let Gj be the free group on the j - 1 
generators "/1,j, ... , "/j-1,j· Then the pure braid group may be realized 
as Pn = Gn ><1 • • • ><1 G2. More generally, for 1 ~ £ ~ n, the group Pn,£ = 
ker(Pn---+ Pt) may be realized as Pn,i = Gn><I· · ·><IGt+l• Note that Pn = 
Pn,1· For f < j, the monodromy homomorphisms Pj-1,i ---+ Aut(Gj) 
are given by the (restriction of the) Artin representation. For s < j, 
we shall not distinguish between the braid 'Yr,s and the corresponding 
(right) automorphism 'Yr,s E Aut(Gj)- The action of 'Yr,s on Gj is by 

. t· . ( ) -1 -1 h conJuga 10n. 'Yr,s 'Yi,j = 'Yr,s · 'Yi,j · 'Yr,s = zi · 'Yi,j · zi , w ere 

(2.1) {
'Yr,j"/s,j if i = r or i = s, 

Zi = br,j,"/s,j] ifr < i < s, 

1 otherwise. 

See Birman [5] and Hansen [20] for details, and as general references on 
braids. 
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2.1. Some Fox Calculus 

We first establish some notation and record some elements of the 
Fox Calculus (19, 5], and results from (10] necessary in the construction. 

Denote the integral group ring of a (multiplicative) group G by ZG. 
We regard modules over ZG as left modules. Elements of the free module 
(zcr are viewed as row vectors, and ZG-linear maps (ZG)n -+ (ZG)m 
are viewed as n x m matrices which act on the right. For such a map 
F, denote the transpose by FT, and recall that (F]k denotes the map 
EB~F. Denote then x n identity matrix by 1In. 

For the single free group Gi = ('Yi,j), a free ZGrresolution of Z is 
given by 

(2.2) 

where Aj ( 'Yl,i - 1 · · · 'Yi-1,i - 1) T, and € is the augmentation 
map, given by €('Yi,i) = 1. For each element 'YE Pj-1,i, conjugation by 
'Y induces an automorphism 'Y: Gi -+ Gj, and a chain automorphism 'Y• 
of (2.2), which by the "fundamental formula of Fox Calculus," can be 
expressed as 

(ZGi )i-1 ~ ZGi 

(2.3) 1.7(-y)o-y l-r 

(ZGi )i-1 ~ ZGi 

where .:J('Y) = (a~('Y;,~)) is the (j - 1) x (j - 1) Jacobian matrix of 
'Yk,3 

Fox derivatives of 'Y, and i denotes the extension of 'Y to the group 
ring ZGj, resp., to (ZGi)i-1. For a second element (3 of Pj-l,i, we 
have ('Y • (3). = ((3 o 'Y ). = (3. o 'Y• by the "chain rule of Fox Calculus": 
.:1((3 o -y) = fJ(.:J('Y)) • .:1((3). In particular, .:J('Y-1) = 7-1(.:J('Y)-1 ). 

Now fix£, 1 ::; f_::; n, and consider the group Pn,e = Gn ~ · · · ~ Gt+l• 
Let 'R, = ZPn,e denote the integral group ring of Pn,i, For 'YE Pi-1,i as 
above, define m-y : 'R, -+ 'R, by m-y(r) = 'Y • r. From (2.3) and extension 
of scalars, we obtain 

id@~; -
1 m-y@.7(-y)o-y 

-n ('7/G-)i-1 id@~; 
1'- ©zG; t.u J ---+ 

'R©w; ZGi 

1 m-y®'Y 
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The map m-y®J('y)oi and the canonical isomorphism R@za; (ZG1)J-l 
~ R,J-l define an R-linear automorphism pj('y) : R,J-l -----, R,J- 1, whose 
matrix is 'Y · J('y), see [10, Lemma 2.4]. Furthermore, we have the 
following. 

Lemma 2.2 ([10, Lemma 2.6]). For eachj, 2::; j::; n, the action 
of the group Pj-1,l on the free group Gj gives rise to a representation 
Pj : Pj-1,l -----> Autn(Rj-l) with the property that pj('Y) = m-y ® J('y) o-y 
for every"( E Pj-1,l· 

Remark 2.3. Via the convention pj('Yp,q) = llj-l for q ~ j, the 
above extends to a representation Pj : Pn,e -----, Autn(RJ-l) of the entire 
group Pn,l· We denote by {>j : R -----, Endn(RJ-l) the extension of 
Pj to the group ring R. We also use {>j to denote the homomorphism 
Homn(Rm, Rn) -----, Homn(Rm(j-l), nn(j-l)) defined by replacing each 
entry x of an m x n matrix by h(x). 

2.4. The Resolution 

We now recall the construction of the free resolution € : C. = 
C. ( G) -----> Z over the ring R = ZG from [10], in the case where G = Pn,l 
is the fundamental group of the complement of the discriminantal ar­
rangement An,l· If J = {j1, ... ,jq} ~ [£ + 1, n], recall that for p < q, 
JP = {j1, ... ,jp} and JP = J \ Jp. For such a set J, let Cf be a free 
R-module of rank (j1 - 1) • • • {jq - 1). 

Let Co = R, and, for 1 ::; q ::; n - £, let Cq = EBIJl=q Cf, where 
the sum is over all J ~ [£ + 1, n]. The augmentation map, € : Co -----, Z, 
is the usual augmentation of the group ring, given by t('y) = 1, for 
"( E Pn,l• We define the boundary maps of C. by recursively specifying 
their restrictions A J to the summands Cf as follows: 

If J = {j}, we define AJ : Cf = R,J-l -----, R = Co as in the resolution 

(2.2), by AJ = {'Y1,j - 1 'Yj-1,j - 1) T_ 

In general, if J = {j1, ... ,jq}, then J1 = {j2 , .•. ,jq} and Jq-l = 
{j1, ... ,jq-i}, and we define AJ: Cf____, Cf~ 1 by AJ = -f>j.(AJ._1) 

Now define AJ : CJ-----, m.q CJ\bv} by 
q Wp=l q-1 

AJ = ( AJ, [AJl ]d1 , ... , [AJv]d,,, ... , [AJq-1]dq-l), 

where dp = (j1 - 1) · · · (jp - 1). 

Finally, define 8q: Cq-----, Cq-l by 8q = ~ AJ. 
L..,IJl=q 
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Theorem 2.5 ([10, Theorem 2.10]). Let R = ZPn,e be the inte­
gral group ring of the group Pn,l• Then the system of R-modules and 
homomorphisms (C., a.) is a finite, free resolution of '1l., over R. 

Remark 2.6. The proof of this result in [10] makes use of a map­
ping cone decomposition of the complex (C., a.). This decomposi­
tion may be described as follows. Let ( 8., a.) denote the subcom-

• ~ J 
plex of (C., 8.) with terms Cq = ffie+i~J Cq, and boundary maps 

8q = 8qlc given by restriction. The complex 8. may be realized as 
q 

8. = c.(Pn,e+i) ©P,.,t R, where f. : c.(Pn,e+1) - '11., is the resolution 
over ZPn,l+l obtained by applying the above construction to the group 
Pn,e+l < Pn,l· 

Let (D., 8f) denote the direct sum of£ copies of the complex 8., 
with the sign of the boundary map reversed. That is, Dq = ( 8q )e 
and 8!( = -[Bqf The terms of this complex may be expressed as 
Dq = ffie+IEK Cf+-1 , where IKI = q. Using this description, define 
a map s. : D. -+ 8. by setting the restriction of Sq to the summand 
Cf+-1 of Dq to be equalto tl.K: Cf+- 1 -+ Cf c 8q, where K = {f+l}UJ. 

As shown in [10], the map s. : D. -+ 8. is a chain map, and the 
original complex (C., a.) may be realized as the mapping cone of s •. 
Explicitly, the terms of C. decompose as Cq = Dq-1 EB 8q. With respect 
to this decomposition, the boundary map 8q+l : Cq+l -+ Cq is given by 
8q+l (u, v) = (-8!/(u), Sq(u) + 8q+l (v)). 

2.7. Rank One Local Systems 

The abelianization of the group Pn,e is free abelian of rank N = 
(~) - (~)- Let (C*)N denote the complex torus, with coordinates ti,j, 
e + l :::;: j :::;: n, 1 :::;: i < j. Each point t E (C*)N gives rise to a rank one 
representation lit : Pn,e -+ C*, "fi,j f-+ ti,j, an associated Pn,e-module 
L = Lt, and a rank one local system £ = Ct on the configuration 
space Mn,l· The homology and cohomology of Pn,e with coefficients 
in L (resp., that of Mn,e with coefficients in £) are isomorphic to the 
homology and cohomology of the complexes C. := c. ©P,.,e L and c• := 
'H.omP,.,e(C., L) respectively, see [8]. 

The terms, Cq = Cq ©n C and Cq = HomP,.,e(Cq, L), of these 
complexes are finite dimensional complex vector spaces. Notice that 
dimCq = dimCq = dimAq = EIJl=q(j1 -1) · · · (jq -1), where the sum 
is over all Jc;;:; [£ + 1, n]. Denote the boundary maps of c. and c• by 
8q(t) : Cq -+ Cq-l and «Sq(t) : Cq -+ Cq+l . As we follow [8] in our 
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definition of c•, these maps are related by 

(2.4) 

for u E Cq and x E Cq+l· To describe these maps further, we require 
some notation. 

Consider the evaluation map 'Rx (C*)N - C, which takes an ele­
ment f of the group ring, and a point tin (C*)N and yields f(t) := Vt(/), 
the evaluation off at t. Fixing f E 'Rand allowing t E (C*)N to vary, 
we get a holomorphic map f: (C*)N - C. More generally, we have the 
map Matrxs('R) X (C*)N - Matrxs(C), (F, t) 1---+ F(t) := llt(F). For 
fixed F E Matpxq('R), we get a map F : (C*)N - Matrxs(C). With 
these conventions, if dim Cq =rand dim Cq+l = s, the boundary maps 
of the complexes c. and c• may be viewed as evaluations, 8q(t) and 
oq(t), of maps 8q : (C*)N - Matrxs(C) and oq : (C*)N - Matsxr(C). 

We shall subsequently be concerned with the derivatives of these 
maps at the identity element 1 = (1, ... , 1) of (C*)N. The (holomorphic) 
tangent space of H 1(Mn,t;C*) = (C*)N at 1 is H1(Mn,t;C) = cN, 
with coordinates >..i,i· The exponential map T 1 (C*)N - (C*)N is the 
coefficient map H 1(Mn,t;C) - H 1(Mn,t;C*) induced by exp : C -
C*, >..i,i 1---+ e>-,,; = ti,i. For an element f of 'R, the derivative of the 
corresponding map f : (C*)N - C at 1 is given by f* : cN - C, 
f*(.X) = fx lx=of( ... ex>.,,; ... ). More generally, for F E Matrxs('R), we 
have F*: cN - Matrxs(C). 

§3. A Complex of Derivatives 

We now relate the cohomologytheories H*(A•, µ•(.X)) and H*(Mn;C) 
by relating the complexes (A•,µ•(.X)) and (C•,o•(t)). As above, let 
(8q)* and o~ denote the derivatives of the maps 8q and oq at 1 E (C*)N. 

Theorem 3.1. The complex (A•, µ• (A)) is a linear approximation 
of the complex (C•,o•(t)). For each A E cN, the system of complex 
vector spaces and linear maps ( c•, o: (A)) is a complex. For each q, we 
have Aq ~ Cq, and, under this identification, µq(.X) = oH.X). 

From the discussions in sections 1.1 and 2.7, it is clear that Aq ~ Cq. 
In light of the sign conventions (2.4) used in the construction of the 
complex (C•, o•(t)) and the fact that (A•, µ•(.X)) is a complex, to show 
that (c-, o:(.x)) is a complex, and to prove the theorem, it suffices to 
establish the following. 

Proposition 3.2. Foreachq, wehaveµq(.X)=(-l)q[(8q+l)*(.X)]~ 
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The maps µq(A) were analyzed in section 1.5. We now carry out a 
similar analysis of the maps {8q+1)*(A). 

3.3. Some Calculus 

We first record some facts necessary for this analysis. Recall that 
'R, denotes the integral group ring of the group Pn,e- For f, g E 'R, the 
Product Rule yields {f · g)*(A) = f*{A) · g(l) + f{l) · g*(A). Similarly, 
for FE Matpxq{'R) and GE Matqxr('R), matrix multiplication and the 
differentiation rules yield 

As an immediate consequence of the Product Rule, for 1 , ( E Pn,e and 
T =[(,,)a commutator, we have h-1)* = --y*' and .T* = 0. Conse­
quently, (( • 'Y • C- 1)* = -y*. 

Now recall the representations Pi defined in Lemma 2.2, and used in 
the construction of the resolution C •. Associated to each I E Pj-1,e, we 
have a map pj{1 ): (C*)N---+ Aut(«::i- 1 ). Since I acts on the free group 
by conjugation, we have pi(,){1) = 1Ij-l· Identify End(«::i- 1 ) as the 
tangent space to Aut(«::i-l) at the identity, and denote the derivative of 
the map pj{,) at 1 by pi(,)*: «::N---+ End(«::i- 1). 

Define (pi)* : Pj-1,£---+ Hom{CN, End(«::i-l )) by (pi)*(,) = pj(,k 
The chain rule of Fox Calculus and a brief computation reveal that (pi)* 
is a homomorphism, and is trivial on the commutator subgroup P~ e· 
This yields a map «::N---+ Hom(CN, End(«::i-l )), Ar,s i---+ pj(,r,s)*, whi~h 
we continue to denote by (pi)*. For I E Pn,e, view the derivative, 
-y*(A) = ~ Cr,sAr,s, of the corresponding map -yas a linear form in the 
Ar,s. Then we have the following "chain rule": 

In particular, p(,r,s)* = p*(>..r,s), which we now compute. 

Lemma 3.4. For r < s < j, the derivative of the map Pjbr,s) is 
given by Pjbr,s)*(A) = 

[~T-• 0 0 0 

0 l Ar,s + As,j 0 -Ar,j 0 
0 Ar,s · lls-r-1 0 0 . 

-As,j 0 Ar,s + Ar,j 
Ar,s · t-s-1 0 0 0 
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Proof. The matrix of Pi('Yr,s) is 'Yr,s · .J('Yr,s), where .J(,r,s) is 
the Fox Jacobian. Thus, pj('Yr,s)(t) = tr,s · ..7(,r,s)(t) = (tr,s. ][j_i) · 
..7(,r,s)(t), where ..7(,r,s)(t) is the map induced by the Fox Jacobian. 
By the Product Rule (3.1), we have 

The action of 'Yr,s on the free group Gj = {,i,j) is recorded in (2.1). Com­
puting Fox derivatives and evaluating at t yields the familiar Gassner 
matrix of 'Yr,s (see [5]), ..7(,r,s)(t) = 

(

lir-1 0 0 
0 1 - tr,j + tr,jts,j 0 
0 ii lis-r-l 
0 1 - t 8 ,j 0 
0 0 0 

0 
tr,j (1 - tr,j) 

-ii 
tr,j 
0 

~ l· 
][j-~-1 

where ii = ((1- tr+l,j)(l - tr,j) (1- ts-1,j)(l - tr,j)) T_ Since 
..7(,r,s)(l) = lij-1, the result follows upon differentiating ..7(,r,s)(t). 

Q.E.D. 

3.5. Boundary Map Derivatives 

We now obtain an inductive formula for the derivatives of the bound­
ary maps of the complex (C., 8.(t)). The mapping cone decomposition 
of the resolution ( c., a.) discussed in Remark 2.6 gives rise to an anal­
ogous decomposition of the complex (C., 8(t)). Specifically, the terms 
decompose as Cg = Dg-1 EB Cg, and with respect to this decomposition, 
the matrix of the boundary map 8g+1(t) : Cg+l - Cg is given by 

(3.3) 8 (t) = (-a~(t) ~Eg(t) ) 
g+l O 8g+1(t) . 

Up to sign, the complex (D., af (t)) is a direct sum of i copies of the 
complex (C., a.(t)), which arises from the group Pn,i+l < Pn,f.• In light 
of this, we restrict our attention to the chain map s. and its components 
A{i+l,J}, their evaluations E.(t) and '°'-{'-+l,J}(t), and the derivatives 
of these evaluations at 1. 

For J = {ji, ... ,jg} s:;;; [i + 2,n], let PJ = Piq o · · · o Pit and dJ = 
(j1 - 1)- ··(jg - 1). Then A{'-+1,J} = (-l)gpAA1,+1), where A1,+1 = 
( 11,1,+1 - 1 · · · 'Yl,i+l - 1) T, and the matrix of A{i+l,J} is i • dJ x dJ 
with dJ x dJ blocks (-l)gPA'Ym,'-+1 - 1), 1 ::; m ::; i. We concentrate 
our attention on one such block. 
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Fix m, 1 ~ m ~ f, and let M denote the matrix of PA'Ym,e+l - 1). 
Similarly, let M' denote the matrix of PJq-i ("/m,e+1 -1). Then Mis the 
matrix of Pi,, ( M'). Since M is dJ x dJ, its rows and columns are naturally 
indexed by sets R = { r1, ... , r q} and I = { i 1, ... , iq}, 1 ~ r P, ip ~ jp -1. 
We thus denote the entries of M by MR,I. With these conventions, we 
have 

(3.4) 

where, for instance, I' = Iq-1 = I \ { iq}. 
Now consider the block M(t) of a{e+l,J}(t) arising from the block 

M of the matrix of ~{e+l,J} above. Recall the notion of an I-admissible 
set from Definition 1.9, and recall that ER,I = 1 if R = I, and ER,[ = 0 
otherwise. 

Theorem 3.6. Let J ~ [£ + 2, n] and let M denote the matrix 
of PJ('Ym,l+l - 1). Then the entries of the derivative, M*(A), of the 
evaluation M(t) are given by 

where, if j = jp, the second sum is over all Ip-admissible sets K 
{ ks 1 , ••• , ks,, k} for which R \ Rn I ~ K. 

Proof. The proof is by induction on I JI. 
If J = {j}, then M = "fm,e+l · .J('Ym,t+l) - llj-1 is the matrix of 

{Jj("/m,e+l - 1), so M(t) = '"Ym,l+l(t) · .7('Ym,l+1)(t) - llj-1• Since the 
derivative of the constant llj-1 is zero, the entries of M* (A) are given by 
Lemma 3.4 (with r = m ands= £+1). In this instance, we have I= {i}, 
and a set K = {k} is I-admissible if k-:/- i and {k,i} = {m,£+ 1}. It 
follows that the case JJI = 1 is a restatement of Lemma 3.4. 

In general, let J = {j1, ... ,iq-1,jq} and, as in (3.4) above, write 
M R,I = [Pi ( M1, l')] . . Then we have 

q ' rq,iq 

[M(t)]R,1 = [PiJM1,,1,)(t)] _ and 
rq,tq 

[M*(A)]R,I = [Pjq(M1,,1,)*(A)] _ . 
rq,tq 

By induction, the entries of the matrix M~(A) are given by 
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where J' = Jq-l = J \ {jq}, and for jp E J', the second sum is over all 
Ip-admissible sets K for which R' \ R' n I'~ K. 

By the chain rule (3.2), the entries of M*(.X) are given by 

(3.5) 

[M*(.X)]R,1 = [Pi.(M~',I')*(.X)] . = [(Pi.,)*((M~',1')*(.X))] . 
rq,'tq Tq,iq 

= [ S ( ER1 ,l'(pjq )*(>.m,c+1) + LJpEJ' LK(PJ,, )* (>.k,,,jp)) Lq,i/ 

where S = (-l)IR'\R'nI'I. By Lemma 3.4, for r < s < jq, we have 

(3.6) 

{
>.r,s + Akq,jq if iq = Tq and {kq,iq} = {r,s}, 

[(Pjq)*(>.r,s)] . = ->.rq,Jq ifiq-=/- Tq and {rq,iq} = {r,s}, 
rq,iq O otherwise. 

The entries ofM*(.X) may be calculated from (3.5) using (3.6), yield­
ing the formula in the statement of the theorem. We conclude the proof 
by making several observations which elucidate this calculation. 

First consider the case R' = I'. Then S = l and ER',!' = 1. If rq = 
iq, then the first case of (3.6) yields a contribution of Am,c+l + Akq,Jq to 
[M* ( .X)] 1 1 , provided that { kq, iq} = { m, £ + 1}. Note that this condition 
implies that the set K = {kq} is I-admissible (and that kq cf. iq). Note 
also that in this instance we have R = I, R \Rn I= 0 c K, fR,J = l, 
and IR\ Rn II = 0. 

If R' = I' and rq cf. iq, then the second case of (3.6) contributes 
->.rq,jq to [M*(.X)]R,1 if {rq, iq} = {m, £ + l}. In this instance, the set 
{rq} is I-admissible. Since R' = I' and rq cf. iq, we have IR\ Rn II = 1. 

For general R' and I', suppose that S • >.k,,,J,, is a summand of 
[M:(.X)]R, 1, for some p ~ q - l. Then, by the inductive hypothesis, 
this sum~and arises from an Ip-admissible set K = {ks,, ... , ks,, kp} 
with R' \ R' n I' ~ K. If Tq = iq, then the first case of (3.6) yields a 
contribution of S-(>.kp,Jp +>.kq,Jq) to [M*(.X)]R,1, provided that {kq, iq} = 
{ kp, }p}. For such kq, it is readily checked that the set K U { kq} is !­
admissible. Also, since rq = iq, we have R \Rn I= R' \ R' n J' ~ K. 

If, as above, S->.k,,,J,, is a summand of [M:(.X)]R',J' and rq cf. iq, then 
the second case of (3.6) contributes -S · Arq,Jq to [M*(.X)]R,1 provided 
{rq, iq} = {kp.jp}· In this instance, the set KU {rq} is I-admissible, and 
since rq cf. iq, we have R \Rn I= (R' \ R' n I') U {rq} ~KU {rq}, and 
IR\ Rn II= IR' \R' n I'I + 1. 

Applying these observations to (3.5) above completes the proof. 
Q.E.D. 
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3.7. Proof of Proposition 3.2 

We now use Theorems 1.12 and 3.6 to show that the differential 
of the complex (A•,µ•(.X)) is given by µq(.X) = (-l)q[(8q+l)*(.X)]T, 
where (8q)*(.X) is the derivative of the boundary map of the complex 
(C., 8.(t)), thereby proving Proposition 3.2 and hence Theorem 3.1 as 
well. 

The proof is by induction on d = n - £, the cohomological dimension 
of the group Pn,e, (resp., the rank of the discriminantal arrangement 
An,e). 

In the cased= 1, the complexes A• and C. are given by 

d C B1(t) C 
an 1 - o 

respectively, where A0 =Co= C, A1 = EBi<nCai,n, and C1 = cn-l_ 
The boundary maps are µ0 (.X) : 1 f--+ Ei<n Ai,n · ai,n and 81(t) = 

(t1,n -1 · · · tn-1,n -1) T_ Identifying A1 and C1 in the obvious 

manner, we have µ0 (.X) = (-1)0 [(8i)*(.X)]T. 
In the general case, we identify Aq and Cq in an analogous manner. 

In particular, the rows and columns of the matrix of the boundary map 
8q+1(t) : Cq+l ----+ Cq are indexed by basis elements a1,J of Aq+l and 
Aq, or simply by the underlying sets I and J, respectively. To show that 
µq(>..) = (-l)q[(8q+1)*(>..)]T, we make use of the decomposition ofthe 
complex A• established in Proposition 1.7, and that of C. stemming 
from the mapping cone decomposition of the resolution C. described 
in Remark 2.6. Recall from (1.2) and (3.3) that with respect to these 
decompositions, the boundary maps may be expressed as 

The maps µ"(.X) and Bq+1(t) are the boundary maps of the com­
plexes .A9 and C. arising from the cohomology algebra A(An,e+1) and 
fundamental group Pn,e+1 of the complement of the discriminantal ar-

rangement An,e+i• So by induction, we have µq(.X)=(-l)q [(8q+1)*(.X)] T 
for each q. Since the complexes B• ~ (A•l and D. ~ (C.l decom­
pose as direct sums, with boundary maps µ'1(.X) = -[µq- 1(.X)Jf and 
8~(t) = -[Bq(t)Ji the inductive hypothesis also implies that 

µ'1(.X) = -[(-l)q-l[(Bq)*(>..)]Tr 

= (-l)q[[(Bq)*(>..)]er = (-l)q[-(8~)*(>..)]T. 
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Thus it remains to show that \Jl"q(A) = (-l)q[(Bq)*(A)]T. For this, 

it suffices to show that the restriction Wj(A) : Aj -+ A{i~l,J} of \Jl"q(A) 

is dual to the derivative of the summand ..6..{e+l,J}(t) : c!t1i1•J} -+ Cf 
of 8q(t) for each J = {j1, ... ,jg} ~ (£ + 2, n]. As noted in (1.3), the 
matrix of Wj(A) is dJ x .e · dJ with dJ x dJ blocks 7rm,e+l o Wj(A), 
where dJ = (j1 - 1) • • • (jq - 1). Similarly, from the discussion in sec­
tion 3.5, we have that the matrix of ..6..{e+l,J}(t) is .e · dJ x dJ with 
dJ x dJ blocks (-l)q(PA'Ym,Hi)(t)-IIdJ). Comparing the formulas ob­
tained in Theorem 1.12 and Theorem 3.6, we see that 7rm,e+l o Wj(A) = 
[PJbm,t+l)*(A)]T. It follows readily that 

Wj(:.X) = (-l)q[(..6..{Hl,J}t(A)]T, 

completing the proof. 

§4. Cohomology Support Loci and Resonant Varieties 

In an immediate application of Theorem 3.1, we establish the re­
lationship between the cohomology support loci of the complement of 
the discriminantal arrangement An,l! and the resonant varieties of its 
Orlik-Solomon algebra. 

Recall that each point t E (C*)N gives rise to a local system £ = 
£t on the complement Mn,l! of the arrangement An,l!• For sufficiently 
generic t, the cohomology Hk(Mn,t, £t) vanishes (for k < n - £), see 
for instance [21, 10]. Those t for which Hk(Mn,ti£t) does not vanish 
comprise the cohomology support loci 

These loci are algebraic subvarieties of (C*)N, which, since Mn,l! is a 
K(Pn,l!, 1)-space, are invariants of the group Pn,l!· 

Similarly, each point A E cN gives rise to an element w = w~ E A1 

of the Orlik-Solomon algebra of the arrangement An,t• For sufficiently 
generic A, the cohomology Hk(A•, µ•(A)) vanishes (for k < n - .e), see 
(31, 16]. Those A for which Hk(A•, µ•(A)) does not vanish comprise the 
resonant varieties 

These subvarieties of CN are invariants of the Orlik-Solomon algebra A 
of An,l!• 

Recall that 1 = (1, ... , 1) denotes the identity element of (C*)N. 
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Theorem 4.1. Let An,l be a discriminantal arrangement with com­
plement Mn,e and Orlik-Solomon algebra A. Then for each k and each 
m, the resonant variety Rk (A) coincides with the tangent cone of the 
cohomology support locus E~(Mn,e) at the point 1. 

Proof. For each t E (C*)N, the cohomology of Mn,e with coef­
ficients in the local system Ct is isomorphic to that of the complex 
(C•,6•(t)). Sot E E~(Mn,e) if and only if dimHk(c•,6•(t) 2:: m. An 
exercise in linear algebra shows that 

For.XE CN, we have.XE Rk ifdimHk(A•,µ•(.X)) 2:: m. So, as 
above, 

By Theorem 3.1, dimAk = dim Ck and µk(.X) = 6!{.X) for each k. Thus, 

and the result follows. Q.E.D. 

The cohomology support loci are known to be unions of torsion­
translated subtori of (C*)N, see [3]. In particular, all irreducible com­
ponents of E~(Mn,e) passing through 1 are subtori.of (C*)N. Conse­
quently, all irreducible components of the tangent cone are linear sub­
spaces of cN. So we have the following. 

Corollary 4.2. For each k and each m, the resonant variety Rk(A) 
is the union of an arrangement of subspaces in cN. 

Remark 4.3. Fork= 1, Theorem 4.1 and Corollary 4.2 hold for 
any arrangement A, see [11, 22, 23]. In particular, as conjectured by 
Falk [16, Conjecture 4.7], the resonant variety Rf(A(A)) is the union 
of a subspace arrangement. Thus, Corollary 4.2 above may be viewed 
as resolving positively a strong form of this conjecture in the case where 
A= An,e is a discriminantal arrangement. 
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