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Quantum Matroids 

Paul Terwilliger 

Abstract. 

We define a quantum matroid to be any finite nonempty poset 
P satisfying the conditions R, SL, M, AU below. 

R: P is ranked. 
SL: P is a (meet) semilattice. 
M: For all x E P, the interval [O, x] is a modular atomic lattice. 

AU: For all x,y E P satisfying rank(x) < rank(y), there exists an 
atom a E P such that a '.S y, a <f:: x, and such that x Va 

exists in P. 

Condition AU is the augmentation axiom. 

We develop a theory of quantum matroids. Although we deal at 
length with the general case, our emphasis is on quantum matroids 
P with the following extra structure: We say P is nontrivial if 
P has rank D ~ 2, and P is not a modular atomic lattice. In 
what follows suppose P is nontrivial. We say P is q-line regular 
whenever each rank 2 element in P covers exactly q + 1 elements 
of P. We say P is (3-dual-line regular whenever each element in 
P with rank D - 1 is covered by exactly (3 + 1 elements of P. 
We say P is a-zig-zag regular whenever for all pairs x, y E P such 
that rank(x)=D-1, rank(y)=D,andsuchthat x covers xl\y, 
there exists exactly a + 1 pairs x', y' E P such that y' covers 
x, y' covers x', and such that y covers x'. We say P is regular 
whenever P is line regular, dual-line regular, and zig-zag regular. 
We prove the following theorem. 

Theorem. Let D denote an integer at least 4. Then a poset 
P is a nontrivial regular quantum matroid of rank D if and only if 
P is isomorphic to one of the following: 

(i) A truncated Boolean algebra B(D, N), (D < N). 
(ii) A Hamming matroid H(D, N), (2 :S: N). 
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(iii) A truncated projective geometry Lq(D, N), (D < N). 
(iv) An attenuated space Aq(D, N), (D < N). 
(v) A classical polar space of rank D. 
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§1. The definition of a 'P-matroid 

In this paper, we only consider finite structures. 
We begin by recalling the classical notion of a (finite) matroid. 

Definition 1.1. Let A denote a finite set. By an A-matroid, we 
mean a collection P of distinct subsets of A, that satisfies the following 
axioms NT, LI, AU: 

NT: P =/- 0. 
LI: For all subsets x, y ~ A, x E P and y ~ x implies y E P. 

AU: For all x, y E P such that lxl < IYI, there exists an element 
a EA such that a E y, a¢. x, and such that x U a E P. 

AU is referred to as the augmentation axiom. 

Here is the standard example of an A-matroid: let A denote a 
finite set of vectors taken from a fixed vector space, and let P denote 
the collection of all linearly independent subsets of A. Then P is an 
A-matroid. 

Two more examples follow, which we refer to later in the paper. 

Example 1.2. (i) The truncated Boolean algebra B(D, N) (0 ::; 
D ::; N): Let A denote a set of cardinality N, and set 

P := { x ~ A I lxl ::; D}. 

Then P is an A-matroid. 
(ii) C(N1, N2, ... , Nn) (0 < D, N1, N2, ... , Nn): Set 

A := A1 u A2 u · · · u An (disjoint union), 
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where 
(1 :::; i :::; D). 

Set 
P := { x ~ A I Ix n Ail :::; 1 for all i (1 :::; i :::; D)}. 

Then P is an A-matroid. 

Proof. Routine. 

Note 1.3. In Example 1.2(ii), the case Ni = N (1 :::; i :::; D) will 
turn out to have special significance. We refer to this matroid as the 
Hamming matroid H(D, N). 

We now generalize Definition 1.1, replacing subsets of a set A with 
subspaces of a vector space V. 

Definition 1.4. Let V denote a finite vector space. By a V­
matroid, we mean a collection P . of distinct subspaces of V, that 
satisfies the following axioms NT, LI, AU: 

NT: P =/- 0. 
LI: For all subspaces x, y ~ V, x E P and y ~ x implies y E P. 

AU: For all x, y E P such that dim(x) < dim(y), there exists a 
one dimensional subspace a~ V such that a~ y, a g x, and 
such that x + a E P. 

We now consider some examples of V-matroids. 

Example 1.5. The truncated projective geometry Lq(D, N) (0:::; 
D :::; N): Let V denote a vector space of dimension N over the finite 
field GF(q), and set 

P := {x Ix is a subspace of V, dim(x):::; D}. 

Then P is a V-matroid. 

Proof. Routine. 

Example 1.6. The attenuated space Aq(D, N) (0 :::; D :::; N): Let 
V denote an N-dimensional vector space over the finite field GF(q). 
Fix a subspace w ~ V such that dim:(w) = N - D, and set 

P := {x Ix is a subspace of V, x nw = 0}. 

Then P is a V-matroid. 
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Proof. We check NT, LI, AU in Definition 1.4. NT holds since OE 
P, and LI holds trivially, so consider AU. Recall that for all subspaces 
u, V ~ V, 

(1.1) dim(u) + dim(v) = dim(u n v) + dim(u + v). 

Pick any x, y E P such that dim(x) < dim(y). We find a one 
dimensional subspace a ~ V such that a ~ y, a g; x, and such that 
x + a E P. Observe 

dim(x + w) dim(x) + dim(w) 

< dim(y) + dim(w) 

dim(y + w), 

so y + w g; x + w. In particular, 

(1.2) y g; X +w. 

By (1.2), there exists a one dimensional subspace a ~ y such that 
a g; x + w. Observe a g; x, so it remains to show x + a E P. Observe 
by (1.1) and the construction that 

dim((x + a) .n w) dim(x + a) + dim(w) - dim(x +a+ w) 

dim(x) + 1 + dim(w) - dim(x + w) - 1 

o, 

and we conclude x + a E P, as desired. 

Example 1.7. Polar spaces over GF(q): Let V denote a finite 
dimensional vector space over the finite field GF(q). Endow V with a 
form (, ) : V x V---+ GF(q) such that 

(u + v, w) = (u, w) + (v, w) 

(u, v + w) = (u, v) + (u, w) 

(au, v) = a(u, v) 

(Vu, v, w EV), 

(Vu, v, w E V), 

(Vu,v EV, Va E GF(q)). 

Further assume 

(u, v) = (v, u) 

or 

(u, u) = 0 

or 

(u, v) = (v, u) 

(Vu, v E V) ( the symmetric bilinear case), 

(Vu EV) (the alternating bilinear case), 

(Vu, v E V) ( the Hermitean case). 
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(In the last case - denotes a field automorphism of GF(q) of order 
2.) A subspace x i;;;: V is said to be totally isotropic ( abbreviated t. i.) 
whenever (u, v) = 0 for all u, v Ex. The set 

(1.3) P := { x I x is a t.i. subspace of V} 

is a V-matroid. 

Proof We verify NT, LI, AU in Definition 1.4. NT holds since 
0 E P. LI is trivial, so consider AU. For all subspaces x i;;;: V, let x_i_ 
denote the orthogonal complement 

(1.4) x_i_ := { u E V I (u, v) = 0 for all v E x }. 

Observe x is t.i. if and only if x i;;;: x_i_. By elementary linear algebra, 

(1.5) dim(x_i_) + dim(x) = dim(x n V_i_) + dim(V). 

Pick any t.i. subspaces x, y i;;;: V such that dim(x) < dim(y). We find 
a one dimensional subspace a i;;;: V such that a i;;;: y, a g'.: x, and such 
that x + a is t.i. To obtain a, we claim 

(1.6) 

Suppose (1.6) fails. Then by the construction, 

(1.7) xj_ n y = x n y. 

Observe x_i_, y are both contained in (x n y)_i_, so 

(1.8) 

Now by (1.5), (1.7), (1.8), 

dim(x n V_i_) + dim(V) = dim(x_i_) + dim(x) 

<dim(x_i_) + dim(y) 

= dim(x_i_ + y) + dim(x_i_ n y) 

::; dim((xnyl) + dim(xny) 

=dim(xnynV_i_) + dim(V), 

an impossibility. Hence (1.6) holds. By (1.6), there exists a one dimen­
sional subspace a i;;;: x_i_ n y such that a g'.: x. Observe a i;;;: y, and y 
is t.i., so a is t.i. Also x is t.i. and a i;;;: x_i_, so x + a is t.i. Now a 



Quantum Matroids 329 

has the desired properties, so AU holds. Now P 1s a V-matroid, and 
we are done. 

Example 1.8. More polar spaces over GF(q): Let V denote a 
finite dimensional vector space over the finite field GF(q). Endow V 
with a quadratic form, i.e., a function f: V-+ GF(q) satisfying 

f(av) = a 2 f(v) (\:/a E GF(q), \:/v E V), 

J(u + v) = f(u) + f(v) + (u, v) (\:/u,v EV), 

where (,) = (, )J is a symmetric bilinear form from Example 1.7. 
A subspace x ~ V is said to be totally singular (abbreviated t.s.) 
whenever f(v) = 0 for all v Ex. The set 

P := { x I x is a t.s. subspace of V} 

is a V-matroid. 

Proof. We verify NT, LI, AU in Definition 1.4. NT, LI hold as 
in Example 1.7, so consider AU. First observe that any t.s. subspace 
z ~ V is t.i. (with respect to (,),in the sense of Example 1.7). Now 
pick any t.s. subspaces x, y ~ V such that dim(x) < dim(y). We find 
a one dimensional subspace a~ V such that a~ y, a ix, and such 
that x + a is t.s. By Example 1. 7 and our preliminary comment, there 
exists a one dimensional subspace a ~ V such that a ~ y, a i x, 
and such that x + a is t.i. In fact x + a is t.s. To see this, we pick 
any v E x + a and show f(v) = 0. Observe v = v1 + v2 for some 
v1 Ex and some v2 Ea. Observe f(v1) = 0, since x is t.s. Observe 
f(v2) = 0, since a~ y, and since y is t.s. Observe (v1 , v2 ) = 0, since 
x + a is t.i. Now 

f(v) = f(v1 +v2) 

= f(v1) + f(v2) + (v1,v2) 

=0, 

as desired. Now a has the desired properties, so AU holds. Now P 1s 
a V-matroid, and we are done. 

Note 1.9. In the nondegenerate case (Definitions 26.6, 26.8), the 
examples in 1.7, 1.8 are often referred to as classical polar spaces. This 
distinguishes them from the closely related Tits polar spaces, which we 
will encounter in Section 30. See [Ar], [Ca2], [Mu], [Ti] for information 
on the classical polar spaces. 
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We now seek a common generalization of Definitions 1.1, 1.4. We 
will use the language of partially ordered sets, so first we review some 
basic concepts from this area. 

Let P denote a finite set. By a partial order on P, we mean a 
binary relation :S on P such that 

(i) x ::; x (Vx E P), 
(ii) x ::; y and y ::; z -----+ x ::; z 

(iii) x ::; y and y ::; x -----+ x = y 
(Vx, y, z E P), 
(Vx, y E P). 

By a partially ordered set (or poset, for short), we mean a pair (P, :S), 
where P is a finite set, and where :S is a partial order on P. Abusing 
notation, we will suppress reference to ::;, and just write P instead of 
(P, :S). 

Let P, Q denote any posets. A map </> : P -----+ Q is said to be an 
isomorphism of posets whenever </> is a bijection, and for all x, y E P, 

x ::; y (in P) +-+ </>(x)::; </>(y) (in Q). 

P and Q are said to be isomorphic whenever there exists an isomor­
phism of posets </>: P-----+ Q. We do not distinguish between isomorphic 
posets. 

Let P denote a poset, with partial order ::;, and let x and y 
denote any elements in P. As usual, we write x < y whenever x :Sy 
and x -:/- y. We say y covers x whenever x < y, and there is no 
z E P such that x < z < y. An element x E P is said to be maximal 
(resp. minimal) whenever there is no y E P such that x < y (resp. 
y < x). Let max(P) (resp. min(P)) denote the set of all maximal 
(resp. minimal) elements in P. Whenever max(P) (resp. min(P)) 
consists of a single element, we denote that element by 1 (resp. 0), and 
we say P has a l (resp. P has a 0). 

Suppose P has a 0. By an atom (or point) in P, we mean an 
element in P that covers 0. We let Ap denote the set of atoms in P. 

Suppose P has a 0. By a rank function on P, we mean a function 
rank: P-----+ Z such that rank(0) = 0, and such that for all x, y E P, 

(1.9) y covers x rank(y) - rank(x) = 1. 

Observe the rank function is unique if it exists. P is said to be ranked 
whenever P has a rank function. In this case, we set 

(1.10) 

(1.ll) 

rank(P) := max{rank(x) Ix E P}, 

Pi:= {x E PI rank(x) = i} (i E Z), 
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and observe Po = {O}, Pi = Ap. We refer to the elements of P2 as 
the lines of P. For notational convenience set 

(1.12) top(P) := Pn, 

where D = rank(P). Observe 

(1.13) top(P) ~ max(P), 

but we might not have equality in (1.13). 
Let P denote any poset, and let S denote any subset of P. Then 

there is a unique partial order on S such that for all x, y E S, 

(1.14) x -5:_ y (in S) +-+ x-5:_y (inP). 

This partial order is said to be induced from P. By a subposet of P, we 
mean a subset of P, together with the partial order induced from P. 
Pick any x, y E P such that x -5:_ y. By the interval [x, y], we mean 
the subposet 

[x,y] := {z E PI x -5:_ z -5:. y} 

of P. 
Let P denote any poset, and pick any x, y E P. By a lower bound 

for x, y, we mean an element z E P such that z -5:_ x and z -5:_ y. 
Suppose the subposet of lower bounds for x, y has a unique maximal 
element. In this case we denote this maximal element by x I\ y, and 
say x I\ y exists. The element x I\ y is known as the meet of x and 
y. P is said to be a (meet) semilattice whenever P is nonempty, and 
x I\ y exists for all x, y E P. A semilattice has a 0. Suppose P is 
a semilattice, and pick any x, y E P. By an upper bound for x, y, we 
mean an element z E P such that z ;:=: x and z ;:=: y. Observe the 
subposet of upper bounds for x, y is closed under A; in particular, it 
has a unique minimal element if and only if it is nonempty. In this case 
we denote this minimal element by x V y, and say x V y exists. The 
element x Vy is known as the join of x and y. By a lattice, we mean 
a semilattice P such that x Vy exists for all x, y E P. A lattice has 
a 1. 

Suppose P is a semilattice. Then every interval in P is a lattice. 
Suppose P is a semilattice. Then P is said to be atomic whenever 

each element of P is a join of atoms. A semilattice P is atomic if 
and only if each element of P that is not O and not an atom covers 
at least 2 elements of P. 

Suppose P is a lattice. Then P is said to be modular whenever 
for all x, y E P, 

(1.15) x, y cover x I\ y +-+ x Vy covers x, y. 
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P is modular if and only if P is ranked, and for all x, y E P, 

(1.16) rank(x) + rank(y) = rank(x /\ y) + rank(x Vy) 

[St, p104]. Suppose P is a modular atomic lattice. Then any interval 
in P is a modular atomic lattice. 

We mention two examples of modular atomic lattices. (A full clas­
sification is given in Theorems 1.12, 1.13.) 

Example 1.10. Let A denote a finite set. The Boolean algebra 
BA is the poset of all subsets of Ai ordered by inclusion. BA is a 
modular atomic lattice. Moreover, for all x, y EBA, 

(1.17) 

(1.18) 

(1.19) 

x I\ y = x n y, 

xVy = xUy, 

rank(x) = /x/. 

We often write B(D) to denote BA, where D = /A/. 

Proof. Routine. 

Example 1.11. Let V denote a finite vector space. The projective 
geometry Lv is the poset of all subspaces of V, ordered by inclusion. 
Lv is a modular atomic lattice. Moreover, for all x, y E Lv, 

(1.20) 

(1.21) 

(1.22) 

XI\ y = X ny, 

xVy = x+y, 

rank(x) = dim(x). 

We often write Lq(D) to denote Lv, where V is over the field GF(q) 
and where D = dim(V). 

Proof. Routine. 

There is a classification of all modular atomic lattices essentially due 
to Veblen and Young, which we present below without proof. 

Let q denote an integer at least 2. By a projective plane of order q, 
we mean a ranked lattice P of rank 3 such that each line in P covers 
exactly q + 1 points in P, each point in P is covered by exactly q + 1 
lines in P, a Vb is a line for any distinct points a, b E P, and x I\ y 
is a point for any distinct lines x, y E P. 

Let P denote a ranked poset with 0. A line x E P is said to be 
thick whenever x covers at least three points in P. 

In the following theorem, we consider the modular atomic lattices 
that have all lines thick. In Theorem 1.13, we consider the general case. 
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Theorem 1.12 ([Ca2, Theorems 3.3.1, 3.4.1], [V-Y]). For each 
nonnegative integer D, let Ov denote the class of all modular atomic 
lattices that have rank D and have all lines thick. Then for any poset 
P, 

PE Oo if and only if P = {O}. 
PE 01 if and only if P = {O, 1}. 
P E 0 2 if and only if P is a ranked lattice with rank 2 and 
P has at least 3 points. 
P E 03 if and only if P is a projective plane of order q for 
some integer q 2: 2. 
For D 2: 4, PE Ov if and only if P is isomorphic to Lq(D) 
for some (prime power) integer q 2: 2. 

Let P, Q denote any posets. By the Cartesian product P x Q, we 
mean the poset on the set 

(1.23) P x Q := {xy Ix E P, y E Q}, 

such that for all x, x' E P and all y, y' E Q, 

(1.24) xy ~ x'y' (in P x Q) ....-t x ~ x' (in P) and y ~ y' (in Q). 

Theorem 1.13 ([Ca2, Theorems 3.3.3, 3.4.1], [V-Y]). Let 0 
denote the class of modular atomic lattices that have all lines thick. Then 
for any poset P, the following are equivalent. 

(i) P is a modular atomic lattice. 
(ii) There exists an integer r 2: 1 and there exists P1 , P2 , •.• , Pr 

E O such that P = Pi x P2 x · · · x Pr. 

A modular atomic lattice is sometimes referred to as a generalized 
projective geometry. 

Let P denote any lattice. Elements x, y E P are said to be 
complements whenever x A y = 0 and x V y = 1. P is said to be 
complemented whenever each element in P has a complement. Let P 
denote any semilattice. Then P is said to be relatively complemented 
whenever each interval in P is complemented. A modular atomic 
lattice is relatively complemented. Let P denote any semilattice, and 
let I= [x, y] denote any interval. Then elements u, v E J are said to 
be relative complements in I whenever 

(1.25) uAv = x and u Vv = y. 
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Let P denote any poset. By a lower ideal in P, we mean a subposet 
S ~ P such that for all x, y E P, 

(1.26) xES and Y S X ----+ y E 8. 

An upper ideal of P is defined similarly. 

Definition 1.14. Let P denote a modular atomic lattice. By a 
P-matroid, we mean any subposet P ~ P satisfying conditions NT, LI, 
AU below. 

NT: P-:/-0. 
LI: P is a lower ideal in P. 

AU: For all x, y E P such that rank(x) < rank(y), there exists an 
atom a E P such that a Sy, a 1,_ x, and such that xVa E P. 

In view of Example 1.10, for any finite set A and any subset 
P ~ BA, P is an A-matroid if and only if P (together with the 
partial order induced from BA) is a BA-matroid. Similarly, in view of 
Example 1.11, for any finite vector space V and any subset P ~ Lv, 
P is a V-matroid if and only if P (together with the partial order 
induced from Lv) is a Lv-matroid. 

We end this section with a fundamental fact about P-matroids. 

Lemma 1.15. Let P denote a modular atomic lattice, and let 
P denote a P-matroid. Then 

max(P) = top(P). 

Proof. The inclusion 2 is clear, so consider the inclusion ~­
Pick x E max(P), and suppose x (/. top(P). Pick y E top(P). Then 
rank(x) < rank(y), so by AU, there exists an atom a E P such that 
a Sy, a 1,_ x, and such that xVa E P. Now x < xVa, so x (/. max(P), 
a contradiction. 

§2. P-basis systems 

Let P denote any poset. Elements x, y E P are said to be 
comparable whenever x Sy or y S x, and incomparable otherwise. By 
an antichain in P, we mean a subset S ~ P, where any two distinct 
elements of S are incomparable. There is a natural bijection from the 
set of all antichains in P to the set of all lower ideals in P. Indeed, 
for any subset S ~ P, let s- denote the subposet 

(2.1) s- := {x E PI x S s for some s ES}. 

It is clear s- is a lower ideal in P. 
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Lemma 2.1. For any poset P, the map 

(2.2) A-+ A-

induces a bijection from the set of all antichains of P to the set of all 
lower ideals of P. The inverse map is 

(2.3) L-+ max.(L). 

Proof Routine. 

Let P denote a modular atomic lattice. We have already considered 
one set of lower ideals in P, namely the P-matroids. The P-matroids 
correspond to what set of antichains under (2.2), (2.3)? As we show in 
Theorem 2.5, this set consists of the P-basis systems, defined as follows. 

Definition 2.2. Let P denote a modular atomic lattice. By a P­
basis system, we mean any subset B ~ P that satisfies the conditions 
NT, AC, BA below. 

NT: B-:/- 0. 
AC: B is an antichain. 
BA: For all x,y E P such that x Sy, if there exists b1 , b2 EB 

such that x S b1 and b2 S y, then there exists b3 E B such 
that x S b3 S y. 

The following lemma gives a second equivalent definition of a P­
basis system. 

Lemma 2.3. Let P denote a modular atomic lattice, and let B 
denote a nonempty antichain in P. Then the following are equivalent. 

BA: For all x, y E P such that x Sy, if there exists b1, b2 E B 
such that x S b1 and b2 S y, then there exists b3 E B such 
that x S b3 S y. 

BA': For all b1 , b2 E B and all x E P such that b1 covers x, 
there exists b3 E B such that b3 covers x and such that 
b3 I\ b2 > X I\ b2 . 

Proof. BA -+ BA'. We first claim that for all b1 , b2 E B such 
that b1 covers b1 /\ b2, then b2 covers b1 /\ b2. To see this, observe 
b2 > b1 I\ b2 since B is an antichain, so there exists z E [b1 /\ b2, b2] 
such that z covers b1 /\ b2 • To prove the claim, it suffices to show 
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b2 = z. Since b1, z cover b1 /\ b2 = b1 /\ z, we find by modularity that 
b1 V z covers b1 , z. In particular 

b1 :'.S: b1 V z 2: z < b2 , 

so by BA there exists b3 E B such that 

z :S: b3 :'.S: b1 V z. 

But b3 -/- b1 V z since B is an antichain, so b3 = z. Now b2 equals 
b3 = z, since b3 :::; b2 and B is an antichain. This proves the claim. 

Now pick any b1, b2 EB, and pick any x E P such that b1 covers 
x. We must find b3 EB such that b3 covers x and b3 I\ b2 > x I\ b2. 
We may assume x I\ b2 = b1 I\ b2; otherwise we are done with b3 := b1. 
Set y := x V b2. Then 

b1 2: X :'.S: Y 2: b2, 

so by BA, there exists b3 E B such that x :::; b3 :::; y. Observe b1 1,. y; 
otherwise x and b1 are both relative complements of b2 in [ x I\ b2, y], 
contradicting (1.16). In particular b1 1:. b3. Now x = b1 I\ b3, so b3 
covers x by our preliminary claim. Also b3 I\ b2 > x I\ b2; otherwise x 
and b3 are both relative complements of b2 in [x/\b2,y], contradicting 
(1.16). 

BA'----+ BA. Suppose we are given x, y E P and b1, b2 EB such 
that 

b1 2: X :::; y 2 b2, 

Of all the elements b3 E B such that b3 2: x, pick one where rank(b2 /\ 
b3) is maximal. BA will follow if we can show b3 :::; y. Suppose b3 1:. y. 
Then b3 > b3 I\ y, so there exists z E [b3 /\ y, b3] such that b3 covers z. 
By BA', there exists b; EB such that b; covers z and b;/\b2 > z/\b2. 
Now 

and 

b; I\ b2 > z I\ b2 

2: (b3 I\ y) I\ b2 

=b3/\b2, 

2: x, 

contradicting the construction of b3 . Hence b3 :::; y, as desired. This 
proves Lemma 2.3. 
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Lemma 2.4. Let P denote a modular atomic lattice, and let 
B denote a P-basis system. Then for all b E B, D = rank(b) is 
independent of b. We refer to D as the rank of B. 

Proof. Suppose there exists b1, b2 E B such that rank(bi) -# 
rank(b2). Of all such b1, b2, pick a pair such that rank(b1 /\ b2) is 
maximal. Observe b1 /\ b2 < b1, since B is an antichain, so there exists 
x E [b1 /\ b2, b1] such that b1 covers x. By BA', there exists b3 E B 
such that b3 covers x and such that b3 I\ b2 > x I\ b2. Now 

b3 I\ b2 > X I\ b2 

= b1 I\ b2, 

so rank(b2) = rank(b3) by the construction. Also rank(bi) = rank(b3), 
since both b1, b3 cover x, so rank(bi) = rank(b2), contradicting our 
assumptions. This proves Lemma 2.4. 

Theorem 2.5. Let P denote a modular atomic lattice. 

(i) Let B denote a P-basis system. Then B- is a P-matroid. 
(ii) Let P denote a P-matroid. Then max(P) is a P-basis 

system. 

In particular, the map B -+ B- is a bijection from the set of all 
P-basis systems to the set of all P-matroids. 

Proof. (i) Observe B- certainly satisfies NT, LI in Definition 
1.14. To verify condition AU in that definition, pick any x, y E B­
such that 

(2.4) rank(x) < rank(y). 

By the construction, there exists b1, b2 E B such that x S b1, y S b2. 
Observe 

b1 2 X s b2 V X > b2' 

so by BA, there exists b3 E B such that 

It is immediate from the left inequality above that x I\ y S b3 /\ y. We 
claim that in fact 

(2.5) X I\ y < b3 I\ Y · 

To see (2.5), observe b3 Vy S b2 V x by the construction, so 

(2.6) rank(b3 Vy) S rank(b2 V x). 
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Observe x I\ y :S x I\ b2 since y :S b2, so 

(2.7) rank(x /\ y) :S rank(b2 /\ x). 

From (1.16) and Lemma 2.4, we also have 

(2.8) 

(2.9) 

(2.10) 

rank(b2) = rank(b3), 

rank(b3) + rank(y) = rank(b3 /\ y) + rank(b3 Vy), 

rank(b2 /\ x) + rank(b2 V x) = rank(x) + rank(b2), 

Summing (2.4), (2.6)-(2.10), we obtain 

rank(x /\ y) < rank(b3 /\ y), 

and (2.5) follows. Now by (2.5), there exists an atom a E P such that 
a :S b3 I\ y but a 1:: x I\ y. Now a :S y and a 1:: x by the construction. 
Also a V x E B-, since a V x :S b3 by the construction. We have now 
verified AU in Definition 1.14, so B- is a P-matroid. 

(ii) Certainly B := max(P) satisfies conditions NT, AC in Defini­
tion 2.2. To show B is P-basis system, it suffices to show BA'. First, 
we remark by Lemma 1.15 that rank(b) is independent of b EB. Now 
pick any b1 , b2 EB, and any x E P such that b1 covers x. We must 
find b3 E B such that b3 covers x, and such that b3 I\ b2 > x I\ b2. 
Observe rank(x) < rank(b2) by our remark, so by AU in Definition 
1.14, there exists an atom a E P such that a :S b2, a 1:: x, and such 
that x Va E P. Observe a covers O = x I\ a, so x Va covers x by 
modularity. In particular rank(x Va) = rank(b1 ), forcing x Va E B by 
our remark. Set b3 := x V a. Since b3 2:: x we have 

In fact 

since a :S b3 I\ b2 but a 1:: x I\ b2. Now BA' holds, so B is a P-basis 
system by Lemma 2.3. This proves Theorem 2.5. 

We can use Theorem 2.5 to get examples of P-matroids. 

Example 2.6. Let D denote a nonnegative integer. Let P 
denote a modular atomic lattice with rank D + 1, and let B denote 
any non empty subset of Pv. Then B is a P-basis system of rank D. 
Moreover, B- is a P-matroid of rank D. 
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Proof. Routine application of Definition 2.2, Theorem 2.5. 

We mention one other fact about basis systems in a modular atomic 
lattice. 

Lemma 2. 7. Let P denote a modular atomic lattice, and let B 
denote a P-basis system. Pick any x, y E P such that x :S y and 
such that B n [x, y] -I 0. Then B n [x, y] is a [x, y]-basis system. 

Proof. Bn[x, y] certainly satisfies conditions NT, AC in Definition 
2.2. To verify BA, pick u, v E [x, y] and pick b1 , b2 E B n [x, y] such 
that 

b1 2:: U :'.S V 2'.'. b2. 

We must find b3 E B n [x, y] such that u :S b3 :S v. Applying BA 
to B, we find there exists b3 E B such that u :S b3 :S v. But now 
x :S b3 :S y by the construction, so in fact b3 E B n [x, y], as desired. 

§3. The dual of a P-matroid 

Let P denote any poset. By the poset-dual of P, we mean the 
poset P* on the same set as P, such that for all elements x, y, 

(3.1) x :Sy (in P*) .-t x 2'.'. y (in P). 

More generally, let S denote any subset of P. Then S* will denote 
the subposet of P* induced on S. 

We mention that P is a modular atomic lattice if and only if P* 
is a modular atomic lattice [St, Theorem 3.3.3]. 

Lemma 3.1. Let P denote a modular atomic lattice. Then for 
all subsets B ~ P, the following are equivalent. 

(i) B is a P-basis system. 
(ii) B is a P* -basis system. 

Proof. This is immediate from the symmetry in the axioms NT, 
AC, BA from Definition 2.2. 

Let P denote any poset. For any subset S ~ P, let s+ denote 
the subposet 

(3.2) s+ = { X E p I X 2'.'. s for some s E S}. 

Observe s+ is an upper ideal in P. 

Definition 3.2. Let P denote a modular atomic lattice, and let 
P denote a P-matroid. By the matroid-dual of P (with respect to 
P), we mean the P*-matroid (B+)*, where B = max(P). 
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§4. The definition of a quantum matroid 

In this section, we introduce the notion of a quantum matroid, and 
consider the examples with rank at most 2. 

Definition 4.1. By a quantum matroid, we mean any nonempty 
poset P satisfying the conditions R, SL, M, AU below. 

R: P is ranked. 
SL: P is a (meet) semilattice. 
M: For all x E P, the interval [0, x] is a modular atomic lattice. 

AU: For all x, y E P satisfying rank(x) < rank(y), there exists an 
atom a E P such that a :s; y, a 1:. x, and such that x Va 
exists in P. 

Let P denote a modular atomic lattice, and let P denote a P­
matroid. Then the subposet P is a quantum matroid. In particular, 
any modular atomic lattice is a quantum matroid. We now consider the 
quantum matroids of rank at most 2. 

A poset P is a quantum matroid of rank 0 if and only if P 
consists of a single element. A poset P is a quantum matroid of rank 
1 if and only if P has a 0 and at least one other element, and all 
nonzero elements of P cover 0. The example below characterizes the 
quantum matroids of rank 2. 

Example 4.2. A poset P is a quantum matroid of rank 2 if and 
only if P has a 0, and satisfies the following four conditions: 

R: P is ranked and rank(P) = 2. 
SL: For any distinct points x, y E P, there exists at most one line 

z E P such that x :s; z, y :s; z. 
M: Each line in P covers at least 2 points in P. 

AU: For each point x E P and each line y E P such that x 1:. y, 
there exists a point x' E P and a line y' E P such that 
X :S: y1 2: X 1 :S: y. 

We have already proved some facts about P~matroids. Are there cor­
responding results about the more general quantum matroids? Lemma 
1.15 can certainly be extended to this level. 

Lemma 4.3. Let P denote a quantum matroid. Then 

(4.1) max(P) = top(P). 

Proof. Similar to the proof of Lemma 1.15. 



Quantum Matmids 341 

Problem 4.4. Extend the notion of the dual of a P-matroid (Def. 
3.2) to the level of quantum matroids. 

§5. Prematroids and their subposets 

Definition 5.1. By a pre-quantum matroid (or simply, a prema­
troid), we mean a nonempty poset P that satisfies conditions R, SL, 
M in Definition 4.1. 

We will have occasion to consider subposets of prematroids that 
possess the following properties. 

Definition 5.2. Let P denote any poset, and let S denote any 
subposet of P. 

(i) S is said to be /\-closed in P whenever for all x, y E S, 

(5.1) x/\py exists --+ x/\py ES. 

The notion of V-closure is defined similarly. 
(ii) S is said to be convex in P whenever for all x, y, z E P, 

(5.2) x, y E S and x s z S y --+ z E S. 

Lemma 5.3. Let P denote a poset with 0, and let S denote 
any nonempty subposet of P. Then the following are equivalent. 

(i) S is a lower ideal in P. 
(ii) S is convex in P, and Op E S. 

If (i)-(ii) hold, then S is /\-closed in P, and Os= Op. 

Proof. (i) --+ (ii). Routine. 
(ii) --+ (i). Pick any x E S and any y E P such that y S x. 

Then Op S y s x, so y E S by convexity. 
Now assume (i)-(ii). To see S is /\-closed in P, pick any x, y E S 

such that x/\py exists. Certainly x/\py S x, so x/\py E S by the 
definition of a lower ideal. Hence S is /\-closed in P. It is clear that 
S, P have the same 0. This proves Lemma 5.3. 

Lemma 5.4. Let P denote a semilattice, and let S denote a 
nonempty /\-closed subposet of P. Then S is a semilattice. Moreover, 
for all x, y E S, 

(5.3) X/\sy = X/\py. 
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Proof. Pick any x, y E S. Then it suffices to show 

(5.4) rnax(L) = { x!\py}, 

where 
L:={zESlzsx, zsy}. 

Certainly x!\py E L, since x!\py E S by A-closure. Also x!\py :2: z 
for all z E L, so x!\py is the unique rnaxirnal element of L. this 
proves Lernrna 5.4. 

Lemma 5.5. Let P denote a semilattice, and let S denote 
a convex subposet of P. Then for all x, y E S, the following are 
equivalent. 

(i) xV sY exists. 
(ii) xv PY exists, and xV PY E S. 

If (i)-(ii) hold, then 

(5.5) xVsy = xVpy. 

Proof. (i) -+ (ii). xVpy exists, since xVsy is an upper bound 
for x, y in P. Also xv PY E S by convexity, since x S xV PY S xv sY­

(ii) -+ (i). Clear. 
Now suppose (i), (ii). We have observed xv PY S xv sY- Also 

xv PY is an upper bound for x, y in S, so xv PY :2: xV sY- Hence 
xV PY and xV sY are identical. This proves Lernrna 5.5. 

Lemma 5.6. Let P denote a ranked semilattice, and let S 
denote a nonempty !\-closed, convex subposet of P. Then S is ranked. 
Moreover, for all x ES, 

(5.6) ranks(x) = rankp(x) - rankp(0s). 

Proof. S is a sernilattice by Lernrna 5.4; in particular S has a 0. 
We show the function R : S -+ Z defined by 

(5.7) R(x) = rankp(x) - rankp(0s) (x ES) 

is a rank function for S. Certainly R(0s) = 0. Also, for any x, y ES 
such that y covers x (in S), then y covers x (in P) by the 
convexity of S, forcing 

rankp(y) - rankp(x) = l. 
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Now 
R(y) - R(x) = 1 

by (5.7), so R is a rank function for S by (1.9). This proves Lemma 
5.6. 

Corollary 5. 7. Let P denote a prematroid. Then any nonempty 
/\-closed, convex subposet of P is a prematroid. In particular, any 
nonempty lower ideal of P is a prematroid. 

Proof. Let S denote a nonempty /\-closed, convex subposet of 
P. Then S satisfies axiom SL by Lemma 5.4, and axiom R by Lemma 
5.6. To see that S satisfies axiom M, pick any x ES. Then the interval 
[Os,x] of S may be viewed as an interval in the modular atomic lattice 
[Op,x], and is therefore a modular atomic lattice. We have now shown 
S is a prematroid. The last line of the present corollary follows from 
Lemma 5.3. 

§6. Embeddable Posets 

In this section, we define the notion of an embedding of a poset, and 
consider posets that are embeddable into a modular atomic lattice. 

Definition 6.1. Let P and P denote posets. By a P-embedding 
of P, we mean an injection a: P-+ P that satisfies (i), (ii) below. 

(i) x ~ y - a(x) ~ a(y) (\:/x, y E P). 
(ii) a(P) is a lower ideal in P. 

Lemma 6.2. Let P denote a modular atomic lattice. 

(i) Let P denote a quantum matroid, and let a: P-+ P denote 
a P-embedding of P. Then a(P) is a P-matroid. 

(ii) Let Q denote a P-matroid, and let a : Q -+ P denote the 
identity map on Q. Then a is an embedding of Q. 

Proof. Immediate from Definitions 1.14, 4.1. 

Definition 6.3. A poset P is said to be embeddable whenever 
P =I- 0, and there exists a pair P, a, where P is a modular atomic 
lattice, and a is a P-embedding of P. 

Lemma 6.4. Let P denote an embeddable poset. Then P is 
isomorphic to a lower ideal in a modular atomic lattice. In particular, 
P is a prematroid. 
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Proof. Immediate from Definition 6.1, Corollary 5. 7, and the ob­
servation that any modular atomic lattice is a prematroid. 

We end this section with a conjecture. 

Conjecture 6.5. Let P denote a quantum matroid with rank at 
least 4. Then P is embeddable. 

We will see in Corollary 39.8 that the above conjecture is true for 
the regular quantum matroids. See also [C-J-P], [Spl], [Ti, Theorem 
8.21]. 

§7. The distance function 8 

For the next several sections, we will develop a theory of prema­
troids. We will use the following notation. 

Let P denote any poset, and pick any x, y E P. Let us say x, y 
are adjacent whenever x covers y or y covers x. Pick any non­
negative integer d. By a path of length d connecting x, y, we mean 
any sequence x = xo, xi, ... , Xd = y (xo, xi, ... , Xd E P), such that 
Xi, xi+1 are adjacent for all i (0::; i :S d-1). P is said to be connected 
whenever for all x, y E P, there exists a path in P connecting x and 
y. Suppose P has a 0. Then P is connected, since for all x E P, 
there exists a path in P connecting x, 0. 

Let P denote an arbitrary connected poset. For any x, y E P, 
define the distance 

a(x,y) := min{d I there exists a path oflength d connecting x,y}. 

Then for all x, y, z E P, 

(7.1) a(x,y) + o(y,z) ~ a(x,z). 

If P is ranked, we can say a bit more. 

Lemma 7.1. Let P denote a ranked poset with 0, and pick any 
x,y E P. Then 

(i) We have 

(7.2) o(x,y) ~ rank(y) - rank(x). 

(ii) Equality holds in (7.2) if and only if y ~ x. 
(iii) For all z E P such that z is adjacent to x, 

(7.3) o(x, y) - o(z, y) E {1, -1}. 
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Proof. Lines (i), (ii) are immediate from (1.9). Line (iii) follows 
from the observation that the graph structure on P is bipartite. 

Let P denote an arbitrary connected poset. A path x0 , x 1, ... , xd 
in P is said to be geodesic whenever 8(x0 , xd) = d. More generally, 
any sequence xo, x 1, ... , xd of elements from P is said to be geodesic 
whenever 

d-1 
(7.4) L 8(xi, XH1) = 8(xo, xd)-

i=O 

Let P denote a ranked poset with 0. Then for all x 0 , x1, ... , xd E P, 

(7.5) -+ Xo, x1, ... , xd is geodesic. 

Let P denote a ranked poset with 0, and let p := (x0 , x 1, ... , xd) 
denote a path in P. By the shape of P, we mean the sequence 

(7.6) shape(p) := (rank(x0 ), rank(x1), ... , rank(xd)). 

By the weight of p, we mean the scalar 

d 

(7.7) weight(p) := I::rank(xi)-
i=O 

Lemma 7.2. Let P denote a prematroid. Pick any nonnegative 
integer d, and pick any path p = (xo, x1, ... , xd) (xo, xi, ... , Xd E 
P). Then the following are equivalent. 

(i) There does not exist an integer i (1 :Si :S d - 1) such that 

(7.8) Xi-1 <Xi> Xi+I· 

(ii) There exists an integer e (0 :S e :S d) such that 

Xo > X1 > X2 > · · · > Xe, 

Xe < Xe+I < Xe+2 < . ' ' < Xd, 

Suppose (i)-(ii) hold. Then we say p is down-up. We call Xe the 
base of p. 

Proof. Routine. 

Lemma 7.3. Let P denote a prematroid, and pick any x, y E P. 
Then there exists a geodesic down-up path connecting x, y. 
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Proof Set d := 8(x, y), and pick a geodesic path 

p := (x = Xo, X1, ... , Xd = y) (xo, x1, ... , Xd E P) 

with minimal weight in the sense of (7.7). We claim p is down-up. 
Suppose not. Then by Lemma 7.2, there exists an integer i (1 S i S 
d - l) such that 

(7.9) Xi-1 < Xi > Xi+l• 

Observe Xi-l -/= xi+1 since p is geodesic, and of course Xi covers 
both Xi-1 and Xi+l, so Xi= Xi-1VXi+1· It follows Xi-1Vxi+1 covers 
Xi-l, Xi+i, so by modularity, Xi-1, XiH both cover Xi-1/\Xi+l· Now 
the sequence 

p' := (x = Xo, X1, ·. ·, Xi-l, Xi-l I\ Xi+l, Xi+l, · · ·, Xd = y) 

is a path. Observe p' is geodesic, since p, p' have the same length, 
and 

weight(p') = weight(p) - 2. 

This contradicts our construction, and we conclude p is down-up. This 
proves Lemma 7.3. 

Lemma 7.4. Let P denote a prematroid, and pick any x, y, z E 
P. Then the following are equivalent: 

(i) The sequence xzy is geodesic, and z S x, z Sy. 
(ii) Z = XI\ y. 

Proof. We set 

N:={uEPlxuy is geodesic, usx, usy}, 

and show N = { x/\y}. To do this, it suffices to show 

(7.10) 

and 

(7.11) 

N ~ {x/\y}, 

N-/= 0. 

To obtain (7.10), pick any u E N. Observe u is a lower bound for x 
and y, so u S x I\ y. Now u S x I\ y S x, so u, x/\y, x is geodesic by 
(7.5). Similarly u S x I\ y Sy, so u, x/\y, y is geodesic. Recall xuy is 
geodesic, so x, x/\y, u, x/\y, y is geodesic. In particular x/\y, u, x/\y 
is geodesic, so u = x I\ y. We now have (7.10). To obtain (7.11), recall 
by Lemma 7.3, there exists a geodesic down-up path p connecting x, y. 
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Let u denote the base of p, in the sense of Lemma 7.2. Then u E N 
by construction, and (7.11) follows. This proves Lemma 7.4. 

Replacing /\ by V in Lemma 7.4, we get the following result. 

Lemma 7.5. Let P denote a prematroid, and pick any x, y, z E 
P. Then the fallowing are equivalent: 

(i) The sequence xzy is geodesic, and z?: x, z?: y. 
(ii) The join x Vy exists, and z = x Vy. 

Proof. Similar to Lemma 7.4. 

Corollary 7.6. Let P denote a prematroid, and pick any x, y E 

P. 

(i) 

(7.12) 8(x, y) = rank(x) + rank(y) - 2rank(x /\ y). 

(ii) Suppose x V y exists. Then 

(7.13) 8(x, y) = 2 rank(x Vy) - rank(x) - rank(y). 

(iii) Suppose x Vy exists. Then 

(7.14) rank(x) + rank(y) = rank(x /\ y) + rank(x Vy). 

Proof. To see (i), observe by Lemma 7.l(i),(ii) and Lemma 7.4 that 

8(x,y) 8(x,x/\y) + 8(x/\y,y) 

rank(x) - rank(x /\ y) + rank(y) - rank(x /\ y). 

The proof of (ii) is similar. To get (iii), equate (7.12), (7.13). 

Corollary 7. 7. Let P denote a prematroid, and let S denote a 
nonempty /\-closed, convex subposet of P. Then for all x, y E S, 

(7.15) 8s(x, y) = 8p(x, y). 

Proof. By Corollary 7.6(i), 

(7.16) 8p(x, y) = rankp(x) + rankp(y) - 2rankp(x/\py). 

Observe S is a prematroid by Corollary 5.7. Applying Corollary 7.6(i) 
to S, we obtain 

(7.17) 8s(x, y) = ranks(x) + ranks(Y) - 2ranks(x/\sy). 
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Evaluating the right hand side of (7.17) using (5.3), (5.6), we find the 
right hand sides of (7.16), (7.17) are equal. Line (7.15) follows, and 
Corollary 7.7 is proved. 

Lemma 7.8. Let P denote a prematroid, and pick any x, y, z E 

P. Then the following are equivalent: 

(i) The sequence xzy is geodesic. 
(ii) z 2 x I\ y, and x I\ z, y I\ z are relative complements in the 

interval [x I\ y, z]. 
(iii) There exists u E [x /\ y, x] and there exists v E [x /\ y, y] such 

that z = u Vv. 

Moreover, if (i)-(iii) hold, then 

(7.18) 

(7.19) 

U =XI\ z, 

V = y I\ z. 

Proof. (i) ---+ (ii). Set u := x I\ z, v := y I\ z. Then it suffices to 
show z = u V v and x I\ y = u I\ v. Observe xuz, zvy are each geodesic 
by Lemma 7.4, so xuzvy is geodesic. In particular uzv is geodesic. 
Since z 2 u and z 2 v by the construction, we find z = u V v 
by Lemma 7.5. Observe by our remarks above that xuvy is geodesic. 
Observe by Lemma 7.4 that u, u/\v, v is geodesic, so x, u, u/\v, v, y 
is geodesic. In particular x, u/\v, y is geodesic. But u I\ v :=:; u :=:; x 
and u I\ v :=:; v :=:; y, so u I\ v = x I\ y by Lemma 7.4. 

(ii) ---+ (iii). Set u := x. I\ z, v := y I\ z. Observe u 2 x I\ y since 
z 2 x I\ y, and u :=:; x by construction, so u E [x /\ y, x]. Similarly 
v E [x /\ y, y]. Also z = u V v by (ii) and (1.25). 

(iii) ---+ (i). Observe x, x/\y, y is geodesic by Lemma 7.4. Observe 
both x, u, x/\y and x/\y, v, y are geodesic by the construction, so 
x, u, x/\y, v, y is geodesic. In particular, xuvy is geodesic. Also 
u, uVv, v is geodesic by Lemma 7.5, so x, u, uVv, v, y is geodesic. In 
particular, x, uVv, y is geodesic, so (i) holds. 

Now suppose (i)-(iii) hold. We have observed in the proof of (iii) ---+ 

(i) that xuzvy is geodesic. Now (7.18) holds by Lemma 7.4, since xuz 
is geodesic, and since u :=:; x, u :=:; z. Line (7.19) is similar. This proves 
Lemma 7.8. 

Interchanging the roles of V, /\ in the above lemma, we obtain the 
following result. 

Lemma 7.9. Let P denote a prematroid, and pick any x, y, z E 
P such that x V y exists. Then the following are equivalent: 

(i) The sequence xzy is geodesic. 



Quantum Matroids 349 

(ii) z :::; x Vy, and x V z, y V z are relative complements in the 
interval [z, xVy]. 

(iii) There exists u E [x, xvy] and there exists v E [y, x Vy] such 
that z = u I\ v. 

Moreover, if (i)~(iii) hold, then 

(7.20) u = x V z, 

(7.21) v=yVz. 

Proof Similar to Lemma 7.8. 

Lemma 7.10. Let P denote a prematroid, and pick any x, y, 
z, z' E P such that both xzy and xz'y are geodesic, and such that 
z V z' exists. Then x, zVz', y is geodesic. 

Proof. By Lemma 7.8, there exists u, u' E [x /\ y, x] and there 
exists v, v' E [x /\ y, y] such that z = u V v and z' = u' V v'. Now 

z V z' = (u Vu') V (v V v'), 

u Vu' E [x /\ y, x], 

v V v' E [x /\ y, y], 

so x, zVz', y is geodesic by Lemma 7.8. 

Lemma 7.11. Let P denote a prematroid, and pick any x, y, 
z, z' E P such that both xzy and xz'y are geodesic, and such that 
x Vy exists. Then x, z/\z1 , y is geodesic. 

Proof. Similar to Lemma 7.10. 

Lemma 7.12. Let P denote an embeddable poset, and pick any 
x, y, z, z' E P such that both xzy and xz'y are geodesic. Then 
x, z/\z1, y is geodesic. 

Proof. By Lemma 6.4 , we may identify P with a lower ideal in 
some modular atomic lattice P. By Lemmas 5.3, 5.4, z/\z' is the same 
as computed in P or P. By Lemma 5.3 and Corollary 7.7, the distance 
function for P equals the restriction to P of the distance function for 
P. In particular, both xzy and xz'y are geodesic in P. Applying 
Lemma 7.11 to P, we find x, z/\z1, y is geodesic in P. By our above 
remark, x, z/\z1 , y is geodesic in P. This proves Lemma 7.12. 

Conjecture 7.13. Let P denote a prematroid such that 

(i) the rank of P is at least 3, 
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(ii) for all x, y, z, z' E P such that both xzy and xz'y are 
geodesic, then x, z/\z1 , y is geodesic. 

Then P is embeddable. 

§8. Geodesically closed subposets in a prematroid 

In this section, we introduce the notion of a geodesically closed sub­
poset in a prematroid, and characterize these subposets in terms of the 
meet and join operation. 

Definition 8.1. Let P denote a prematroid. A subposet G ~ P 
is said to be geodesically closed in P, whenever G is nonempty, and 
for all x, y, z E P, 

x, y E G and xzy geodesic in P --+ z E G. 

Lemma 8.2. Let P denote a prematroid. Then for any subposet 
G ~ P, the following are equivalent. 

(i) G is geodesically closed in P. 
(ii) G is nonempty, /\-closed, V-closed, and convex in P. 

Proof. (i) --+ (ii). G is nonempty by Definition 8.1. Given 
x, y E G, observe x, x/\y, y is geodesic in P by Lemma 7.4, so 
x/\y E G. Suppose x Vy exists in P. Then x, xVy, y is geodesic in 
P by Lemma 7.5, so xVy E G. Suppose x :Sy, and pick any z E [x, y]. 
Then xzy is geodesic in P by (7.5), so z E G. We now have (ii). 

(ii) --+ (i). Suppose we are given x, y E G and z E P such that 
xzy is geodesic in P. Then by Lemma 7.8(i),(iii), z = u V v for some 
u E [x/\y,x] and some v E [x/\y,y]. Observe x/\y E G by /\-closure, 
so now u, v E G by convexity, and now z E G by V-closure. This 
proves Lemma 8.2. 

Corollary 8.3. Let P denote a prematroid, and let G denote 
a geodesically closed subposet of P. Then G is a prematroid. 

Proof. G is /\-closed and convex by Lemma 8.2, and is therefore 
a prematroid by Corollary 5.7. 

Lemma 8.4. Let P denote a prematroid, and pick any x E P. 

(i) The subposet x+ := { y E P I y 2 x} is geodesically closed in 
P. 

(ii) For all y E P such that y 2 x, the interval [x, y] is geodesi­
cally closed in P. 
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Proof. The subposets x+, [x, y] satisfy the condition Lemma 
8.2(ii), and are therefore geodesically closed in P by that lemma. 

Lemma 8.5. Let P denote a prematroid, and let G denote a 
geodesically closed subposet of P that is contained in an interval of P. 
Then G is an interval. In particular, G is a modular atomic lattice. 

Proof. Observe by Lemma 8.2 that G = [x, y], where x = 

AwEGW and Y = VwEGw. 

§9. Submatroids and subspaces in a prematroid 

In this section we introduce the notions of a submatroid and a sub­
space in a prematroid, and show these objects are in 1-1 correspondence. 

Lemma 9.1. Let P denote a prematroid. Then for any subposet 
G ~ P, the following are equivalent. 

(i) G is a nonempty V-closed lower ideal in P. 
(ii) G is geodesically closed in P, and Oc = Op. 

If (i)-(ii) hold, we say G is a subprematroid of P, ( or simply, a 
submatroid) . 

Proof. (i) ----. (ii). G is convex and /\-closed in P by Lemma 
5.3, so G is geodesically closed in P by Lemma 8.2. G, P share the 
same O by Lemma 5.3. 

(ii) ----. (i). G is nonempty by Definition 8.1. G is V-closed in 
P by Lemma 8.2. G is convex in P by the same lemma, so G is a 
lower ideal in P by Lemma 5.3. This proves Lemma 9.1. 

Lemma 9.2. Let P denote a prematroid. Then for all subposets 
G ~ P, and for all x E P, the following are equivalent. 

(i) G is geodesically closed in P, and Oc = x. 
(ii) G is a submatroid of x+. 

Proof. (i) ----. (ii). G is geodesically closed in P and contained 
in x+, so G is geodesically closed in x+. The result now follows from 
Lemma 9.1. 

(ii) ----. (i). By Lemma 9.1, Oc = x, and G is geodesically closed 
in x+. But x+ is geodesically closed in P by Lemma 8.4(i), so G is 
geodesically closed in P. This proves Lemma 9.2. 

Let P denote a poset with 0, and recall Ap denotes the set of all 
atoms of P. For all x E P, define 

(9.1) Shadow(x) := { a E Ap I a~ x}. 
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Observe by Definition 5.1 that any prematroid is atomic. 

Lemma 9.3. Let P denote an atomic semilattice. Then 

(i) for all x E P, 

(9.2) X V a. 
aEShadow(x) 

(ii) for all x, y E P, 

(9.3) x :=; y +-4 Shadow(x) ~ Shadow(y). 

(iii) for all x, y E P, 

(9.4) Shadow(x /\ y) = Shadow(x) n Shadow(y). 

Proof. (i) Immediate from the definition of an atomic semilattice. 
(ii), (iii) Immediate from (i). 

Lemma 9.4. Let P denote a prematroid, and let x, y denote 
incomparable elements in P such that x V y exists. Then 

(9.5) Shadow(x V y)\Shadow(x /\ y) = LJ Shadow(a Vb), 

where the union is over all a E Shadow(x)\Shadow(y) and all b E 
Shadow(y)\ Shadow(x). 

Proof. ;;2: Pick any a E Shadow(x)\Shadow(y), any b E Shadow(y)\ 
Shadow(x), and any c E Shadow(a Vb). Observe a :=; x :=; x Vy and 
b :=; y :=; x V y, so a V b :=; x V y. Now c :=; a V b :=; x V y, so 
c E Shadow(x Vy). Observe c (j. Shadow(x /\ y); otherwise 

b:=;avb=aVc:=;x, 

a contradiction. 
~: Pick c E Shadow(xvy)\Shadow(x/\y). We find a E Shadow(x)\ 

Shadow(y) and b E Shadow(y)\Shadow(x) such that c E Shadow(a V 
b). We may assume c i x; otherwise we are done with a := c, and 
with b an arbitrary element in Shadow(y)\Shadow(x). Similarly, we 
may assume c i y. 

Observe x Vy is an upper bound for c, y, so c Vy exists. Set 
y' := cVy. Then y' covers y by modularity, and y' E [y, x Vy] by the 
construction. Observe x I\ y' 2: x I\ y. In fact x I\ y' > x I\ y; otherwise 
y, y' are both relative complements of x in [x/\y,xVy], contradicting 
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(7.14). Now Shadow(xAy') properly contains Shadow(xAy) by (9.3), 
so there exists an element a E Shadow(x A y')\Shadow(x A y). Observe 
a E Shadow(x)\Shadow(y). Observe y' is an upper bound for a, c, so 
a V c exists. set z := a V c. Observe a -1- c since a ::; x and c i x, 
so z is a line by modularity. We mentioned y' is an upper bound for 
a, c, so z = a V c::; y'. Now y V z = y' covers y, so z covers y i\ z 
by modularity. In particular y i\ z is an atom. Set b := y i\ z. Observe 
b E Shadow(y), so a -1- b. Observe z covers a, b, so z = a Vb. Observe 

c E Shadow(z) 

= Shadow(a Vb). 

Observe b (/. Shadow(x); otherwise c::; a Vb::; x, a contradiction. this 
proves Lemma 9.4. 

Definition 9.5. Let P denote a prematroid. By a subspace of P, 
we mean a subset S ~ Ap such that for all lines x E P, 

(9.6) IShadow(x) n SI~ 2 -+ Shadow(x) ~ S. 

Let P denote a prematroid. Our purpose for the rest of this 
section is to establish a 1 - 1 correspondence between the set Q of all 
submatroids of P, and the set S of all subspaces of P. We proceed 
as follows. In Lemma 9.6, we find a map G-+ Ac from Q to S, and 
a map S-+ Gs from S to Q. In Theorem 9.7, we show these maps 
are inverses, establishing our 1-1 correspondence. 

Lemma 9.6. Let P denote a prematrnid. 

(i) Let G denote a submatroid of P. Then the set of atoms 
Ac= Ap n G of G is a subspace of P. 

(ii) Let S denote a subspace of P, and set 

(9.7) Gs:= { x E PI Shadow(x) ~ S}. 

Then Gs is a submatroid of P. 

Proof. (i) Pick any line x E P, and suppose there exists distinct 
points 

y, z E Shadow(x) n Ac. 

We show 

(9.8) Shadow( x) ~ Ac. 
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To see (9.8), observe 
x=yVzEG 

since G is V-closed, so now 

Shadow(x) ~ [0, x] ~ G 

since G is convex, and now 

Shadow(x) ~ Ap n G = Aa, 

as desired. 
(ii) By Lemma 9.1, it suffices to show Gs is a nonempty, V-closed 

lower ideal in P. Observe Shadow(0) = 0 ~ S, so 0 E Gs by (9.7). 
In particular Gs -I 0. Gs is a lower ideal in P by the construction. 
To see that Gs is V-closed in P, we pick any x, y E Gs such 
that x V y exists in P, and show x V y E Gs- This will occur if 
Shadow(xVy) ~ S, so we pick any c E Shadow(xvy) and show c ES. 
We may assume x, y are incomparable, and that c (j. Shadow(x /\ y); 
otherwise the result is trivial. Now by Lemma 9.4, there exists a E 
Shadow(x)\Shadow(y) and there exists b E Shadow(y)\Shadow(x) 
such that c E Shadow( a V b). Observe a V b is a line, and 

jShadow(a Vb) n Sj ~ j{a, b}I = 2, 

so 
Shadow(a Vb)~ S 

by (9.6). Now 
c E Shadow(a Vb)~ S, 

as desired. Now Gs is V-closed. We have now shown Gs is a 
nonempty, V-closed lower ideal in P, so Gs is a submatroid of P by 
Lemma 9.1. 

Theorem 9.7. Let P denote a prematroid. let g denote the 
set of all submatroids of P, and let S denote the set of all subspaces 
of P. Then the maps 

g --t s 
G --t Aa 

and 

s --t g 
s --t Gs 
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are inverses. In particular, They are both bijections. 

Proof. First, let S denote a subspace of P, and write G = Gs. 
Then it is immediate from the construction that Aa = S. Secondly, let 
G denote any submatroid in P, and write S = A 0 . We show G = Gs, 
To see G ~ Gs, pick any x E G. Observe Shadow(x) ~ S since G is 
a lower ideal in P, so x E Gs, Hence G ~ Gs, To see G 2 Gs, pick 
any x E Gs, Then Shadow(x) ~ S. Now 

X= V aE G, 
aEShadow(x) 

since G is V-closed by Lemma 9.1, and since S ~ G by the construc­
tion. Hence G 2 Gs, so G = Gs. We have now established the given 
maps are inverses. This proves Theorem 9. 7. 

§10. Singular subspaces 

Definition 10.1. Let P denote a prematroid. A subspace S of 
P is said to be singular whenever 

(10.1) xv PY exists for all x, y E S. 

Lemma 10.2. Let P denote a prematroid, and pick any x E P. 
Then Shadow( x) is a singular subspace of P. 

Proof. To show Shadow( x) is a subspace of P, consider the 
interval G = [O, x]. Observe G is a submatroid of P by Lemma 8.4(ii), 
Lemma 9.l(ii), so Aa is a subspace of P by Lemma 9.6(i). Observe 
Shadow(x) = Aa by construction, so Shadow(x) is a subspace of P. 
It is clear that Shadow(x) is singular. This proves Lemma 10.2. 

Let P denote a prematroid, and let S denote a singular subspace 
of P. Must there exist an element x E P such that Shadow(x) = S? 
The answer is "no" in general, but "yes" in the following special case. 

Theorem 10.3. Let P denote a prematroid such that: for all 
a E Ap, and all u E P, 

(10.2) if aVpb exists for all b E Shadow(u), then aVpu exists. 

Then for all singular subspaces S of P, there exists an element x E P 
such that 

(10.3) Shadow(x) s. 
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Proof. Let the singular subspace S be fixed, and let G = Gs be 
the corresponding submatroid from (9.7). Pick any x E max(G), and 
recall 

(10.4) Shadow( x) ~ S 

by (9.7). We show equality holds in (10.4). Suppose not. Then there 
exists a point a E S\Shadow(x). Since a, Shadow(x) are contained in 
a common singular subspace, aVpb exists for all b E Shadow(x). It 
follows by (10.2) that aVpx exists. Observe aVpx E G, (since G is 
V-closed by Lemma 9.l(i)), and aVpx > x (since a 1:. x), and we have 
contradicted the maximality of x in G . We conclude equality holds 
in (10.4), and the theorem is proved. 

§11. More on the distance function 

Lemma 11.1. Let P denote a prematroid, and pick any x,x', 
y, y' E P such that both xx'y and xy'y are geodesic. Then the following 
(i)-(iv) are equivalent. 

(i) xx'y'y is geodesic. 
(ii) x I\ x' 2: x I\ y' and y I\ y' 2: y I\ x'. 

(iii) x' I\ y' 2: (x I\ y') V (x' I\ y). 
(iv) x' I\ y' = (x I\ y') V (x' I\ y). 

Proof. (i) -t (ii). Applying Lemma 7.8(ii) to the geodesic se-
quence xx'y', we find x' 2: xl\y1• Of course x 2: xl\y1 , so xl\x' 2: xl\y'. 
Interchanging the roles of x, y, we find y I\ y' 2: y I\ x'. 

(ii) -t (iii). Observe x' 2: x I\ x' 2: x I\ y' by (ii), and certainly 
y' 2: x I\ y', so x' I\ y' 2: x I\ y'. Interchanging the roles of x, y, we find 
x' I\ y' 2: x' I\ y, and line (iii) follows. 

(iii) -t (iv). The sequence x, xl\y', y' is geodesic by Lemma 7.4, 
and we assume xy'y is geodesic, so x, xl\y1 , y', y is geodesic. Since 

x I\ y' S (x I\ y') V (x' I\ y) S x' I\ y' Sy', 

the four elements in the above line form a geodesic sequence. Now 

x, xl\y1 , (xl\y')v(x' l\y), x' l\y1 , y', y 

so in particular, 

(11.1) x, (xl\y')v(x' l\y), x' l\y1 , y 

is geodesic, 

is geodesic. 
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Interchanging the roles of x, y, we find 

(11.2) x, x' l\y1 , (xl\y')v(x' l\y), y is geodesic, 

and (11.1), (11.2) imply (iv). 
(iv) -t (i). By Lemma 7.4 and our assumptions, we observe x, xi\ 

y', y', y is geodesic. Observe xl\y1 S x' l\y' Sy', so x, xl\y1,x11\y', y', 
y is geodesic. In particular x, x' l\y1 , y', y is geodesic. Interchanging 
the roles of x, y, we find x, x', x' l\y', y is geodesic. Combining the 
above information, we find 

(11.3) x, x', x' l\y1 , y', y is geodesic. 

In particular, xx'y'y is geodesic, so (i) holds. We have now proved 
Lemma 11.1. 

Corollary 11.2. Let P denote a prematroid, and pick x, x', y, y' 
E P such that x S x' and y S y'. Then the following are equivalent. 

(i) xx'y'y is geodesic. 
(ii) xx'y and xy'y are both geodesic. 

Proof. (i) -t (ii). Clear. 
(ii) -t (i). We assume x S x', so 

xl\x' = x 

(11.4) 2:: xl\y'. 

Interchanging the roles of x, y, we obtain 

(11.5) yl\y' 2:: yl\x'. 

The condition in Lemma 11.l(ii) is now satisfied by (11.4), (11.5), so 
xx'y'y is geodesic by that lemma. 

§12. The function 8 and the sets x * y 

Definition 12.1. Let P denote a prematroid. For all x, y E P, 
define 

(12.1) 8(x,y) := min{8(x,z) I z E P, zVy exists}, 

(12.2) x *Y := {z E PI 8(x, z) = 8(x, y), z Vy exists}. 

To get a feel for the above definition, we consider a very special case. 
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Lemma 12.2. Let P denote a prematroid, and pick any x, y E 
P. Then the fallowing are equivalent. 

(i) x Vy exists. 
(ii) 8(x, y) = 0. 

(iii) X*Y={x}. 
(iv) 8(y,x) = 0. 
(v) y *X = {y}. 

Proof. Immediate from Definition 12.1. 

Let P denote a prematroid, and pick any x, y E P. In general 

(12.3) 8(x, y) =J 8(y, x). 

It turns out (as we will show in Sections 18, 19) that 8 is symmetric in 
its arguments precisely when P satisfies the augmentation axiom, and 
in this case X*Y is a [x I\ y, x]-basis system. For now, we will lay some 
groundwork with a general fact about X*Y, and an interpretation of 8. 

Theorem 12.3. Let P denote a prematroid, and pick any x, y E 

P. Then 

(12.4) x * y ~ [x I\ y, x]. 

Proof. Pick any z E x * y. We first show z ::; x. Suppose z 1:. x. 
We will obtain a contradiction by showing 

(12.5) (xl\z)Vy exists 

and 

(12.6) 8(x, x I\ z) < 8(x, z). 

To see (12.5), observe x I\ z ::; z ::; y V z and y ::; y V z, so x I\ z, 
y have an upper bound. To see (12.6), recall x, xl\z, z is geodesic by 
Lemma 7.4, and x I\ z =J x by the construction. Line (12.6) follows. 
Now (12.5), (12.6) contradict Definition 12.1, so z ::; x. It remains to 
show x I\ y ::; z. Suppose x I\ y 1:_ z. We will obtain a contradiction by 
showing 

(12.7) ((xAy)vz)vy exists 

and 

(12.8) 8(x, (x I\ y) V z) < 8(x, z). 
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Tosee(l2.7),observe x/\ySySyVz and zsyVz,so (x/\y)VzS 
y V z. Of course y Sy V z, so y V z is an upper bound for (x I\ y) V z, 
y. We now have (12.7). To see (12.8), observe x is an upper bound for 
x/\y, z,so (x/\y)Vzsx. Now zs(x/\y)Vzsx,so z,(x/\y)Vz,x 
is geodesic. z f- (x I\ y) V z by construction, and (12.8) follows. Now 
(12.7), (12.8) contradict Definition 12.1, so x I\ y s z. We conclude 
z E [x /\ y, x], and the theorem is proved. 

We now establish an interpretation of 6. We begin with a technical 
lemma, and proceed to our main result Theorem 12.5. 

Lemma 12.4. Let P denote a prematroid, and pick any x, y E 
P. Then for all x' Ex+ and all y' E y+, 

(i) 8(x', x' I\ y') 2 o(x, y), 
(ii) 8(y',x1 /\y1)26(y,x), 

(iii) 8(x',y') 2 o(x,y) + o(y,x). 

Proof. (i) Observe y' is an upper bound for x I\ y', y, so (x I\ 

y') Vy exists. Now 

(12.9) 8(x, XI\ y1) 2 O(x, y) 

by Definition 12.1. Observe x' is an upper bound for x, x' I\ y', so 
x V (x' I\ y') exists. Clearly 

x' I\ y' 

so 

8(x', x' I\ y') > 

> 

by (12.9). 
(ii) Similar. 

< xV(x1 /\y1) 

8(x V (x' I\ y'), x' I\ y') 

8(x, XI\ (x1 I\ y1)) 

8(x, XI\ y') 

o(x,y) 

< I x, 

(modularity) 

(since x S x') 

(iii) Recall x', x' /\y', y' is geodesic by Lemma 7.4, so 

8(x',y') a(x',x' /\y1) + a(x' /\y',y') 

> o(x,y) + o(y,x) 

by (i), (ii). This proves Lemma 12.4. 
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Theorem 12.5. Let P denote a prematroid. Then for all x, y E 
P, 

(12.10) 8(x, y) + o(y, x) = min{ 8(x', y') Ix' Ex+, y' E y+}. 

Proof. In view of Lemma 12.4, it suffices to find some x' E x+ 
and some y' E y+ such that 

(12.11) 8(x',y') = o(x,y) + o(y,x). 

To this end, pick u E x * y and v E y * x, and set 

x' := x Vv, 

y' := yVu. 

Clearly x' Ex+, y' E y+, so it remains to check (12.11). To obtain 
it, we decompose 8(x, y) in two ways. First, observe both xx'y and 
xy'y are geodesic by Lemma 7.8(i), (iii). Now xx'y'y is geodesic by 
Corollary 11.2, so 

(12.12) 8(x,y) = 8(x,x') + 8(x',y') + 8(y',y). 

Second, observe x, u, xl\y, v, y is geodesic by Lemma 7.4 and Theorem 
12.3, so 

(12.13) 8(x,y) = 8(x,u) + 8(u,xl\y) + 8(xl\y,v) + 8(v,y). 

We now evaluate the terms on the right in (12.13). By Definition 12.1, 

(12.14) 

(12.15) 

8(x, u) = o(x, y), 

8(v, y) = o(y, x). 

Observe u, y are relative complements in [x I\ y, y'] by Lemma 
7.8(ii),(iii), so by modularity 

(12.16) 8(u,x I\ y) = 8(y', y). 

Similarly, 

(12.17) 8(x I\ y, v) = 8(x, x'). 

Subtracting (12.12) from the sum of (12.13)-(12.17), we obtain (12.11), 
as desired. This proves the theorem. 
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§13. The functions p and "/ 

Definition 13.1. Let P denote a prematroid. For all x, y E P, 
define 

(i) p(x, y) :~ rank(x /\ y), 
(ii) "f(x, y) := 8(x I\ y, z), 

where z is any element of x * y. (Observe "f(X, y) is independent of 
the choice of z by Definition 12.1, Theorem 12.3.) 

Let P denote a prematroid, and pick any x, y E P. In this 
section, we consider the triple p(x, y), "f(x, y), 8(x, y). In our main result 
Theorem 13.5, we determine how this triple changes as we replace x 
by an element in P adjacent x. 

Lemma 13.2. Let P denote a prematroid. Then for all x, y E 

P, 

(13.1) rank(x) = p(x,y) + "f(x,y) + 8(x,y). 

Proof. Pick any z E x * y. Observe 0, x/\y, z, x is geodesic by 
Theorem 12.3, so 

rank(x) 8(0,x/\y) + 8(x/\y,z) + 8(z,x) 

p(x,y) + "f(x,y) + 8(x,y) 

by Lemma 7.l(ii) and Definitions 12.1, 13.1. 

Lemma 13.3. Let P denote a prematroid of rank D. Then for 
all x,y E P, 

(i) p(x, y), "f(X, y), 8(x, y) are nonnegative integers, 
(ii) p(x,y) + "f(x,y) + "f(y,x) + 8(x,y) :::; D. 

Proof. (i) Immediate. 
(ii) Pick any v E y * x. Then x V v exists by Definition 12.1. 

Observe x, v are relative complements in the interval [x /\ y, x V v] by 
Lemma 7.8(ii),(iii) (with u := x), so 

rank(x V v) - rank(x) 

(13.2) 

rank(v) - rank(x /\ y) 

"f(y,x) 

by Lemma 7.l(ii). Now by (13.2), Lemma 13.2, and the construction, 

D > rank(xvv) 

rank(x) + "f(Y, x) 

p(x, y) + "f(x, y) + 8(x, y) + "f(Y, x), 
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as desired. This proves Lemma 13.3. 

Before proceeding to the main theorem of this section, we mention 
a result about p. 

Lemma 13.4. Let P denote a prematroid. 
P, the following are equivalent. 

(i) z E [x/\y,x]. 
(ii) z s x, and 

(iii) z s x, and 
(iv) z s x, and 

xzy is geodesic. 
Z I\ y =XI\ y. 
p(z, y) = p(x, y). 

Then for all x, y, z E 

Proof. (i) ---. (ii). Clearly z s x. We may view z = u V v, where 
u := z, v := x I\ y, so xzy is geodesic by Lemma 7.8 (i),(iii). 

(ii) ---. (iii). By Lemma 7.8(i),(ii), x I\ z, z I\ y are relative comple-
ments in the interval [x I\ y, z]. But x I\ z = z, so z I\ y = x I\ y. 

(iii) ---. (i). Observe x I\ y = z I\ y s z. 
(iii) ---. (iv). Immediate from Definition 13.l(i). 
(iv) ---. (iii). Observe z/\y S z S x and z/\y Sy, so z/\y S x/\y. 

But z I\ y, x I\ y have the same rank, so they are equal. This proves 
Lemma 13.4. 

Theorem 13.5. Let P denote a prematroid, and pick any x, y, 
z E P such that x, z are adjacent. Then 

(i) 

(13.3) 

(ii) 

(13.4) 

(iii) 

(13.5) 

where 

(13.6) 

(13.7) 

(13.8) 

Proof. 

rank(x) - rank(z) = Ap +A,+ A8, 

8(x,y)-8(z,y) 

IAPI + IA,I + JA81 = 1, 

Ap = p(x, y) - p(z, y), 

A, = ,(x, y) - ,(z, y), 

A8 = 8(x, y) - 8(z, y). 

(i) Immediate from Lemma 13.2. 
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(ii) By Corollary 7.6(i), 

(13.9) 8(x, y) = rank(x) + rank(y) - 2rank(x /\ y), 

(13.10) 8(z,y) = rank(z)+rank(y)-2rank(z/\y). 

Subtracting (13.10) from (13.9), and evaluating rank(x)-rank(z) using 
(13.3), we obtain (13.4). 

(iii) Since 8(x,y), 8(z,y) measure the distance from x, z to the 
same set, and since x, z are adjacent, we have 

(13.11) 6.8 E {-1, 0, l} 

by the triangle inequality. First assume 6.8 =/- 0. Interchanging x, z if 
necessary, we may assume that 

(13.12) 6.8 = 1. 

We show 

(13.13) 6.p = o, D,.'Y = 0. 

This will follow by Definition 13.1 if we can show 

(13.14) 

(13.15) 

Z*Y~X*Y, 

Z I\ y =XI\ y. 

To see (13.14), pick any w E z * y. Then w Vy exists, so 

(13.16) 8(x, w) ~ 8(x, y). 

Also 8(z,w) = 8(z,y), so 

(13.17) 

(13.18) 

8(x,w) :=:; 8(x,z) + 8(z,w) 

= 1 + 8(z,y) 

= 8(x, y) 

by (13.12). We must now have equality in (13.16)-(13.18). In particular 
w E x * y by the construction. We now have (13.14). To see (13.15), 
pick any w E Z*Y· Then w E X*Y by (13.14), so w E [x/\y,x] 
by Theorem 12.3. Also xzw is geodesic by (13.17), so z E [x /\ y, x] 
by Lemma 8.4. Now z I\ x = x I\ y by Lemma 13.4(i),(iii), so (13.15) 
holds. Line (13.13) follows from (13.14), (13.15), and (13.5) follows from 
(13.12), (13.13). Next assume 6.8 = 0. By (7.3), the pair 

(rank(x) - rank(z), 8(x, y) - 8(z, y)) 
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is one of (1, 1), (1, -1), (-1, 1), (-1, -1). In each of these four cases, 
one readily solves (13.3), (13.4) for /j.p, /j.'Y, and finds (13.5) holds in 
each case. We have now proved (iii), and the theorem. 

Corollary 13.6. Let P denote a prematroid, and pick x, y, z E 

P such that z ~ x. Then 

(i) p(x, y) :S p(z, y), 
(ii) "f(X, y) '.S "f(Z, y), 

(iii) 8(x, y) :S 8(z, y), 
(iv) 8(y,x) :S 8(y,z), 
(v) 'Y(Y, x) ~ 'Y(Y, z). 

Proof (i)-(iii) It suffices to assume z covers x. By Theorem 
13.5(i),(iii), exactly one of p(x, y) - p(z, y), 'Y(x, y) - 'Y(z, y), 8(x, y) -
8(z, y)·equals -1, and the other two equal 0. The inequalities follow. 

(iv) Pick any w E y * z. Then by Definition 12.1, 

(13.19) 8(y, w) = 8(y, z) 

and z V w exists. Observe x V w exists, since x :S z :S z V w and 
w :<; z V w, so 

(13.20) 8(y, w) ~ 8(y, x) 

by Definition 12.1. Our result follows from (13.19), (13.20). 
(v} By Lemma 13.2, parts (i), (iv) above, and since p is symmetric 

in its arguments, 

'Y(y,x) = rank(y) - p(y,x) - 8(y,x) 

~ rank(y) - p(y,z) - 8(y,z) 

="f(y,z), 

as desired. This proves Corollary 13.6. 

Lemma 13. 7. Let P denote a prematroid, and let G denote a 
geodesically closed subposet of P. Then for all x, y E G, 

(i) X *G y = X *PY, 
(ii) 8a(x,y)=8p(x,y), 

(iii) 'Ya(x,y)="fp(x,y), 
(iv) Pa(x,y) = pp(x,y) - rank(Oa). 

Proof. (i), (ii) Immediate from Lemma 8.2 and Definition 12.1. 
(iii) Immediate from Lemma 5.4, Definition 13.l(ii). 
(iv) Immediate from Lemma 5.6, Definition 13.l(i). 
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§14. Theposets [x/\y,x*y], [x*y,x]* 

For notational convenience, we expand our notion of an interval in 
a prematroid. 

Definition 14.1. Let P denote a prematroid. For any nonempty 
subsets H ~ P, K ~ P, define the subposet 

[H, K] := {z E PI ::Ix EH, :3y EK such that xzy is geodesic}. 

Let P denote a prematroid, and pick any x, y E P. In this section, 
we consider the posets [x /\ y, x * y], [x * y, x]*. (Recall from (3.1), the 
* means we reverse the usual partial order. As we mentioned in Section 
12, it will turn out that if P satisfies the augmentation axiom, then 
x * y is a [x /\ y, x]-basis system. In this case [x /\ y, x * y] becomes a 
[x I\ y, x]-matroid, [x * y, x]* becomes a [x /\ y, x]*-matroid, and these 
matroids are duals in the sense of Definition 3.2. In this section, we 
establish a few facts about these posets. 

Lemma 14.2. Let P denote a prematroid, and pick any x, y E 

P. 

(i) The zero of [x I\ y, x * y] is x I\ y. 

(ii) top([x/\y,X*Yl) =X*Y· 

(iii) rank([x /\ y, x * yl) = -y(x,•y). 
(iv) The zero of [x * y, x]* is x. 
(v) top([x * y, x]*) = x * y. 

(vi) rank([x*y,x]*) = 8(x,y). 

Proof. Immediate from Definitions 12.1, 13.1, 14.1, and Theorem 
12.3. 

Lemma 14.3. Let P denote a prematroid, and fix any x, y E P. 
Then for all z E P, the following are equivalent. 

(i) z E [x * y, x]*. 
(ii) z S x, and 

(14.1) 8(x, y) - 8(z, y) = rank(x) - rank(z). 

(iii) z S x, and z * y ~ x * y. 
(iv) z S x, and 

(14.2) p(x,y) = p(z,y), -y(x, y) = -y(z, y). 
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Proof. (i) --+ (ii). Observe z s x by Theorem 12.3. By assump­
tion, there exists u E x * y such that u S z S x. Now 

rank(x) - rank(z) = 8(x, z) 

= 8(x, u) - 8(z, u) 

= 8(x, y) - 8(z, y) 

since u E Z*Y· 
(ii) --+ (iii). Pick any w E z * y. We show w E x * y. Observe 

w Vy exists by assumption, so it suffices to show 8(x,w) = 8(x,y). 
Observe w S z S x by Theorem 12.3 and the construction, so 

8(x, w) 

as desired. 

8(x, z) + 8(z, w) 

rank(x) - rank(z) + 8(z, y) 

8(x, y), 

(iii) --+ (i). Pick any w E z * y. Then w S z S x by Theorem 
12.3,and wEX*Y byassumption,so zE[x*y,x]*. 

(ii) +-> (iv). The three scalars p(x, y) - p(z, y), ,(x, y) - ,(z, y), 
8(x, y)-8(z, y) are non-negative by Corollary 13.6, and sum to rank(x) 
-rank(z) by Theorem 13.5(i). The result is now immediate. This proves 
Lemma 14.3. 

§15. The posets xt, x; 

Let P denote a prematroid. For all x, y E P, define the subposets 
xt,x; ~ P by 

(15.1) 

(15.2) 

xt .- {z E PI x S z, xzy is geodesic}, 

x; .- { z E [x A y, x] I z Vy exists in P}. 

Observe x is the zero of xt, and x A y is the zero of x;. In particular 
xt, x; are not empty. 

Example 15.1. Let P denote a prematroid, and pick any x, y E 
P such that x V y exists. Then 

(i) 
(ii) 

x+ y 

x; 
[x,xVy], 
[xAy,x]. 
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Proof. (i) First consider the inclusion ~- Pick any z Ext. Then 
xzy is geodesic, so z :S: x Vy by Lemma 7.9(i),(ii). Also x :s; z, so 
z E [x, x Vy]. Now consider the inclusion ;2. Pick any z E [x, x Vy]. 
Then x, z, xVy is geodesic by (7.5). Also x, xVy, y is geodesic by 
Lemma 7.5, so x, z, xVy, y is geodesic. In particular, xzy is geodesic, 
so z Ext. 

(ii) Immediate from (15.2). 

Lemma 15.2. Let P denote a prematroid, and pick any x, y E 

P. 

(i) xt is a submatroid of x+. 

(ii) xt is geodesically closed in P. 

Proof. (i) First, we claim xt is a lower ideal in x+. Pick any 

z E xt and any w E x+ such that w :s; z. We show w E xt. Of 
course x :S: w, so it remains to show xwy is geodesic. to this end, 
observe xwz is geodesic, since x :S: w :S: z, and xzy is geodesic by 
assumption, so xwzy is geodesic. In particular xwy is geodesic, as 
desired. Hence xt is a lower ideal in x+. 

Next, we claim xt is V-closed in P. To see this, pick any 

z, z' E xt such that z V z' exists in P. Recall xzy, xz'y are 
both geodesic, so x, zVz', y is geodesic by Lemma 7.10. Recall x :s; z, 
x :s; z', so x :s; z V z'. Now z V z' Ext, so xt is V-closed in P. Now 

xt is a nonempty V-closed lower ideal in x+, so xt is a submatroid 

of x+ by Lemma 9.1. 
(ii) Immediate from (i) above and Lemma 9.2. 

Lemma 15.3. Let P denote a prematroid, and fix any x, y E P. 
Then for all z E P, the fallowing are equivalent. 

(i) 
(ii) 

(iii) 
(iv) 

(15.3) 

+ z E xy. 

x :s; z, and x, y I\ z are relative complements in the interval 
[x/\y,z]. 
There exists an element v E [x /\ y, y] such that z = x V v. 
x :s; z, and 

p(z,y) - p(x,y) rank(z) - rank(x). 

(v) x :s; z, and 

(15.4) "!(x, y) = 'Y(z, y), 8(x, y) = 8(z, y). 
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Moreover, if (i)-(v) hold, then 

(15.5) V = y I\ z. 

Proof. (i) +--+ (ii) +--+ (iii). This is a special case of Lemma 7.8. 
(ii) -+ (iv). Immediate from (7.14) and Definition 13.l(i). 
(iv) -+ (i). By (7.12) and the observation x I\ z = x, we find 

8(x, z) + 8(z, y) - 8(x, y) equals twice 

rank(z) - rank(x) + p(x, y) - p(z, y), 

and is therefore O by (15.3). Now xzy is geodesic by (7.4), and (i) 
follows. 

(iv)+--+ (v). The scalars p(z,y)-p(x,y), "f(z,y)-"!(x,y), 8(z,y)-
8(x, y) are nonnegative by Corollary 13.6, and sum to rank(z)-rank(x) 
by Theorem 13.5(i). The result is now immediate. 

Now suppose (i)-(v) hold. Then (15.5) holds by (7.19). This proves 
Lemma 15.3. 

We now turn to x;. 
Lemma 15.4. Let P denote a prematroid, and pick any x, y E 

P. Then 

(i) x; is a lower ideal in the interval [x I\ y, x], 

(ii) top(x;) = x * y, 

(iii) [x /\ y, x * y] s;; x;. 

Proof. (i) Suppose we are given some z E x; and some z' E 

[x I\ y, x] such that z' ::; z. We show z' E x;. To do this, we must 
show y V z' exists in P. But this is the case, since y V z 2: y and 
y V z 2: z 2: z'. 

(ii) x; is a lower ideal in [x /\ y, x] by (i), so we may regard 

top(x;n as the set of elements z E x; with 8(x, z) minimal. Recall 
x * y consists of the elements z E P such that z V y exists, and such 
that 8(x,z) is minimal subject to this existence. Observe X*Y s;; x; 

by Theorem 12.3 and the construction, and w Vy exists for all w E x;, 
so we may regard x * y as the set of elements z E x; with 8(x, z) 
minimal. Our result follows. 

(iii) Immediate from (i), (ii). 

Our next goal is to show the posets xt, y; are isomorphic. 
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Theorem 15.5. Let P denote a prematroid, and pick any x, y E 
P. Then there exists poset isomorphisms a : xt ---+ y;, c : y; ---+ xt 
such that 

(15.6) 

(15.7) 

a(z)=y/\z 

c(v)=xVv 

Moreover, a, c are inverses. 

(Vz Ext), 

(Vv E y;;). 

Proof. Pick any z E xt. By Lemma 15.3(i),(iii), and (15.5), 

(15.8) y I\ z E y;; 

and 

(15.9) xV(y/\z)=z. 

Pick any v E y;. Then by Lemma 15.3(i),(iii) and (15.5), 

(15.10) X Vv Ext 

and 

(15.11) y I\ (x V v) = v. 

By (15.8), there exists a map a : xt ---+ y; satisfying (15.6). By 
(15.10), there exists a map c: y;---+ xt satisfying (15.7). Observe a, 
c are inverses by (15.9), (15.11); in particular, these maps are bijections. 
It remains to check a, c respect the partial order. But this follows, 
since for all z, z' Ext, 

z :S; z' ---+ y/\z :S; y/\z1 , 

and for all v, v' E y;, 

v ::;; v' ---+ xVv ::;; xvv'. 

This proves Theorem 15.5. 

Corollary 15.6. Let P denote a prematroid. Then for all x, y E 
P, the subposet xt is embeddable. 

Proof It is clear y; is embeddable. Indeed the identity map is 
an embedding of y;; into the modular atomic lattice [x/\y, y]. Now 
xt is embeddable, since xt, y; are isomorphic by Theorem 15.5. 
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Corollary 15.7. Let P denote aprematroid. Thenforall x,y E 

P, 

(i) rank(x;;) = 7(x, y), 
(ii) rank(xt) = 7(y,x), 

(iii) ltop(xt)I = IY*xl-

Proof. (i) Immediate from Lemma 14.2(iii) and Lemma 15.4(i),(ii). 
(ii) Immediate from (i) above and the fact that xt, y;; are iso­

morphic. 
(iii) Immediate from Lemma 15.4(ii) and the fact that xt, y;; are 

isomorphic. 
This proves Corollary 15.7. 

We finish this section with two technical results. 

Lemma 15.8. Let P denote a prematroid. Pick any x, y E P 
and pick any z E xt. Then 

z+ = z+ nx+ y y' (i) 
(ii) 

(iii) 
y-; = [yAz,y]ny;;, 
Y"i" = y-;%. 

Proof. (i) Recall x S z and xzy is geodesic. To see the inclusion 
~' pick any w E zt, Then z S w, so w E z+. We show w Ext. 
Certainly x S z S w. Observe xzy and zwy are geodesic, so xzwy 
is geodesic. In particular xwy is geodesic, so w E xt. To see the 

inclusion 2, pick any w E z+ n xt, Observe x S z S w so xzw 
is geodesic. Also xwy is geodesic, so xzwy is geodesic. In particular 
zwy is geodesic, so w E zt. 

(ii) By Theorem 15.5, the map a : w --+ y t\ w induces an iso­
morphism of posets xt --+ y;; such that a(zt) = y-;. Now by (i) 
above, 

as desired. 

y-; = a(zt) 

= a(z+ n xt) 

= (y A z)+ n y;; 

= [y A z, y] n y;;, 

(iii) This is immediate from Corollary 11.2. This proves Lemma 
15.8. 
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Lemma 15.9. Let P denote a prematroid, and pick any x, y E 
P. Then for all u E y+, 

(15.12) xt is a submatroid of x!. 

Proof. By Lemma 15.2(i), it suffices to show xt ~ x;;:-, and with­
out loss, we may assume u covers y. By (7.3), there are two possibili­
ties; 

(15.13) 8(x, u) = 8(x, y) - 1 

or 

(15.14) 8(x,u) = 8(x,y) + 1. 

First suppose (15.13). Then xuy is geodesic, so u E y-;%. Now xt = 
x;;:- by Lemma 15.8(iii). Next assume (15.14). To see xt ~ x;;:- in 

this case, we pick any w E xt and show w E x!. Observe xwy is 
geodesic by assumption, and xyu is geodesic by (15.14), so xwyu is 
geodesic. In particular xwu is geodesic, so w E x;;:-, as desired. This 
proves Lemma 15.9. 

§16. Projection into a submatroid 

Lemma 16.1. Let P denote a prematroid, and let G, H denote 
submatroids of P. Then G n H is a submatroid of P. 

Proof. G n H is geodesically closed in P, and contains Op, so we 
are done by Lemma 9.1. 

Lemma 16.2. Let P denote a prematroid. Let G denote a 
submatroid of P, and pick any x E P. Then there exists a unique 
element p = p(x, G) in G such that 

(16.1) [O,x] n G = [O,p]. 

We call p the projection of x into G, and write 

(16.2) p = profox. 

Proof. [O, x] is a submatroid of P by Lemma 8.4(ii), Lemma 9.1, 
so [O, x] n G is a submatroid of P by Lemma 16.1. [O, x] n G is 
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contained in the interval [O, x], and is therefore an interval by Lemma 
8.5. 

Lemma 16.3. Let P denote a prematroid. Let G denote any 
submatroid of P, and pick any x, y E P. 

(i) profox ::; x. 
(ii) Equality holds in (i) if and only if x E G. 

(iii) profo(x A y) = x A profoy. 
(iv) profo(x A y) = profox A profoy. 

Proof. (i), (ii) Immediate from Lemma 16.2. 
(iii) By (16.1), (16.2), 

[O,profo(x Ay)] = [O,x Ay] n G 

= [O,x] n [O,y] n G 

= [O,x] n [O,profoy], 

and our result follows. 
(iv) Interchanging the roles of x, y in (iii), 

profo(x A y) = y A projax. 

By this and (iii), we may view 

profo(x A y) = proja(x A y) A profo(x A y) 

= x A pro fox A y A profoy 

= profox A profoy, 

since profox ::; x, profoy::; y. This proves Lemma 16.3. 

Theorem 16.4. Let P denote a prematroid, and let G denote a 
submatroid of P. Then for all x E P, and for all y E G, the sequence 

(16.3) X;projax,y is geodesic. 

Proof. G is a lower ideal in P that contains y, and x A y ::; y, 
so x A y E G. Certainly x A y ::; x, so 

x A y E [O, x] n G = [0, profox], 

forcing x A y ::; profox. Now x A y::; profox ::; x by the construction, 
so x, profox, y is geodesic by Lemma 13.4(i),(ii). This proves Theorem 
16.4. 
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§17. The projection x+ ----. xt 

Let P denote a prematroid. Pick any x, y E P, and write G = xt. 
Observe x+ is a prematroid by Corollary 8.3, Lemma 8.4, and G is a 
submatroid of x+ by Lemma 15.2(i), so there exists a projection map 
profo : x+ ----> G by Lemma 16.2. 

Lemma 17.1. Let P denote a prematroid. Pick any x, y E P, 
and write G = xt. Then for all z E x+, 

(17.1) profoz=xV(y!\z). 

Proof. We first show 

(17.2) profoz 2: x V (y I\ z). 

Observe x s z, so x I\ y s y I\ z. Also y I\ z S y, so y I\ z E [x /\ y, y]. 
Observe z is an upper bound for x, y I\ z, so x V (y I\ z) exists. Now 
y I\ z E y; by (15.2), so 

(17.3) x V (y I\ z) E G 

by Theorem 15.5. Observe 

(17.4) XV (y I\ z) S Z 

by our remarks above, and (17.2) follows from (17.3), (17.4), and Lemma 
16.2. Next, we show 

(17.5) profoz S x V (y I\ z). 

Write p := profoz. Then p S z by Lemma 16.3(i), so y I\ p S y I\ z. 
Also p E G = xt by Lemma 16.2, so by Theorem 15.5, 

p = X V (y I\ p) S X V (y I\ Z). 

Line (17.5) follows, and we are done by (17.2), (17.5). 

Theorem 17.2. Let P denote a prematroid. Pick any x, y E P, 
and write G = xt. Then for all z E x+, and for all p E P, the 
following are equivalent. 

(i) 
(ii) 

(iii) 
(iv) 

(17.6) 

p = profoz. 
p E [x, z], and wpy is geodesic for all w E [x, z]. 
p E [x, z], and both xpy and zpy are geodesic. 
p E [x, z], and 

p(p, y) = p(z, y), -y(p, y) = -y(x, y), 8(p, y) = 8(x, y). 
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Proof. (i) -+ (ii). Observe p E [x, z] by Lemma 16.3(i). Pick 
any w E [x, z]. We show wpy is geodesic. By Lemma 7.8(i),(iii), it 
suffices to find 

(17.7) 

(17.8) 

such that 

(17.9) 

Set 

u E [y /\ w,w], 

V E [y /\ w, y], 

p = u V v. 

u := proj0 w. 

Then (17.7) holds, since u S w by Lemma 16.3(i), and since 

(17.10) u = x V (y /\ w) 

?:_y/\w 

by Lemma 17.1. Set 

(17.11) V := y /\ Z. 

Then v Sy by construction. Recall w S z, so 

(17.12) y/\w_sv 

by (17.11). Now (17.8) holds. Now 

p =XV (y /\ z) 

=xVv 

= X V (y /\ W) V V 

=uVv, 

(Lemma 17.1) 

(17.11) 

(17.12) 

(17.10) 

so (17.9) holds. Now wpy is geodesic by (17.7)-(17.9), and we are done. 
(ii) -+ (iii). Clear. 
(iii) -+ (i). We assume x Sp and xpy is geodesic, so p Ext by 

(15.1). Now 

(17.13) p =XV (y /\p) 

by Theorem 15.5. We assume p S z and zpy is geodesic, so 

(17.14) y/\p=y/\z 
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by Lemma 13.4(ii),(iii). Now 

(17.15) p = x V (y I\ z) 

by (17.13), (17.14), so p = profoz by Lemma 17.1. 
(iii) - (iv). We assume p :s; z, so by Lemma 13.4(ii),(iv), zpy is 

geodesic if and only if 

p(p, y) = p(z, y). 

We assume x :s; p, so by Lemma 15.3(i),(v), xpy is geodesic if and 
only if 

"f(p,y) = 'Y(x,y), 

This proves Theorem 17.2. 

8(p, y) = 8(x, y). 

Theorem 17.3. With the notation of Theorem 17.2, suppose (i)~ 
(iv) hold. Then for all w E [x, z], the following are equivalent. 

(i) wxy and wzy are both geodesic. 
(ii) wxp and wzp are both geodesic. 

(iii) w,p are relative complements in the interval [x,z]. 
(iv) p(w, y) = p(x, y), 'Y(w, y) = 'Y(z, y), 8(w, y) = 8(z, y). 

Proof. (i) -+ (ii). Observe xpy is geodesic by Theorem 17.2(iii), 
and wxy is geodesic, so wxpy is geodesic. In particular, wxp is 
geodesic. Similarly, zpy is geodesic by Theorem 17.2(iii), and wzy is 
geodesic, so wzpy is geodesic. In particular, wzp is geodesic. 

(ii) -+ (i). Recall wpy is geodesic by Theorem 17.2(ii), and wxp is 
geodesic, so wxpy is geodesic. In particular wxy is geodesic. Similarly 
wzp is geodesic, so wzpy is geodesic. In particular wzy is geodesic. 

(ii) - (iii). We assume x :s; w, x :s; p, so by Lemma 7.4, x = w/\p 
if and only if wxp is geodesic. We assume w :s; z, p :s; z, so by Lemma 
7.5, z = w V p if and only if wzp is geodesic. 

(i) - (iv). We assume x :s; w, so by Lemma 13.4(ii),(iv), wxy is 
geodesic if and only if 

p(w,y) = p(x,y). 

We assume w :s; z, so by Lemma 15.3(i),(v), wzy is geodesic if 
and only if both 

"f(W, y) = "f(Z, y), 8(w,y) = 8(z,y). 

This proves Theorem 17.3. 
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§18. The augmentation axiom 

Let P denote a prematroid, and recall by Definition 4.1 that P is 
a quantum matroid if and only if P satisfies the augmentation axiom 
AU from that definition. In this section, we show this occurs if and only 
if the function 8 from Definition 12.1 is symmetric in its arguments. 

We begin with some notation. 

Lemma 18.1. Let P denote a prematroid. Pick any nonnegative 
integer d, and pick any path p = (xo, x1, ... , xd) (xo, xi, ... , Xd E 
P). Then the following (i), (ii) are equivalent. 

(i) There does not exist an integer i (0 S i S d - 3) such that 

(18.1) 

or such that 

(18.2) 

(ii) There exists integers e, f (0 Se Sf S d, f- e is even), such 
that 

Xo < Xl < · · · < Xe-l < Xe, 

Xe> Xe+l < Xe+2 > Xe+3 < · · · > Xj-3 < Xj-2 > Xj-l < Xj, 

Xj > Xf+l > · · · > Xd-l > Xd. 

Suppose (i), (ii) hold. Then we say p is up-fiat-down. If e = 0 
and f = d, we say p is fiat. 

Proof. Routine. 

Theorem 18.2. Let P denote a prematroid of rank D. Then 
the following (i)-(vi) are equivalent. 

(i) P satisfies the augmentation axiom AU in Definition 4.1. 
(ii) For all integers i (2 Si SD), and for all x, y E P such that 

rank(x) = i - 1, rank(y) = i, and a(x,y) = 3, there exists a 
path in P with endpoints x, y and shape (i-1,i,i-1,i). 

(iii) For all integers i (2 Si SD), and all geodesic paths p in P 
of shape (i - 1, i - 2, i - 1, i), there exists a path p' in P that 
has the same endpoints as p, and has shape ( i - 1, i, i - 1, i). 

(iv) For all x, y E P, there exists a geodesic up-fiat-down path con­
necting x, y. 

(v) For all x, y E P, for all x' E top(x;), and for all y 1 E top(y;t), 
there exists a geodesic fiat path connecting x', y'. 

(vi) 8(x, y) = 8(y, x) for all x, y E P. 
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Proof. (i) ---, (ii). Observe rank(x) < rank(y), so by assumption, 
there exists an atom a E P such that a Sy, at_ x, and such that xVa 
exists in P. Set u := x Va. Observe a covers O = x I\ a, so u covers 
x by modularity. In particular rank(u) = i. We show 8(u, y) = 2. 
Suppose not. Then 8(u,y) = 4 by (7.3), so uxy is geodesic. In this 
case u I\ y = x I\ y by Lemma 13.4(ii), (iii), contradicting the fact that 
a Su I\ y, a t_ x I\ y. We have now shown 8(u,y) = 2, so u, y 
cover u I\ y by Lemma 7.4. Now x, u, u/\y, y is a path with shape 
(i-1,i,i -1,i), as desired. 

(ii) ---, (iii). Immediate. 
(iii) ---, (iv). Set d := 8(x, y), and pick a geodesic path 

p := (x = Xo, X1, ... , Xd = y) (xo, x1, ... , xd E P) 

with maximal weight in the sense of (7.7). We claim p is up-flat-down. 
Suppose not. Then by Lemma 18.1, there exists an integer i (0 ::; i ::; 
d - 3) such that either 

(18.3) 

or 

(18.4) 

Interchanging the roles of x, y if necessary, we may assume (18.3). The 
path Xi, Xi+l, Xi+2, Xi+3 is geodesic, with shape (j-1,j - 2,j -1,j) 
for an appropriate integer j (2 ::; j ::; D), so by (iii), there exists a path 
x;, x~+ 1, x~+2 , X;+3 of shape (j-1,j,j-1,j). Observe the sequence 

I ( I I ) p := Xo, X1, ... , Xi, X;+1, Xi+2> Xi+3, ... , Xd-1, Xd = y 

is a path. p 1 is geodesic, since p, p 1 have the same length, and 

weight(p') = weight(p) + 2. 

This contradicts our construction, and we conclude p is up-flat-down. 
(iv) ---, (v). Let x, y, x', y' be given. By (iv), there exists a 

geodesic up-flat-down path p connecting x', y 1 • We claim p is flat. 
Set d := 8(x', y'), and write p = (x' = x 0 , x1, ... , Xd = y'). Suppose 
p is not flat. Then d 2: 1, and either x' < x 1 or Xd-l > y'. 
Interchanging the roles of x, y if necessary, we may assume x' < x 1. 
Recall xx'y'y is geodesic by Corollary 11.2. Now xx'x1y1y is geodesic 
by the construction, and in particular xx1y is geodesic. Also x S x' < 
x 1, so x 1 E xt by (15.1). But this is inconsistent with x' < x 1 and 

the assumption x' E top(xt). We conclude p is flat. 
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(v) -+ (vi). Let x, y be given, and pick any x' E top(xt), 
y' E top(yt). By ( v) there exists a flat path connecting x', y', so 

(18.5) rank(x') = rank(y'). 

By Lemma 13.2, Lemma 15.2(i), and Corollary 15.7(ii), 

rank(x') rank(x) + rank(xj"") 

(18.6) p(x,y) + 'Y(x,y) + 8(x,y) + 'Y(y,x), 

and similarly 

(18.7) rank(y') = p(y,x) + 'Y(y,x) + 8(y,x) + 'Y(x,y). 

The result now follows from (18.5)-(18.7), since p is symmetric in 
its arguments. 

(vi) -+ (i). Pick any x, y E P such that rank(x) < rank(y). We 
find an atom a E P such that a:::; y, a i,. x, and such that x Va 
exists in P. To this end, observe by Lemma 13.2, Corollary 15.7(i), and 
(vi) above that 

rank(y;) = 'Y(y,x) 

= rank(y) - p(y,x) - 8(y,x) 

> rank(x) - p(x, y) - 8(x, y) 

=')'(x,y) 

2: 0, 

so there exists v E y; such that v > x /\ y. By Lemma 9.3(ii), there 
exists an atom a E P such that a :::; v but a i:. x /\ y. Observe 
a :::; v :::; y. Observe a i:. x; otherwise a :::; x /\ y, a contradiction. 
Observe x Va exists in P, since x V v is an upper bound for a, x. 
The element a now has the desired properties, so we are done. This 
proves Theorem 18.2. 

§19. x * y is a [x /\ y, x]-basis system 

Let P denote a quantum matroid, and pick any x, y E P. Our 
goal in this section is to establish the related facts that x * y is a 
[x /\ y, x]-basis system, [x /\ y, x * y] is a [x /\ y, x]-matroid, and that 
[x*y,x]* isa [x/\y,x]*-matroid. 



Quantum M atroids 379 

Lemma 19.1. Let P denote a quantum matroid, and let G 
denote a geodesically closed subposet of P. Then G is a quantum 
matroid. 

Proof. G is a prematroid by Corollary 8.3, so it remains to show 
G satisfies the augmentation axiom. By Theorem 18.2, it suffices to 
show the function Oa is symmetric in its arguments. But this is the 
case, since Oa is a restriction of Op by Lemma 13.7(ii), and since Op 
is symmetric in its arguments by Theorem 18.2(vi). This proves Lemma 
19.1. 

Corollary 19.2. Let P denote a quantum matroid, and pick any 
x, y E P. Then xt, x+ are both quantum matroids. 

Proof. These subposets are geodesically closed in P by Lemma 
8.4, Lemma 15.2(ii), so they are quantum matroids by Lemma 19.1. 
This proves Corollary 19.2. 

Theorem 19.3. Let P denote a quantum matroid, and pick any 
x,y EP. 

(i) x; = [xAy,x*y]. 
(ii) x * y is a [x A y, x]-basis system. 

(iii) [x A y, x * y] is a [x A y, x]-matroid. 
(iv) [x*y,x]* isa [xAy,x]*-matroid. 

Proof. (i) Observe the posets x;, y-;% are isomorphic by Theorem 

15.5, and y-;% is a quantum matroid by Lemma 19.2, so x; is a 
quantum matroid. Now by Lemma 4.3 and Lemma 15.4(ii), 

max(x;) = top(x;) = X*Y, 

and our result follows since x; is a lower ideal in (x A y, x]. 
(ii) We have seen x; is both a quantum matroid and a lower ideal 

in [x A y, x], so x; is a (x A y, x]-matroid. Now x * y = max(x;) is a 
[x A y, x]-basis system by Theorem 2.5(ii). 

(iii) Immediate from (ii) and Theorem 2.5(i). 
(iv) Immediate from (ii), Theorem 2.5(i), and Lemma 3.1. 

§20. The notion of relative closeness 

Lemma 20.1. Let P denote a quantum matroid. Then for all 
x, y E P, 

(20.1) p(x,y) + o(x,y) < rank(y). 
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Proof. Observe by Definition 13.l(i), Lemma 13.2, and Theorem 
18.2(vi) that 

(20.2) 

p(x, y) + 8(x, y) = p(y, x) + 8(y, x) 

= rank(y) - "f(y,x) 

:=:; rank(y). 

We now consider the case of equality. 

Lemma 20.2. Let P denote a quantum matroid, and pick any 
x, y E P. Then the following (i)-(v) are equivalent. 

(i) Equality holds in {20.1}. 
(ii) 'Y(Y, x) = 0. 

(iii) x is the unique element in xt. 
(iv) x I\ y is the unique element in y;. 
(v) Y*X=xl\y. 

(vi) zxy is geodesic for all z Ex+. 

If (i)-(vi) hold, we say x is relatively close to y. 

Proof. (i) - (ii). Immediate from (20.2). 
(ii) - (iii) - (iv). Theposets xt, y; both have rank "f(y,x) 

by Corollary 15.7. 
(iv) - (v). Recall y; = [x I\ y, y * x] by Theorem 19.3(i). 
(iii) --. (vi). Pick any z Ex+, and write p := x V (y I\ z). Then 

zpy is geodesic by Lemma 17.1, Theorem 17.2(iii). But p E xt by 
Lemma 17.1, so p = x by (iii). We conclude zxy is geodesic, as 
desired. 

(vi) --. (iii). Pick any z Ext. Then certainly z Ex+, so zxy is 
geodesic by (vi). Also xzy is geodesic by (15.1), so z = x. This proves 
Lemma 20.2. 

Lemma 20.3. Let P denote a quantum matroid, and pick any 
x,y,zEP. 

(i) If x is relatively close to y, and x :=:; z, then z is relatively 
close to y. 

(ii) Suppose z E top(xt). Then z is relatively close to y. 

Proof. (i) Observe O :=:; 'Y(Y, z) :=:; 'Y(Y, x) by Lemma 13.3(i), Corol­
lary 13.6(v), and 'Y(Y, x) = 0 by Lemma 20.2(ii), so 'Y(Y, z) = 0. Now 
z is relatively close to y by Lemma 20.2. 
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(ii) z is the unique element in z; by Lemma 15.8(i), so z is 
relatively close to y by Lemma 20.2(iii). 

Theorem 20.4. Let P denote a quantum matroid, and pick any 
x, y E P such that x is relatively close to y. Then for all z E x+, the 
following (i)-(iii) hold. 

(i) p(z, y) = p(x, y), 
(ii) 8(z,y)=8(x,y), 

(iii) 'Y(z, y) - 'Y(x, y) = rank(z) - rank(x). 

Proof. (i) x ::S: z by assumption, and zxy is geodesic by Lemma 
20.2(vi), so p(z, y) = p(x, y) by Lemma 13.4(ii),(iv). 

(ii) z is relatively close to y by Lemma 20.3(i), so by Lemma 
20.2(i) and (i) above, 

8(z, y) = rank(y) - p(z, y) 

= rank(y) - p(x,y) 

= 8(x, y). 

(iii) By Lemma 13.2, 

(20.3) 

(20.4) 

rank(x) = p(x,y) + 'Y(x,y) + 8(x,y), 

rank(z) = p(z,y) + 'Y(z,y) + 8(z,y). 

Our result is immediate upon subtracting (20.3) from (20.4), and eval­
uating the result using (i), (ii) above. 

§21. The staircase theorem 

In this section, we describe a quantum matroid in a way that may 
help the reader visualize its structure. Theorem 21.3 is our main result. 
First, we need a few definitions. 

Recall a directed graph (or di-graph) is a pair V := (VV, EV), where 
VV is a nonempty finite set (of vertices) and EV s:;; VV x VV (the 
edges). For all u, v E VV, we write u - v whenever uv E EV. 
Observe possibly both u - v and v - u, possibly only one of these 
occurs, or possibly neither. We may also have u - u. 

Definition 21.1. Let V denote any di-graph, and let P denote 
any poset. By a V-partition of P, we mean a map <Y: P - VV, such 
that (i), (ii) hold below: 

(i) For all x, y E P, if x, y are adjacent then <Y(x) - <Y(y) or 
<Y(y) - <Y(x) (or both). 
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(ii) For all u, v E VV such that u ------, v, and for all x E P such 
that O'(x) = u, then there exists y E P such that x, y are 
adjacent and such that O"(y) = v. 

(Caution: We do not require O' be onto VV). 

The quantum matroids have V-partitions for certain di-graphs V, 
described below. 

Definition 21.2. For any nonnegative integers a, b, define the di­
graph V = V( a, b) as follows: The vertex set VV is the set of three 
tuples 

(21.2) VV := {(P,1',8)IP,1',8 E Z,O::; p,O::; 8,p+8::; a,O::; 1'::; b}. 

For all pairs of vertices (p, 'Y, 8), (p', 'Y', 8') E VV, there is an edge 
(p, 'Y, 8) ------, (p', '}' 1 , 8') in V whenever one of the following rows holds: 

(21.2) p' = p+ 1 ,.,,, = 1' 8' = 8 

(21.3) p' = p-1 ,.,,, = 1' 8' =8 

(21.4) p' = p ,.,,, = 1' + 1 8' = 8 

(21.5) p' = p ,.,,, = 1' - 1 8' = 8 = 0 

(21.6) p' = p ,.,,, 
= 1' 8' = 8 - 1 

Observe the "shape" of V(a, b) resembles that of a staircase of height 
a and width b. For example, V(2, 3) looks as follows (we abbreviate 
u +--+ v whenever u------, v and v------, u): 

Fig. 1. 
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Theorem 21.3. Let P denote a quantum matroid with rank D. 
Pick any integer a (0 :Sa:::; D), fix any y E P such that rank(y) = a, 
and set 

(21.7) o-(x) := (p(x,y), 'Y(x,y), 8(x,y)) (Vx E P). 

Then o- is a V(a, D - a)-partition of P. 

Proof. Abbreviate V := V(a, D - a). Pick any x E P, and 
abbreviate 

p := p(x, y), 

"( := "f(X, y), 

8 := 8(x, y). 

Let us first check o-(x) E VV. To do this, we verify p, 'Y, 8 satisfy the 
inequalities in (21.1) (with b = D - a). Observe O :Sp, 0:::; 'Y, 0::::; 8 
by Lemma 13.3(i), and p + 8 :::; a by Lemma 20.1. To see 'Y :S D - a, 
observe 

'Y(x, y):::; D - p(x, y) - 'Y(Y, x) - 8(x, y) 

= D - rank(y) 

by Lemmas 13.2, 13.3 and Theorem 18.2(vi). We have now shown 
o-(x) E VV. 

Next, let us verify that o- satisfies (i) of Definition 21.1. To this 
end, pick any z E P such that x, z are adjacent, and set 

p' := p(z, y), 

"/' := "f(Z, y), 

81 := 8(z, y). 

We must show (p, "(, 8) -+ (p', "(1 , 8') or (p', "(1 , 8') -+ (p, "(, 8). Inter­
changing x, z if necessary, we may assume x covers z. But then by 
Theorem 13.5(i),(iii), the three tuple (p- p', "(-"(1, 8 - 81) equals either 

(1,0,0) (in which case (p,"f,8)-+ (p','Y',8') by (21.3)), 

or 
(0, 1,0) (in which case (p','Y',8')-+ (p,"f,8) by (21.4)), 

or 
(0, 0, 1) (in which case (p, 'Y, 8) -+ (p', "(1 , 81) by (21.6) ). 

We have now shown o- satisfies (i) of Definition 21.1. 
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It remains to show a satisfies part (ii) of Definition 21.1. To this 
end, let x, p, 'Y, 8 be as above, and pick any (p', "(1 , 8') E VV such that 
(p, 'Y, 8) -----, (p', 'Y', 8'). We must find z E P such that x, z are adjacent, 
and such that a(z) = (p','Y',8'). We consider the 5 cases (21.2)-(21.6) 
in turn. 

First assume (p', 'Y', 8') = (p+ 1, 'Y, 8). Observe by Lemma 13.2 and 
Corollary 15. 7(ii) that 

rank(xt) = 'Y(y,x) 

=a-p-8 

= a - p' - 8' + 1 

::::: 1, 

so there exists z E xt such that z covers x. Observe a(z) 
(p+ 1,"f,8) by Lemma 15.3(iv),(v). 

Next assume (p', "(1 , 8') = (p - 1, 'Y, 8). Then 

p = p' + 1 2: 1, 

so x I\ y =/- 0. Let z' denote a relative complement of x I\ y in the 
interval [0, x]. Then z' < x by modularity, so there exists z E [z', x] 

such that x covers z. Observe x E z': by Lemma 15.3(i),(ii), so 
z' xy is geodesic. 0 bserve z' zx is geodesic by the construction, so 
z'zxy is geodesic. In particular zxy is geodesic, so x E z: by (15.1). 
Now a(z) = (p - 1, 'Y, 8) by Lemma 15.3(iv),(v). 

Next assume (p', "(1 , 8') = (p, "( + 1, 8). Pick any u E top(xt), and 
observe 

rank(u) = rank(x) + rank(xt) 

= p(x, y) + 'Y(x, y) + 8(x, y) + "f(Y, x) 

=a+"( 

=a+ "(1 - 1 

<D, 

so by Lemma 4.3, there exists v E P such that v covers u. Let z 
denote a relative complement of u is [x, v]. Then z covers x by 
modularity. We now compute a(z). Observe by Lemma 15.3(iv),(v) 
and our choice of u that 

(21.8) a(u) = (Pi,'Y,8), 
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where Pl= p + rank(u) - rank(x). Observe u is relatively close to y 
by Lemma 20.3(ii), so 

(21.9) cr(v) = (p1, ry + 1, 8) 

by (21.8) and Theorem 20.4. Observe u = x V (y /\ v) by (21.8), (21.9), 
Lemma 17.1, and Theorem 17.2(i),(iv), so 

cr(z) = (p, ry + 1, 8) 

by Theorem 17.3(iii),(iv). 
Next assume 8 = 0 and (p', ry', 8') 

Lemma 13.2 that 

rank(x) - p = ry 

=ry' +1 
~ 1, 

(p, ry - 1, 0). Observe by 

so x > x I\ y. Hence there exists z E [x /\ y, x] such that x covers z. 
Now cr(z) = (p, ry - 1, 0) by Definition 13.1, since z I\ y = x I\ y by 
Lemma 13.4(i),(iii) and z * y = z by Lemma 12.2. 

Finally assume (p',ry',8') = (p,ry,8-l). ObservebyLemmal4.2(vi) 
that 

rank([x * y, x]*) = 8 

= 8' + 1 

~ 1, 

so there exists z E [x * y, x]* that is covered by x (in the poset 
P). Observe cr(z) = (p, ry, 8 - 1) by Lemma 14.3(ii),(iv). This proves 
Theorem 21.3. 

§22. The graph on top(P) 

In this section we consider a graph defined on the top of a quantum 
matroid. 

Theorem 22.1. Let P denote a quantum matroid with rank D. 

(i) For all x, y E top(P), there exists a geodesic fiat path in P 
connecting x, y. 
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For (ii)-(iv) below, we view top(P) as the vertex set of an undi­
rected graph, where vertices x, y E top(P) are declared adjacent when­
ever x, y cover x I\ y. 

(ii) The graph top(P) is connected. 
(iii) For all x, y E top(P), 

(22.1) 8top(x, y) = 8(x, y)/2 

(22.2) =D-p(x,y) 

(22.3) = c5(x, y), 

(iv) 

(22.4) 

(22.5) 

where 8top denotes the path length distance function for the 
graph top(P). 

diamtop(P) = max{c5(x,y) I x,y E P} 

5:_D, 

where diamtop(P) denotes the diameter of the graph top(P). 

Proof (i) By Theorem 18.2(iv), there exists a geodesic up-flat­
down path p connecting x, y. But x, y E top(P), so p is flat. 

(ii) Immediate from (i). 
(iii) Line (22.1) is immediate from (i) and the definition of a flat 

path in Lemma 18.1. To see (22.2), observe by Corollary 7.6(i) that 

8(x,y) =rank(x) + rank(y) - 2rank(x/\y) 

= 2(D - p(x, y)). 

To see (22.3), observe x is the unique element in xt, so x is relatively 
close to y by Lemma 20.2(iii). Now 

p(x, y) + 8(x, y) = rank(y) = D 

by Lemma 20.2(i). 
(iv) To see (22.4), observe by (22.3) and Corollary 13.6(iii),(iv) that 

diamtop(P) = max{ 8top(x, y) Ix, y E top(P)} 

= max{ 8(x, y) Ix, y E top(P)} 

= max{ c5(x, y) Ix, y E P}. 

We now have (22.4). Line (22.5) is immediate from (22.2). This proves 
Theorem 22.1. 

For the remainder of this section, we investigate the quantum ma­
troids P such that diamtop(P) S 1. 
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Lemma 22.2. For any poset P, the following are equivalent. 

(i) P is a quantum matroid, and 

(22.6) diamtop(P) = 0. 

(ii) P is a quantum matroid, and 

(22.7) ltop(P)I = 1. 

(iii) P is a modular atomic lattice. 

Proof. (i) +-+ (ii). Clear 
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(ii) ---, (iii). Observe max(P) = top(P) consists of a single element, 
so P has a 1. Now P = [O, 1] is a modular atomic lattice by condition 
M in Definition 4.1. 

(iii) ---, (ii). Clear. 

Lemma 22.3. For any poset P, the following are equivalent. 

(i) P is a quantum matroid, and 

(22.8) diamtop(P) :S 1. 

(ii) P is a quantum matroid, and 

(22.9) x, y cover x I\ y for all distinct x, y E top(P). 

(iii) P is a prematroid, and 

(22.10) x, y cover x I\ y for all distinct x, y E max(P). 

(iv) P is a prematroid, and 

(22.11) o(x, y) :S 1 for all x, y E P. 

If (i)-(iv) hold, we call P a design matroid. 

Proof. (i) ---, (ii). Let x, y denote distinct elements in top(P). 
Then Otop(x, y) = 1 by (22.8), so 8(x, y) = 2 by (22.1). Now x, y 
cover x/\y by Lemma 7.4. 

(ii) ---, (iii). It is clear P is a prematroid. Also max(P) = top(P) 
by Lemma 4.3, so (22.10) follows from (22.9). 

(iii) ---, (iv). Let x, y E P be given. We show o(x, y) :S 1. There 
exists x', y' E max(P) such that x :S x', y :Sy'. Observe o(x, y) :S 
o(x',y') by Corollary 13.6(iii),(iv), so it suffices to show o(x',y') :S 1. 
Assume o(x', y') =I O; otherwise we are done. Then x', y' are distinct, 
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so x', y' covers x' I\ y' by (22.10). Now 8(x',y') = 1 by Definition 
12.1, and we are done. 

(iv) ---, (i). To show P is a quantum matroid, we show P satisfies 
the augmentation axiom. Pick any x, y E P. By Theorem 18.2(vi), it 
suffices to show 

(22.12) 8(x, y) = 8(y, x). 

First suppose x Vy exists. Then 8(x, y) = 0, 8(y, x) = 0 by Lemma 
12.2, so (22.12) holds. Now suppose x V y does not exist. Then 
8(x,y)-:/- 0, 8(y,x)-:/- 0 by Lemma 12.2, so 8(x,y), 8(y,x) are both 
1 by (22.11). Again (22.12) holds, so (22.12) holds in general. Now P 
satisfies the augmentation axiom by Theorem 18.2, so P is a quantum 
matroid. To see (22.8), observe by (22.4), (22.11) that 

diamtop(P) = max{8(x, y) J x, y E P} 

::; 1. 

This proves Lemma 22.3. 

Lemma 22.4. Let P denote a quantum matroid. Then xt, x; 
are design matroids for all x, y E P such that 8 ( x, y) = 1. 

Proof We show x; is a design matroid by showing it satisfies 
condition (ii) in Lemma 22.3. Observe x; is a quantum matroid by 
Theorem 19.3(i),(iii), so it remains to show u, v cover u I\ v for all 
distinct u, v E top(x;). By Theorem 12.3, Lemma 15.4(ii), and our 
assumption 8(x, y) = 1, we find x covers u, v. Now u V v = x covers 
u, v, so u, v covers u I\ v by modularity. We have now shown x; 

satisfies condition (ii) in Lemma 22.3, so x; is a_design-matroid. 
To see that xt is a design-matroid, recall 8(y, x) = 1 by Theorem 

18.2(vi), so y;; is a design-matroid by our above remarks. Recall xt 
is isomorphic to y;; by Theorem 15.5, so xt is a design-matroid. We 
have now proved Lemma 22.4. 

§23. Quantum matroids and diagram geometries 

In this section we obtain a characterization of a quantum matroid 
that might be useful to people doing research on diagram geometries. 
We do not explicitly introduce the language of diagram geometries in 
order to avoid cumbersome terminology, but a reader familiar with these 
geometries should have no trouble translating our result into that lan­
guage. 
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Theorem 23.1. Let D denote a nonnegative integer. Then a 
poset P is a quantum matroid of rank D if and only if (i)-(iv) hold 
below. 

(i) P is a prematroid of rank D. 
(ii) For all x E P, there exists x' E top(P) such that x :::; x'. 

(iii) For all x E P with rank(x) :::; D - 2, the subposet of P 
induced on x+\{x} is connected. 

(iv) For all x E P with rank(x) = D - 2, the poset x+ is a 
quantum matroid of rank 2. 

(The quantum matroids of rank 2 are described in Example 4.2.) 

Proof. We first assume P is a quantum matroid, and verify (i)­
(iv ). Line (i) is immediate from Definition 5.1, and (ii) is just Lemma 
4.3. To see (iii), pick any x E P such that rank(x) :::; D - 2. We show 
the subposet of P induced on x+\{x} is connected. By (ii) above, 
any element in x+\{x} is connected by a path in x+\{x} to some 
element in top(x+). Hence it suffices to pick any u, v E top(x+), and 
show u, v are connected by a path in x+\{x}. By Theorem 22.l(i), 
there exists a geodesic flat path p in P that connects u, v. Recall 
x+ is geodesically closed in P by Lemma 8.4(i), so p is contained in 
x+. The elements of p all have rank D-1 or D by Lemma 18.1, and 
rank(x) :::; D - 2, so x is not included in p. It follows p is contained 
in x+\{x}, as desired. We now have (iii). To see (iv), recall x+ is 
a quantum matroid by Corollary 19.2, and rank(x+) = 2 by part (ii) 
above. We have now proved the theorem in one direction, so we npw 
consider the converse. 

Let P denote a poset satisfying (i)-:(iv) in the present theorem. 
We show P is a quantum matroid of rank D by induction on D. 
The case D :::; 1 is trivial, and the case D = 2 is immediate from 
assumption (iv), so from now on assume D ~ 3. 

P is a prematroid of rank D by assumption (i), so we need only 
show P satisfies the augmentation axiom. To do this, we show P 
satisfies condition (iii) in Theorem 18.2. For the rest of this proof, we 
use the following terminology: For any paths p, p' in P, we say 
p' replaces p whenever p, p' share the same endpoints. For each 
integer i (2 :::; i :::; D), let Ei denote the proposition that any geodesic 
path in P of shape (i - 1, i - 2, i - 1, i) can be replaced by a path in 
P that has shape ( i - 1, i, i - 1, i). The condition (iii) in Theorem 18.2 
will follow if we can show E 2 , E 3 , •.• , En. We do this in two steps. 

Claim 1. E 3 , E4 , .•. , En hold. 
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Proof of Claim 1. Pick an integer i (3 :::::; i :::::; D), and pick a path 
xyzw in P ofshape (i - 1,i - 2,i -1,i). We show xyzw can be 
replaced by a path in P that has shape (i - 1, i, i - 1, i). The poset 
y+ satisfies the conditions (i)-(iv) of the present theorem (with D 
replaced by D - i + 2), and D - i + 2 :::::; D - 1, so y+ is a quantum 
matroid by induction. Observe the path xyzw is contained in y+, and 
has shape 1012 (in y+). Applying Theorem 18.2(iii) to y+, we find 
the path xyzw can be replaced by a path xy' z'w in y+ that has shape 
1212 (in y+). Observe the path xy'z'w has shape (i-1,i,i-1,i) 
(in P), so we are done. This proves Claim 1. 

Claim 2. E 2 holds. 

Proof of Claim 2. Pick any x, y E P such that rank(x) = 1, 
rank(y) = 2, and x 1:. y. We show x, y are connected by a path in P 
that has shape 1212. To do this, we show (i), (ii) below: 

(i) There exists a path in P with endpoints x, y and shape 
1212 · · · 12. 

(ii) Any path in P with shape 121212 can be replaced by a path 
in P with shape 1212. 

To see (i), recall by (iii) of the present theorem that there exists a 
path in P\{O} connecting x, y. Of all such paths, pick a path 

p = (x=xo,x1, ... ,xd=y) (xo, xi, ... , Xd E P) 

with minimal weight in the sense of (7.7). Set 

r := max{ rank(xi) I O:::::; i:::::; d}, 

and observe r 2'. rank(xd) = 2. p will have the desired shape 1212 · • • 
12 if we can show r = 2. Suppose r 2'. 3, and pick any integer 
i (0 :::::; i :::::; d) such that rank(xi) = r. Then 1 :::::; i :::::; d - 1, 
and Xi-1 < Xi > Xi+i· Observe Xo, x1, ... , Xd are distinct by the 
construction, so Xi-1 V Xi+l = Xi covers Xi-1, Xi+l· Now Xi-l, Xi+l 
cover Xi-l I\ Xi+i by modularity. Now p can be replaced by a path 

p' = (x = Xo, X1, · · ·, Xi-l, Xi-l I\ Xi+l, Xi+l, · · ·, Xd = y) 

that is contained in P\ {O}, and has 

weight(p') = weight(p) - 2. 

This contradicts the construction, so r = 2. The path p now has the 
desired shape 1212 • • • 12, so (i) holds. 
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To see part (ii) in the present claim, consider the following sequences: 

(sl) 121212 
(s2) 12323212 
(s3) 12323232 
(s4) 12321232 
(s5) 121232 
(s6) 123232 
(s7) 123212 
(s8) 1232 
(s9) 1212 

To show part (ii) in the present claim, we show that any path p 
in P whose shape is one of (sl)-(s8), can be replaced by a path in P 
whose shape is included below shape(p) in the above list. We write 
p = (x0 , x 1 , x2 , •.. ) and consider each of the shapes (sl)-(s8) in turn. 

Case sl. By assumption (ii) of the present theorem, and since D ~ 
3, there exists y E P such that y covers X3. first suppose x1 ~ y. 
Then (x0, x 1 , y, x 3, x 4, x 5) is a path of shape 123212 (s7). Next 
suppose x1 1:. y. Then (x1, x2, x3, y) is a geodesic path of shape 
2123, so by E3 , there exists a path (x1 , z, w, y) in P of shape 2323. 
Now (x0 , x1, z, w, y, x3, x4, xs) is a path of shape 12323212 (s2). 

Case s2. First suppose X4 ~ X7. Then (x0 , x1, x2, X3, x4, X7) 
is a path of shape 123232 (s6). Next suppose x4 l x 7 . Then 
(x1, x5, xs, X4) is a geodesic path of shape 2123, so by E3, there exists 
a path (x7, y, z, x 4) in P of shape 2323. Now (x0 , x1, x2, X3, x4, z, y, 
x7 ) is a path of shape 12323232 (s3). 

Case s3. First suppose x 3 = x 5 • Then (x0 , x1, x2, x 3, x6, X7) is a 
path of shape 123232 (s6). Next suppose x 3 =/:- x 5 . Then x 3 V x 5 = x 4 
covers x 3, x 5 , so x 3, x 5 cover x 3 I\ x 5 by modularity. Now 
(xo, x1, x2, x3, X3 I\ x 5 , x 5 , x6, X7) is a path of shape 12321232 (s4). 

Case s4. First suppose xo = X4. Then (xo, xs, x5, X7) is a path 
of shape 1232 (s8). Next suppose x 0 =/:- x4 • Observe x2 is an upper 
bound for xo, x4, so xo V X4 exists. xo V X4 covers xo, X4 by 
modularity, so (x0 , x 0 V x 4, x 4, x 5 , x6 , X7) is a path of shape 121232 
(s5). 

Case s5. First suppose x1 ~ X4. Then (xo, x1, x4, xs) is a path of 
shape 1232 (s8). Next suppose x1 1:. X4. Then (x1, x2, X3, X4) 

is a geodesic path of shape 2123, so by E3, there exists a path 
(x1, y, z, x4) in P of shape 2323. Now (xo, x1, y, z, X4, xs) is 
a path of shape 123232 (s6). 

Case s6. First suppose x 3 = X5. Then (xo, x1, x2, xs) is a 
path of shape 1232 (s8). Next suppose x 3 =/:- x5 . Then x 3 V x5 = 
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X4 covers X3, xs, so x3, X5 cover X3 I\ x5 by modularity. Now 
(xo, x1, X2, X3, X3 I\ X5, xs) is a path of shape 123212 (s7). 

Case s7. First suppose x 0 = x 4. Then (x0 , x 5, xo, x 5) is a path 
of shape 1212 (s9). Next suppose x0 ::/= x 4 . Observe x2 is an upper 
bound for x 0 , x 4, so x 0 V x 4 exists. x 0 V x 4 covers xo, x4 by 
modularity, so (x0 , x 0 V x4, x4, x 5) is a path of shape 1212 (s9). 

Case s8. First suppose x 1 = x 3. Then (x0 , x 3, x 0 , x3) is a path of 
shape 1212 (s9). Next suppose x1 ::j=x3. Then x1Vx3 =x2 covers x1, 
x 3, so x1, x3 cover x1 /\x3 by modularity. Now (xo, X1, X1 /\x3, x3) 
is a path of shape 1212 (s9). 

We have now shown part (ii) in the present claim, so E 2 holds. Now 
the propositions E 2, E3 , ••• , ED hold by Claims 1, 2, so P satisfies 
condition (iii) in Theorem 18.2. Now P satisfies the augmentation 
axiom by that theorem, and we conclude P is a quantum matroid of 
rank D. 

§24. A Characterization of quantum matroids 

In this section we obtain a characterization of a quantum matroid 
that is related to the material on Tits polar spaces in Sections 29, 30. 

Definition 24.1. Let us say a prematroid P is transversal when­
ever max(P) = top(P). 

Theorem 24.2. Let P denote a prematroid of rank D. Then 
the fallowing are equivalent. 

(i) P satisfies the augmentation axiom AU in Definition 4.1. 
(ii) For all atoms x E P, and for all y E top(P) such that x 1:. y, 

xt is transversal and has rank D - 1. 
(iii) For all u E P, and for all v E top(P) such that u covers 

u I\ v, there exists v' E top( P) such that u :S; v', and such that 
v, v' cover v I\ v'. 

Proof. (i) --+ (ii). Let x, y be given. Observe xt is a quantum 
matroid by Corollary 19.2, so it is transversal by Lemma 4.3. Observe 
top(xt) ~ top(P) by Theorem 18.2(v), so rank(xt) = D - 1. 

(ii) --+ (iii). Pick any u E P and any v E top(P) such that u 
covers u I\ v. Let x denote a relative complement of u I\ v in [0, u]. 
Then x is an atom by modularity. Observe x 1:. v; otherwise 

u=xV(u/\v) 

:S; v, 
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a contradiction. Now x Av = 0. We may now view x, u Av as 
relative complements in [x Av, u], so u E x:;; by Lemma 15.3(i),(ii). 
Pick any v' E max(x:;;) such that u ~ v'. We check v' has the 
required properties. We mentioned x is an atom such that x 1:_ v, so 
by assumption x:;; is transversal and has rank D - l. It follows 

v' E max(x;;") 

= top(x;;") 

~ top(P). 

Observe x, v A v' are relative complements in [0, v'] by Lemma 
15.3(i),(ii), and x covers 0, so v' covers v Av' by modularity. 
In particular rank(v Av')= D - 1, and it follows v covers v Av'. 

(iii) -+ (i). To show P satisfies the augmentation axiom, we first 
show max(P) = top(P). Suppose max(P) -/- top(P). Then [0, top(P)] 
is a proper subset of P. Pick any element 

(24.1) u E P\[0, top(P)] 

with rank(u) minimal. Certainly u-/- 0, so there exists x E P such 
that u covers x. Of course rank(x) < rank(u), so x E [0, top(P)] by 
construction. Pick any v E top(P) such that x ~ v. Observe u 1:. v 
by (24.1), so u Av= x. Now u covers u Av, so by (iii), there exists 
v' E top(P) such that u ~ v' (and such that v, v' cover v Av'). Now 
u E [0, top(P)], contradicting (24.1). We conclude max(P) = top(P). 

We are now ready to show P satisfies the augmentation axiom. To 
do this, we show P satisfies condition (iii) in Theorem 18.2. Pick any 
integer i (2 ~ i ~ D), and pick any geodesic path xyzw in P of shape 
(i-1,i-2,i-1,i). Wefind y',z'EP suchthat xy'z'w isapathof 
shape (i-1,i,i-1,i). We may assume xVw does not exist; otherwise, 
we are done with y' := x V z, z' := z. Since max(P) = top(P), there 
exists v E top(P) such that w ~ v. Observe x 1:. v (otherwise 
v is an upper bound for x, w), and it follows x Av = y. Now x 
covers x Av = y, so by assumption, there exists v' E top(P) such 
that x ~ v', and such that v, v' cover v Av'. Observe w 1:. v Av'; 
otherwise w ~ v Av'~ v', making v' an upper bound for x, w. Now 
v = (v Av') V w, so v Av', w are relative complements in [w A v',v]. 
Recall v covers v A v', so 

(24.2) w covers w A v' 

by modularity. Observe v' is an upper bound for x, w Av', so x V 
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( w I\ v') exists. Observe x, w I\ v' cover x I\ ( w I\ v') = y, so 

(24.3) x V (w I\ v') covers x, w I\ v' 

by modularity. Set 

y' := x V (w I\ v'), 

z' := w I\ v'. 

Then xy' z'w is a path of shape (i - 1, i, i - 1, i) by (24.2), (24.3), 
and the construction. We have now shown P satisfies condition (iii) in 
Theorem 18.2, so P satisfies the augmentation axiom by that theorem. 
We have now proved Theorem 24.2. 

§25. Any Cartesian product of quantum matroids is a quan­
tum matroid 

In this section, we show the property of being a quantum matroid 
is closed under the Cartesian product operation mentioned above line 
(1.23). First, a word about notation. Let P, Q denote any posets, 
and let S, T denote subposets of P, Q, respectively. Then the poset 
S x T is isomorphic to the subposet of P x Q induced on 

{xy Ix ES, y ET}; 

consequently, we do not distinguish between these posets. 
We mention a few elementary facts about the Cartesian product. 

Let P, Q denote any nonempty posets. Pick any x, y E P, and any 
x', y' E Q. Then xx' /\PxQ yy' exists if and only if both x /\p y, 
x' /\Q y' exist. In this case, 

(25.1) xx' /\PxQ yy' = x /\p y, x' /\Q y'. 

Similarly, xx' V p x Q yy' exists if and only if both x V p y, x' V Q y' 
exist, and in this case, 

(25.2) I I I I XX V Px Q yy = x V p y, x V Q y . 

Let P, Q denote semilattices. Then P x Q is a semilattice. 
Let P, Q denote posets with 0. Then P x Q has a 0. Moreover, 

(25.3) 

Let P, Q denote ranked posets with 0. Then P x Q is ranked. 
Moreover, for all x E P and for all x' E Q, 

(25.4) rankPxQ(xx') = rankp(x) + rankQ(x'). 
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Let P, Q denote modular atomic lattices. Then P x Q is a modular 
atomic lattice. 

Lemma 25.1. Let P, Q denote prematroids. Then P x Q is a 
prematroid. 

Proof. It is immediate from our remarks above that P x Q satisfies 
R, SL. To see that P x Q satisfies M, pick any x E P and any x' E Q. 
Then 

[OPxQ, xx'] = [Op, x] x [OQ, x'] 

is a Cartesian product of modular atomic lattices, and is therefore a 
modular atomic lattice. 

Lemma 25.2. Let P, Q denote prematroids. Then for all x, y E 

P and for all x', y' E Q, 

(i) 8PxQ(xx', yy') = 8p(x, y) + 8Q(x', y'), 
(ii) 8PxQ(xx', yy') = 8p(x, y) + 8Q(x', y'). 

Proof. (i) Expand each side using (7.12), and evaluate the results 
using (25.1), (25.4). 

(ii) First, we show the inequality ::; holds. By Definition 12.1, 
there exists z E P such that z V p y exists, and such that 

8p(x,z) = 8p(x,y). 

Similarly, there exists z' E Q such that z' V Q y' exists, and such that 

8Q(x',z') = 8Q(x',y'). 

Now zz' V PxQ yy' exists by our preliminary remarks, so in view of 
Definition 12.1, 

8PxQ(xx', yy')::; 8pxQ(xx', zz') 

= 8p(x, z) + 8Q(x', z') 

= 8p(x,y) + 8Q(x',y'), 

as desired. Next, we show the inequality ::=:: holds. By Definition 12.1, 
there exists an element zz' E P x Q such that zz' V PxQ yy' exists, 
and such that 

8PxQ(xx', zz') = 8PxQ(xx', yy'). 

Observe z V p y exists by our preliminary remarks, so 

8p(x, z) ::=:: 8p(x, y) 



396 P. Terwilliger 

by Definition 12.1. Similarly z' V Q y' exists, so 

8Q(x',z') ~ 8Q(x',y'). 

Now 

DpxQ(xx', yy') = 8PxQ(xx', zz') 

= 8p(x, z) + 8Q(x', z') 

~ 8p(x, y) + 8Q(x', y'), 

as desired. We conclude equality holds in (ii), and we are done. 

Theorem 25.3. Let P, Q denote quantum matroids. Then the 
Cartesian product P x Q is a quantum matroid. 

Proof. Observe P x Q is a prematroid by Lemma 25.1, so it 
remains to show P x Q satisfies the augmentation axiom. To do this, it 
suffices by Theorem 18.2(vi) to show the function 8PxQ is symmetric in 
its arguments. But this is an immediate consequence of Lemma 25.2(ii), 
since 8 p, 8Q are each symmetric in their arguments by Theorem 
18.2(vi). 

§26. The radical of a quantum matroid 

Definition 26.1. Let P denote a quantum matroid. By the 
radical of P, we mean the element 

(26.1) Rad(P) := /\ x. 
xEtop(P) 

We say P is degenerate whenever Rad(P) > 0, and nondegenerate 
whenever Rad(P) = 0. 

Let P denote a quantum matroid, and write R = Rad(P). Recall 
by Corollary 19.2 that the subposet R+ is a quantum matroid. 

Lemma 26.2. Let P denote a quantum matroid, and write R = 
Rad( P). Then 

(i) R+ is nondegenerate, 
(ii) top(R+) = top(P). 

Proof Routine. 

Lemma 26.3. Let P denote a quantum matroid, and pick any 
x E P. Then the following are equivalent. 

(i) x::; Rad(P). 
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(ii) x:::; y for all y E top(P). 
(iii) x Vy exists for all y E P. 

397 

Proof. (i) ----. (ii). Observe x :::; Rad(P) ::; y for all y E top(P). 
(ii) ----. (iii). Pick any y E P. By Lemma 4.3, there exists u E 

top(P) such that y :::; u. Observe x :::; u by assumption, so u is an 
upper bound for x, y. 

(iii) ----. (i). Pick any y E top(P). Observe x V y exists by 
assumption, so x :::; y. Now x :::; Rad(P) by Definition 26.1. We have 
now proved Lemma 26.3. 

Lemma 26.4. Let P denote a quantum matroid, and suppose 
the condition (10.2) holds. Then 

(26.2) Shadow(Rad(P)) = {x E Aplx Va exists for all a E Ap }. 

Proof. ~: Pick any x E Shadow(Rad(P)). Then by Lemma 
26.3(i), (iii), x Va exists for all a E Ap 

2: Pick any x E Ap, and assume x Va exists for all a E Ap. 
We show x satisfies condition (iii) of Lemma 26.3. Pick any y E P. 
Certainly xVa exists for all a E Shadow(y), so xVy exists by (10.2). 
Now x satisfies condition (iii) of Lemma 26.3, so x E Shadow(Rad(P)) 
by Lemma 26.3(i),(iii). 

Lemma 26.5. Let P denote a quantum matroid with rank D. 
Suppose that for each x E P such that rank(x) = D - 1, x is covered 
by at least two elements in top(P). Then Rad(P) = 0. 

Proof. Suppose R := Rad(P) > 0, and pick any z E top(P). 
Since [O, z] is relatively complemented, there exists x E P such that 
z covers x and R 1:. x. By assumption, there exists z' E top(P) such 
that z' covers x and z' f- z. Observe z' is an upper bound for x, R, 
forcing z' ~ x V R = z, an impossibility. Hence Rad(P) = 0. 

We finish this section with some results concerning the polar spaces 
from Examples 1. 7, 1.8. 

Definition 26.6. Let V, (, ) be as in Example 1.7, but assume 
q is odd in the symmetric bilinear case. 

(i) By the radical of (, ), we mean 

Rad((,)):= { u EV I (u,v) = 0 for all v EV}. 

(ii) (, ) is said to be degenerate if Rad( (, ) ) = 0, and nondegenerate 
otherwise. 
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Lemma 26. 7. Let V, ( , ) , P be as in Example 1. 7, but assume 
q is odd in the symmetric bilinear case. 

(i) Rad((,))= Rad(P). 
(ii) (, ) is degenerate if and only if P is degenerate. 

Proof. Routine. 

Definition 26.8. Let V, f, (, ) f be as in Example 1.8. 

(i) By the radical of f, we mean 

Rad(!):= {v E Rad((, )1) I f(v) = O}. 

(ii) f is said to be degenerate if Rad(!) = 0, and nondegenerate 
otherwise. 

Lemma 26.9. Let V, f, P be as in Example 1.8. 

(i) Rad(!)= Rad(P). 
(ii) f is degenerate if and only if P is degenerate. 

Proof. Routine. 

§27. Line regularity and dual-line regularity 

Definition 27.1. Let P denote a quantum matroid of rank D, 
and let q denote an integer. 

(i) Suppose D ~ 2. Then P is said to be q-line regular whenever 
for all lines x E P, 

(27.1) JShadow(x)I = q + 1. 

(ii) Suppose D ::; 1. Then P is said to be q-line regular whenever 
q is positive. 

Lemma 27.2. Let P denote a q-line regular quantum matroid. 
Then 

(27.2) 

Proof. If P has rank at least 2, then (27.2) follows from condition 
M in Definition 4.1. If P has rank O or 1, then (27.2) is immediate 
from Definition 27.l(ii). 
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Definition 27.3. Let q, j denote integers. We define [{] = [{]q 
by 

(27.3) [{] .-

and 

q1 - l 

q-l 
if q # l, 

(27.4) [{] := j if q = l. 

Lemma 27.4. Let P denote a modular atomic lattice of rank 
D, and let q denote an integer. Then the following are equivalent. 

(i) P is q-line-regular. 
(ii) All intervals in P are q-line-regular. 

(iii) P* is q-line-regular. 

Suppose (i)-(iii) hold. Then 

(27.5) 

where [ ] is from (27.3), (27.4). 

Proof Routine. 

Lemma 27.5. Let P denote a q-line regular quantum matroid. 
Then for all intervals I= [x, y] in P, 

(27.6) 

(27. 7) 

[~] I { z E J I z covers x} I, 
I { z E J I y covers z} I, 

where i := rank(y) - rank(x), and where [ ] is from (27.3), (27.4). 

Proof The interval [O, y] is q-line-regular by construction, so I, 
I* are both q-line regular by Lemma 27.4. I, I* each have [~] atoms 
by (27.5), and (27.6), (27.7) follow. 

Lemma 27.6. Let P denote a quantum matroid with rank D?: 
3, and suppose all the lines of P are thick. Then P is q-line regular 
for some integer q ?: 2. If D ?: 4 then q is a prime power. 

Proof Fix any x E top(P). Then [O, x] is a modular atomic 
lattice, all of whose lines are thick. Applying Theorem 1.12, we find 
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there exists an integer q :2: 2 such that [0, x] is isomorphic to a 
projective plane of order q (if D = 3) or Lq(D) (if D :2: 4). In any 
case [0, x] is q-line regular. We show P is q-line regular. To this 
end, suppose there exists y E top(P) such that 8(x, y) = 2, i.e. x, y 
are adjacent in the graph top(P). Then by our preliminary remarks, 
[0, y] is q'-line regular for some integer q' :2: 2. But the intervals [0, x], 
[0, y] share at least one line in common since rank(x I\ y) = D - l :2: 2, 
so q = q'. Since the graph top(P) is connected by Theorem 22.l(ii), 
we conclude [0, z] is q-line regular for all z E top(P). Now pick any 
line u E P. By Lemma 4.3, there exists z E top(P) such that u ~ z. 
[0, z] is q-line-regular by our above remarks, so u covers exactly q + l 
points. We have now shown P is q-line regular. Now suppose D :2: 4. 
Then [0, x] is isomorphic to Lq{D), so q is a prime power. We have 
now proved Lemma 27.6. 

Definition 27.7. Let P denote a quantum matroid with rank D. 

(i) For all x E P, define 

(27.8) Shadown(x) := {y I y E top(P), y :2: x}. 

(ii) By a dual-line in P, we mean any element x E P such that 

(27.9) rank(x) = D - l. 

Definition 27.8. Let P denote a quantum matroid with rank D, 
and let /3 denote an integer. 

(i) Suppose D :2: 1. Then P is said to be /3-dual-line regular 
whenever 

(27.10) jShadown(x)I = /3 + 1 

for all dual-lines x E P. 
(ii) Suppose D = 0. Then P is said to be /3-dual-line regular 

whenever f3 is nonnegative. 

Lemma 27.9. Let P denote a /3-dual-line regular quantum 
matroid. Then 

(27.11) /3 :2: 0. 

Proof. Immediate from Definition 27.8(i),(ii). 

In the next lemma, we consider the case of equality in (27.11). 
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Lemma 27.10. Let P denote a quantum matroid. Then the 
following are equivalent. 

(i) P is a 0-dual-line regular. 
(ii) P is a modular atomic lattice. 

Proof. (i) -t (ii). Suppose P is not a modular atomic lattice. 
Then by Lemma 22.2, there exists at least two elements in top(P). 
The graph on top(P) is connected by Theorem 22.l(ii), so there exists 
x, y E top(P) that are adjacent in the graph on top(P). Observe x, y 
cover x I\ y, so x I\ y is a dual-line. But x and y are both in 
Shadowv(x /\ y), contradicting our assumption that P is 0-dual-line 
regular. We conclude P is a modular atomic lattice. 

(ii) -t (i). Clear. 

We close this section with a theorem concerning design matroids 
that are both line regular and dual-line regular. 

Theorem 27.11. Let P denote a q-line regular, (3-dual-line 
regular design matroid of mnk D. Then 

(27.12) ltop(P)I = 1 + (3 [ ~] , 

where [ ] is from (27.3), (27.4). 

Proof. Fix any element x E top(P). Set 

A:= { y E PI x covers y}, 

and observe by Lemma 27.5 that 

(27.13) IAI = [ ~]-

We now count adjacencies between top(P)\{x} and A. Observe 
by Lemma 22.3(ii), and since P is a semilattice, each element z E 
top(P)\{x} covers exactly one element in A; namely x/\z. By (27.10), 
each element in A is covered by exactly (3 elements in top( P) \ { x}. 
It follows 

(27.14) 

/3IAI = ltop(P)\{x}I 

= ltop(P) I - 1, 

and the result follows from (27.13), (27.14). 
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§28. Zig-zag regularity 

Definition 28.1. Let P denote a quantum matroid of rank D 2: 2. 
For each integer i (2 :::; i :::; D), let ~i denote the set of ordered pairs 

~i := {xyJx,y E P,rank(x) = i-1,rank(y) = i,o(x,y) = 3, 

x V y does not exist} 

= {xyJx,y E P,p(x,y) = i - 2,-y(x,y) = O,o(x,y) = l,-y(y,x) = l}. 

In Lemma 28.4, we define a function zig-zag : ~i ___, Z, but first, let 
us consider when ~i =f 0. 

Lemma 28.2. Let P denote a quantum matroid with rank D 2: 
2. For each integer i (1 :::; i :::; D), let LS.i denote the set of ordered 
pairs 

.ii:= {xy I x,y E P, rank(x) = i, rank(y) = i, o(x,y) = 2, 

x Vy does not exist}. 

Then the following statements (i)-(iii) hold. 

(i) 
(ii) 

(iii) 

(28.1) 

~i =f 0 - .ii =f 0 
LS.i-1 =f 0 - ~i =f 0 
Suppose there exists atoms 
exist. Then 

(2 :::; i :::; D). 
(2:::;i:::;D). 

x, y E P such that x Vy 

(2 :::; i :::; D). 

does not 

Proof. (i) ----,: Pick any xy E ~i- By Theorem 18.2(ii) and Defi­
nition 28.1, there exists elements z, w E P such that xzwy is a path 
with shape (i-1,i,i-1,i). Recall o(x,y) = 3 by Definition 28.1, so 
o(z, y) = 2. Recall x Vy does not exist by Definition 28.1. It follows 
z Vy does not exist; otherwise z Vy is an upper bound for x, y. Now 
zy E ti.i. 

+-: Pick any uv E ~i- Observe u covers at least two elements of 
P since rank( u) = i 2: 2; in particular there exists an element x E P 
such that u covers x and x =f u I\ v. Observe o(x, v) E {1, 3} by 
(7.3). In fact o(x, v) = 3; otherwise v covers x, making x a lower 
bound for u, v, and forcing x = u I\ v. We claim x V v does not exist. 
Suppose x V v exists. Observe xuv is geodesic by our above remarks; 
it follows u :::; x V v by Lemma 7.9(i),(ii). In this case x V v is an 
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upper bound for u, v, so u V v exists, contradicting our assumptions. 
We conclude x V v does not exist. Now xv E Doi by Definition 28.1. 

(ii) Pick uv E Lii-1· By Lemma 4.3, there exists y E P such that 
y covers v. Observe u Vy does not exist; otherwise u Vy is an upper 
bound for u,v. In particular u 1:. y. Now 8(u,y) = 3 by (7.3), and it 
follows uy E Doi by Definition 28.1. 

(iii) Observe xy E Li1, so Li1 =I= 0. The result now follows from (i), 
(ii). 

Lemma 28.3. Let P denote a quantum matroid with rank D ?: 
2. Then the following are equivalent. 

(i) P is a modular atomic lattice. 
(ii) x ~ y for all x E Ap and all y E top(P). 

(iii) i5,.D = 0. 
(iv) D-D = 0. 

Proof. (i) ---. (ii). Clear since top(P) = {I}. 
(ii) ---. (iii). Suppose there exists uy E LiD, and let x denote 

a relative complement of u I\ y is [O, u]. Observe u covers u I\ y 
by the definition of LiD, so x is an atom by modularity. Observe 
x 1:. y; otherwise x is a lower bound for u, y, forcing x ~ u I\ y, and 
contradicting the construction. 

(iii) ---. (i). Suppose P is not a modular atomic lattice. Then P 
is not 0-dual-line regular by Lemma 27.10, so there exists a dual-line 
w E P, and distinct elements u, v E top(P) such that w ~ u, w ~ v. 
Observe 8(u,v) = 2 by the construction, so uv E LiD. 

(iii) - (iv). Immediate from Lemma 28.2(i). 

Lemma 28.4. Let P denote a quantum matroid with rank D ?: 
2. For all integers i (2 ~ i ~ D), and for all elements xy E Doi, the 
sets 

(i) top(xt) 
(ii) Y*X 

(iii) {p Ip is a path in P with endpoints x, y and shape (i -1,i, 
i -1,i)} 

all have the same cardinality. 

We denote this cardinality by zig-zag(x, y). 

Proof. The sets (i), (ii) have the same cardinality by Corollary 
15.7(iii). The sets (ii), (iii) also have the same cardinality, since the map 
u---. x, xVu, u, y is a bijection from the set y * x to the set in (iii). 
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Definition 28.5. Let P denote a quantum matroid with rank D, 
and let a denote an integer. 

(i) Assume D 2 2, and that P is not a modular atomic lattice. 
Then P is said to be a-zig-zag regular whenever 

(28.2) zig-zag(x, y) =a+ 1 

for all xy E f1v. 
(ii) Assume D ~ l, or that P is a modular atomic lattice. Then 

P is said to be a-zig-zag regular whenever a is nonnegative. 

Lemma 28.6. Let P denote an a-zig-zag regular quantum ma­
troid. Then 

a 2 0. (28.3) 

Proof. Immediate from Definition 28.5. 

In the next section, we consider the case of equality in (28.3). For 
now, we mention a few other inequalities concerning a. 

Lemma 28. 7. Let P denote an a-zig-zag regular quantum ma­
troid with rank D 2 2, and assume P is not a modular atomic lattice. 

(i) Suppose P is q-line regular. Then 

(28.4) a~ q. 

(ii) Suppose P is {3-dual-line regular. Then 

(28.5) a~ {3. 

Proof. By Lemma 28.3(i),(iv), there exists an element xy E f1v. 
To see (i), observe the interval [x /\ y, y] has rank 2, so by Lemma 
28.4(ii), Corollary 27.5, 

a+ 1 = zig-zag(x, y) 

= IY*XI 

~ /{v Iv E P, x I\ y < v < y}/ 

= q+ l. 

To see (ii), observe by Lemma 28.4(i) that 

a+ 1 = zig-zag(x, y) 

= ltop(xt)I 

~ IShadowv(x)I 

=/3+1. 
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§29. The 0-zig-zag regular quantum matroids 

The purpose of this section and the next is to establish that a non­
degenerate 0-zig-zag regular quantum matroid is the same thing as a 
Tits polar space. 

Theorem 29.1. Let P denote a quantum matroid. Then the 
following are equivalent. 

(i) P is 0-zig-zag regular. 
(ii) xt is a modular atomic lattice for all x, y E P. 

(iii) lx*YI = 1 for all x, y E P. 

Proof. Let D denote the rank of P. 
(i) ---+ (ii). Suppose there exists a pair x, y E P such that xt is 

not a modular atomic lattice. We may assume 

(29.1) rank(y) - 8(x, x I\ y) is maximal 

among all such pairs. 
We first claim y E top( P). Suppose not. Then by Lemma 4.3, there 

exists an element u E P such that y < u. Observe 

XI\ Y S XI\ U S X, 

so 
8(x, x I\ u) S 8(x, x I\ y). 

Now 
rank(u) - 8(x, x I\ u) > rank(y) - 8(x, x I\ y), 

so x! is a modular atomic lattice by (29.1). Observe xt is a sub­
matroid of x! by Lemma 15.9, so xt is a modular atomic lat­
tice by Lemma 8.5, Lemma 9.1. This contradicts our assumptions, so 
y E top(P). 

Next, we claim 8(x,x/\y) ~ 2. Certainly 8(x,x/\y) -1- O; otherwise 
x S y, implying xt = [x, y] is a modular atomic lattice. Suppose 
8(x, x I\ y) = 1. We obtain a contradiction to Lemma 27.10 by showing 
xt is 0-dual-line regular. To do this, we pick any dual-line w in xt, 
and show 

itop(xt) n w+I = 1. 

Observe top(xt) ~ top(P) by Theorem 18.2(v), so 

(29.2) rankp(w) = D - 1. 
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Observe x, w I\ y are relative complements in [x /\ y, w] by Lemma 
15.3(ii), and x covers x I\ y, so 

(29.3) w covers w I\ y 

by modularity. Now wy E IJ.n by (29.2), (29.3), so by Lemma 15.8(i), 

ltop(xt) n w+I = ltop(wt)I 

= zig-zag( wy) 

= 1, 

as desired. We have now shown xt is 0-dual-line regular, so xt is a 
modular atomic lattice by Lemma 27.10. This contradicts the construc­
tion, so 8(x,xl\y) =f. l. We conclude 8(x,xl\y) ~ 2. 

Since 8(x, x I\ y) ~ 2, there exists an element s E P such that 
x I\ y < s < x. Observe s I\ y = x I\ y by Lemma 13.4(i),(iii), so 

rank(y) - 8(s,sl\y) rank(y) 

> rank(y) 

8(s, XI\ y) 

8(x, XI\ y), 

implying st is a modular atomic lattice by (29.1). Let z denote a 

maximal element of st. Observe z E top(P) by Theorem 18.2(v), and 
s = x I\ z by Leinma 7.4, so 

rank(z) - 8(x,xl\z) rank(y) 

> rank(y) 

8(x, s) 

8(x, XI\ y), 

implying x; is a modular atomic lattice by (29.1). 
We claim xt ~ x; (in fact equality holds, but we will not need 

this). To prove the claim, we pick u Ext and show u Ex;. Set 

p:=sV(ul\y). 

Observe p E st by Lemma 17.1, so spz is geodesic. Observe 
szy is geodesic since z E st, so spzy is geodesic. In particular 
pzy is geodesic. Observe upy is geodesic by Lemma 17.1, Theorem 
l 7.2(i),(iii), so upzy is geodesic. In particular uzy is geodesic. Ob­
serve xuy is geodesic since u E xt, so xuzy is geodesic. In particular 

xuz is geodesic, so u E x;, as desired. We have now shown xt ~ x;. 
Now xt is geodesically closed in x; by Lemma 15.2(ii), and we saw 
x; is a modular atomic lattice, so xt is a modular atomic lattice by 
Lemma 8.5. This contradicts our assumption, and we are done. 
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(ii) ------, (i). For all xy E ,6.D, 

zig-zag(xy) = ltop(xt)I 

= 1. 

(ii) +-+ (iii). Recall by Lemma 22.2(ii),(iii) that for all x, y E P, 
xt is a modular atomic lattice if and only if ltop(xt)I = 1. But 

ltop(xt)I = IY * xi by Lemma 15.7(iii), so the result follows. This 
proves Theorem 29.1. 

We now modify Theorem 24.2 using the above theorem, to obtain a 
characterization of the 0-zig-zag regular quantum matroids. 

Theorem 29.2. Let P denote a prematroid of rank D. Then 
the following are equivalent. 

(i) P satisfies the augmentation axiom AU in Definition 4.1, and 
P is 0-zig-zag regular. 

(ii) For all atoms x E P and for all y E top(P) such that x i y, 
xt is a modular atomic lattice with rank D - 1. 

(iii) For all u E P and all v E top(P) such that u covers u I\ v, 
there exists a unique v' E top(P) such that u :S v' and such 
that v, v' cover v I\ v'. 

Proof. (i) ------, (ii). Let x, y be given. P is a quantum matroid 
by Definition 4.1, and 0-zig-zag regular by assumption, so xt is a 

modular atomic lattice by Theorem 29.l(ii). xt has rank D - 1 by 
Theorem 24.2. 

(ii) ------, (iii). Very similar to the proof of Theorem 24.2 (ii) ------, (iii). 
(iii) ------, (i). Observe P satisfies condition (iii) of Theorem 24.2, so 

P satisfies the augmentation axiom by that theorem. We show P is 
0-zig-zag regular. Pick xy E ,6.D· Then x covers x I\ y by Definition 
28.1, so by assumption, there exists a unique y' E top(P) such that 
x :S y', and such that y, y' cover y I\ y'. Put another way, there exists 
a unique path with endpoints x, y and shape (D - 1, D, D - 1, D), so 
zig-zag(x, y) = l. We have now shown P is 0-zig-zag regular. This 
proves Theorem 29.2. 

Next, we consider when a 0-zig-zag regular quantum matroid is 
nondegenerate. 

Theorem 29.3. Let P denote a 0-zig-zag regular quantum ma­
troid with rank D. Then the following are equivalent. 

(i) Rad(P) = 0. 



408 P. Terwilliger 

(ii) For all atoms a E P, there exists an atom b E P such that 
a V b does not exist. 

(iii) For all x E P, there exists y E top(P) such that x I\ y = 0. 
(iv) For all dual-lines x E P, x is covered by at least two elements 

in top(P). 
(v) There exists x, y E top(P) such that x I\ y = 0. 

Proof. (i) -+ (ii). Let the atom a be given. Certainly a 1:. 
Rad(P), so by Lemma 26.3(iii), there exists an element y E P such 
that a Vy does not exist. Observe 8(a, y) = l by construction, so 
8(y, a) = l by Theorem 18.2(vi). Now y covers y * a by Definition 
12.1 and Theorem 12.3. Let b denote a relative complement of y * a 
in [0, y]. Then b is an atom by modularity. To show a Vb does not 
exist, we show b ~ y;;. But this holds, since y;; = [O, Y*a] by Theorem 
19.3(i), and b ~ [O, y * a] by construction. 

(ii) -+ (iii). Let x be given, and pick an element z E top(P) with 

(29.4) p(x, z) minimal. 

We assume p(x, z) > 0 and get a contradiction. By construction, there 
exists an atom a E P such that a ~ x I\ z. By (ii), there exists an 
atom b E P such that a Vb does not exist. Observe b 1:. z; otherwise 
z is an upper bound for a, b. Now b covers b I\ z = 0, so by Theorem 
29.2(iii), there exists an element 

(29.5) y E top(P) 

such that b ~ y, and such that y, z cover y I\ z. Set h := y I\ z. By 
Theorem 13.5, p(x, z) - p(x, h) equals O or 1. Suppose for the moment 
p(x, z) = p(x, h). Then x I\ z ~ h by Lemma 13.4(i),(iv), implying y 

is an upper bound for a, b, a contradiction. Hence 

(29.6) p(x, z) = p(x, h) + l, 

and this forces 

(29.7) 

by Theorem 15.3(i),(iv). Observe y V z does not exist. Now by (29.7), 
and since h-;}; is a modular atomic lattice by Theorem 29.1, 

(29.8) 

By Theorem 13.5 and since y covers h, p(x, y) - p(x, h) equals O or 
1. Suppose for the moment p(x, y) = p(x, h) + l. Then y E h-;}; by 
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Lemma 15.3(iv), contradicting (29.8). Hence 

(29.9) p(x, y) = p(x, h). 

Now (29.5), (29.6), (29.9) contradict (29.4). 
(iii) ----; (iv). Pick any dual-line x E P. We show x is covered 

by at least two elements in top(P). By Lemma 4.3, there exists an 
element y E top(P) that covers x. By assumption, there exists an 
element z E P such that yl\z = 0. By Theorem 29.1, xt is a modular 
atomic lattice. Let y' denote the unique maximal element in xt. Then 
y' E top(P) by Theorem 18.2(v). It remains to check y =f. y'. Observe 
x 2: y I\ z = 0, so yxz is geodesic by Lemma 13.4(i),(ii). But xy'z is 
geodesic by the construction and (15.1), so y =f. y', as desired. 

(iv) ----; (i). This is just Lemma 26.5. 
(iii) ----; (v). Clear. 
(v) ----; (i). Pick any x, y E P such that x I\ y = 0. Then by 

Definition 26.1, 

Rad(P) = f\ u 
uEtop(P) 

<.:5:_ XI\ y 

=0, 

so Rad(P) = 0. We have now proved Theorem 29.3. 

§30. Tits polar spaces 

In this section, we show that a nondegenerate 0-zig-zag regular quan­
tum matroid is the same thing as a Tits polar space. 

Our first result concerns atomic semilattices. It will allow us to shift 
our point of view a bit, bringing it into line with how Tits polar spaces 
are traditionally viewed. 

Lemma 30.1. Let P denote an atomic semilattice, and define a 
poset 

(30.1) P := {Shadow(x) Ix E P}, 

with partial order by inclusion. Then the map 

p - p 
x ----; Shadow( x) 
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is an isomorphism of posets. 

Proof. The map is clearly onto P. The map is 1-1, and respects 
the partial order, by Lemma 9.3(ii). This proves Lemma 30.1. 

Passing from P to P, Lemma 30.1 allows us to view any atomic 
semilattice as a collection of distinct subsets of A p, with partial order 
defined by inclusion. We adopt this point of view for the remainder of 
the section. 

Definition 30.2 [Ti, p102]. A Tits polar space is a collection P 
of distinct subsets of a set A (of points), partially ordered by inclusion, 
such that the following axioms hold. 

PSI: P is closed under taking intersections, and has all the single 
points of A as its collection of minimal non-empty members. 

PS2: All unrefinable chains in P have the same length D. 
PS3: If x is a maximal member of P, then x, together with all the 

elements of P which it contains, is a modular atomic lattice of 
rank D. 

PS4: Given a point x E P, and a maximal member y of P that 
does not contain x, there exists a unique maximal member y' 
of P such that y, y' cover y I\ y'. y I\ y' contains all the 
elements of y that lie together with x in some element of P. 

PS5: There exists two maximal elements in P that have empty 
intersection. 

The scalar D is the rank of P. 
We are now ready for the main theorem of this section. 

Theorem 30.3. For any nonnegative integer D, the following 
are equivalent. 

(i) P is a nondegenerate, 0-zig-zag regular quantum matroid of 
rank D. 

(ii) P is a Tits polar space of rank D. 

Proof (i) - (ii). Recall by Lemma 4.3 that 

(30.2) max(P) = top(P). 

To show P is a Tits polar space of rank D, we check P satisfies 
PS1-PS5. 

PSI: P is closed under taking intersections by Lemma 9.3(iii). P 
has A = Ap as its collection of minimal nonempty members by the 
definition of Ap. 
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PS2: Immediate since P is ranked, rank(P) = D, and since (30.2) 
holds. 

PS3: Pick any x E max(P). Then rank(x) = D by (30.2), so [O, x] 
is a modular atomic lattice of rank D by condition M of Definition 4.1. 

PS4: Pick any point x E A, and any element y E max(P) such 
that x 1. y. Then x covers x I\ y = 0, so by Theorem 29.2(iii) and 
(30.2), there exists a unique element y' E max(P) such that x ::; y', 
and such that y, y' cover y I\ y'. To see that y I\ y' contains all the 
elements of y that lie together with x in some element of P, observe 
by Theorem 19.3(i), Theorem 29.l(iii) that 

{ a EA I a::; y, a V x exists in P} = y;;; n A 

= [0,y*x] nA 
= [0, y I\ y'] n A. 

PSS: Immediate from Theorem 29.3(i),(v), and (30.2). 
We have now shown P satisfies PS1-PS5, so P is a Tits polar 

space of rank D. 
(ii) --+ (i). We first show P is a prematroid, by showing P satisfies 

the conditions SL, R, M in Definition 4.1. 
SL: P is a semilattice by PSl. 
R: P is ranked by PS2. 
M: Pick any x E P, and pick any y E max(P) such that x::; y. 

Observe [0, y] is a modular atomic lattice by PS3, so the interval [0, x] 
is a modular atomic lattice. 

We have now shown P is a prematroid. In fact P is transversal 
and has rank D by PS2. 

We now show P satisfies the augmentation axiom, and is 0-zig-zag 
regular. To do this, we show P satisfies condition (ii) in Theorem 29.2. 
Pick any atom x E P and any element y E top(P) such that x 1. y. 
We show xt is a modular atomic lattice of rank D - 1. By PS4, and 
since P is transversal, there exists a unique y' E top(P) such that 
x ::; y', and such that y, y' cover y I\ y'. Moreover, y I\ y' contains all 
the elements of y that lie together with x in some element of P. It 
follows 

(30.3) y *X = y I\ y' 

and 

(30.4) Shadow(y /\ y') = y;;; n A. 
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We show y; = [0, y I\ y']. To see the inclusion 2, observe by Lemma 
15.4(iii) and (30.3) that 

y; 2 [0,y*x] 

= [0, y I\ y']. 

To see the inclusion ~, pick any z E y;. Then 

Shadow(z) ~ y; n A 

= Shadow(y /\ y') 

by (30.4), so z E [O, y I\ y'] by Lemma 9.3(ii). We have now shown 
y; = [0, y I\ y']. By this, and since y covers y I\ y', it follows y; is a 
modular atomic lattice of rank D - l. Recall xt, y; are isomorphic 

by Theorem 15.5; in particular xt is a modular atomic lattice of rank 
D - l, as desired. We have now shown P satisfies condition (ii) in 
Theorem 29.2; it follows P satisfies the augmentation axiom, and is 
0-zig-zag regular. Now P is a 0-zig-zag regular quantum matroid by 
Definition 4.1. P is nondegenerate by Theorem 29.3(i),(v) and PS5. 
This proves Theorem 30.3. 

The Tits polar spaces ( and hence the nondegenerate 0-zig-zag regu­
lar quantum matroids) are essentially classified by J. Tits. In the follow­
ing two theorems we present the classification in the line regular case. 

Theorem 30.4. Let D denote an integer at least 2. Then the 
following are equivalent. 

(i) P is a 1-line regular Tits polar space of rank D. 
(ii) There exists integers N 1 , N2 , •.. , ND, all at least 2, such that 

P is isomorphic to C(N1, N2, ... , ND)-

Suppose (i), (ii) hold. Then P is /3-dual-line regular if and only if 

Ni=/3+1 (1 ::; i ::; D). 

In this case P is isomorphic to the Hamming matroid H(D, /3 + 1) 
listed in Example 40.1(2). 

Proof Routine. 

Theorem 30.5([Ti]). Let D denote an integer at least 4, and let 
q denote an integer at least 2. Then the following are equivalent. 

(i) P is a q-line regular Tits polar space of rank D. 
(ii) q is a prime power, and P is isomorphic to a classical polar 

space of rank D over the field GF(q). 
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(See Example 40.1(5).) 
Suppose (i), (ii) hold. Then P is qI+"-dual-line regular, where E: 

is given in Example 40.1(5). 

§31. The a-zig-zag regular quantum matroids with a > O 

In the previous two sections, we considered the 0-zig-zag regular 
quantum matroids. In this section, we say a bit about the a-zig-zag 
regular quantum matroids with a > 0. 

Theorem 31.1. Let P denote a quantum matroid with rank 
D ~ 2. Suppose P is a-zig-zag regular for some integer a > 0, but 
assume P is not a modular atomic lattice. Then 

(i) P is dual-line regular, 
(ii) Rad(P) = 0. 

Proof. (i) Pick any x,y E P such that rank(x) = D - l, 
rank(y) = D - l. To show P is dual-line regular, it suffices to show 

(31.1) IShadowv(x)I = IShadowv(Y)I-

First, consider the special case where x Vy exists. Here we may assume 
x =/- y; otherwise (31.1) clearly holds. Observe by Lemma 28.4(i) and 
Definition 28.5 that for each u E Shadowv(x)\{x Vy}, there exists 
exactly a elements v E Shadow D (y) \ { x V y} such that 8( u, v) = 2. 
This remains true if we interchange the roles of x and y, so 

IShadowv(x)\{x Vy}la = IShadowv(y)\{x V y}la. 

Line (31.1) is immediate since a > 0. We now have (31.1) in our special 
case. To show (31.1) holds in general, we construct a path p with 
endpoints x, y and shape 

(31.2) (D - 1, D, D - 1, D, ... , D - l, D, D - 1). 

To obtain p, recall by Lemma 4.3 that there exists an element y' E 
top(P) such that y' covers y. By Theorem 18.2(iv), there exists a 
geodesic up-flat-down path p' in P with endpoints x, y'. By the 
construction, p' must have shape (D - 1, D, D - l, D, ... , D - l, D). 
Appending y to the end of p', we obtain a path p with endpoints x, y 

and shape (31.2), as desired. Write p = (x = xo, xi, ... , Xd-1, Xd = y) 
(x0,x1, ... , xd E P), and observe by (31.2) that d is even. Moreover 

Xi V xi+2 exists (0 ~ i ~ d - 2, i even), 
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so by the above special case, 

IShadowv(xi)I = IShadowv(xi+2)I (0 S i S d, i even). 

Line (31.1) follows, so P is dual-line regular, as desired. 
(ii) By (i), P is ,B-dual-line regular for some integer ,B. Observe 

,B 2: a> 0 by Lemma 28.7(ii), so Rad(P) = 0 by Lemma 26.5. 

§32. The definition of a regular quantum matroid 

Definition 32.1. A quantum matroid P is said to be regular, with 
parameters (D, q, a, ,B), whenever the following four conditions hold. 

(i) p has rank D. 
(ii) p is q-line regular. 

(iii) p is a-zig-zag regular. 
(iv) p is ,B-dual-line regular. 

Let us consider a few very special cases. Any quantum matroid with 
rank D S 1 is regular. However, the parameters q, a are not 1uniquely 
defined in this case. Similarly, any q-line regular modular atomic lattice 
is regular, but the parameter a is not uniquely defined in this case. 
In contrast to the above two cases, consider a regular quantum matroid 
P with rank D 2: 2, that is not a modular atomic lattice. Then the 
parameters q, a, ,B are uniquely defined. 

Some results concerning regular quantum matroids do not hold un­
less the parameters are uniquely defined, so we make the following defi­
nition. 

Definition 32.2. A quantum matroid P is said to be trivial 
whenever P has rank D S 1, or P is a modular atomic lattice. 

In Example 4.2, we characterized the quantum matroids of rank 
2. Below we present a similar result concerning the regular quantum 
matroids of rank 2. 

Example 32.3. Let q, a, ,B denote integers, and let P de­
note a poset. Then P is a regular quantum matroid with parameters 
(2, q, a, ,B) if and only if P has a O, and the following conditions 
(i)-(vi) hold. 

(i) P is ranked and rank(P) = 2. 
(ii) For any distinct points x, y E P, there exists at most one line 

z E P such that x S z, y S z. 
(iii) Each line in P covers exactly q + 1 points in P. 
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(iv) Each point in P is covered by exactly /3 + 1 lines in P. 
( v) For each point x E P and each line y E P such that x 1:. y, 

there exists exactly a + 1 pairs x' y', such that x' is a point 
in P, y' is a line in P, and x ~ y' 2: x' ~ y. 

(vi) q 2: 1, a 2: 0, /3 2: 0. 

Note. A regular quantum matroid with parameters (2, q, a, /3) 
is essentially the same thing as an (R, K, T)-partial geometry, where 
R := /3 + 1, K := q + 1, and T :=a+ 1 [Bo]. 

The following theorem gives a characterization of the regular quan­
tum matroids of arbitrary rank D 2: 2. Compare this with Theorem 
23.1. 

Theorem 32.4. Let D, q, a, /3 denote integers with D 2: 2, 
and let P denote a poset. Then P is a regular quantum matroid with 
parameters (D, q, a, /3) if and only if (i)-(iv) hold below. 

(i) P is a prematroid of rank D. 
(ii) For all x E P, there exists x' E top(P) such that x ~ x'. 

(iii) For all x E P such that rank(x) ~ D - 2, the poset induced 
on x+\ { x} is connected. 

(iv) For all x E P such that rank(x) = D - 2, the poset x+ is a 
regular quantum matroid with parameters (2, q, a, /3). 

Proof. First suppose P is a regular quantum matroid with param­
eters (D, q, a, /3). Then the above conditions (i)-(iii) hold by Theorem 
23.1. To see that the above condition (iv) holds, pick any x E P such 
that rank(x) = D - 2. Then x+ is a quantum matroid of rank 2 by 
Theorem 23.l(iv). Observe x+ is q-line regular by Lemma 27.4(i),(ii), 
and since P is q-line regular. Observe x+ is a-zig-zag regular 
by Lemma 28.4, Definition 28.5, and since P is a-zig-zag regular. 
Observe x+ is /3-dual-line regular by Definition 27.7, and since P 
is /3-dual-line regular. Now x+ is a regular quantum matroid with 
parameters (2, q, a, /3), as desired. 

Conversely, suppose the above conditions (i)-(iv) hold. Observe P 
satisfies the conditions (i)-(iv) in Theorem 23.1, so P is a quantum 
matroid by that theorem. We check P is regular. To show P is q-line 
regular, it suffices to show [O, y] is q-line regular for all y E top(P). 
Observe [O, y]* is q-line regular by condition (iv) above, so [O, y] is 
q-line regular by Lemma 27.4(i),(iii). We have now shown P is q-line 
regular. It is immediate from the construction that P is a-zig-zag 
regular and /3-dual-line regular, so P is a regular quantum matroid 
with parameters (D, q, a, /3), as desired. 
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§33. Formulae for IAPI, !top(P)I 

In this section, we assume P is a regular quantum matroid with 
parameters (D, q, a, (3), and compute IAPI, ltop(P)I in terms of 
D, q, a, (3. First, we introduce some notation. 

Definition 33.1. For all integers j, q, a, we define tj = tj(q, a) 
by 

(33.1) tj := l+a [i], 
where [{] is from (27.3), (27.4). 

Lemma 33.2. With the notation of Definition 33.1: 

(i) tj+l - tj = aqJ (j E Z). 
(ii) Assume a 2:: 0, q 2:: 1. Then 

(33.2) 

Proof. (i) Immediate from (27.3), (27.4), (33.1). 
(ii) Immediate from (33.1) and (i) above. 

Lemma 33.3. Let • P denote a regular quantum matroid with 
parameters (D,q,a,(3). Then for all x E P, and for all y E top(P) 
such that x covers x /\ y, 

(33.3) ltop(xt)I = tD-i, 

where 

(33.4) i := rank(x). 

Proof. By Definition 33.1 and Theorem 27.11, it suffices to show 
xt is a q-line regular, a-dual-line regular design-matroid, with rank 

D - i. Observe by Lemma 27.4(i),(ii) that xt is q-line regular. To see 

that xt 1s a-dual-line regular, we pick any du~l-line z of xt, and 
show 

(33.5) lz+ n top(xt)I =a+ 1. 

Observe 

(33.6) top(xt) "Stop(P) 
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by Theorem 18.2(v), so z is a dual-line of P. Now 8(y, z) = 3 by the 
construction, so zy E t:..v by Definition 28.1. Now by Lemma 28.4(i) 
and Lemma 15.8(i), 

a + 1 = zig-zag( zy) 

= ltop(zt)I 

= lz+ n top(xt)I, 

as desired. We have now shown xt is a-dual-line regular. Observe 
8(x, y) = 1 by (12.1) and the construction, so xt is a design-matroid 

by Lemma 22.4. It is clear from (33.6) and the construction that xt 
has rank D - i. We have now proved Lemma 33.3. 

Theorem 33.4. Let P denote a regular quantum matroid with 
parameters (D, q, a, (3). Then for all integers i (0 :s; i < D), and for 
all x E P with rank(x) = i, 

(33.7) I { z E P I z covers x} I = 'T/i, 

where 

(33.8) 
qD-i-1 [D _ i] 

'T/i := (1 + (3 t . ) 1 ' 
D-i-1 

and where ti is from (33.1). In particular, 

(33.9) 

if D ~ 1. 

Proof. Pick any x E P such that rank(x) = i. By Lemma 4.3, 
there exists y E top( P) such that x :s; y. To show ( 33. 7), ( 33.8), it 
suffices to show 

(33.10) 

(33.11) 

where 

(33.12) 

(33.13) 

X := {z E PI z covers x, z :s; y}, 

Y := { z E P I z covers x, z 1:. y }. 
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Line (33.10) is immediate from Lemma 27.5, so consider (33.11). Set 

X' := {z E [x, y] I y covers z }, 

and observe 

(33.14) 

by Lemma 27.5. Set 

Y' := {z E top(P) Ix :s; z, 8(y, z) = 2}. 

Observe each element of X' is covered by exactly (3 elements of Y'. 
Also, observe each element of Y' covers a unique element of X'. It 
follows 

(33.15) IY'I = IX'lf3-

Next, we claim each element of Y is less than or equal to exactly 
tD-i-I elements of Y'. To see this, pick any z E Y. Observe z covers 
z I\ y = x; in particular rank(z) = i + 1. Now by Lemma 33.3, 

tD-i-I = jtop(zt)I 

= IY' n z+j, 

as desired. 
Next, we claim each element in Y' is greater than or equal to 

exactly qD-i-I elements in Y. To see this, pick any z E Y'. Then z 
is greater than or equal to exactly [ D;-i] elements in X U Y, but 

/{v EX Iv :s; z}/ = /{v EX Iv :s; z I\ y}/ 

= [D-;+1] 
by Lemma 27.5. It follows z is greater than or equal to exactly 

elements in Y, as desired. 
Combining our claims, we find 

(33.16) IY'lqD-i-I = IYltD-i-1, 
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and (33.11) follows from (33.14), (33.15), (33.16). We have now estab­
lished (33.10), (33.11), and (33.7), (33.8) follow. 

To obtain (33.9), set i = 0 in (33.7), (33.8). This proves Theorem 
33.4. 

Corollary 33.5. Let P denote a regular quantum matroid with 
parameters (D, q, a, {3). Then 

D-1 

(33.17) ltop(P)I = IT (1 + /Jlt-; 1 ), 

i=O 

where ti is from (33.1). 

Proof. We compute the number of paths 

Xo, X1, ... , XD (xi E P, rank(xi) = i, (0 ~ i ~ D)) 

in two ways. Constructing these paths from left to right, we find by 
Theorem 33.4 that the number is 

(33.18) 'T/O'T/1 ••• 'T/D-1· 

Constructing the above paths from right to left, we find by Lemma 27.5 
that the number is 

(33.19) ltop(P)I g [!]. 
Now equate (33.18), (33.19), and evaluate the result using (33.8). This 
proves Corollary 33.5. 

§34. The zig-zag function, revisited 

Let P denote a regular quantum matroid, with parameters (D, q, 
a, /3). In this section, we show the zig-zag function is constant over each 
.:li (2 ~ i ~ D), and we compute these constants in terms of D, q, a, {3. 
First, we prove an extension of Lemma 33.3. 

Theorem 34.1. Let P denote a regular quantum matroid with 
parameters (D, q, a, {3), and pick any x, y E P. Assume 

(34.1) x covers x I\ y, 

and 

(34.2) x V y does not exist. 
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Then 

(34.3) 

where 

(34.4) 

(34.5) 
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ltop(xt)I = tD-i' 
tD-j 

i := rank(x), 

j := rank(y). 

Proof. By Lemma 4.3, there exists an element u E top(P) such 
that y ::; u. To get our result, it suffices to show 

(34.6) 

and 

(34.7) 

ltop(xt)I = tD-i 

ltop(xt)ltD-j = ltop(xt)I-

Observe x 1:. u; otherwise u is an upper bound for x, y, contradicting 
(34.2). Now x covers x I\ y = x I\ u by (34.1), so (34.6) follows from 
Lemma 33.3. 

Now consider (34.7). Recall by Lemma 15.9 that xt is a subma­
troid of x!. We claim each element in top(xt) is less than or equal to 

exactly tD-j elements in top(x!). To see this, pick any z E top(xt). 
Observe z covers z I\ u by Lemma 15.3(i),(ii), and rank(z) = j by 
Theorem 18.2(v), so by Lemma 33.3 and Lemma 15.8(i), 

tD-j = ltop(zt)J 

= lz+ n top(x!)I, 

as desired. 
Next, we claim each element in top(x!) is greater than or equal to 

a unique element in top(xt). To see this, pick any z E top(x!). We 
show 

p :=XV (y I\ z) 

is the unique element in top(xt) that is less than or equal to z. 
Observe p E xt by Lemma 17.1. In fact p E top(xt), since y covers 
y I\ z by the construction. Observe p::; z by Lemma 16.3(i), Lemma 
17.1. Now suppose there exists an element p' E top(xt)\{p} such that 
p'::; z. Then z is an upper bound for p,p'; consequently pVp' exists. 
But this is impossible, since xt is V-closed by Lemma 8.2, Lemma 
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15.2, and since p, p' are both in top(xt). Combining the above two 
claims, we obtain (34.7). We have now established (34.6), (34.7), and 
(34.3) follows. This proves Theorem 34.1. 

Corollary 34.2. Let P denote a regular quantum matroid with 
parameters (D, q, a, /3). Then for all integers j (2 ::; j ::; D) and for 
all x, y E P such that xy E L::.1, 

(34.8) 

(34.9) 

zig-zag(x, y) = 

(Caution: L::.1 may be empty). 

tD-j+l 

tD-j 
a+l-q 

q+ 
tD-j 

Proof. Observe x, y satisfy (34.1), (34.2) by the definition of L::.1, 
so by Lemma 28.4(i), Theorem 34.1, 

zig-zag(x,y) = ltop(xt)I 

_ tD-j+l 
tD-j 

Line (34.9) follows from (33.1). 

§35. The (-uniform 'P-basis systems 

Let 'P denote a modular atomic lattice, and let B denote a 'P­
basis system from Definition 2.2. Recall by Theorem 2.5(i) that B­
is a 'P-matroid, and by Lemma 3.1 that B+* is a 'P*-matroid. In 
this section we introduce a condition on B that forces both of these 
quantum matroids to be regular. This condition will play a role in our 
subsequent work on regular quantum matroids. 

Definition 35.1. Let 'P denote a modular atomic lattice of rank 
N, let B denote a 'P-basis system of rank D, and let ( denote an 
integer. 

(i) Suppose 1 ::; D ::; N - l. Then B is said to be (-uniform 
whenever 

(35.1) IB n [x, y] I = ( + 1 
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(35.2) 

(35.3) 

(35.4) 

P. Terwilliger 

for all x E B- and for all y E B+ such that 

X s Y, 

rank(x) = D - l, 

rank(y) = D + l. 

(ii) Suppose D = 0 or D = N. Then B is said to be (-uniform 
whenever ( is nonnegative. 

Lemma 35.2. Let P denote a modular atomic lattice, and let 
B denote a ( -unif arm P- basis system. Then 

(35.5) ( 2: 0. 

Proof. With the notation of Definition 35.1, suppose 1 S D S 
N - l. Then (35.5) follows from condition BA in Definition 2.2. Next 
suppose D = 0 or D = N. Then (35.5) is immediate from Definition 
35.l(ii). 

Theorem 35.3. Let P denote a q-line regular modular atomic 
lattice of rank N, and let B denote a (-uniform P-basis system of 
rank D. Then 

(i) The P-matroid B- is regular, with parameters 

[N-D] (D, q, (, ( 1 ). 

(ii) The P* -matroid B+* is regular, with parameters 

Proof. (i) By the construction, B- has rank D, and is q-line 
regular. To see that B- is (-zig-zag regular, suppose there exists 
x, y EB- such that rank(x) = D - l, rank(y) = D, and a(x, y) = 3. 
We show 

(35.6) zig-zag(x, y) = ( + 1. 

Observe x Vp y 2: y EB, so 

(35.7) X Vp y EB+. 
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Observe x covers x I\ y by the construction, so x Vp y covers y by 
the modularity of P. In particular 

(35.8) rankp(x Vp y) = D + 1. 

Now by (35.7), (35.8), and Definition 35.1, 

( + 1 = IB n [x, x Vp y] I 
= zig-zag(x, y), 

as desired. We have now shown B- is (-zig-zag regular. It remains 
so show B- is ([N~D]-dual-line regular. To this end, suppose there 
exists x EB- such that rank(x) = D - 1. We show 

(35.9) [N-D] IBn[x,lp]l=l+( 1 . 

To see (35.9), observe by Lemma 27.4(i),(ii), and Definition 35.1 that 
(B+ n [x, lp])* is a q-line regular, (-dual-line regular design-matroid 
of rank N - D. Applying Theorem 27.11 to this matroid, we get (35.9). 

(ii) Observe P* is q-line regular by Lemma 27.4. By Definition 
35.1 and the construction, B is a (-uniform P*-basis system of rank 
N - D. The result now follows from part (i) above. 

§36. x * y is a uniform [x I\ y, x]-basis system 

Let P denote a quantum matroid, and pick any x, y E P. Recall 
by Theorem 19.3 that X*Y is a [x/\y,x]-basis system. In this section, 
we assume P is regular, and show X*Y is (-uniform, for some integer 
( thatdependson p(x,y), 'Y(x,y), 8(x,y), 1'(y,x),andtheparameters 
of P. We combine this information with results from Sections 33, 35 to 
compute the number of atoms in [x I\ y, x * y], [x * y, x]*, and xt. 

Theorem 36.1. Let P denote a regular quantum matroid with 
parameters (D, q, a, (3). Pick x, y E P, and set 

(36.1) p := p(x,y), 

(36.2) 1' := 'Y(x, y), 

(36.3) 8 := 8(x, y), 

(36.4) 1't := 'Y(y,x). 

Then the [ x I\ y, x ]-basis system x * y is ( -uniform, where 

(36.5) 
( ·- a qD-p-,-6-,' 

.- tD-p-,-6-,'' 
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and where tj is from (33.1). 

Proof. Recall by Lemma 13.2 and Theorem 18.2(vi) that 

(36.6) 

(36.7) 

rank(x) = p + "( + 8, 

rank(y) = p +"ft+ 8. 

Pick b E x * y. We may assume x I\ y < b < x; otherwise there 
is nothing to prove by Lemma 13.3(ii), Definition 35.l(ii). Now there 
exists u, v E [x /\ y, x] such that b covers u arid v covers b. We 
must show 

(36.8) 

Observe u E x:; by Theorem 19.3(i), so u Vy exists. Set r := u Vy. 
Observe by Lemma 15.3(ii),(iii) that u, y are relative complements in 
the interval [x /\ y, r]; if follows by Lemma 14.2(iii), (36. 7), and the 
construction that 

(36.9) 

rank(r) = rarik(y) + rank(u) - rank(x /\ y) 

= p + "( + 8 + "ft - 1. 

Observe by the construction that 8(v, y) = 1. Observe r E yf by 
Lemma 15.3(i),(iii), so 

8(v,r) = 8(v,y) 

=1 

by Lemma 15.3(v). Now there exists w E [u, r] such that r covers 
w and such that v V w exists. Set s := v V w. Observe by Lemma 
15.3(i),(ii) that v, w are relative complements in the interval [u, s], so 
by (36.9), 

(36.10) 

rank(s) = rank(w) + rank(v) - rank(u) 

= rank(w) + 2 

= rarik(r) + 1 

= p+1+8 +"ft. 

We compute ltop(r;)I in two ways. On one hand, observe r covers 
r I\ s = w and r Vs does not exist, so by (36.9), (36.10), and Theorem 
34.1, 

I ( +)I tv-p-,-0-,'+1 top r 8 = -~~-~-
tv-p-,-6-,' 

(36.11) =(+1 
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by (33.1), (36.5). On the other hand, one finds by Theorem 15.5, Lemma 
15.8(ii),(iii), and the observations s Ev;, r E y;;, that 

(36.12) 

itop(r;)I = itop(r;;)I 

= jtop(v;)I 

= jtop(v;) n [u, v]I 

= lx*yn [u,vJI-

Line (36.8) follows from (36.11 ), (36.12), so we are done. 

Corollary 36.2. With the assumptions and notation of Theorem 
36.1: 

(i) The [x!\y,x]-matroid [x!\y,X*Y] is regular, with parameters 

(36.13) ('Y, q, (, ( [~]). 

(ii) The [x!\y,x]*-matroid [x*y,x]* is regular, with parameters 

(36.14) (8, q, (, ([;]). 

(iii) The quantum matroid xt is regular, with parameters 

(36.15) (-l, q, (, ( [~]). 

Proof (i), (ii) Immediate from Lemma 14.2(iii),(vi), Theorem 35.3, 
and Theorem 36.1. 

(iii) Interchanging the roles of x, y in (i) above, we find [x!\y, Y*X] 
is regular, with parameters (36.15). The result now follows, since xt is 

isomorphic to y; = [x I\ y, Y*X] by Theorem 15.5 and Theorem 19.3(i). 
We have now proved Corollary 36.2. 

Theorem 36.3. With the assumptions and notation of Theorem 
36.1: 

(i) The number of atoms in the [x I\ y, x]-matroid [x I\ y, x * y] is 

(36.16) 
tv-p--yt-1 

tD-p-8--y'-l 

if 1 2 1, and O if 1 = 0. 
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(ii) The number of atoms in the [x I\ y, x]* -matroid [x * y, x]* is 

(36.17) 

(iii) 

(36.18) 

tD-p--yt-1 [8] 
tD-p--y--yt-1 1 

if 8 2 1, and O if 8 = 0. 
The number of atoms in the quantum matroid xt is 

tD-p--y-1 

tD-p--y-15-1 

if "'ft 2 1, and O if 'Yt = 0. 

Proof. Apply the formula (33.9) in each of the three cases of Corol­
lary 36.2, and simplify the result using (33.1), (36.5). 

§37. The staircase theorem, revisited 

Theorem 37.1. Let P denote a regular quantum matroid with 
parameters (D, q, a, (3). Pick any integer a (0 ::::; a ::::; D), and fix 
an element y E P such that rank(y) = a. Let V = V(a, D - a) 
and a : P -, VV be as in Theorem 21.3. Then for all (p, 'Y, 8), 
(p','Y',8') E VV, and for all x E a- 1 (p,"'f,8), the number 

(37.1) j{z E a- 1(p','Y',8') I z is adjacent to x}j 

is given as follows. 
Case (p', "'(1 , 8') = (p - 1, 'Y, 8): 

(37.2) 

Case (p','Y',8') = (p+ l,"'f,8): 

(37.3) 
tD-p--y-1 

tD-p--y-15-1 

Case (p', 'Y', 8') = (p, 'Y - 1, 8): 

(37.4) 

if 8 2 1, and 

(37.5) [~] 
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if 8 = 0. 
Case (p', ,', 8') = (p, 1 + 1, 8): 

(37.6) a-p-15 tD-p--y-1 tD-a--y-1 
q 'T/a+-y 

tD-p--y-15-ltD-a--y+/5-1 

Case (p',,',8') = (p,,,8-1): 

(37.7) tD-a+/5-1 

tD-a--y+/5-1 [~] 
Case (p', ,', 8') = (p, ,, 8 + 1): 

(37.8) 15--,-1 q q (/3 _ a u ) a - p - u t D-p--y-15-1 D-a--y+/5-1 [ s:] [ s:] 
ql5-l tD-p--y-15-1 tD-a--y+/5-1 1 1 

if a + 1 < D, and 

(37.9) 
qD-p--y-15-1 [8] [D - p - "Y - 8] 
----(/3-a ) 
tD-p--y-15-1 1 1 

if a+,=D. 
The number (37.1) equals O in all other cases. 

Proof. We set 

A:= {z E u-1 (p',,',8') I z is adjacent to x}, 

and compute IAI in each of the above cases. 

427 

Case (p', ,', 8') = (p - 1, ,, 8). By Lemma 13.4 and Lemma 27.5, 

IAI j{zEPlxcoversz, zl.x/\y}j 

j{z E PI x covers z}j - j{z E PI x covers z, z ~ x I\ y}j 

= [p+;+8] _ ['t8] 
q'Y+l5 [~]' 

as desired. 
Case (p', ,', 8') = (p+ 1, ,, 8). By Lemma 15.3, A consists of those 

elements in xt that cover x, i.e. the atoms of the poset xt. Now 
IAI is given in (36.18). Eliminating ,t in (36.18) using ,t = a - p- 8, 
we obtain (37.3), as desired. 
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Case (p', 1 1 , 8') = (p, ,, 8 - 1). By Lemma 14.3, A consists of the 
elements in [x * y, x] that are covered by x (in P), i.e., the atoms of 
the poset [x * y, x]*. Now IAI is given in (36.17). Eliminating ,t in 
(36.17) as in the previous case, we obtain (37.7), as desired. 

Case (p',,',8') = (p, 1 - 1,8). In this case A consists of the 
elements in [x /\ y, x] that are covered by x but are not in [x * y, x]. 
If 8?: 1, then by the previous case, 

tn-a+8-1 
IAI = ['; 8] - tn-a--y+8-1 

,5 tn-a--y-1 ['] = q 
tn-a--y+o-1 1 ' 

as desired. If 8 = 0 then x * y = x, so 

IAI = [~] 

by Lemma 14.2(iii) and Lemma 27.5. 

[~] 

Case (p', ,', 8') = (p, 1 + 1, 8). We show IAI equals the expression 
in (37.6) by induction on 

,t: = ,(y,x) 

= a-p-8. 

First consider the case ,t = 0. Here x is relatively close to y in the 
sense of Lemma 20.2, so by Theorem 20.4, 

A= {z E PI z covers x}. 

In particular by Theorem 33.4, 

IAI ='f/i (i = rank(x)), 

= 'f/p+-y+8, 

which is what (37.6) reduces to in this case. Now assume ,t > 0. Set 

f2 := {u Ext I u covers x} 

= {u E PI u?: x, u(u) = (p+ 1,,,8)}, 

and observe by (37.3) that 

(37.10) IOI = tn-p--y-1 [a - p1 -8] . 
tn-p--r-0-1 
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Set 
'1! := {v E PI v?: x, a(v) = (p+ 1,1'+ 1,8)}. 

Observe by induction and (37.6) (with (a',p',1'',8') = (a,p + 1,1',8)) 
that each element in O is covered by exactly 

elements in '1!. Also observe by Theorem 17.2(i),(iv) that each element 
v E '1! covers a unique element in 0, i.e., x V (v A y). From our above 
observations 

(37.11) 

Observe by (37.3) (with (a', p', 1'', 8') = (a, p, 1' + 1, 8)) that each ele­
ment in A is covered by exactly 

tn-p--y-2 

tn-p--y-li-2 

elements in '1!. Also observe by Theorem 17.3(iii),(iv) that each element 
in '1! covers exactly q elements in A. From the above two observations 

(37.12) IAI tn-p--y-2 [a - p - 8] = \'1!\q. 
tn-p--y-li-2 1 

Combining (37.10)-(37.12), we find \A\ equals the expression (37.6), as 
desired. 

Case (p', 1'', 8') = (p, 1', 8 + l). First assume a+ 1' < D. In this case 
A consists of all the elements in P that cover x, but are not counted 
in (37.3) or (37.6). By (37.3), (37.6), and Theorem 33.4, we find 

\Al tn-p--y-1 [a - p - 8] = T/p+-y+li -
tn-p--y-li-1 1 

a-p-li tn-p--y-1 tn-a--y-1 
q T/a+-y· 

tD-p--y-li-ltD-a--y+li-1 

Evaluating this using (27.3), (27.4), (33.1), (33.8), we obtain (37.8). 
Now assume a+1' = D. In this case, A consists of all the elements 

in P that cover x, but are not counted in (37.3). Proceeding as above, 
we find 

IAI tn-p--y-1 [D -1' - p - 8] 
T/p+-y+li - 1 . 

tn-p--y-li-1 
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Evaluating this using (27.3), (27.4), (33.1), (33.8), we obtain (37.9), as 
desired. 

In any other case, the expression (37.1) equals O by the staircase 
theorem. This proves Theorem 37.1. 

Corollary 37.2. Let P denote a regular quantum matroid with 
parameters (D,q,a,/3). Pick any x E P, pick any y E top(P), and set 

Then 

P: = p(x, y), 

8: = 8(x,y) 

= rank(x) - p. 

(i) l{z E p IX covers z, a(z, y) = a(x, y) + l}I 

(ii) l{z E p IX covers z, a(z, y) = a(x, y) - l}I 

Suppose x (/. top(P). Then 

(iii) 

l{z E p I z coversx, a(z,y) = a(x,y) -1}1 = 

tD-p-l 

tD-p-6-l 

(iv) 

l{z E p I z coversx, a(z,y) = a(x,y) + l}I = 

qD-p-6-l (/3 _ a [{j]) [D _ p _ {j] . 
tD-p-6-l 1 1 

Proof. This is the case a= D in Theorem 37.1. With the notation 
of that theorem, observe V = V(D, 0), so by Definition 21.2, 'r = 0 for 
all (P,'r,8) E VV. Setting L1', = 0 in Theorem 13.5, we find the sets 
(i)-(iv) above equal the sets of vertices adjacent to x and contained in 
o-- 1 (p-1,0,8), o-- 1 (p,0,8-1), o-- 1 (p+l,0,8), o-- 1 (p,0,8+1),resp. 
The cardinality of these sets is given in (37.2), (37.7), (37.3), (37.9), 
respectively, (where 'r = 0, a= D). This proves Corollary 37.2. 
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§38. The graph on top(P) is distance-regular 

Definition 38.1. A finite, connected, undirected graph r = (Vr, 
Er) of diameter dis said to be distance-regular, with intersection num­
bers Ci, bi (0 ::::; i ::::; d), whenever for all integers i (0 ::::; i ::::; d), and all 
x,y E Vr at distance 8r(x,y) = i, the scalars 

Ci:= l{z E vr I xz E Er, 8r(y,z) = i -1}1, 
bi:= l{z E vr I xz E Er, ar(y, z) = i + l}I, 

are independent of x, y. 

Theorem 38.2. Let P denote a nontrivial regular quantum ma­
troid with parameters (D, q, a, {3). Then (i)-(iii) hold below. 

(i) The graph on top(P) is distance-regular, with intersection 
numbers 

(38.1) 

[i] [i-1] Ci = l (1 + a l ) 

(38.2) 

where d := diamtop(P). 
(ii) Suppose d < D. Then 

(0 ::::; i ::::; d), 

(0 ::::; i ::::; d), 

(iii) Assume d = D. Then the graph on top(P) has classical 
parameters (D, q, a, {3) in the sense of Brouwer, Cohen, Neu­
maier [B-C-N]. 

Proof. (i) Routine application of Corollary 37.2 using line (22.1). 
(ii) Immediate from (i) and the observation bd = 0. 
(iii) Immediate from [B-C-N, p194]. 

§39. The classification of the regular quantum matroids with 
rank at least 4 

In this section, we classify the nontrivial regular quantum matroids 
with rank at least 4. We do this as follows. Let P denote a nontrivial 
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regular quantum matroid with parameters ( D, q, a, /3), and assume D 2: 
4. First, we show a E {0, q - 1, q}. In each case, we invoke a result 
from the literature to identify P, giving us our classification. Our main 
result is Theorem 39.6. 

Lemma 39.1. Let P denote a nontrivial regular quantum ma­
troid with parameters (D, q, a, /3), and assume a =/- q. Then (i)-(iii) 
hold below. 

(i) (q - 1 - aWi/-i:::: o 
(ii) Ai =/- 0 

(2::; i::; D). 
(2 ::; i ::; D). 

(2::; i::; D). (iii) (q - 1 - aWi/-i E Z 

Proof. (i) Recall a ::; q by (28.4), and we assume a =/- q, so 
a ::; q - 1. Also tD-i is positive by Lemma 33.2(ii). 

(ii) By Lemma 28.2(iii), it suffices to find x, y E Ap 
assume P is not a modular atomic lattice, there exists x E Ap 

and there exists u E top(P) such that x 1:. u. We show there exists 
an atom y E Shadow(u) such that x Vy does not exist. To this 
end, recall by (15.2) and Theorem 19.3(i) that for all y E Shadow(u), 
x V y exists if and only if y E [0, u * x]. Hence, it suffices to show 
Shadow(u)\[0, u * x] is not empty. Observe by (27.5), 

(39.1) IShadow(u)I = [ ~]. 

To compute the number of atoms in [0, u * x], observe by Definitions 
12.1, 13.1 that p(u,x) = 0, ,(u,x) = D-1, 8(u,x) = 1, ,(x,u) = 0. 
By Theorem 36.3(i) (with p = 0, 1 = D - 1, 8 = 1, ,t = 0), the 
number of atoms in [0, u * x] equals 

(39.2) tD-i[D-1]· 
tD-2 1 

Observe 

[~] -
tD-1 [D - 1] = l 
tD-2 1 

+ q-1-a [D-1] 
tD-2 1 

2: 1 

by (33.1) and (i) above, so Shadow(u)\[0, U*x] is not empty, as desired. 
(iii) Let the integer i be given. There exists xy E Ai by part (ii) 

above, so by Corollary 34.2, 

q-1-a 
---- = q- zig-zag(x,y) 

tD-i 
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is an integer. 

Theorem 39.2. Let P denote a nontrivial q-line regular, a­
zig-zag regular quantum matroid with rank D 2'. 3. 

(i) Suppose D 2'. 4. Then a E {0, q - l, q}. 
(ii) Suppose D = 3. Then a= q or l + a divides q. 

Proof. (i) We assume a -=f- 0, a -=f- q - l, a -=f- q, and get a 
contradiction. Observe a 2'. 1 by Lemma 28.6 and our assumptions, 
so P is dual-line regular by Theorem 31.1. It follows P is regular 
by Definition 32.1. Now on one hand, by Lemma 39.l(i),(iii) (with 
i = D - 2), we find (q - 1 - a)t21 is a positive integer. On the other 
hand, by (27.2), (33.1), 

a contradiction. 

q-l-a 

l+a(q+l) 

<q-2 
- q+2 

< 1, 

(ii) Assume a -=f- 0, a -=f- q; otherwise the result is trivial. Then as 
in (i) above, P is regular. By Lemma 39.l(iii) (with i = 2, D = 3), 
we find (q - 1 - a)t11 is an integer. By (33.1), 

q-l-a 

l+a 

=-q--l 
1 +a ' 

so 1 + a divides q, as desired. This proves Theorem 39.2. 

Suppose P is a nontrivial regular quantum matroid with param­
eters (D, q, a, /3), and assume D 2'. 4. In each of the three cases in 
Theorem 39.2(i), we can identify P. If a = 0, then P is known by 
Theorems 30.3, 30.4, 30.5. In each of the other cases a= q - l, a= q, 
there is a result in the literature of diagram geometries that identifies P. 
We quote these results below, translated into the language of quantum 
matroids via Theorem 23.1. First, we eliminate the easy case q = l. 

Theorem 39.3. Let D denote an integer at least 2, and let P 
denote a po set. Then the fallowing are equivalent. 

(i) P is a nontrivial l-line regular, l-zig-zag regular quantum 
matroid with rank D. 
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(ii) There exists an integer N > D such that P is isomorphic to 
the truncated Boolean algebra B(D, N). 

Suppose (i), (ii) hold. Then P is (N - D)-dual-line regular. (See 
Example 40.1(1).) 

Proof Routine. 

Theorem 39.4 ([Bul, Theorem 8]). Let D denote an integer at 
least 3, let q denote an integer at least 2, and let P denote a poset. 
Then the following are equivalent. 

(i) P is a nontrivial q-line regular, q-zig-zag regular quantum 
matroid with rank D. 

(ii) q is a prime power, and there exists an integer N > D 
such that P is isomorphic to the truncated projective geometry 
Lq(D,N). 

Suppose (i), (ii) hold. Then P is /3-dual-line regular, where 

qN-D -1 
/3=q---. 

q-l 

See Example 40.1(3). 

Theorem 39.5 ([Spl, Theorem 3]). Let D denote an integer at 
least 3, let q denote an integer at least 2, and let P denote a poset. 
Then the fallowing are equivalent. 

(i) P is a nontrivial q-line regular, (q-l)-zig-zag regular quantum 
matroid with rank D. 

(ii) q is a prime power, and there exists an integer N > D such 
that P is isomorphic to the attenuated space Aq(D, N). 

Suppose (i), (ii) hold. Then P is (qN-D - l)-dual-line regular. 

(See Example 40.1(4)). 
We now arrive at the central theorem of this paper. 

Theorem 39.6. Let D denote an integer at least 4, and let P 
denote a poset. Then the following are equivalent. 

(i) P is a nontrivial regular quantum matroid with rank D. 
(ii) P is isomorphic to one of the following: 

(iia) A truncated Boolean algebra B(D, N), (D < N). 
(iib) A Hamming matroid H(D, N), (2::;: N). 
(iic) A truncated projective geometry Lq(D, N), (D < N). 
(iid) An attenuated space Aq(D, N), (D < N). 
(iie) A classical polar space of rank D. 
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Proof. (i) ----. (ii). Let (D, q, a, {3) denote the parameters of P. 
Then 

(39.3) q ?_ 1 

by Lemma 27.2, 

(39.4) 

by Theorem 39.2, and 

(39.5) 

a E {0,q-1,q} 

{3 ?. 1 

by Lemma 27.f), Lemma 27.10, and Definition 32.2. 
First assume a = 0. In this case Rad(P) = 0 by Theorem 

29.3(i),(iv) and (39.5), so P is nondegenerate by Definition 26.1. Now 
P is a Tits polar space of rank D by Theorem 30.3. If q = 1 
then by Theorem 30.4 and (39.5), P is isomorphic to H(D, N), where 
N = {3 + 1 ?. 2. If q?. 2 then by Theorem 30.5, P is isomorphic to a 
classical polar space of rank D. 

Next assume a = q - 1. In this case we may assume q ?. 2; 
otherwise a = 0 by (39.3), and our previous remarks apply. Now by 
Theorem 39.5, q is a prime power, and P is isomorphic to Aq(D, N) 
for some integer N > D. 

Finally assume a = q. If q = 1, then by Theorem 39.3, P is 
isomorphic to B(D, N) for some integer N > D. If q ?. 2, then by 
Theorem 39.4, q is a prime power, and P is isomorphic to Lq(D, N) 
for some integer N > D. 

(ii) ----. (i). Assume P is isomorphic to B(D, N), for some integer 
N > D. Then P is a nontrivial regular quantum matroid of rank D 
by Theorem 39.3. 

Assume P is isomorphic to H ( D, N), for some integer N ?. 2. 
Then P is a Tits polar space by Theorem 30.4, so P is a nondegenerate 
quantum matroid of rank D by Theorem 30.3. In particular P 
is nontrivial. P is 1-line regular and (N - 1)-dual-line regular by 
Theorem 30.4, and 0-zig-zag regular by Theorem 30.3. 

Assume P is isomorphic to Lq(D, N), for some integer N > D. 
Then P is a nontrivial, regular quantum matroid of rank D by 
Theorem 39.4. 

Assume P is isomorphic to Aq ( D, N), for some integer N > D. 
Then P is a nontrivial, regular quantum matroid of rank D by 
Theorem 39.5. 

Assume P is a classical polar space of rank D. Then P is a 
Tits polar space of rank D by Theorem 30.5, so P is a nondegenerate 
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quantum matroid of rank D by Theorem 30.3. In particular P 
is nontrivial. P is line-regular by Theorem 30.5, 0-zig-zag regular 
by Theorem 30.3, and dual-line regular by Theorem 30.5. This proves 
Theorem 39.6. 

Corollary 39.7. Let D denote an integer at least 4. Then the 
following are equivalent statements concerning a finite, undirected graph 
r. 

(i) r is isomorphic to the graph on top(P), where P is a 
nontrivial regular quantum matroid with rank D. 

(ii) r is isomorphic to one of the following: 
(iia) The Johnson graph J(D, N), (D < N). 
(iib) The Hamming graph H(D, N), (2::;; N). 
(iic) The q-Johnson graph Jq(D, N), (D < N). 
(iid) The bilinear forms graph Hq(D, N), (D < N). 
(iie) A dual polar space graph of diameter D. 

(See [B-I, p300] for the definitions of these graphs). 

Proof. Immediate from Theorem 39.6. 

Corollary 39.8. Let P denote a regular quantum matroid with 
rank D 2'. 4. Then P is embeddable ( in the sense of Definition 6.3). 

Proof. Concerning the examples in Theorem 39.6, observe P is 
an A-matroid in cases (iia), (iib), and a V-matroid in cases (iic)-(iie). 

§40. The examples of regular quantum matroids 

Example 40.1. Let D denote an integer at least 2. In each of the 
following cases 1-5, P is a nontrivial regular quantum matroid of rank 
D. In each case, the parameters q, a, (3 are given. (See Definition 
32.1). By Theorem 39.6, there are no other nontrivial regular quantum 
matroids with rank D 2'. 4. 

1. The truncated Boolean algebra B(D, N) (D < N) [Bul], 
[Te]. 

Let A denote a set of cardinality N. 

P = { x ~ A I lxl ::;; D}, 

x :=;; y whenever x is a subset of y (x, y E P), 

rank(x) = lxl (x E P), 

q = 1, a= 1, (3 = N - D. 
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2. The Hamming matroid H(D,N) (2 ~ N) [De], [Te]. 
Set 

(disjoint union), 

where !Ail = N(l ~ i ~ D). 

P = {x ~AI Ix n Ail ~ 1 for all i (1 ~ i ~ D)}, 

x ~ y whenever x is a subset of y (x, y E P), 

rank(x) = !xi (x E P), 

q = l, a=O, {3=N-l. 
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3. The truncated projective geometry Lq(D, N) (D < N) 
[Bul], [Sta], [Te]. 

Let V denote a vector space of dimension N over the field GF(q). 

P = {x Ix is a subspace of V, dim(x) ~ D}, 

x ~ y whenever x is a subspace of y (x, y E P), 

rank(x) = dim(x) (x E P), 

a=q, 
qN-D -1 

f3=q---. 
q-l 

4. The attenuated space Aq(D,N) (D < N) [De], [Hu], 
[Spl], [Sta], [Te]. 

Let V denote a vector space of dimension N over the field GF(q), 
and fix a subspace w ~ V of dimension N - D. 

P = {x Ix is a subspace of V, x n w = O}, 

x ~ y whenever x is a subspace of y (x, y E P), 

rank(x) = dim(x) , (x E P), 

a= q- l, f3=qN-D_l, 

5. The classical polar spaces of rank D over GF(q) [C-J­
P], [Ca2], [Mu]. 
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Let V denote a vector space over the field G F ( q), and assume V 
possesses one of the following nondegenerate forms: 

name dim V form € 

Bn(q) 2D+l quadratic 0 
Cn(q) 2D alternating 0 

Dn(q) 2D quadratic -1 (Witt index D) 

2 Dn+i(q) 2D+2 quadratic 1 (Witt index D) 

2 A2D(r) 2D+l Hermitean 1 
(q=r2) 2 

2 A2n-1(r) 2D Hermitean 1 
(q=r2) -2· 

We call a subspace of V totally isotropic whenever the form van­
ishes completely on that subspace. In each of the above cases, the di­
mension of any maximal isotropic subspace is D. 

P = { x I x is an isotropic subspace of V}, 

x :s; y whenever x is a subspace of y (x, y E P), 

rank(x) = dim(x) (x E P), 

a=O, 

§41. Directions for further research 

In this section we give some conjectures and open problems con­
cerning quantum matroids and related topics. See also Problem 4.4, 
Conjecture 6.5, and Conjecture 7.13 in the text. 

Conjecture 4Ll. Let P denote a quantum matroid with rank 
D ~ 2. Let us say P is thick line connected whenever for all distinct 
atoms x, y E Ap, there exists an integer d ~ 1 and a sequence x = 
xo, X1, .•. , Xd = y (xo, X1, ... , xd E Ap) such that Xi V Xi+l exists and 
is a thick line for all i (0 Si < d). We conjecture that if P is thick 
line connected and if D is sufficiently large, then every line in P is 
thick. 

Problem 41.2. Let us say a finite, undirected graph r is a 
quantum matroid graph whenever there exists a quantum matroid P 
such that r is isomorphic to the graph on top(P). Find a simple 
combinatorial property that characterizes the quantum matroid graphs 
among all the finite undirected graphs. See Corollary 39. 7. 
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Problem 41.3. Let P denote a classical polar space (Example 
40.1(5)). What quantum matroid is dual to P in the sense of Definition 
3.2? 

Problem 41.4. For a classical matroid (Definition 1.1), one has 
the dependency axioms, the hyperplane axioms, the circuit axioms, the 
bond axioms, etc. See for example [Wh, Chapter 2]. To what extent are 
there analogous axioms for the P-matroids, where P is any modular 
atomic lattice ? 

Conjecture 41.5. Let P denote a quantum matroid. Pick any 
x, y E P, and let G denote the minimal geodesically closed subposet of 
P containing x, y. We conjecture 

rank(G) = 'Y(x, y) + 'Y(Y, x) + 8(x, y). 

(See Definitions 12.1, 13.1). 

Problem 41.6. Which quantum matroids are Cohen-Macaulay? 
(See[B-G-S]). 

Problem 41. 7. Let P denote a quantum matroid of rank D. Let 
us call P weakly zig-zag regular whenever for all integers i (1 ::; i ::; 
D - 1), and for all x, y E P such that rank(x) = i, rank(y) = i, the 
numberofpathsin P withendpoints x,y andshape (i,i-1,i,i+l,i) 
equals the number of paths in P with endpoints x, y and shape 
(i, i + 1, i, i - 1, i). If P is regular then P is weakly zig-zag regular. 
Classify the weakly zig-zag regular quantum matroids. 

Problem 41.8. Let D denote an integer at least 3, and let q 
denote an integer at least 2. Find a short, direct proof, not involving 
Theorem 39.5, that any nontrivial q-line regular, (q-1)-zig-zag regular 
quantum matroid is embeddable. (See Definition 6.3.) 

Problem 41.9. Let N denote an integer at least 3, let q denote 
a prime power, and let V denote an N dimensional vector space over 
the field GF(q). Pick an integer D (2::; D < N), and let P denote a 
nontrivial (q -1)-zig-zag regular V-matroid of rank D that spans V. 
Find a short, direct proof, not involving Theorem 39.5, that there exists 
a subspace w s;;; V such that dim( w) = N - D and such that 

P = { x Ix is a subspace of V, x n w = 0}. 

(See Example 40.1(4).) 
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Problem 41.10. Let P denote a modular atomic lattice. Classify 
the uniform 'P-basis systems. Give a short, direct proof, that does not 
refer to Theorems 35.3, 39.6. (See Definition 35.1.) 

Problem 41.11. Let P denote a quantum matroid, and pick any 
x, y E P. What can be said about Rad(xt)? Under what conditions 
is u;; nondegenerate for all u, v E P such that u V v does not exist? 
(See line (15.1) and Definition 26.1.) 
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