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Spin Models and Almost Bipartite 
2-Homogeneous Graphs 

Kazumasa Nomura 

Abstract. 

A connected graph of diameter d is said to be almost bipartite if 
it contains no cycle of length 2£ + 1 for all £ < d. An almost bipartite 
distance-regular graph r = (X, E) is 2-homogeneous if and only if 
there are constants ')'1, ... ,'Yd such that [ri-1(u) n r1(x) n r1(y)[ = 
'Yi holds for all u E X and for all x, y E ri(u) with 8(x, y) = 2 
(i=l, ... ,d). 

In this paper, almost bipartite 2-homogeneous distance-regular 
graphs are classified. This determines triangle-free connected graphs 
affording spin models ( for link invariants) with certain weights. 

§1. Introduction 

A spin model is one of the statistical mechanical models which were 
introduced by Vaughan Jones to construct invariants of knots and links 
[12]. A spin model is defined as a complex-valued symmetric function w 
on X x X, where X is a finite set of "spins", satisfying several axioms. 
Each spin model S gives a corresponding link invariant through its par­
tition function. Three examples of spin models are mentioned in Jones' 
paper [12]; Potts models, cyclic models and square models. It must be 
remarked that the Jones polynomial can be obtained from the partition 
function of the Potts models. 

A connection between spin models and distance-regular graphs was 
found by Fran<;ois Jaeger [9] by constructing a new spin model on the 
Higman-Sims graph, a distance-regular graph of diameter d = 2 with 
n = 100 vertices, which was discovered by D. Higman and C. Sims [8], 
where we say that a spin model S = ( X, w) is constructed on a connected 
graph r = (X, E) if w(x, y) depends only on the distance 8(x, y) in 
the graph r. Jaeger [9] proved that the corresponding link invariant 
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of the Higman-Sims model becomes a specialization of the Kauffman 
polynomial [14]. After Jaeger's discovery, a new infinite family of spin 
models were constructed on Hadamard graphs by the author [14]. The 
corresponding link invariants of the Hadamard models were determined 
by Jaeger [10,11], and then Jones [13] gave a pair of two links which can 
be detected by this invariant but not by Jones polynomial. 

These examples of spin models can be constructed on almost bipar­
tite distance-regular graphs. Moreover these graphs have extra regu­
larity which we call 2-homogeneity; an almost bipartite distance-regular 
graph r = (X, E) is 2-homogeneous if and only if lfi-l (u)nf 1 (x)nf 1 (y)I 
is a constant for all u, x, y EX with 8(u, x) = 8(u, y) = i, 8(x, y) = 2 
(i = 1, ... , d, where d denotes the diameter off). In fact it was shown 
[21] that if a triangle-free connected graph affords a spin model with 
certain weights then the graph must be distance-regular and almost bi­
partite. 

This paper contains two main results. At first we show that if a spin 
model is constructed on an almost bipartite distance-regular graph then 
the graph must be 2-homogeneous (under some conditions, see Theorem 
4.3). Next we classify almost bipartite 2-homogeneous distance-regular 
graphs (Theorem 5.1). The proofs of these results are given in Sec­
tion 4 and Section 5. In Section 2, some preliminaries on spin models 
and distance-regular graphs are given. In Section 3, two necessary and 
sufficient conditions (Hl), (H2) for 2-homogeneity of almost bipartite 
distance-regular graphs are given. Then we slightly generalize of Ya­
mazaki's sufficient condition for 2-homogeneity [22]. 

There are two generalizations of Jones' spin models by Kawagoe­
Munemasa-Watatani [15] and Bannai-Bannai [1] (see also [2, 3, 16]). In 
this paper we restrict our interest to the original spin models defined in 
[12]. 

§2. Spin models and distance-regular graphs 

2.1. Definition and examples of spin models 

A spin model is a pair S = (X, w) of a finite set of size IXI = n > 0 
and a complex-valued function w on X x X such that (for all a, b, c in 
X) 



(S1) 

(S2) 
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w(a, b) = w(b, a) -=I- 0, 

L w(a,x)w(b,x)- 1 = n8a,b, 
xEX 

(S3) L w(a,x)w(b,x)w(c,x)-1 = y'nw(a,b)w(a,c)-1w(b,c)-1 • 

xEX 
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The equation (S3) is called the "star-triangle" relation. The elements 
of X is called the spins, and the function w is called the (Boltzmann) 
weight. Putting a= c in (S3), we have 

L w(b,x) = y'nw(a,a)-1 , 

xEX 

so that w(a, a) = a is a constant, called the modulus of S, which is 
independent of the choice of a in X. 

The weight matrix of a spin model S = (X, w), IXI = n, is an x n 
matrix W, indexed by Xx X, whose (x, y)-entry is Wx,y = w(x, y). For 
b, c in X, we consider a vector Ube in the n-space V = en, where the 
entries of the vectors are indexed by X, whose x-entry is given by 

w(b, x) 
(ube)x = -(-)' w c,x 

Then the condition (S3) can be written as 

(x EX). 

Wube = y'nw(b,c)-1ube· 

This means the vector Ube is an eigenvector of W for the eigenvalue 
.jnw(b,c)-1• It can be easily shown from (S2) that, for a fixed b EX, 
the vectors Ube, c EX are linearly independent and hence form a basis of 
V. Therefore the values ..Jnw(b, c)-1 , c EX give all the eigenvalues of 
W, where multiplicities are counted. This means that the multiplicity 
of an eigenvalue Vtt .x-1 agrees with the number of X E X such that 
w ( b, x) = >. ( thus this number does not depend on the choice of b). 
The vector ubb becomes the all one vector j, and it is an eigenvector 
of W corresponding the eigenvalue .jiia-1 (a is the modulus). From 
condition (S2), the other vectors Ube, b -=I-care orthogonal to j. 

Now we give three basic examples of spin models. 

Potts model. Let X be a finite set with n > 1 elements. Let 13 be 
a solution of 132 + 13-2 + .jn = 0 and put a = -13-3 • Define a function 
won Xx X by 
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w(x,y) = {; 
x=y, 

otherwise. 

Then (X, w) is a spin model called the Potts model [12]. 
with n = 2 is also called the Ising model. 

Potts model 

Cyclic model. Let X = { 0, 1, ... , n - l}, and let 0 be a primitive 
n-root of unity when n is odd, or a primitive 2n-root of unity when n is 
even. Define a function w on X x X by 

w(x, y) = a0(x-y)2, 

where 

2 y'n 
a = "".'-1 0i2. 

L.,,=O 

Then (X,w) becomes a spin model, called the cyclic model [2,6,12]. 

Square model. Let X = {1, 2, 3, 4} and let a be an arbitrary non­
zero complex number. Let us consider the following matrix: 

a-1 -a a-') a a-1 -a 
a-1 a :-1 ' 

-a a-1 

and define a function won Xx X by w(x,y) = Wx,y· Then (X,w) 
becomes a spin model, called the square model [7,12]. 

2.2. Preliminaries for distance-regular graphs 

Let r = (X, E) be a connected (undirected simple) graph of diame­
ter d with the vertex set X and the edge set E with the usual metric 8 
on X. For vertices u, v and for integers r, s, define 

I'r(u) = {x EX I 8(u,x) = r}, 

o;( u, v) = r r(u) n r s(v). 

r is said to be distance-regular if there are integers br, Cr such that 
for any two vertices u, x at distance r = 8( u, x), there are precisely 
Cr neighbours of x in I'r-1(u) and br neighbours of x in I'r+1(u). In 
particular r is regular of valency k = bo, and there are ar = k - Cr - br 
neighbours of x in r r ( u). The parameters Cr, br, ar ( r = 0, ... , d) satisfy 
(see [5], Proposition 4.1.6) 
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The array 

is called the intersection array of r. 
It is known (see [5], Section 4.1) that the parameters 

P~,s = ID~(u,v)I, (t = 8(u, v)) 

are well-defined, i.e., these parameters depends only on r, s and t = 
8( u, v), rather than on the individual vertices u, v with t = 8( u, v). 
The parameters P~,s are called the intersection numbers of r. Clearly 

Cr = P;-1,1, ar = P;,1 and br = p;+l,l hold. 
Let Ai (i = 0, 1, ... , d) denote the i-th adjacency matrix of r, i.e., 

Ai is then x n matrix, indexed by X x X, whose (x, y)-entry is 

(Ai)x,y = { ~ 8(x,y)=i, 

otherwise. 

In particular, Ao = I the identity matrix of size n and A1 = A the usual 
adjacency matrix of r. The matrices Ao, A1 , ... , Ad satisfy 

In particular, 

d 

AiAJ = A1Ai = z:=pf1Ae. 
£=0 

holds. Using this relation recursively, Ai can be written as a polynomial 
in A, i.e., there are polynomials vi(x) of degree i such that A = Vi(A) 
holds for i = 0, 1, ... , d. 

It is known that the adjacency matrix A has distinct eigenvalues 
00 = k, 01 , ... , 0d, and the corresponding eigenspaces V0 , Vi, ... , Vd in 
V = en (n = IXI) are mutually orthogonal (see [5], Section 4.1): 

V = Vo EB Vi EB · · · EB Vd ( orthogonal sum). 

Remark that V0 is the 1-dimensional subspace spanned by j. 
More precise descriptions of distance-regular graphs can be found in 

[4,5]. 
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2.3. Spin models on distance-regular graphs 

Let r = (X, E) be a connected graph of diameter d with the usual 
metric 8 on X. Let R;, ( i = 0, 1, ... , d) be the set of pairs ( x, y) in X x X 
such that 8(x, y) = i. Then Xx Xis partitioned into d + 1 relations: 

X x X = Ro U R1 U · · · U Rd. 

We consider spin models S = ( X, w) such that w takes a constant value 
ti on R;, (i = 0, 1, ... , d), i.e., w(x, y) = ti holds for all x, y in X at 
distance 8(x, y) = i. In this case we say that the spin model S = (X, w) 
is constructed on the graph r = (X, E). We are particularly interested 
in spin models which are constructed on distance-regular graphs. 

For three vertices x, y, z and for integers i, j, £, define 

Pi,j,t(x, y, z) = /ri(x) n r1(y) n ri(z)/. 

Lemma 2.1. Let r = (X, E) be a distance-regular graph of diam­
eter d with the intersection numbers pf,1, and let t0 , .•• , td be non-zero 
complex numbers. Define a function w on X x X by w(x, y) = ta(x,y). 
Then S = ( X, w) is a spin model if and only if the following conditions 
hold: 

(S2') For£= 1, ... , d, 

d d 

I:}:::>Ltit.;-1 = o, 
i=O j=O 

(S3') For all x, y, z in X, 

d d d 

LL L Pi,j,£(x, Y, z)titjtf 1 = y'n ta(x,y)ta(~,zfa(~,z)" 
i=O j=O £=0 

Proof. It is not difficult to show that (S2), (S3) are equivalent 
to (S2'), (S3') respectively. Remark that (Sl) holds for a spin model 
constructed on a connected graph. Q.E.D. 

Now we give two examples which are constructed on distance-regular 
graphs. 

Jaeger's Higman-Sims model. The Higman-Sims graph, which was 
discovered by D. Higman and C. Sims [8], is the unique distance-regular 
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graph r 
array: 

(X, E) of diameter d = 2 with the following intersection 

r has IXI = 100 vertices. 

1 
0 

21 

A spin model was constructed on the Higman-Sims graph by F. 
Jaeger [9] (see also [7]). Let T = (1 + _15)/2 and put 

to= (5T + 3)H, t1 = TH, t2 = (-T + l)H. 

Define a function won X x X by w(x, y) = ta(x,y) for x, y EX. Then 
S = (X, w) becomes a spin model. The corresponding link invariant 
becomes a specialization of the Kauffman polynomial [7]. 

Hadamard model. Hadamard graphs are distance-regular graphs of 
diameter d = 4 with the following intersection array: 

{ 
0 1 
0 0 

4m 4m-1 

2m 4m-1 
0 0 

2m 1 

4m} 
0 ' 
0 

where mis a positive integer. There is a natural correspondence between 
Hadamard graphs of valency 4m and Hadamard matrices of size 4m (see 
[5], Theorem 1.8.1). Lets, t0 , t1 be complex numbers such that 

s2 + 2(2m - l)s + 1 = 0, 
2 2,/m 

to=----'-------
(4m-l)s+l' 

tf = 1, 

and put 
t2 = sto, t3 = -ti, t4 = t1. 

Define a function w on X x X by w(x, y) = ta(x,y) for x, y EX. Then 
S = (X,w) is a spin model [17]. The corresponding link invariants of 
these models were determined by Jaeger [10,11]. 

§3. 2-Homogeneous distance-regular graphs 

3.1. Definition of 2-homogeneity 

Let r = (X, E) be a distance-regular graph of diameter d. For a 
vertex x in X and for a subset A of X, let e(x, A) denote the number of 
edges from x into A; e(x, A)= lf1(x)nAI. r is said to bet-homogeneous 
(where tis an non-negative integer) if the following condition holds for 
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all integers r, s, i, j and for all vertices u, v, u', v' with 8(u,v) 
8(u', v') = t: 

x E D:(u,v), x' E D:(u',v') ===? e(x, D}(u,v)) = e(x',D}(u',v')). 

This means that, for two vertices u, vat distance t and for x in D:(u, v), 
the number of edges from x into D;(u, v) depends only on r, s, i, j rather 
than on the individual vertices u, v, x with 8( u, v) = t and x E D: ( u, v). 

It was shown [18] that, for a distance-regular graph r of diameter 
din which DHu,v) is a (non-empty) clique for every edge uv, r is 1-
homogeneous if and only if r is isomorphic to a regular near 2d-gon (see 
[5], Section 6.4 for the definition). 

Now we restrict our interest to the case t = 2. Let us consider the 
following conditions for a distance-regular graph r of diameter d: 

(Hl) There are integers 82, ... , 8d such that, for every pair of vertices 
u, vat distance 8(u,v) = 2, and for every x in rr(u) nrr(v), there 
are precisely 8r neighbours of x in r r-1 ( u) n r r-l ( v) (r = 2, ... , d). 
(H2) There are integers 1'i, ... ,I'd such that, for every vertex x 
and for every u, v in rr(x) with 8(u,v) = 2, there are precisely 1'r 
common neighbours of u and v in rr_1(x) (r = 1, ... ,d). 

Lemma 3.1. Let r = (X, E) be a distance-regular graph of diam­
eter d. Then (Hl) is equivalent to (H2). 

Proof First assumer satisfies (Hl). We must show that the size 

does not depend on the choice of x in X and u, v in r r ( x) with 8( u, v) = 
2. Clearly this holds for r = l. Assume r > l. Fix a vertex x and fix 
two vertices u, v in rr(x) with 8(u,v) = 2, and put 

D} = D}(u, v) = ri(u) n rj(v) 

for all integers i, j. We count the number N of paths of length r - l 
from x to Di. Let x = Xr, Xr-1, ... , x2, x1 be a path of length r-1 such 
that x1 E Di· Then we have Xi ED! for i = 1, ... , r. By (Hl), there are 
precisely 8i edges from Xi to D!=i (i = 2, ... ,r). Hence we have 

N = DrDr-l · · · 82. 

On the other hand, for a fixed vertex y in r r-l ( x) nDi, there are precisely 
Cr-1Cr-2 · · · c2c1 paths of length r - l connecting x and y, since we have 
8(x,y) = r -1. Hence we have 

N = 1rr-1(x) n DilCr-lCr-2 ... C2C1. 
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So we obtain 

This means the number of common neighbours of u and v in r r- l ( x) does 
not depend on the choice of x in X and u, v in rr(x) with 8(u,v) = 2. 
Thus r satisfies (H2). 

Next assumer satisfies (H2). We show by induction on r that the 
number of edges e(x,D~=i(u,v)) does not depend on the choice of u, 
v with 8(u,v) = 2 and x in D;(u,v) (r = 2, ... ,d). This holds when 
r = 2, since for x E D~(u,v) we have u, v E r2(x) and so 

Assume r > 2 and assume that there are constants 82, ... , 8r-l such 
that e(x, D!=i(u, v)) = 8r holds for every x E DHu, v) (i = 2, ... , r - I). 
Fix two vertices u, v E X at distance 8( u, v) = 2 and put Dj = Dj ( u, 
v). Pick a vertex x E o; and put 

8(x) = e(x, D~=i). 

We count the number N of paths x = Xr, Xr-l, ... , x1 of length r-1 with 
x1 ED~. Since Xi ED! (i = 1, ... , r) holds for every path x = Xr, ... , x1 
with x1 E DL 

On the other hand, since there are precisely 'Yr common neighbours y of 
u, v in rr-1(x) by (H2), 

ID~ n rr-1(x)I = 'Yr· 

Since for each vertex yin D~ nr r-1 (x) there are precisely Cr-1 Cr-2 · · · C1 
paths of length r - I connecting y and x, the number of paths is given 
by 

Therefore we obtain 

Thus r satisfies (HI). 

8(x) = "/rCr-lCr-2'' 'C2C1. 
8r-18r-2 · · · 82 

Q.E.D. 
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A connected graph r is said to be bipartite if there is no cycle of 
odd length, and almost bipartite if there is no cycle of odd length £ with 
e < 2d + l (where dis the diameter of r). Let r be a distance-regular 
graph of diameter d with intersection numbers Cr, ar, br (r = 0, ... , d). 
Clearly r is bipartite if and only if ar = 0 for r = 0, ... , d, and r is 
almost bipartite if and only if ar = 0 for r = 0, ... , d - l. 

Lemma 3.2. Let r be an almost bipartite distance-regular graph 
of diameter d. Then r is 2-homogeneous if and only if r satisfies (Hl). 

Proof. The condition (Hl) says that e(x, o;=~(u, v)) = 8r holds 
for every u, v, x with 8(u,v) = 2 and x E D~(u,v). Hence (Hl) holds if 
r is 2-homogeneous. 

Fix two vertices u, v at distance 8( u, v) = 2 and let us denote 
D} = D} ( u, v) for all i, j. Remark that D} is empty for all i, j with 

Ii - ii > 2 since 8(u, v) = 2. Also remark that D} is empty for all i, j 
with i + j = 1 (mod 2) and i + j < 2d-1 since there is no cycle of odd 
length £ < 2d + 1. Therefore the vertex set of r is partitioned into the 
following subsets: 

oo 2 01 3 02 4 
Dd-3 

d-1 
Dd-2 

d 
od-1 

d 
01 1 02 2 D3 3 

od-2 
d-2 

Dd-1 
d-1 Dd 

d 

OL1 
02 

0 
D3 1 D4 2 

Dd-1 
d-3 DL2 

Remark that there is no edge connecting D} and Df, if Ii - i'I > 1 or 

Ii - i'I > 1. Remark also that there is no edge inside Dj for all i, j with 
i < d or j < d since a 1 =···=ad-I = 0. 

First we show that the number of edges e(x,Dj) (x E o;) is deter­

mined by the intersection numbers for all r, s with r =I- s. For x in o~-2 

we have 
e(x,D;=f) = e(x,rr-3(u)) = Cr-2, 

e(x, o;=n = e(x, rr-1(v)) - e(x, o;=f) = Cr - Cr-2· 

Moreover when r < d we have 

and when r = d we have 
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For X in n~-l we have 

e(x,D~-2 ) = e(x,rd-1(u)) = cd-1, 

e(x,Dti) ~ e(x,rd-1(u)) =ad-I= O, 

e(x,D~_1) = e(x,rd-1(v))- e(x,Dti) = cd, 

e(x, D~) = e(x, r d(u)) - e(x, DL1) = bd-1 - ed. 
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Thus e(x, D}) is determined by the intersection numbers for x ED; with 
r =/. s. Moreover for x in Dt we have 

e(x,Dg) = e(x,D~) = c1, 

Now we assumer satisfies (Hl) and let x ED; (2 ~ r ~ d). Then 
by (Hl) we have 

When r < d we have 

e(x, D;+i) = e(x, r r-1 (u)) - e(x, n;=i) = Cr - 8r, 

e(x, D~~D = e(x, r r-1 ( V)) - e(x, D~=D = Cr - 8r, 

e(x, o;tD = e(x, rr+1(u)) - e(x, D~~i) = br - (er - 8r), 

here remark that there is no edge between Dti and DL1. For x E D~ 
we have 

Therefore r is 2-homogeneous. Q.E.D. 

3.2. A sufficient condition for 2-homogeneity 

Yamazaki [22] proved that every bipartite distance-regular graph 
with an eigenvalue of multiplicity k ( k is the valency) satisfies condition 
(Hl). Here we give a slight generalization. 
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Proposition 3.3. Let r be an almost bipartite distance-regular 
graph of valency k. If the adjacency matrix A of r has an eigenvalue 0 
of multiplicity f with 1 < f ::=; k, then I' is 2-homogeneous. 

In the following we prove the above proposition in a similar way as 
Yamazaki's proof [22]. 

Let r = (X, E) be an almost bipartite distance-regular graph of 
diameter d and valency k. We may assume d > 1 and k > 2 since 
the graph is clearly 2-homogeneous if d = 1 or k ::=; 2. Let ci, bi and 
ai (i = 0, 1, ... , d) be the usual intersection numbers of r. We have 
a1 = · · · = ad-l = 0 since r is almost bipartite. In particular r has no 
triangle. Assume that the adjacency matrix A of r has an eigenvalue 
0 of multiplicity f with 1 < f ::=; k. By [5] Proposition 4.4.1, we have 
a mapping - : X ---t Rf such that (x, ff) = ui holds for all x, y at 
distance 8(x, y) = i, where (x, fl) denote the ordinary inner product of 
the Euclidean space Rf, and (u0 ,u1 , ..• ,ud) is the standard sequence 
corresponding to 0, i.e., it is the sequence defined by the recurrence: 
uo = 1, u1 = 0/k, ciui-1 +biui+1 = 0ui (i = 1, ... ,d-1). It is known 
that an eigenvalue 'f/ of A has multiplicity 1 if and only if 'f/ = ±k [5] 
Proposition 4.4.8. So 0 -/- ±k by our assumption f > I. Then we obtain 
u2 -/- u0 = 1 from the above recurrence. Hence x -/- y holds for all 
vertices x, y with 8(x, y) = 2. 

Lemma 3.4. Let o- : Y ---t X be a mapping from a subset Y 
of X which preserves distances. Then for real numbers >.y (y E Y), 

LyEY AyY = 0 if and only if LyEY >.yo-(y) = 0. 

Proof. Use (x, ff) = ua(x,y) to show 

II LyEY Ayo-(y)II = II LyEY AyYII = 0. 
Q.E.D. 

For a subset Y of X, we denote Y = {y I y E Y}, f = LyEY y. 

Lemma 3.5. For every x EX, r 1 (x) U {x} spans a k-dimensional 
subspace of Rf. In particular f = k. 

Proof Assume that the subspace U spanned by r 1 ( x) U { x} has 
dimension m + 1 < k. Choose m vertices y1 , ... , Ym in r 1 ( x) such 
that x, Y1, ... , Ym form a basis of U, and choose two distinct vertices 
y, y' E r1(u) which are different from y1 , •• ·,Ym (here remark that 
m ::=; k - 2). Write y = >.x + E:1 AiYi (>., >.i E R). Applying Lemma 
3.4 for Y = {x, y, Y1, ... ,Ym} and o-: Y ---t X such that o-(y) = y', 
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a(x) = x, a(yi) = Yi (i = 1, ... , m), we obtain y' = AX+ 2::7:1 AiYi• 
Hence 'f} = y', contradicting 8(y, y') = 2. Q.E.D. 

Lemma 3.6. There are constants Ai, µi, vi (i = 2, ... , d) such 

that v = AiX + vJ5 + µJi holds for all v, x with i = 8( v, x), where 
C = f1(x) n ri-1(v) and B = f 1(x) \ C. 

Proof. Remark that B = f 1(x) n ri+i(v) when i < d, and B = 
f 1(x) n ri(v) when i = d. From Lemma 3.5, v can be written as 

V = AX+ L VyY + L µzz 
yEC zEB 

for some A, Vy, µz E R (y E C, z E B). We would like to show that 
Vy1 = Vy2 holds for all Y1, Y2 E C. Let Y1, Y2 E C with Y1 =/- Y2- We 
use Lemma 3.4 for Y = {v,x} U BU C and a: Y----+ X which fixes 
all vertices in Y except a(y1) = Y2, a(y2) = Yl· Clearly a preserves 
distances. Then the above equation implies 

V =AX+ Vy1Y2 + Vy2Yl + L Vy'f} + L µzz. 
yEC\{y1,y2} zEB 

These two equations imply Vy1 Y1 + Vy2 Y2 = Vy1 Y2 + Vy2 Y1, and this be­
comes (vy1 - vy2 )(Y1 -y2) = 0. Here we have Y1 =/- Y2 by 8(y1,Y2) = 2, 
so Vy1 = Vy2 • This means Vy = v is a constant for y E C. In the same - -way, µz =µis a constant for z EB. Thus v = AX+ vC + µB. Use 
Lemma 3.4 again to show that A, µ, v do not depend on v and x with 
8(v, x) = i. Q.E.D. 

Fix two vertices v, w with 8(v,w) = 2 and put D~ = D~(v,w). We 
have 

[Iv -w[[2 = (v, v) + (w, w) - 2(v, w) = uo + uo - 2u2 = 2(uo - u2). 

First take x E Df (1 < i < d) and put A= f1(x)nDtL B = f1(x)n 

Dj+L C = f1(x) n ot~:i, D = f1(x) n Dj!~- Then we have a partition 
f 1 (x) =AU BU CUD. Clearly we have [A[+ [B[ =[A[+ [C[ = ci, so 
that [B[ = JC[. By Lemma 3.6, we have 

V = AiX + vi(A + B) + µi(C + D), 

w = AiX + vi(A + C) + µi(B + D). 
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Hence 

llv - wll 2 = ll(vi - µi)(B - 8)11 2 = (Vi - µi) 2 (IIBll2 + 110112 - 2(ii, 8) ). 

Here we have IIBll 2 = 110112 = IBluo + IBl(IBI - l)u2 and (B, 0) = 
IBl 2u2. Hence llv - wll2 = 2(vi - µi) 2IBl(uo - u2). Therefore we obtain 
(Vi - µi) 2 IBI = 1 and hence IAI = Ci - IBI = Ci - (vi - µi)- 2. This means 
the size of r 1 (x) not~ depends only on i. 

Next take x E Dj and put A= I'1(x) not~, B = I'1(x) n o~-1, 
C = I'1(x) n DL1, D = I'1(x) n Df Then we can show that IAI = 

Ci - (vi - µi)- 2 in the same way. 
Thus r satisfies (Hl) and hence r is 2-homogeneous by Lemma 3.2. 

§4. Graphs with spin model structure 

4.1. An observation 

Here we observe that the examples of spin models given in Section 
2 can be constructed on distance-regular graphs. Jaeger's Higman-Sims 
model and the Hadamard models are constructed on distance-regular 
graphs with the intersection arrays: 

{l 1 

❖ }, 0 
21 

and 

{.t 1 2m 4m-1 4m} 
0 0 0 0 . 

4m-1 2m 1 0 

The Potts models with n spins is constructed on a complete graph Kn, 
which is a distance-regular graph of diameter d = l with the intersection 
array 

0 k~l }, k=n-1. 

The weights are given by t0 = a, t1 = (3, where (32 + (3-2 + yn = 0 and 
a= -(3-3. 

The cyclic model with n spins is constructed on then-cycle Cn which 
is a distance-regular graph of diameter d with the intersection array: 

{ ~ ~ ~ 
2 1 1 

1 1} 
0 1 
1 0 

when n = 2d + 1, 
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1 1 
0 0 
1 1 

1 
0 
1 

when n = 2d. 
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The weights are given by ti = a0i2 (i = 0, ... , d), where 0 is a primitive 
n-root of unity if n = 2d + 1, a primitive 2n-root of unity if n = 2d, and 

a= fo!Cr:.~:01 ei°)_ 
The square model is constructed on the 4-cycle C4 with t0 = a, 

t1 = a- 1 , t2 = -a, where a is a non-zero complex number. 
Observe that all the above distance-regular graphs are almost bi­

partite. Moreover, as easily observed, each successive three terms ti-l, 
ti, ti+l are distinct (0 < i < d) in each of the above spin models except 
the square model with a= ±1. 

Motivated by the above observation, the author obtained the fol­
lowing result [21]. 

Theorem 4.1. Let r = (X, E) be a connected graph of diameter 
d which has no 3-cycle. Let t0 , . .. , td be non-zero complex numbers such 
that t1 =/- ti and ti-2 =/- ti =/- ti-1 for i = 2, ... , d. Define a function w 
on Xx X by w(x,y) = ta(x,y) for x, y EX. If S = (X,w) is a spin 
model, then r is an almost bipartite distance-regular graph. 

This was obtained by "localizing" the star-triangle relation (S3). 
This technique of localization was introduced in [19]. 

4.2. 2-homogeneity 

Lemma 4.2. Let r = (X, E) be a distance-regular graph of diam­
eter d > 1 and valency k, and let t0 , ... , td be non-zero complex numbers 
such that ti =/- t 1 for i = 2, ... , d. Assume S = (X, w) is a spin model, 
where w is a function on X xX defined by w(x, y) = ta(x,y) for x, y EX. 
Then the adjacency matrix A of r has an eigenvalue 0 of multiplicity f 
with 1 < f::; k. 

Proof. Let 00 = k, 01 , ... , 0d be the eigenvalues of the adjacency 
matrix A of r and let ½ be the eigenspace corresponding to 0i, i = 
0, ... , d, where Vo is the 1-dimensional subspace of V = en spanned by 
the all 1 vector j. V splits into an orthogonal direct sum: 

V=VoEBViEB···EBVd (orthogonal). 

On the other hand, let Ube, b, c E X be the vector defined in Section 2.1, 
which is an eigenvector of the weight matrix W of S for the eigenvalue 
ynw(b,c)- 1 . 
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Now fix a vertex b EX. Then the vectors Ube, c EX, form a basis 
of V. Let¼' be the subspace of V spanned by the vectors Ube, c E ri(b) 
(i = 0, ... , d). Remark that V~ = (j) = Vo. So V splits into a direct 
sum: 

V = Vo EB V{ EB··· EB VJ, 

where we have ¼' C Va1- for i = 1, ... , d. Since Ube is an eigenvector of 
W for the eigenvalue Jnw(b,c)-1, ¼' is included in the eigenspace of 
W for the eigenvalue Jn t-;1 , i = 0, ... , d. Since ti =/- ti for i = 2, ... , d, 
the eigenspace of W for the eigenvalue Jn t11 is included in Vo EB V{. 
Now consider the action of Won 

Va1- = V{ EB · · · EB VJ. 

Then V{ is the eigenspace of W in Va1- for the eigenvalue Jn t11 . 

On the other hand, W is written as 

d 

W= LtiAi, 
i=O 

where Ai denotes the i-th adjacency matrix of the distance-regular graph 
r (i = 0, ... , d). Since Ai is a polynomial in A, Ai= vi(A), Wis written 
as a polynomial in A: 

d 

W = L tivi(A). 
i=O 

Hence for each eigenvector x of A for the eigenvalue 0j of A, j > 0, we 
have 

d d 

Wx = Ltivi(A)x = Ltivi(0j)x, 
i=O i=O 

so x is an eigenvector of W for the eigenvalue Ef =o tivi ( 0 j). Since 
x E Va1-, x must belong to some eigenspace (in Va1-) of W. 

Therefore we can conclude that V{ is a sum of some eigenspaces of 
A, say: 

so that 
k = dim V{ = Ji + · · · + h, 

where Ji =dim½. This implies Ji ~ k (i = 1, ... ,R). We must show 
that 1 < /i ~ k holds for some i (1 ~ i ~ R). If f = l then we have 
Ji = k and Ji > 1 since k > l by our assumption d > l. So we may 
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assume£ > 1. If Ji > l holds for some i, then we have the conclusion. So 
we may assume Ji = · · · = h = 1. Now it is known that an eigenvalue 
0 of a distance-regular graph has multiplicity 1 if and only if 0 = ±k 
[5] Proposition 4.4.8. Hence fi = l occurs at most one i, that is when 
0i = -k (remark that 0i =/- k since 0o = k). This implies £ = 1, a 
contradiction. Q.E.D. 

Theorem 4.3. Let r = (X, E) be an almost bipartite distance­
regular graph of diameter d, and let t0 , t 1 , ... , td be non-zero complex 
numbers such that ti =I- ti for i = 2, ... ,d. If S = (X,w) is a spin 
model with the weight w defined by w(x,y) = ta(x,y), x, y EX, then r 
is 2-homogeneous. 

Proof. It is obtained from Lemma 4.2 and Proposition 3.3. 
Q.E.D. 

Corollary 4.4. Let r = (X, E) be a triangle-free connected graph 
of diameter d, and let t0 , •.• , td be non-zero complex numbers such that 
t1 =/- ti and ti-2 =/- ti =/- ti-1 for i = 2, ... , d. If S = (X, w) is a spin 
model with the weight w defined by w(x,y) = ta(x,y), x, y EX, then r 
is an almost bipartite 2-homogeneous distance-regular graph. 

Proof. It is obtained from Theorem 4.1 and Theorem 4.3. Q.E.D. 

Remark. The assumption 'triangle-free' in Corollary 4.4 is essen­
tial. Actually there exists a distance-regular graph r (with triangles) 
such that r affords a spin model structure with weights t0 , .•• , td sat­
isfying the same conditions but r is not 2-homogeneous. Also remark 
that every connected graph can have a spin model structure with the 
weights ti=••·= td (Potts model), and so we need some conditions on 
the weights t0 , •.• , td in Corollary 4.4. 

§5. Classification of almost bipartite 2-homogeneous graphs 

In this section we determine the intersection arrays of almost bipar­
tite 2-homogeneous distance-regular graphs. 

Theorem 5.1. Let r be an almost bipartite 2-homogeneous dis­
tance-regular graph of diameter d > 0 and valency k. Then r has one 
of the following intersection arrays: 

(1) 0 k ~ 1}, k > 0, 
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0 1 n, k>I, (2) 0 
k-l 

0 1 
k ~ c} k - e(e' + 3s + 1), (3) 0 

k-l O 'c=1{y+l),'Y>O, 

u 1 k-l n, k>I, (4) 0 0 
k-l 1 

u 1 2,, 4')'-1 ., } 
(5) 0 0 0 ~ ' 'Y > o, 

4')'-1 2,, 1 

u 1 C k-c k-l k} (6) 0 0 0 0 0 k = 'Yb2 + 3')' + 1), 

k-l k-c C 1 O 'c=')'('Y+l),'Y>O, 

0 1 1 n, (7) 0 0 d > l, 
1 1 

0 1 1 n, d>I, (8) 0 0 
1 1 

0 1 2 3 k-l n, k-d, (9) 0 0 0 0 
k-l k-2 k-3 1 

LL 1 2 3 ... d-1 +} d>I (10) 0 0 0 ... 0 
2d 2d-1 2d- 2 ... d+2 

Remark. The intersection arrays in the above list are realized by 
the following graphs: 

(1) complete graph Kk+l, 
(2) complete bipartite graph Kk,k, 
(3) antipodal quotient of 5-dimensional hypercube when 'Y = 1, 
Higman-Sims graph when 'Y = 2, the existence of graphs is unknown 
when 'Y > 2, 
( 4) complement of 2 x ( k + l )-grid, 
(5) Hadamard graph of valency k = 4')', 
(6) antipodal double cover of (3), 
(7) cycle C2d+l of length 2d + 1, 
(8) cycle C2d of length 2d, 
(9) d-dimensional hypercube, 
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(10) antipodal quotient of (2d + 1)-dimensional hypercube. 

Now we prove Theorem 5.1. Let r = (X, E) be an almost bipartite 
2-homogeneous distance-regular graph of diameter d and valency k with 
the intersection array: 

We have ai = 0 (i = 1, ... , d - l), c1 = 1, bo = k, b1 = k - l and 
ad = k - cd, If k ::; 2 or d ::; 1, then r is isomorphic to a cycle or a 
complete graph and the intersection array of r becomes (1), (7) or (8). 
So in the following we assume k > 2 and d > l. In particular we have 
a1 = 0 and hence r has no 3-cycle. 

By Lemma 3.1 and Lemma 3.2, r satisfies condition (H2), so that 
there are constants -y1, ... , 'Yd such that 

holds for all vertices u, x, y EX with 8(u, x) = 8(u, y) = i and 8(x, y) = 
2 (i = 1, ... ,d). 

Lemma 5.2. (i) c2 > 1, 
(ii) (k - 2)(1'2 -1) = (c2 - l)(c2 - 2), 
(iii) 'Yi(ci+l - 1) = e;(c2 - 1), (0 < i < d), 
(iv) (c2 - l)('Yi - 1) = (ci - 1)(1'2 -1), (0 < i < d). 

Proof. Fix a vertex u in X. 

(i) We claim that 'Yi > 0 if e; = 1. Pick a vertex w in ri-i(u). 
Then w has at least two neighbours x, yin ri(u), since we have bi-1 = 
k - Ci-I ~ k - ci = k - l > 1. So we have 8(x, y) = 2 and w E 
ri-1(u) n I'1(x) n I'1(Y), and hence 'Yi> 0. 

First assume cd = 1. We have 'Yd > 0 as shown above. Each 
vertex v in rd ( u) has at least two distinct neighbours x, y in rd ( u) since 
ad = k - cd = k - l ~ 2. Then 8(x,y) = 2 since r has no 3-cycle, 
and hence x and y has at least one common neighbour z in r d-l ( u) by 
')'d > 0. We have 8(v, z) = 2 and x, y are common neighbours of v and 
z, so that c2 > 1. 

Next assume cd > 1. Since 1 = c1 ::; c2 ::; · · · ::; cd and cd > 1, there 
is an integer r such that 1 = c1 = c2 = · · · = c,. < Cr+l· Pick a vertex 
z in r r+l ( u). Since Cr+ 1 > 1, z has at least two distinct neighbours x', 
y' E I'r(u). Since 8(x',y') = 2 and 'Yr> 0 by the above claim, x' and y' 
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have a common neighbour v in r r-l ( u). Then z E r 2 ( v), and z has two 
distinct neighbours x', y' in r 1 ( v). This implies c2 2:: 2. 

(ii) Fix an edge vw with v E f 1(u) and w E f2(u). We count 
the number N of edges xy with x E f 1(u) n f1(w) n f2(v) and y E 
fr(v) n f 2(u) n f 2(w) in two different ways. Since w E f2(u), there are 
precisely c2 - 1 vertices x E r 1 ( u) n r 1 ( w) with x =I- v. Fix such a vertex 
X. Since X E r 2 ( V)' there are precisely C2 - 2 vertices y E r 1 ( V) n r 1 ( X) 
with y =f. u, y =f. w. So we have N = (c2 - l)(c2 - 2). On the other 
hand, there are precisely k - 2 vertices y E f2(u) n f 1(v) with y =I- w. 
Fix such a vertex y. Since w, y E f 2(u) and 8(w,y) = 2, wand y have 
precisely -y2 - 1 common neighbours x in r 1 ( u) with x =f. v. So we obtain 
N = (k - 2)(1'2 - 1). 

(iii) Fix an edge vw with v E ri(u) and w E fi+i(u). We count 
the number N of edges xy with x E ri-1(u) n f1(v) and y E ri(u) n 
f 1(w) n f 2(v) in two different ways. Since v E ri(u), v has precisely 
Ci neighbours x in ri_1(u). Fix such a vertex x. Since w E f2(x), w 
has precisely c2 - 1 neighbours y in r 1 ( x) with y =f. v. Hence we have 
N = ci(c2 - 1). On the other hand, since w E fi+1(u), w has precisely 
ci+1 -1 neighbours yin fi(u) with y =f. v. Fix such a vertex y. Since v, 
y E ri(u) and 8(v, y) = 2, v and y have precisely 'Yi common neighbours 
x in ri-i(u). So we obtain N = (ci+l - lhi• 

(iv) Fix a path zvw with z E fi-1(u), v E fi(u), w E fi+i(u), 
and count the number of edges xy with x E ri_1(u) n f 1(v) n f 2(z) 
and y E ri(u) n f 1(z) n f 1(w) n f 2(v) in two different ways. Since 
v E ri(u), v has precisely ci - 1 neighbours x in ri_1(u) with x =I- z. 
Fix such a vertex x. Since x, z E f 2(w) and 8(x, z) = 2, x and z have 
precisely -y2 -1 common neighbours yin f 1(w) with y =f. v. So we have 
N = (ci -l)(-y2 -2). On the other hand, since w E f 2(z), w has precisely 
c2 - 1 neighbours y in f1(z) with y =/- v. Fix such a vertex y. Since 
v, y E ri(u) and 8(v,y) = 2, v and y have precisely 'Yi - 1 common 
neighbours x in ri_1(u) with x =I- z. So we obtain N = (c2 - l)('Yi -1). 

Lemma 5.3. If ad > 0, 
(v) cd(c2 -1) = (k - cd - l)'Yd, 
(vi) k 2: 2cd. 

Q.E.D. 

Proof. (v) Since" ad> 0, there is an edge vw in rd(u). We count 
the number N of edges xy with x E r d-l ( u) n r 1 ( v) and y E rd( u) n 
f 1(w) n f 2(v) in two different ways. Since v E rd(u), v has precisely 
cd neighbours x in r d-l ( u). Fix such a vertex x. Since x E r 2 ( w), x 
has precisely c2 - 1 neighbours y in r 1 ( w) with y =f. v, where we have 



2-Homogeneous Gmphs 305 

y E rd ( u) since there is no edge in rd-1 ( u). So we have N = cd ( c2 - 1). 
On the other hand, since w E rd( u), w has precisely ad - l neighbours 
y in r d(u) with y =I- v. Fix such a vertex y. Since v, y E r d(u) and 
8(v, y) = 2, v and y have precisely 'Yd common neighbours x in r d-l (u). 
So we obtain N = (ad - l)'Yd = (k - Cd - l)'Yd. 

(vi) Let vw be an edge in rd(u). If there is a vertex x in r 1 (u) n 
r d-1 (v) n r d-1 (w), then uv is an edge in r d-1 (x), contradicting ad-1 = 
0. Hence r1(u) n rd-1(v) and r1(u) n rd-i(w) are mutually disjoint, 
each of which has size Cd since u E r d(v) and u E r d(w). Hence k = 
1r1(u)I;::: 2cd. Q.E.D. 

To simplify notations, we put 

C = C2, "( = "/2 • 

When 'Y = 1, we have c > 1 by Lemma 5.2 (i), and hence c = 2 
by Lemma 5.2 (ii). Then 'Yi = 1 (i = 1, ... , d - l) by Lemma 5.2 (iv) 
and this implies Ci= i (i = 1, ... , d) by Lemma 5.2 (iii). If ad= 0 then 
we have k = cd = d, so that the intersection array becomes of type (9). 
If ad > 0 then Lemma 5.3 (v) implies d = (k - d - l)'Yd, here we have 
k ;::: 2cd = 2d by Lemma 5.3 (vi). Hence we must have 'Yd = l and 
k = 2d + l so that the intersection array becomes of type ( 10). 

Now we assume 'Y > 1. By Lemma 5.2 (i), (ii), we have c > 1 and 

k = (c- l)(c- 2) + 2. 
7- l 

First we consider the case ad > 0. 
When d = 2, Lemma 5.3 (v) becomes 

k c(c - l) 1 =---+c+' 
'Y 

and hence we have 

This becomes 

and hence 

(c-l)(c-2) 2 c(c-1) 1 -'----'---~ + = --- + C + . 
'Y - 1 'Y 

(c-l)(c-2) 
k = ~-~- + 2 = 7("12 + 37 + 1), 

7- l 

so that the intersection array becomes of type (3) in the case d = 2. 
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Assumed> 2. We have 2c3 S k by Lemma 5.3 (vi) and by c3 S ed. 

By Lemma 5.2 (iii), we have 

c(c - 1) 
C3 = -'--~+1. 

'Y 
So 2c3 s k implies 

( c(c-1) ) (c-l)(c-2) 
2 -'--~ + 1 < -'---'--'--~ + 2, 

'Y - 1-l 

and this becomes 

2("1- l)c(c - 1) s 1(c - l)(c - 2). 

By Lemma 5.2 (i), we have c - 1 > 0, so the above inequality implies 

2(1- l)c S 1(c- 2) 

and hence 

('Y- 2)c+ 21 S 0. 

This is impossible by our assumption 'Y 2: 2. Thus the case d > 2 does 
not occur. 

Next we consider the case ad = 0. Since b0 = k, b1 = k - l and 
b2 = k - c, we have 

b (c-l)(c-2) b (c-l)(c-2) 
o= -----+2, 1 = --~--+1, 

1-l 1-l 

b2 = (c-l)(c-2) + 2 -c= (c-1)(c-2)_ 
1- l 1- l 

From Lemma 5.2 (iii) with i = 2, we obtain 

c( c - 1) c2 - c + 'Y 
C3 = ---+ 1 = ----, 

'Y 'Y 
and b3 = k - c3 implies 

b (c-l)(c-2) c2 -c+'Y 
3=-----+2-----

'Y - 1 'Y 
(c-1)(c-1-l) 

1("1 - 1) 

When d > 3, Lemma 5.2 (iii), (iv) and c3 = (c2 - c + 'Y)h imply 

c( c2 - 2c + 2"f) 
C4 = "f + "fC - C ' 

and b4 = k - c4 implies 
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b4 = ( c - 1') ( c - 2,,) 
(1'-l)(c1'+1'-c) 

When d > 4, Lemma 5.2 (iii), (iv) imply 

C5 = 
c4 - 3c3 + c2 + 3')'c2 - 2,'c + 1'2 

')'C2 + 1'2 _ c2 

and b5 = k - c5 implies 

(c - 1')(c - 1' - 1'2) 
b5 = --------­

(1' - l)(c21' + 1'2 - c2). 
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If d > 5, we have b5 2': 1, so the above equation implies (noting that the 
denominator is positive since 1' > 1) 

(c - ,')(c -1' - ,'2) 2': (1' - l)(c21' + ,,2 - c2), 

and this becomes 
1'(c - 1)(2c ~ 21' - q) 2': 0. 

This implies a contradiction since c 2': 2 and 1' 2': 2. Hence we have 
d '.'5. 5. 

When d = 5, we have b5 = 0, and this implies c = 1' or c = ')'2 + 1'­
But c = 1' does not occur by Lemma 5.2 (ii) since c2 = k - b2 < k. So 
we have c = ')'2 + 1'· Substituting this value of c in the above equations, 
we obtain k = ')'(1'2 + 31' + 1), c3 = k- c, c4 = k -1. So the intersection 
array becomes of type (6). 

When d = 4, we have b4 = 0, and this implies c = 21' ( c = 1' 
is impossible as above). So we obtain k = 41', c3 = k - l, so the 
intersection array becomes of type (5). 

When d = 3, we have b3 = 0, and this implies c = 1' + 1. So we 
obtain c = k - l, and the intersection array becomes of type ( 4). 

This completes the proof of Theorem 5.1. 
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