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Spin Models and Almost Bipartite
2-Homogeneous Graphs

Kazumasa Nomura

Abstract.

A connected graph of diameter d is said to be almost bipartite if
it contains no cycle of length 241 for all £ < d. An almost bipartite
distance-regular graph I' = (X, E) is 2-homogeneous if and only if
there are constants i, ...,vq such that |I'i_1(u) NTi(z) NT1(y)| =
v; holds for all u € X and for all =, y € T';(u) with 9(z,y) = 2
(i=1,...,d).

In this paper, almost bipartite 2-homogeneous distance-regular
graphs are classified. This determines triangle-free connected graphs
affording spin models (for link invariants) with certain weights.

§1. Introduction

A spin model is one of the statistical mechanical models which were
introduced by Vaughan Jones to construct invariants of knots and links
[12]. A spin model is defined as a complex-valued symmetric function w
on X x X, where X is a finite set of “spins”, satisfying several axioms.
Each spin model S gives a corresponding link invariant through its par-
tition function. Three examples of spin models are mentioned in Jones’
paper [12]; Potts models, cyclic models and square models. It must be
remarked that the Jones polynomial can be obtained from the partition
function of the Potts models.

A connection between spin models and distance-regular graphs was
found by Frangois Jaeger [9] by constructing a new spin model on the
Higman-Sims graph, a distance-regular graph of diameter d = 2 with
n = 100 vertices, which was discovered by D. Higman and C. Sims [§],
where we say that a spin model S = (X, w) is constructed on a connected
graph I' = (X, E) if w(z,y) depends only on the distance d(z,y) in
the graph I'. Jaeger [9] proved that the corresponding link invariant
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of the Higman-Sims model becomes a specialization of the Kauffman
polynomial [14]. After Jaeger’s discovery, a new infinite family of spin
models were constructed on Hadamard graphs by the author [14]. The
corresponding link invariants of the Hadamard models were determined
by Jaeger [10,11], and then Jones [13] gave a pair of two links which can
be detected by this invariant but not by Jones polynomial.

These examples of spin models can be constructed on almost bipar-
tite distance-regular graphs. Moreover these graphs have extra regu-
larity which we call 2-homogeneity; an almost bipartite distance-regular
graph I' = (X, E) is 2-homogeneous if and only if |I';_; (u) NI (x)NT'1{y)]
is a constant for all u, z, y € X with O(u,z) = d(u,y) =1, I(z,y) = 2
(i=1,...,d, where d denotes the diameter of I'). In fact it was shown
[21] that if a triangle-free connected graph affords a spin model with
certain weights then the graph must be distance-regular and almost bi-
partite.

This paper contains two main results. At first we show that if a spin
model is constructed on an almost bipartite distance-regular graph then
the graph must be 2-homogeneous (under some conditions, see Theorem
4.3). Next we classify almost bipartite 2-homogeneous distance-regular
graphs (Theorem 5.1). The proofs of these results are given in Sec-
tion 4 and Section 5. In Section 2, some preliminaries on spin models
and distance-regular graphs are given. In Section 3, two necessary and
sufficient conditions (H1), (H2) for 2-homogeneity of almost bipartite
distance-regular graphs are given. Then we slightly generalize of Ya-
mazaki’s sufficient condition for 2-homogeneity {22].

There are two generalizations of Jones’ spin models by Kawagoe-
Munemasa-Watatani [15] and Bannai-Bannai [1] (see also [2, 3, 16]). In
this paper we restrict our interest to the original spin models defined in
[12].

§2. Spin models and distance-regular graphs

2.1. Definition and examples of spin models

A spin model is a pair S = (X, w) of a finite set of size | X|=n >0
and a complex-valued function w on X x X such that (for all a, b, ¢ in
X)
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(S1) w(a,b) = w(b,a) # 0,
(S2) Z w(a, z)w(b,z)" ! = 1845,
zeX
(S3) Z w(a, z)w(b, z)w(c,z) "' = Vnw(a,b)w(a,c)  w(b,c)~ 1.
zeX

The equation (S3) is called the “star-triangle” relation. The elements
of X is called the spins, and the function w is called the (Boltzmann)
weight. Putting a = ¢ in (S3), we have

Z w(b7 :L’) = \/ﬁw(aﬁ a)ﬁla

z€X
so that w(a,a) = « is a constant, called the modulus of S, which is
independent of the choice of a in X.

The weight matriz of a spin model § = (X, w), | X|=n,isanxn
matrix W, indexed by X x X, whose (z, y)-entry is W, , = w(z,y). For
b, ¢ in X, we consider a vector up. in the n-space V = C", where the
entries of the vectors are indexed by X, whose z-entry is given by

_ w(b,2)
w(c,z)’

(Wpe)x (xr € X).

Then the condition (S3) can be written as

Wug. = \/ﬁw(b, c)*lubc.

This means the vector u,. is an eigenvector of W for the eigenvalue
vrw(b,e)7t. It can be easily shown from (S2) that, for a fixed b € X,
the vectors Uy, ¢ € X are linearly independent and hence form a basis of
V. Therefore the values \/nw(b,c)~1, ¢ € X give all the eigenvalues of
W, where multiplicities are counted. This means that the multiplicity
of an eigenvalue \/n A\™1 agrees with the number of z € X such that
w(b,z) = X (thus this number does not depend on the choice of b).
The vector ug, becomes the all one vector j, and it is an eigenvector
of W corresponding the eigenvalue \/na~! (« is the modulus). From
condition (S2), the other vectors up., b # ¢ are orthogonal to j.
Now we give three basic examples of spin models.

Potts model. Let X be a finite set with n > 1 elements. Let 3 be
a solution of 32 + 372 + \/n = 0 and put o = —373. Define a function
won X X X by
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w(z y) _ (0% r =Y,
’ Jé] otherwise.

Then (X, w) is a spin model called the Potts model [12]. Potts model
with n = 2 is also called the Ising model.

Cyclic model. Let X = {0,1,...,n — 1}, and let 8 be a primitive
n-root of unity when n is odd, or a primitive 2n-root of unity when n is
even. Define a function w on X x X by

w(z,y) = o=V’

where

= 722:01 pER
Then (X, w) becomes a spin model, called the cyclic model [2,6,12].

o2 vn

Square model. Let X = {1,2,3,4} and let o be an arbitrary non-
zero complex number. Let us consider the following matrix:

o a l g a!
1 -1
@ « @ —a
W = 1 -1 |
—a @ a
al —o a ! o

and define a function w on X x X by w(z,y) = W, . Then (X,w)
becomes a spin model, called the square model [7,12].

2.2. Preliminaries for distance-regular graphs

Let I' = (X, E) be a connected (undirected simple) graph of diame-
ter d with the vertex set X and the edge set E with the usual metric
on X. For vertices u, v and for integers r, s, define

Tp(u)y={z € X|0(u,z) =r},
Di(u,v) = T'r(u) NTy(v).

T’ is said to be distance-reqular if there are integers b,, c, such that
for any two vertices u, z at distance r = J(u,z), there are precisely
¢, neighbours of z in I'._;(u) and b, neighbours of  in I'y14(u). In
particular I is regular of valency k = by, and there are a, =k — ¢, — b,
neighbours of = in I'».(u). The parameters ¢, b, a,. (r =0,...,d) satisfy
(see [5], Proposition 4.1.6)

l=c1 < <2 < eg1 £ ey,
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k=by=>2by 2 2>2bg—1>2bg=0.

The array
0 @ e -+ cg1 ¢
0 a1 a2 -+ a4q-1 agq
k by by -+ bg_y O

is called the intersection array of T.
It is known (see [5], Section 4.1) that the parameters

p:,s = |D:(u7 1))], (t = a(u? v))

are well-defined, i.e., these parameters depends only on r, s and t =
O(u, v), rather than on the individual vertices u, v with ¢ = 9(u,v).
The parameters pi,s are called the intersection numbers of I'. Clearly
Cr = P:—l,p ar = P:,l and b, = Pri11 hold.

Let A; (¢ = 0,1,...,d) denote the i-th adjacency matrix of T, i.e.,
A; is the n x n matrix, indexed by X x X, whose (z, y)-entry is

1 Oz,y)=1,
(Ai)zy = { 0 .
otherwise.

In particular, Ag = I the identity matrix of size n and A; = A the usual
adjacency matrix of I'. The matrices Ag, A1, ..., Aq satisfy

d
AAj = AjA; =) pliAg
£=0

In particular,
AA; = bi—1Ai1 + aiA; + ciy1Ait

holds. Using this relation recursively, A; can be written as a polynomial
in A, i.e., there are polynomials v;(z) of degree i such that A; = v;(A)
holds for i = 0,1,...,d.

It is known that the adjacency matrix A has distinct eigenvalues
0o = k,04,...,04, and the corresponding eigenspaces Vo, V,...,Vy in
V = C" (n = |X|) are mutually orthogonal (see [5], Section 4.1):

V=VodVi®---®&V; (orthogonal sum).

Remark that Vj is the 1-dimensional subspace spanned by j.
More precise descriptions of distance-regular graphs can be found in
[4,5].
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2.3. Spin models on distance-regular graphs

Let T' = (X, E) be a connected graph of diameter d with the usual
metric don X. Let R; (i =0,1,...,d) be the set of pairs (z,y) in X x X
such that d(z,y) = 4. Then X x X is partitioned into d + 1 relations:

XXX:R()URlU"'URd.

We consider spin models S = (X, w) such that w takes a constant value
t,on R, (1 =0,1,...,d), ie, w(z,y) = t; holds for all z, y in X at
distance d(x,y) = i. In this case we say that the spin model S = (X, w)
is constructed on the graph I' = (X, F). We are particularly interested
in spin models which are constructed on distance-regular graphs.

For three vertices x, y, z and for integers ¢, j, ¢, define

P ez, y,2) =|Ti(z) NT;(y) NTe(2)].

Lemma 2.1. LetT' = (X, E) be a distance-regular graph of diam-
eter d with the intersection numbers pf,j’ and let ty, ..., tg be non-zero
complex numbers. Define a function w on X x X by w(z,y) = tozy)-
Then S = (X, w) is a spin model if and only if the following conditions
hold:

(S2’) For¢=1,...,d,

d d
DT
=0 j=0

(S3) Forallz, y, z in X,

d d d
DD Py 2ttty = Vitawatag 1 tag.-

1=0 =0 £=0

Proof. It is not difficult to show that (S2), (S3) are equivalent
o (82’), (S3’) respectively. Remark that (S1) holds for a spin model
constructed on a connected graph. Q.E.D.

Now we give two examples which are constructed on distance-regular
graphs.

Jaeger’s Higman-Sims model. The Higman-Sims graph, which was
discovered by D. Higman and C. Sims [8], is the unique distance-regular
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graph I' = (X, E) of diameter d = 2 with the following intersection
array:

0 1 &6
0 0 16
22 21 0

T has | X| = 100 vertices.
A spin model was constructed on the Higman-Sims graph by F.
Jaeger [9] (see also [7]). Let 7 = (1 ++/5)/2 and put

to = (57 4+ 3)V—1, t1 =7v—1, ty = (=7 + 1)v/—1.

Define a function w on X x X by w(z,y) = ta(s,y) for z, y € X. Then
S = (X,w) becomes a spin model. The corresponding link invariant
becomes a specialization of the Kauffman polynomial [7].

Hadamard model. Hadamard graphs are distance-regular graphs of
diameter d = 4 with the following intersection array:

0 1 2m 4m—1 4m
0 0 0 0 0 ,
4m 4dm—1 2m 1 0

where m is a positive integer. There is a natural correspondence between
Hadamard graphs of valency 4m and Hadamard matrices of size 4m (see
[5], Theorem 1.8.1). Let s, tg, t1 be complex numbers such that

2,/m iy

2 2
22m—1)s+1=0, 2= R -
s*+2(2m )s+ 0 (dm —-1)s+1 1

and put
ta = stg, 13 = —1l1, ty4=1;.

Define a function w on X x X by w(z,y) = tay) for , y € X. Then

S = (X,w) is a spin model [17]. The corresponding link invariants of
these models were determined by Jaeger [10,11].

§3. 2-Homogeneous distance-regular graphs

3.1. Definition of 2-homogeneity

Let T' = (X, E) be a distance-regular graph of diameter d. For a
vertex z in X and for a subset A of X, let e(z, A) denote the number of
edges from z into A; e(z, A) = |[I';(z)NA|. T is said to be t-homogeneous
(where t is an non-negative integer) if the following condition holds for
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all integers r, s, %, 7 and for all vertices u, v, v/, v’ with d(u,v) =
o, v') =t

z € D (u,v), ¥’ € D5(v/,v") = e(z, D}(u,v)) = e(z’, Dj(u/,v")).

This means that, for two vertices u, v at distance ¢ and for z in D% (u, v),
the number of edges from z into D; (u,v) depends only on 7, s, 4, j rather
than on the individual vertices u, v, z with 8(u,v) =t and = € D% (u, v).
It was shown [18] that, for a distance-regular graph I' of diameter
d in which Di(u,v) is a (non-empty) clique for every edge uv, I' is 1-
homogeneous if and only if I" is isomorphic to a regular near 2d-gon (see
[5], Section 6.4 for the definition).
Now we restrict our interest to the case t = 2. Let us consider the
following conditions for a distance-regular graph I' of diameter d:
(H1) There are integers 62, . . ., 84 such that, for every pair of vertices
u, v at distance (u,v) = 2, and for every z in I'..(u) NT',.(v), there
are precisely 6, neighbours of z.in ' 1 () N1 (v) (r=2,...,d).
(H2) There are integers ~i,...,7q such that, for every vertex x
and for every u, v in T',.(z) with 8(u,v) = 2, there are precisely 7,
common neighbours of w and v in I,y (z) (r=1,...,d).

Lemma 3.1. Let['= (X, E) be a distance-regular graph of diam-
eter d. Then (H1) is equivalent to (H2).

Proof. First assume I' satisfies (H1). We must show that the size
Pe1(2) AT1() N T3 (o))

does not depend on the choice of z in X and u, v in I';.(z) with 8(u,v) =
2. Clearly this holds for r = 1. Assume r > 1. Fix a vertex z and fix
two vertices u, v in I'.(z) with 8{(u,v) = 2, and put

D; = D;(u, v) =T (w)NT;{v)

for all integers ¢, j. We count the number N of paths of length r — 1

from z to Di. Let z = z,,, 1, . .., %2, %1 be a path of length 7 — 1 such
that z; € D1. Then we have z; € D¢ fori =1,...,r. By (H1), there are
precisely é; edges from x; to DE:} (i=2,...,r). Hence we have

N=066_1 6.

On the other hand, for a fixed vertex y in I',_; (z)ND1, there are precisely
Cr—1Cr—3 -+ - coc1 paths of length r — 1 connecting = and y, since we have
O(z,y) = r — 1. Hence we have

N = lFr—l(m) MmN D}|Cr—1cr—2 <. Co0q.
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So we obtain
67‘61“—1 o é‘2

Cr—1Cr—2- " C2C1

Tr—1(z) N D3| =

This means the number of common neighbours of v and v in I',._1 (z) does
not depend on the choice of z in X and u, v in I';(z) with d(u,v) = 2.
Thus I' satisfies (H2).

Next assume I satisfies (H2). We show by induction on r that the
number of edges e(z, DI "] (u,v)) does not depend on the choice of u,
v with d(u,v) = 2 and z in DZ(u,v) (r = 2,...,d). This holds when
r = 2, since for z € D3(u,v) we have u, v € I'y(z) and so

e(z, D1(u,v)) = Tr—1(z) N T1(u) NT1(v)] = 72
Assume r > 2 and assume that there are constants 6s,...,0,—1 such
that e(x,D:"}(u,v)) = &, holds for every z € Di(u,v) (i = 2,...,7—1).

Fix two vertices u, v € X at distance 8(u,v) = 2 and put D} = D(u,
v). Pick a vertex x € D] and put

§(z) = e(z, D::}).

We count the number N of paths z = z,.,x,_1, ..., z; of length r—1 with
x; € D}, Sincez; € D! (i =1,...,r) holds for every path z = z,,...,7;
with 21 € D},

N = 6(1‘)61~_15T_2 T 62.

On the other hand, since there are precisely 7, common neighbours y of
u, v in ' (z) by (H2),
DI NTroi(z)] = -

Since for each vertex y in D} NT,._;(x) there are precisely ¢,_1¢,—2 -1
paths of length » — 1 connecting y and z, the number of paths is given
by

N =|DiNT,_1(z)| cro16r_2 201 = YrCro1Cr_n - -~ C2C1.

Therefore we obtain

YrCr—-1Cr—2 - C2C1

@) =5 5 %

Thus I' satisfies (H1). Q.E.D.
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A connected graph T is said to be bipartite if there is no cycle of
odd length, and almost bipartite if there is no cycle of odd length £ with
£ < 2d+ 1 (where d is the diameter of I'). Let I' be a distance-regular

graph of diameter d with intersection numbers ¢, a., b, (r =0,...,d).
Clearly T is bipartite if and only if a, = 0 for r = 0,...,d, and T is
almost bipartite if and only if a, =0 for r =0, ...,d — 1.

Lemma 3.2. Let I' be an almost bipartite distance-reqular graph
of diameter d. Then T' is 2-homogeneous if and only if T satisfies (H1).

Proof. The condition (H1) says that e(z,DI”](u,v)) = &, holds
for every u, v, z with O(u,v) = 2 and = € DI (u,v). Hence (H1) holds if
I' is 2-homogeneous.

Fix two vertices u, v at distance d(u,v) = 2 and let us denote
D% = Di(u,v) for all 4, j. Remark that D% is empty for all 4, j with
li — 7| > 2 since d(u,v) = 2. Also remark that Dj- is empty for all 4, j
withi+7 =1 (mod 2) and i+ j <.2d — 1 since there is no cycle of odd
length ¢ < 2d + 1. Therefore the vertex set of I" is partitioned into the
following subsets:

Dy D} D} --- D43 Dpi?
Dy!

Di D Dj --- Dy3 Di; D
D3_,

D D} Df --- Dy Di,

Remark that there is no edge connecting D% and D;I, iflg—14]>1or
|7 —7'| > 1. Remark also that there is no edge inside D; for all 7, j with
i<dorj<dsincea, =:--=aq_1=0.

First we show that the number of edges e(x,D%) (z € Dj) is deter-

mined by the intersection numbers for all r, s with r # s. For z in D72
we have

e(z,D;2%) = e(z,Tr_s(u)) = cr_s,
e(z, DI~ = e(z, Tro1(v)) —e(z,DI"3 = ¢, —cpp.
Moreover when r < d we have
C(CIJ,D:;D = e(ma I‘7‘+1('U)) = by,
and when r = d we have

e(x, D4 1) = e(z,Tg_1(u)) — e(x,D4~1) = bg_s — (c4 — ca—2)-
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For z in Dg'l we have
d—2y _ _
e(z, D3 %) = e(z,I'q—1(u)) = cq-1,
e(w,DZj) <e(z,T'4_1(u)) =a4-1 =0,
e(a:,Dgwl) = e(z,['y_1(v)) — e(w,Dj:i) = cg,

e(z,D3) = e(z,Ta(u)) — e(z,Dg_1) = ba-1 — ca.

Thus e(z, D;) is determined by the intersection numbers for z € DY, with
r # s. Moreover for z in D] we have

e(z,D39) = e(z,D3) = ¢4, e(z,D2) = by — c;.

Now we assume I' satisfies (H1) and let z € D7 (2 < r < d). Then
by (H1) we have

e(w,D::i) = 6.
When r < d we have
e(z,DI71) = e(z,Tro1(u) — e(x, DIZT) = ¢, — &y,
e(z,D]*}) = e(z,Tr—1(v)) — (2, D] 71) = ¢, — 6,
(2, D7) = e(@, Ty () — (2, DL = by — (e — 61),

here remark that there is no edge between D4~} and D4_,. For z € D4
we have

e(z,D5) = e(z, Tg-1(u)) — e(z,D4"}) = cq — 64,
e(z, Dg—l) = e(z,Ta-1(v)) — e(w’Dg:i) = ¢4 — ba,

e(z,D%) = e(z,Tg(u)) — e(z,D¢_,) = ag — (ca — 6a).
Therefore T' is 2-homogeneous. Q.E.D.

3.2. A sufficient condition for 2-homogeneity

Yamazaki [22] proved that every bipartite distance-regular graph
with an eigenvalue of multiplicity &k (k is the valency) satisfies condition
(H1). Here we give a slight generalization.
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Proposition 3.3. Let I' be an almost bipartite distance-regular
graph of valency k. If the adjacency matriz A of I' has an eigenvalue 8
of multiplicity f with 1 < f <k, then T’ i¢s 2-homogeneous.

In the following we prove the above proposition in a similar way as
Yamazaki’s proof [22].

Let I' = (X, E) be an almost bipartite distance-regular graph of
diameter d and valency k. We may assume d > 1 and k£ > 2 since
the graph is clearly 2-homogeneous if d = 1 or k < 2. Let ¢;, b; and
a; (1 =0,1,...,d) be the usual intersection numbers of I'. We have
ay = -+ =ag_1 = 0 since I is almost bipartite. In particular I" has no
triangle. Assume that the adjacency matrix A of I' has an eigenvalue
6 of multiplicity f with 1 < f < k. By [5] Proposition 4.4.1, we have
a mapping ~ : X — RS such that (Z,7) = u; holds for all z, y at
distance 9(z,y) = 4, where (Z, ) denote the ordinary inner product of
the Euclidean space R, and (ug,u1,...,uq) is the standard sequence
corresponding to 6, i.e., it is the sequence defined by the recurrence:
Uy = 1, U = 0/]{1, CiUi—1 + biui+1 = 0u1 (Z = 1, .. .,d — 1) It is known
that an eigenvalue 1 of A has multiplicity 1 if and only if n = +k [5]
Proposition 4.4.8. So 6 # £k by our assumption f > 1. Then we obtain
ugz # uo = 1 from the above recurrence. Hence T # 7 holds for all
vertices z, y with 8(z,y) = 2.

Lemma 3.4. Let o : Y — X be a mapping from a subset Y
of X which preserves distances. Then for real numbers Ay (y € Y),

> yey Ay¥ = 0 if and only if ZyEY‘Aya(y) = 0.

Proof. Use (T,7) = ug(a,y) to show

12 ey 2o (@) = | 2 ey ATl = 0.
Q.E.D.

For a subset Y of X, we denote Y = {|y € Y}, ¥ = ey U

Lemma 3.5. Foreveryz € X, I'1(z) U {z} spans a k-dimensional
subspace of RY. In particular f = k.

Proof. Assume that the subspace U spanned by I'1(z) U {z} has
dimension m + 1 < k. Choose m vertices yi,...,¥m in ['1(z) such
that Z,%1,...,Ym form a basis of U, and choose two distinct vertices
Y, ¥ € I'1(u) which are different from yy,...,yn (here remark that
m<k—2). Write g = AZ+ )_.v, M (M, A\; € R). Applying Lemma
34forY ={x,y,v1,...,ym}t and 0 : ¥ — X such that o(y) = ¢/,
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o(z) =z, o(y;) =y (i =1,...,m), we obtain y/ = \T + Yo AT
Hence § = 4/, contradicting 8(y,y') = 2. Q.E.D.

Lemma 3.6. There are constants \;, u;, v; (i = 2,...,d) such
that v = \T + v,C + uig holds for all v, x with i = 8(v,x), where
C:I‘l(w)ﬂI‘i_l(v) andeFl(:c)\C

Proof. Remark that B = I'y(z) N T';41(v) when ¢ < d, and B =
I'i(z) NI (v) when ¢ = d. From Lemma 3.5, T can be written as

T=AT+ ) T+ Y pE

yeC zEB

for some A, vy, p, € R (y € C, z € B). We would like to show that
Vy, = Uy, holds for all y;, yo € C. Let y1, y2 € C with y; # y2. We
use Lemma 3.4 for Y = {v,z} UBUC and ¢ : Y — X which fixes
all vertices in Y except o(y1) = y2, o(y2) = y1. Clearly o preserves
distances. Then the above equation implies

V=T, T+ v, i+ Y, Wi+ Y pE
y€C\{y1,y2} 2€B

These two equations imply vy, U1 + vy, U2 = Vy, U2 + Vy, U1, and this be-
comes (vy, — Vy,)(T1 — Tz) = 0. Here we have 77 # 72 by 0(y1,¥2) = 2,
SO Vy, = Vy,. This means vy = v is a constant for y € C. In the same
way, i, = i is a constant for z € B. Thus T = AT + vC + ,ué. Use
Lemma 3.4 again to show that A, u, v do not depend on v and z with
O(v,z) =1. Q.E.D.

Fix two vertices v, w with 8(v,w) = 2 and put D’ = D% (v, w). We
have

|5 —w|? = (5, B) + (W, W) — 2(T, W) = ug + up — 2uz = 2(ug — uz).

First take z € D (1 < i < d) and put A = I'y (z)ND:_}, B = Ty ()N
DZ:_T_%, C=T(z)ND}, D=Ty(z)N Dzii Then we have a partition
I'i(z) = AUBUCUD. Clearly we have |A| + |B| = |4] + |C| = ¢, so
that |B| = |C|. By Lemma 3.6, we have

= AT + (A + B) + p;(C + D),

]

W = NT + vi(A+ C) + (B + D).
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Hence
5= @l? = (i — 3)(B = O)? = (vi — ) (IBI? + ICP - 2(B, ©)).

Here we have |B|? = |C|? = |Bluo + |B|(|B| — 1)uz and (B, C) =
|B|?uy. Hence | — w|? = 2(v; — pi)?|B|(uo — uz). Therefore we obtain
(vi — 11:)?|B| = 1 and hence |A| = ¢; —|B| = ¢; — (v; — ;) 2. This means
the size of T';(z) N D:_} depends only on i.

Next take z € D4 and put A = I'1(z) N D4~} B = Ty (z) n D41,
C =Ty(x)nDE_,, D = I'1(z) N D4 Then we can show that |4| =
¢; — (v; — pi)~? in the same way.

Thus I satisfies (H1) and hence I' is 2-homogeneous by Lemma 3.2.

84. Graphs with spin model structure

4.1. An observation

Here we observe that the examples of spin models given in Section
2 can be constructed on distance-regular graphs. Jaeger’s Higman-Sims
model and the Hadamard models are constructed on distance-regular
graphs with the intersection arrays:

0 1 6
0 0 16 ,,
22 21 O
and
0 1 2m 4m—1 4m
0 0 0 0 0
dm 4dm—1 2m 1 0

The Potts models with n spins is constructed on a complete graph K,,
which is a distance-regular graph of diameter d = 1 with the intersection
array

0 1
0 k—1 3, k=n-—1.
k 0
The weights are given by ty = a, t; = 3, where 82+ 7% + /n = 0 and

a=—-373.
The cyclic model with n spins is constructed on the n-cycle C,, which
is a distance-regular graph of diameter d with the intersection array:

N OO
= O =
= O =
[ Y

1
1 when n =2d + 1,
0
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or

when n = 2d.

N OO
—= O
-0 =
_ O
O O N

The weights are given by t; = abi’ (¢=0,...,d), where § is a primitive
n-root of unity if n = 2d+ 1, a primitive 2n-root of unity if n = 2d, and
a = \/ﬁ/(zi;()l 9i2)-

The square model is constructed on the 4-cycle C4 with tg = «,
t1 = a~ 1, t = —a, where « is a non-zero complex number.

Observe that all the above distance-regular graphs are almost bi-
partite. Moreover, as easily observed, each successive three terms t;_1,
t;, t;+1 are distinct (0 < 7 < d) in each of the above spin models except
the square model with o = £1.

Motivated by the above observation, the author obtained the fol-
lowing result [21].

Theorem 4.1. LetT' = (X, E) be a connected graph of diameter
d which has no 3-cycle. Let ty, ..., tq be non-zero complex numbers such
that t1 #t; and t;_o # t; # t,_1 fori =2,...,d. Define a function w
on X X X by w(z,y) = to,y forz,y € X. If S = (X,w) is a spin
model, then I is an almost bipartite distance-regular graph.

This was obtained by “localizing” the star-triangle relation (S3).
This technique of localization was introduced in [19].

4.2. 2-homogeneity

Lemma 4.2. LetT' = (X, E) be a distance-regular graph of diam-
eter d > 1 and valency k, and let to, ... ,tq be non-zero complex numbers
such that t; #t; fori=2,...,d. Assume S = (X,w) is a spin model,
where w is a function on X x X defined by w(z,y) = ta(a,y) forz, y € X.
Then the adjacency matriz A of T’ has an eigenvalue 6 of multiplicity f
with 1 < f <k.

Proof. Let 6y = k,0y,...,04 be the eigenvalues of the adjacency
matrix A of T" and let V; be the eigenspace corresponding to 6;,i =
0,...,d, where Vj is the 1-dimensional subspace of V = C" spanned by
the all 1 vector j. V splits into an orthogonal direct sum:

V=WeVie oV (orthogonal).

On the other hand, let up., b, ¢ € X be the vector defined in Section 2.1,
which is an eigenvector of the weight matrix W of S for the eigenvalue

Vvnuw(b, )7L
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Now fix a vertex b € X. Then the vectors ug., ¢ € X, form a basis
of V. Let V/ be the subspace of V spanned by the vectors up, ¢ € I';(b)
(¢ =0,...,d). Remark that Vj = (j) = V. So V splits into a direct
sum:

V=WeVe --aV]

where we have V; C Vgt for i = 1,...,d. Since up. is an eigenvector of
W for the eigenvalue /nw(b,c)~1, V/ is included in the eigenspace of
W for the eigenvalue \/ﬁti—l, 1=0,...,d. Since t; # t; fori =2,...,d,
the eigenspace of W for the eigenvalue \/nt] ' is included in Vo @ VY.
Now consider the action of W on

Vit=V/e- . eV

Then V{ is the eigenspace of W in Vg' for the eigenvalue /n tl_l.
On the other hand, W is written as

where A; denotes the i-th adjacency matrix of the distance-regular graph
I'(i=0,...,d). Since A; is a polynomial in A, A; = v;(A), W is written
as a polynomial in A:

d
W = Z tz"Ui (A.)
=0

Hence for each eigenvector x of A for the eigenvalue 8; of A, j > 0, we
have

d d
Wx = Z tiv(A)x = Z tvi(6;)x,
1=0

i=0

so x is an eigenvector of W for the eigenvalue Z?:o t;vi(0;). Since
x € Vgb, x must belong to some eigenspace (in V) of W.
Therefore we can conclude that V{ is a sum of some eigenspaces of
A, say:
Vi=Vie---aV,

so that
k=dimV]=fi+-+f,

where f; = dim V;. This implies f; < k (i = 1,...,£). We must show
that 1 < f; < k holds for some i (1 < ¢ < £). If £ = 1 then we have
fi =k and f; > 1 since k > 1 by our assumption d > 1. So we may
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assume £ > 1. If f; > 1 holds for some %, then we have the conclusion. So
we may assume f; = --- = fy = 1. Now it is known that an eigenvalue
0 of a distance-regular graph has multiplicity 1 if and only if § = 4k
[5] Proposition 4.4.8. Hence f; = 1 occurs at most one 4, that is when
0; = —k (remark that 6, # k since 6y = k). This implies £ = 1, a
contradiction. Q.E.D.

Theorem 4.3. Let I' = (X, E) be an almost bipartite distance-
regular graph of diameter d, and let to,t1,...,tq be non-zero complex
numbers such that t1 # t; fori =2,...,d. If S = (X,w) is a spin
model with the weight w defined by w(z,y) = taw,y), *, Yy € X, then T
is 2-homogeneous.

Proof. Tt is obtained from Lemma 4.2 and Proposition 3.3.
Q.E.D.

Corollary 4.4. LetT = (X, E) be a triangle-free connected graph
of diameter d, and let ty,...,t4 be non-zero complex numbers such that
t1 £t and tio F t; £ty fori=2,...,d. If S = (X,w) is a spin
model with the weight w defined by w(x,y) = toz,y), ¢, y € X, then T
is an almost bipartite 2-homogeneous distance-reqular graph.

Proof. 1t is obtained from Theorem 4.1 and Theorem 4.3. Q.E.D.

Remark. The assumption ’triangle-free’ in Corollary 4.4 is essen-
tial. Actually there exists a distance-regular graph I' (with triangles)
such that I' affords a spin model structure with weights tg,...,ty sat-
isfying the same conditions but I' is not 2-homogeneous. Also remark
that every connected graph can have a spin model structure with the
weights t; = - - - = t4 (Potts model), and so we need some conditions on
the weights tg, ..., %4 in Corollary 4.4.

§5. Classification of almost bipartite 2-homogeneous graphs

In this section we determine the intersection arrays of almost bipar-
tite 2-homogeneous distance-regular graphs.

Theorem 5.1.  Let T' be an almost bipartite 2-homogeneous dis-
tance-reqular graph of diameter d > 0 and valency k. Then I has one
of the following intersection arrays:

0 1
(1) 0 k—1,, k>0,
k 0
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0 1 k
@2 {0 0 03, k>1,
{k k—1 0
3) g (1) iy S k=P 43y 40,
E k—1 0 c=v(y+1),v>0,
0 1 k-1 k
4 {0 o 0 0y, k>1,
k k-1 1 0
0 1 2 47—1 4’y
5) 0 0 0 , 7>0,
4y 4y—-1 2y
(6) 8 (1) 8 koc kolg k=70 +37+1),
k k=1 k—c ¢ 1 o e=1tr+1), >0,
0 1 1 2
7 {0 0 0 0p, d>1,
2 1 10
0 1 11
® {0 0 0 13, d>1,
2 1 10
0 1 2 3 . k=1 k
9 {0 0 0 0 - 0 09y, k=d,
k k—1 k=2 k=3 -~ 1 0
o 1 2 3 . d-1 d
(10) 0 0 0 0 -+ 0 d+1% d>1
2d+1 2d 2d—1 2d—2 --- d+2 0

Remark. The intersection arrays in the above list are realized by
the following graphs:

(1) complete graph K11,

(2) complete bipartite graph Ky, g,

(3) antipodal quotient of 5-dimensional hypercube when v =1,

Higman-Sims graph when v = 2, the existence of graphs is unknown

when v > 2,

(4) complement of 2 x (k + 1)-grid,

(5) Hadamard graph of valency k = 4~,

(6) antipodal double cover of (3),

(7) cycle Caq41 of length 2d + 1,

(8) cycle Cqq of length 2d,

(9) d-dimensional hypercube,
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(10) antipodal quotient of (2d + 1)-dimensional hypercube.

Now we prove Theorem 5.1. Let I' = (X, E) be an almost bipartite
2-homogeneous distance-regular graph of diameter d and valency k with
the intersection array:

0 ¢ ¢ -+ cg-1 cg
0 a1 a2 - aq-1 aq
bo b1 b2 T bd—l 0

We have a; =0 (1 =1,...,d—1),¢; =1, bp = k, by = k— 1 and
ag =k —cqg. f k <2o0rd<1, then I is isomorphic to a cycle or a
complete graph and the intersection array of I' becomes (1), (7) or (8).
So in the following we assume k > 2 and d > 1. In particular we have
a1 = 0 and hence I" has no 3-cycle.

By Lemma 3.1 and Lemma 3.2, T satisfies condition (H2), so that
there are constants 1, ...,7vq such that

v = |Tici(u) NT1(z) NT1(y)

holds for all vertices u, z, y € X with 8(u, z) = d(u,y) =i and d(z,y) =
2(@=1,...,d).

Lemma 5.2. (i) c2 > 1,

(i) (k=2)(2—1) = (c2 = 1)(c2 — 2),

(iil) vi(cig1 — 1) = ci(ca — 1), (0<i<d),

(iv) (o =D(w—1) =(ci—1(r2—1), (0<i<d).

Proof. Fix a vertex u in X.

(i) We claim that v; > 0 if ¢; = 1. Pick a vertex w in I';_;(u).
Then w has at least two neighbours z, y in T';(u), since we have b;_; =
k—c_1>k—c¢ =k—-1>1. So we have 9(z,y) = 2 and w €
I'i_1(uw)NT1(z) NT1(y), and hence 7; > 0.

First assume ¢4 = 1. We have 74 > 0 as shown above. Each
vertex v in ['y(u) has at least two distinct neighbours z, y in I'4(u) since
ag =k —cqg = k—12> 2. Then d(z,y) = 2 since I" has no 3-cycle,
and hence z and y has at least one common neighbour z in I'y_;(u) by
~4 > 0. We have 8(v,z) = 2 and z, y are common neighbours of v and
z, so that cg > 1.

Next assume ¢y > 1. Since 1 = ¢; < ¢ < --- < ¢q and ¢g > 1, there
is an integer r such that 1 = ¢ = 2 = -+ = ¢, < ¢r41. Pick a vertex
z in T'yp1(u). Since ¢,41 > 1, z has at least two distinct neighbours z,
y' € T'p(u). Since d(z',y’) = 2 and +, > 0 by the above claim, =’ and y’
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have a common neighbour v in I',_;(u). Then z € T's(v), and z has two
distinct neighbours z’; 3’ in 'y (v). This implies ¢; > 2.

(ii) Fix an edge vw with v € T'1(u) and w € I'y(u). We count
the number N of edges zy with z € I'1(u) NT'1(w) NT2(v) and y €
Ty(v) NT2(u) NT2(w) in two different ways. Since w € I'a(w), there are
precisely ¢z — 1 vertices z € T';(u) NIy (w) with z # v. Fix such a vertex
x. Since z € T'2(v), there are precisely c; — 2 vertices y € I'1(v) N1 (x)
with ¥y # 4, ¥ # w. So we have N = (cz — 1)(cz — 2). On the other
hand, there are precisely k — 2 vertices y € I'zs(u) NT1(v) with y # w.
Fix such a vertex y. Since w, y € I's(u) and (w,y) = 2, w and y have
precisely 2 — 1 common neighbours z in I'1 (u)} with z # v. So we obtain
N = (k= 2)(12 ~ 1).

(iii) Fix an edge vw with v € T';(u) and w € T';41(u). We count
the number N of edges zy with z € I';_;(u) NT'1(v) and y € T';(uw) N
I'1(w) N T'a(v) in two different ways. Since v € I';(u), v has precisely
¢; neighbours x in I';_;(u). Fix such a vertex x. Since w € I's(x), w
has precisely ¢3 — 1 neighbours y in I'y(z) with y # v. Hence we have
N =¢i(c2 — 1). On the other hand, since w € I';11(u), w has precisely
ci+1 — 1 neighbours y in T';(u) with y # v. Fix such a vertex y. Since v,
y € I';(u) and 8(v,y) = 2, v and y have precisely ; common neighbours
z in I';_;(u). So we obtain N = (¢;41 — 1)v;.

(iv) Fix a path zow with z € I';_1(u), v € I';(u), w € Tipi(u),
and count the number of edges zy with € I';_1(u) N T'1(v) N Ty(2)
and y € T;(u) NT1(z) NT1(w) N Ty(v) in two different ways. Since
v € T';(u), v has precisely ¢; — 1 neighbours z in T;_;(u) with z # 2.
Fix such a vertex . Since z, z € I'z(w) and 9(x, z) = 2, x and z have
precisely 72 — 1 common neighbours y in I'y (w) with y # v. So we have
N = (¢;~1)(v2—2). On the other hand, since w € I's(2), w has precisely
¢o — 1 neighbours y in I';(z) with y # v. Fix such a vertex y. Since
v, y € I'j(u) and 8(v,y) = 2, v and y have precisely v; — 1 common
neighbours z in I';_; (u) with & # z. So we obtain N = (¢ — 1)(y; — 1).

Q.ED.

Lemma 5.3. Ifay; >0,
(v) calea —1) = (k— ca — 1),
(vi) k > 2¢q4.

Proof. (v) Since ag > 0, there is an edge vw in I'q(u). We count
the number N of edges zy with x € T'y_1(uv) NI'1(v) and y € T'y(u) N
I (w) NTy(v) in two different ways. Since v € I'g(u), v has precisely
¢g neighbours z in I'y_;(u). Fix such a vertex z. Since z € Iy(w), =
has precisely cg — 1 neighbours y in I'; (w) with y # v, where we have
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y € T'y(u) since there is no edge in I'y_1(u). So we have N = c4(cz — 1).
On the other hand, since w € I'y(u), w has precisely ag — 1 neighbours
y in Ig(u) with y # v. Fix such a vertex y. Since v, y € I'4(u) and
O(v,y) = 2, v and y have precisely 74 common neighbours z in I'y_; (u).
So we obtain N = (ag — 1)yq4 = (k — cq — 1)7a.

(vi) Let vw be an edge in I'g(w). If there is a vertex z in T'y(u) N
Fy_1(v) NTy—1(w), then uv is an edge in I'y_1{x), contradicting ag_1 =
0. Hence I'y(u) NT4—1{v) and I';(uw) N Ty—;(w) are mutually disjoint,
each of which has size ¢q since u € I'g(v) and v € T'y(w). Hence k =
T2 (w)] 2 2¢q. Q.E.D.

To simplify notations, we put
c=c2, Y=n2.

When v = 1, we have ¢ > 1 by Lemma 5.2 (i), and hence ¢ = 2
by Lemma 5.2 (ii). Then v, =1 (: = 1,...,d — 1) by Lemma 5.2 (iv)
and this implies ¢; =¢ (i =1,...,d) by Lemma 5.2 (iii). If ag = 0 then
we have k = ¢4 = d, so that the intersection array becomes of type (9).
If ag > 0 then Lemma 5.3 (v) implies d = (k — d — 1)v4, here we have
k > 2c4 = 2d by Lemma 5.3 (vi). Hence we must have 74 = 1 and
k = 2d + 1 so that the intersection array becomes of type (10).
Now we assume v > 1. By Lemma 5.2 (i), (ii), we have ¢ > 1 and
b= (c=1)(c—2)
v-—1
First we consider the case ag > 0.
When d = 2, Lemma 5.3 (v) becomes

+ 2.

k= C(L__Q +c+ 1’
and hence we have
(c=1)(c—-2) P c(c—1) tetl
v-1 Y
This becomes
c=v(y+1),

and hence
k= (c—1)(c—2)
v-—1
so that the intersection array becomes of type (3) in the case d = 2.

+2=7(+3y+1),
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Assume d > 2. We have 2¢c3 < k by Lemma 5.3 (vi) and by c3 < ¢4.
By Lemma 5.2 (iii), we have
cle—1)
Y

Cc3 = + 1.

So 2¢3 < k implies
2(c(c—l) +1> < (c=1)(c-2) Lo,
Y -1

and this becomes

2(y = De(e—1) <v(c —1)(c— 2).
By Lemma 5.2 (i), we have ¢ — 1 > 0, so the above inequality implies

2(y-1e<(c-2)

and hence

(vy—2)c+2v<0.

This is impossible by our assumption v > 2. Thus the case d > 2 does
not occur.
Next we consider the case ag = 0. Since bg = k, by = k— 1 and
by = k — ¢, we have
(c—1)(c—2) (c—1)(c—2)

bgp = ~———_ 2 42 by = L 4],
0 P + 2, 1 S—1 +

—1(c—2 —)(c—2
b oD =)=
v—1 v-—1
From Lemma 5.2 (iii) with ¢ = 2, we obtain

cc—1)

2 _
==l _Poety
>

and b3 = k — c3 implies

poo (= D=2 ) Foctr_(=nle=v-1)

y-1 ¥ v(y-1)

When d > 3, Lemma 5.2 (iii), (iv) and ¢z = (c? — ¢ + )/ imply

c(c? — 2¢+ 27)
Y+yc—c

Cq 3

and by = k — ¢4 implies
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b (=)= 2)
(y=D(ev+v-c)
When d > 4, Lemma 5.2 (iii), (iv) imply
c* —3c3 4+ c% + 3yc? — 2yc + 42
N A% 2

Cs =

and b5 = k — c5 implies

by = c=Nl-7v-7")

(v =1y +v2—c?)
If d > 5, we have bs > 1, so the above equation implies (noting that the
denominator is positive since v > 1)

(e=Me=v=7") 2 (y = D(y +7* =),
and this becomes
Y(e—1)(2c—=2y—cy) 2 0.
This implies a contradiction since ¢ > 2 and v > 2. Hence we have
d<5.

When d = 5, we have bs = 0, and this implies ¢ = v or ¢ = 42 + 7.
But ¢ = v does not occur by Lemma 5.2 (ii) since ¢ = k — by < k. So
we have ¢ = 42 + ~. Substituting this value of ¢ in the above equations,
we obtain k = y(v?+3y+1), c3 = k—c, c4 = k— 1. So the intersection
array becomes of type (6).

When d = 4, we have by = 0, and this implies ¢ = 2y (¢ = «
is impossible as above). So we obtain k = 4v, c3 = k — 1, so the
intersection array becomes of type (5).

When d = 3, we have bs = 0, and this implies ¢ = v+ 1. So we
obtain ¢ = k — 1, and the intersection array becomes of type (4).

This completes the proof of Theorem 5.1.
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