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Trudinger’s Inequality and Related Nonlinear
Elliptic Equations in Two-Dimension

Takayoshi Ogawa and Takashi Suzuki

§1. Introduction and results

We are concerned with the following nonlinear elliptic equations:

—Au = /\ueuz, z € B,
1) {

u =0, z € 09,

where B = B;(0) C R? is a unit disk in R? and X is a positive parameter.
We consider a family of solutions of (1) satisfying

(2) |lullpee — 00 as A — 0.

The nonlinearity of the equation (1) is the Sobolev critical exponent
in two-dimension. For any domain Q € R?, It is well known that the
Sobolev space Hj () is continuously imbedded in LP(2) for any p < oo
but is false in the case p = oo. Trudinger [18] showed that for any
u € H}(Q) with ||Vu||2 = 1, there are two constants a > 0 and C > 0
such that

3) /Q explau?}de < C|Q).

Later, Moser [7] simplified the proof and improved that (3) is also valid
for a < 4m. Here 47 is the constant of the isoperimetric inequality. The
inequality (3) is also valid for any unbounded domain (Ogawa. [9]). That
is when Q is any domain in R?, we have for all u € H} (),

(@) /n {exp(u?) — 1}d < Cllul3, | Vullz = 1.

(See also Ogawa-Ozawa [10] and Ozawa [12] for further extensions).
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These inequalities (3)—(4) indicates that the order of local singular-
ities of H! functions are allowed as far as exp(u?) is integrable. In other
words e** is the critical order of integrability for H!-functions.

Concerning our problem (1), there are two different approaches. One

is the variational method. When we consider the maximizing problem
of the functional

(5) / exp{au®}dr for u € H}(Q), ||[Vulz=1
Q

on a bounded domain. Then the extremal function (if it is achieved)
becomes a solution of (1). Shaw [14] showed the existence of a positive
solution of (1) for each parameter A > 0 (see also Adimurti [1]). When
the domain is a ball in R®, the maximum can be attained by some
function even when n = 2 and a = 47 (Carleson-Chang [4]).

When the domain is a unit disk, all the positive smooth solution
must be radially symmetric by Gidas-Ni-Nirenberg’s result [5]. There-
fore the Dirichlet problem may be written as the nonlinear ordinary
differential equation:

1
©) U = Uy = /\ueuz, z €[0,1),
u(l)=0, /(0)=0.

By solving (6), we can obtain the details of the properties of the positive
solution of (1), which is the second method. Atkinson-Peletier [2], [3]
applied the shooting method to (6) and proved that the existence of
radially symmetric solution of (1) satisfying

|lu||ge — 00 as A — 0.

Our aim of this paper is to specify more precise behavior of the
family of solutions {(u,A)} as A — 0. We have two results. First one
states a global behavior of the solutions.

Theorem A. Letu be a positive solution of (1) with the blow up
condition (2). That is

l|lull Lo (B) = ©(0) — 00 as A — 0.

Then we have
u(z) > 0asA—0
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for all x € B\ {0}. Moreover we have

(7N lim )\/ ue” dz = 0,
A—0 B

(8) lim A / (¢ — 1)dz =0,
A—0 B

9) | lim [ |Vul|?dz > 4x.
A—-0JB

This theorem says that the solution satisfying (2) must blow-up only
at the origin. The inequality (9) shows the solution concentrates to the
origin with its energy density |Vu|?. The lower bound in (9) arise from
the sharp exponent of the Trudinger inequality (3).

The second result is a microscopic behavior near the origin. When
we rescale the solution by some sequence, then the solution has a limit
function.

Theorem B. . There is a subsequence {(Um,A\m)} of a family of
solutions of (1) with (2) and a scaling sequance {¥,} such that vy, — 0
as Am — 0 which satisfy
) asA,—0

(10) w2 (Ym) — u(ym) — 210g(i——_‘—_—2W

locally uniformly on B\ {0}.

The limit function of (10) is an exact solution of —Av = 2¢”. Re-
mark that since the nonlinearity of our problem is nonhomogeneous, the
usual scaling u — y*u(yx) does not work well. (For other nonlinearity
or the higher dimensional case, see Nagasaki-Suzuki [8] and Itoh [6].)

The property (10) was firstly observed by Carleson-Chang in an
implicit way. Later Struwe [15] obtained the similar result for the non-
compact maximizing sequence for the variational problem (5) for the
case a = 4m. Our result Theorem B is, however, different from theirs,
because in our case, the each factor of the sequence {um, A\, )} satisfies
the equation (1). Moreover even the energy integral might blow up as
A — 0 and therefore we can not obtain a priori estimate of {u,,} from
the Dirichlet integral. This is the crucial difference from the variational
setting.

§2. Proof of Theorem A

We begin with the following lemma.
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Lemma 1. Let u be a positive, radially symmetric smooth solution
of (1). We put r = |z|. Then we have

(11) rPup(r)? + 22r2(e* ™ — 1) = A / (¥ — 1)dz,
27'(' B,

(12) ru,(r) = —2% /Br ue® de,

where B, = {y € R?,|y| < r}.

The first relation (11) is nothing else but the Pohozaev identity ([13])
associated to the equation (1).

Proof. Let u be a radially symmetric smooth solution of (1). Then
u satisfies (6). Mutiplying (6) by ru,(r) and integrating on B,,, we have

To T0 To 2
— / rupueedr — / rufdr =A / ue r2u,dr.
0 0 0

Integrating by parts, we obtain

1 A 2 A 2
_irgur(ro)2 = 57‘%@“ (ro) _ 5 o e d,

which implies (11). The second relation (12) is a direct consequence of
integration of the equation (6) on B,. Q.E.D.

Proof of Theorem A. Combining (11) and (12) in Lemma 1 with
choosing r = 1, we get

(13) %(,\ /B ue” dz)? = X /B (e - 1)dz.

For any k > 0, we put

2
1—e™™®
Cp = max
u>k u

Then we see C, < 1/k — 0 as k — oo. From (13)

1 2 2
—()\/ ue* dx)2 = /\/ (e*’ —1)dz + /\/ (e* —1)dz
4r B u>k u<k

< )\Ck/ ue* dz + A|B|{e*" — 1}.
B
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Accordingly we have

Hr_n—()\/ ue”zdw) < 4nCy,.
)\-—-)0 B

Since k is arbitrary, we can take k so large to obtain

(14) lim ()\/ ue“zdz) =0,
B

A—0
which shows (7) and therefore (8) by (13). Using (12) again, we have
(15) rur -0 as A— 0 uniformly on B.

This proves that u vanishes except the origin, since

u(z) = — /l1 udr

z|

1/t
< E/ ru,.(r)dr — 0.
Finally, if

lim | |Vul|?dz < 4,
A—0JB

then there is a subsequence {(um,\m)} such that limg, o [|[Vum|2 =
41 — 6§ for some 6 > 0. By virtue of the sharp version of Trudinger’s
inequality (3), we see

/ exp{au? }dz < C|Q|.
Q

with & = 1+&. Since u € LP(B) for any 2 < p < oo, we have )\mume"fn €
L'*+¢/2_ By the standard elliptic regularity theorem, ||Atup,||p1te2z < C
and

lumllLe(sy < C (independent of m),

which contradicts our assumption (2). Therefore we obtain (9). Q.E.D.
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§3. Proof of Theorem B

—t/2

By the transform r = e and u(r) = w(t), we rewrite the equation

(6) into the following:
—w'(t) = gw(t)ew(t)z_t on [0, 0),
(16) w(0) =0,
w'(t)et’? -0  (t—0).

For some scaling parameter 7 such that 7 — oo, we define the rescaling
function v(t) as
v(t) = w(t + 1) — wi(7).

Putting w.(t) = w(t + 7), we see that v satisfies

(17.a) — 0" (t) = k(w,(t))e*®~t — p(w,),
(17.b) v(0) = 0,
(17.c) lim M =0,

t—oo wr(t)
where we have put
k(’w-,-) — _’é\_wr(t)Zew(T)z_'r,
plwr (£)) = 20 (t)2.
We first show that;

Lemma 2. Let T > 0 satisfies w(t+7) =2 1 as A — 0 for all
t € [—6,00) where 0 < § < 7. Then we have ‘

(18) p(w-(t)) — 0 uniformly on [—7, ),
(19) w. (8)° — 1 locally uniformi [—8, 00)
w(r)? y uniformly on [—8§, 0o
as A — 0.
Proof. Since from (15), we have for v = e~7/2,
(20) p(we(8) = 20, (0 = 5 (17)?ur (yr)? = 0

uniformly for r € [0,1/~] and therefore ¢ € [—7, 00). This shows (18).
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To show (19), we use

wa(t)? = w(r)? +2 /0 wa (). (s)ds.

We only show the case when t > 0. The other case is similar. Since
w,(t) is increasing in ¢,

w(t)? 2
=z~

Wmlb$mmm

“ w, ()2 (s
<1z [ L

By (20), we can choose A small so that |w].(s)| < . Then since w,(s) >
L,

1< x@y =2 oo /tX(s)ds.
0

w(r)? =
This yields
1< X(t) < et for t € [0, 0).

In particular,
X(t)—1 uniformly fort€[0,T] asA—0

for some fixed T. Q.E.D.

Proof of Theorem B. In the following, we shall omit the subscrip-
tions for each subsequences.
‘We split the proof into two cases.

Case 1.
max Aw(t)zew(t)z—t — 00 (A—=0).

Since w(0) = 0, we can choose the scaling sequence {7} as
(21) Aw(r)2e? (=T = 1
for the family of solutions {(u,)}. It is easy to see

T — 00,

w(t) 00 asA—0.
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Therefore we may assume w,(t) > w(r) > 1 for t > —6 and from Lemma
2,

(22) wr(t)? — 0 uniformly on [—T, 00),
(23) w()” — 1 locally uniformly on [—§, o)
w(7_)2 y y b .

Next we claim that for any fixed T' > 0,
vlleeo,ry < C
and there is a limit function wvg(t) such that
v(t) — vp(t) locally uniformly on [0, c0).

For that purpose, we set g(r) = v(t) with r = e~*2. Then the equation
(17) can be written as follows:

(24) —Ag = 4k(u(yr))e?™ — plu(yr))r~2  on B,
g=0o0ndB,

where B, = {y € R?, |y| < a} and

Fu(m) = Ju(yr)?e @,
pu(yr)) = 2y°r?u(yr).

Since from (21), (22) and (23), we have for 7 € [g,1 + §],

(25) |A(u)r™?| < C:—'z— -0
and

k __)‘ 2_w(r)?—r _ w‘l'(t)2 1
(26) k(ulyr) = §wT(t) e = 2w(t)? 2

as A — 0. Therefore by the standard elliptic estimate, we have for fixed
e >0,

(27) lg-(1)| £ C,
(28) llgll L (B, 45\B) < C-
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According to (24), (25) and (27),
(29)
E(w)ed|l L1 (85 =/ k(u)eldz
B\B

€

=/ ——Aqu+/ p(uw)r—2dx
B\B. B\B.

1 1
= 27r/ —(rgrr + ¢ )dr + 47r/ (yr)2u (yr)r—tdr

< —2mgr(1) + Cn? /1 r~tdr
<C—-Cn?loge < C"E
Hence by (24), (25), (26) with (29), g satisfies
—Aq = 4k(u)e? — pr=2 < 3¢t

with
13?1 (B\B.) < C independent of A.

Then the nonlinear Harnack principle (Suzuki [16], [17]) implies the
blow-up points of q in B\ B, is finite. However ¢ is radially symmetric,
the blow-up points of ¢ must be empty set. That is

lim o )
A_%”Q“L (B\B,) < 00

This proves
llvllzeo,ry < C  for small A.

By this a priori estimate with the equation (17) and Lemma 2, we obtain
by Ascori-Arzela theorem, that there is a smooth function vy such that

v(t) — vo(t) locally uniformly on [0, c0)
with
1
(30) —y(t) = e,

We may solve (30) and conclude that

)-

o(t) = o) — uln)? — wo(t) = 2Nog(s =) = 2log( +2lw|2

This proves the theorem in the case 1.
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Case 2.

(31) max Aw(t)2e*@ "t <00 (A—0).
This case is rather simple. We choose {7} as
(32) tlirn w(t)? — w(r)? = 2log2.
—00

This choice of 7 assures us that

T — 00,

w(T)? = 00
and a priori estimate
(33) 0<v(t) £2log2.
By the assumption (31), we can choose a subsequence such that
(34) /\w(‘r)zew(")z"" —2p asA—0
for some constant 4 > 0. Lemma 2 with (33) and (34) implies that

v(t) — vo(t) locally uniformly on [0, c0)
with
~0§(t) = GO,
1p(0) = 0.

In fact, by the boundary condition at ¢ — oo, we find that =1 and

vo(t) = 2log( ).

1+et

This proves our conclusion of Theorem B. Q.E.D.
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