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Trudinger's Inequality and Related Nonlinear 
Elliptic Equations in Two-Dimension 

Taka.yoshi Ogawa and Takashi Suzuki 

§1. Introduction and results 

(1) 

We are concerned with the following nonlinear elliptic equations: 

{
-au = >..ueu2

, 

u=O, 

xEB, 

xE an, 

where B = B1 (0) C R2 is a unit disk in R2 and..\ is a positive parameter. 
We consider a family of solutions of (1) satisfying 

(2) llullvx, - 00 as A - 0. 

The nonlinearity of the equation (1) is the Sobolev critical exponent 
in two-dimension. For any domain n E R2 , It is well known that the 
Sobolev space HJ(n) is continuously imbedded in V'(O) for any p < oo 
but is false in the case p = oo. Trudinger [18] showed that for any 
u E HJ(O) with llv'ull2 = 1, there are two constants a> 0 and C > 0 
such that 

(3) In exp{au2 }dx :$ CIOI. 

Later, Moser [7] simplified the proof and improved that (3) is also valid 
for a :$ 41r. Here 41r is the constant of the isoperimetric inequality. The 
inequality (3) is also valid for any unbounded domain (Ogawa [9]). That 
is when O is any domain in R2 , we have for all u E HJ(O), 

(4) 

(See also Ogawa-Ozawa (10] and Ozawa (12] for further extensions). 

Received December 28, 1992. 



284 T. Ogawa and T. Suzuki 

These inequalities (3)-(4) indicates that the order of local singular­
ities of H 1 functions are allowed as far as exp(u2) is integrable. In other 

words eu2 is the critical order of integrability for H 1-functions. 
Concerning our problem (1), there are two different approaches. One 

is the variational method. When we consider the maximizing problem 
of the functional 

(5) lo exp{au2}dx for u E HJ(n), llv7ull2 = 1 

on a bounded domain. Then the extremal function (if it is achieved) 
becomes a solution of (1). Shaw [14] showed the existence of a positive 
solution of (1) for each parameter .X > 0 (see also Adimurti [1]). When 
the domain is a ball in ~n, the maximum can be attained by some 
function even when n = 2 and a= 41r (Carleson-Chang [4]). 

When the domain is a unit disk, all the positive smooth solution 
must be radially symmetric by Gidas-Ni-Nirenberg's result [5]. There­
fore the Dirichlet problem may be written as the nonlinear ordinary 
differential equation: 

(6) { 
- Urr - !Ur= .Xueu2

, XE [0, 1), 

u(l) = O,r u'(0) = 0. 

By solving (6), we can obtain the details of the properties of the positive 
solution of (1), which is the second method. Atkinson-Peletier [2], [3] 
applied the shooting method to (6) and proved that the existence of 
radially symmetric solution of ( 1) satisfying 

llullu'° - oo as .X - 0. 

Our aim of this paper is to specify more precise behavior of the 
family of solutions { ( u, .X)} as .X - 0. We have two results. First one 
states a global behavior of the solutions. 

Theorem A. Let u be a positive solution of (1) with the blow up 
condition ( 2) . That is 

llullL00 (B) = u(0) - oo as .X - 0. 

Then we have 
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for all x EB\ {O}. Moreover we have 

(7) 

(8) 

(9) 

lim A f ueu2 dx = O, 
.X--+O }B 

lim A f (eu2 
- l)dx = 0, 

.\--+O jB 

lim r 1Vul2dx 2:: 471". 
>.-.o jB 

This theorem says that the solution satisfying (2) must blow-up only 
at the origin. The inequality (9) shows the solution concentrates to the 
origin with its energy density 1Vul2 • The lower bound in (9) arise from 
the sharp exponent of the Trudinger inequality (3). 

The second result is a microscopic behavior near the origin. When 
we rescale the solution by some sequence, then the solution has a limit 
function. 

Theorem B. There is a subsequence {(um, Am)} of a family of 
solutions of (1) with (2) and a scaling sequance hm} such that 'Ym - 0 
as Am - 0 which satisfy 

(10) 
2 

u2 (,mx) - u2 (,m) - 2log( 1 + lxl2 ) as Am - 0 

locally uniformly on B \ { 0}. 

The limit function of (10) is an exact solution of -~v = 2ev. Re­
mark that since the nonlinearity of our problem is nonhomogeneous, the 
usual scaling u - ,"u( ,x) does not work well. (For other nonlinearity 
or the higher dimensional case, see Nagasaki-Suzuki [8] and Itoh [6].) 

The property (10) was firstly observed by Carleson-Chang in an 
implicit way. Later Struwe [15] obtained the similar result for the non­
compact maximizing sequence for the variational problem (5) for the 
case a= 41r. Our result Theorem B is, however, different from theirs, 
because in our case, the each factor of the sequence { Um, Am)} satisfies 
the equation (1). Moreover even the energy integral might blow up as 
A - 0 and therefore we can not obtain a priori estimate of {Um} from 
the Dirichlet integral. This is the crucial difference from the variational 
setting. 

§2. Proof of Theorem A 

We begin with the following lemma. 
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Lemma 1. Let u be a positive, mdially symmetric smooth solution 
of (1). We put r = lxl- Then we have 

(11) r2ur(r)2 + 2.Xr2(eu2(r) - 1) = 2~ lr (eu2 - l)dx, 

(12) .X 1 2 rur(r) = -- ueu dx, 
271' Br 

where Br= {y E IR.2 , IYI < r }. 

The first relation (11) is nothing else but the Pohozaev identity ([13]) 
associated to the equation (1). 

Proof. Let u be a radially symmetric smooth solution of (1). Then 
u satisfies (6). Mutiplying (6) by rur(r) and integrating on Bro, we have 

Integrating by parts, we obtain 

l .X 2( ) .X 1 2 --r2u (r )2 = -r2eu ro - - eu dx 
2 O r O 2 0 271' ' 

Br0 

which implies (11). The second relation (12) is a direct consequence of 
integration of the equation (6) on Br. Q.E.D. 

Proof of Theorem A. Combining (11) and (12) in Lemma 1 with 
choosing r = 1, we get 

(13) _!_(.X { ueu2 dx) 2 = .X { (eu2 - l)dx. 
471' }B jB 

For any k > O, we put 

2 1- e-u 
Ck=max--­

u?_k U 

Then we see Ck s ljk-+ 0 ask-+ oo. From (13) 

4
1 (.X { ueu2 dx) 2 = .xJ (eu2 - l)dx + .xJ (eu2 - l)dx 
71' jB u?_k u<k 

s .xck l ueu2dx+.XIBl{ek2 -1}. 
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Accordingly we have 

Since k is arbitrary, we can take k so large to obtain 

(14) lim(>. f ueu2 dx)=0, 
>.----.o jB 

which shows (7) and therefore (8) by (13). Using (12) again, we have 

(15) rur ---. 0 as >. ---. 0 uniformly on B. 

This proves that u vanishes except the origin, since 

Finally, if 

u(x) = -11 
urdr 

lxl 

111 ::; - rur(r)dr---. 0. 
c c 

then there is a subsequence {(um,>-m)} such that limm----.00 ll'vumll~ = 
4n - 8 for some 8 > 0. By virtue of the sharp version of Trudinger's 
inequality (3), we see 

l exp{au;Jdx::; CIOI. 

with a= l+c. Since u E LP(B) for any 2::; p < oo, we have AmUmeu:'n E 
£Hc/2. By the standard elliptic regularity theorem, ll~umllu+•/2 ::; C 
and 

llumll£00 (B) ::; C (independent of m), 

which contradicts our assumption (2). Therefore we obtain (9). Q.E.D. 
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§3. Proof of Theorem B 

By the transform r = e-t/2 and u(r) = w(t), we rewrite the equation 
(6) into the following: 

(16) {
- w"(t) = ~w(t)ew(t) 2 -t 

w(O) = 0, 

w'(t)et/2 --+ 0 (t--+ 0). 

on [0,oo), 

For some scaling parameter T such that T--+ oo, we define the rescaling 
function v(t) as 

v(t) = w2 (t + T) - w2 (T). 

Putting w,,.(t) = w(t + T), we see that v satisfies 

(17.a) 

(17.b) 

(17.c) 

- v"(t) = k(w,,.(t))ev(t)-t - p(w,,.), 

v(O) = 0, 

. v'(t)e(t+-r)/2 

hm ( () ) = 0, 
t->oo w,,. t 

where we have put 

k(w,,.) = ~w,,.(t) 2ew(-r) 2 --r, 

p(w,,.(t)) = 2w~(t)2. 

We first show that; 

Lemma 2. Let T > 0 satisfies w(t + T) > 1 as .X --+ 0 for all 
t E [-8, oo) where O < 8 < T. Then we have 

(18) 

(19) 

as .X--+ 0. 

p(w,,.(t))--+ 0 uniformly on [-T, oo), 

w,,.(t)2 --+ 1 locally uniformly on [-8, oo) 
w(T)2 

Proof. Since from (15), we have for "Y = e--r/2 , 

uniformly for r E [0, lh] and therefore t E [-T, oo). This shows (18). 
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To show (19), we use 

We only show the case when t ~ 0. The other case is similar. Since 
w7 (t) is increasing int, 

Wr(t) 2 2 t I 

1:::; w(r)2 = 1 + w(r)2 l0 w7 (s)wr(s)ds 

< 1 + 2 t wr(s)2 w~(s) ds. 
- lo w(r)2 wr(s) 

By (20), we can choose A small so that lw~(s)I < £. Then since w7 (s) > 
1, 

_ Wr(t)2 t 
1:::; X(t) = w(r)2 :::; 1 + 2£ lo X(s)ds. 

This yields 
1 :::; X(t) :::; e2et fort E (0, oo). 

In particular, 

X(t) -+ 1 uniformly fort E (0, T] as .X-+ 0 

for some fixed T. Q.E.D. 

Proof of Theorem B. In the following, we shall omit the subscrip­
tions for each subsequences. 

We split the proof into two cases. 

Case 1. 

(.X - 0). 

Since w(0) = 0, we can choose the scaling sequence {r} as 

(21) 

for the family of solutions {(u, .X)}. It is easy to see 

T-+OO, 

w(t) -+ oo as .X -+ 0. 
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Therefore we may assume wr(t) 2: w(r) > 1 fort> -8 and from Lemma 
2, 

(22) 

(23) 

wr(t) 2 ---+ 0 uniformly on [-r,oo), 

wr(t)2 
---+ 1 locally uniformly on [-8, oo). 

w(r) 2 

Next we claim that for any fixed T > 0, 

llvllL00 (0,T) ~ C 

and there is a limit function v0 (t) such that 

v(t) ---+ v0 (t) locally uniformly on [O, oo ). 

For that purpose, we set q(r) = v(t) with r = e-t/z_ Then the equation 
(17) can be written as follows: 

(24) {
-liq= 4k(u(,r))eq(r) - p(u(,r))r-2 

q = 0 on 8B, 

on B,-1, 

where Ba= {y E IR.2 , IYI < a} and 

k(u(,r)) = %,y2u(,r)2eu(,)2, 

p(u(,r)) = 2,y2r2u(,r)2. 

Since from (21), (22) and (23), we have for r E [c, 1 + 8], 

(25) 

and 

(26) - A ( )2 W-r(t)2 1 
k(u(,r) = -wr(t)2ew r -r = -- ---+ -

2 2w(r)2 2 

as >. ---+ 0. Therefore by the standard elliptic estimate, we have for fixed 
€ > 0, 

(27) 

(28) 
lqr(l)I ~ C, 

llq\\L00 (Bi+6 \B) ~ C. 
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According to (24), (25) and (27), 

(29) 

llk(u)eqllLl(B\B.) = r k(u)eqdx 
jB\B. 

= f -llqdx + f p(u)r-2dx 
jB\B. jB\B. 

= 211" 11 
-(rqrr + qr)dr + 411" 11 

('Yr)2u;('Yr)r- 1dr 

S -27rqr(l) + Cr,211 
r-1dr 

S C - Cr,2 log c S C. 

Hence by (24), (25), (26) with (29), q satisfies 

-llq = 4k(u)eq - pr-2 S 3eq 

with 
ll3eqllu(B\B.) S C independent of>.. 

Then the nonlinear Harnack principle (Suzuki [16], [17]) implies the 
blow-up points of q in B \ Be is finite. However q is radially symmetric, 
the blow-up points of q must be empty set. That is 

This proves 
llvllLoo(o,T) SC for small A. 

By this a priori estimate with the equation (17) and Lemma 2, we obtain 
by Ascori-Arzela theorem, that there is a smooth function v0 such that 

v(t) - v0 (t) locally uniformly on [0, oo) 

with 

(30) 

We may solve (30) and conclude that 

This proves the theorem in the case 1. 
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Case 2. 

(31) (>.--+ 0). 

This cruse is rather simple. We choose { r} rus 

(32) lim w(t) 2 - w(r) 2 = 2log2. 
t-+oo 

This choice of r russures us that 

and a priori estimate 

(33) 

T--+ oo, 

w(r)2 --+ oo 

0 ~ v(t) ~ 2log2. 

By the russumption (31), we can choose a subsequence such that 

(34) 

for some constantµ> 0. Lemma 2 with (33) and (34) implies that 

v(t)--+ v0(t) locally uniformly on [O, oo) 

with 

In fact, by the boundary condition at t--+ oo, we find thatµ= l and 

2 
vo(t) = 2 log( 1 + e-t ). 

This proves our conclusion of Theorem B. Q.E.D. 
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