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§0. Introduction 

This is a survey paper on differential systems associated with simple 
graded Lie algebras. By a differential system (M, D), we mean a pfaf
fian system D ( or a distribution in Chevalley's sense) on a manifold M, 
that is, D is a subbundle of the tangent bundle T(M) of M. Our pri
mary subject will be the Lie algebra (sheaf) A(M, D) of all infinitesimal 
automorphisms of (M, D). 

Let 9 be a simple Lie algebra over the field IR of real numbers. A 
gradation {9p}pEZ of 9 is a direct decomposition 9 = EBpEZ f!p such that 

for p, q E Z. 

Let 9 = EBpEZ flp be a simple graded Lie algebra over IR satisfying flp = 
[9p+l, fl-1] for p < -1. We denote by G the adjoint group of 9 and let 
G' be the normalizer of 91 = ffip::C:o 9p in G; 

G' = { a E GI a(9') = 91 }. 

We consider the homogeneous space Mg = G / G', which is a real or 
complex manifold (R-space) depending on whether the complexification 
<Cg of 9 is simple or 9 is complex simple (see Proposition 3.3 in §3.2 and 
§4.1). By identifying 9 with the Lie algebra of left invariant vector fields 
on G, the G'-invariant subspace f- 1 = 9-l E9 91 induces a G-invariant 
differential system Dg on Mg, which is a holomorphic differential system 
when 9 is complex simple. (Mg, Dg) is called the standard differential 
system of type 9 = EBpEZ flp (§4.1). • 
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The main purpose of this article is to give an overview of the basic 
materials both on the geometry of differential systems and on the struc
ture of simple graded Lie algebras over K = IR or C, which culminates 
to show the following (Corollary 5.4): 

The Lie algebra A(M9 ,D9 ) (or more precisely, each stalk Ax(M9 , 

D9 ) of the Lie algebra sheaf A(M9 , D9 )) is isomorphic with g, except 
when (M9 , D9 ) is locally isomorphic with the canonical ( or contact) sys
tem on a real or complex jet space. 

For the precise statement, see Corollary 5.4 in §5.2. 

Historically E. Cartan, in the course of the classification of simple Lie 
algebras over C, indicated some of simple Lie algebras of exceptional type 
as the Lie algebras of the invariance groups of certain pfaffian systems 
([Cl], [C2]), (thus exihibiting the existence of simple Lie algebras of 
these types). These discoveries seem to be forgotten during the course 
of the modern development of the structure theory of semisimple Lie 
algebras or of the Lie group theory ( cf. Introduction of [He]). 

On the other hand, after E. Cartan, the equivalence problems of dif
ferential sytems, or more generally of geometric structures subordinate 
to differential systems were investigated and developed by N. Tanaka in 
[Tl], [T2], [T3] and [T4]. Utilizing his theory and the structure theory 
of simple Lie algebras over IR and C, we shall show the above result, 
which also reestablishes Cartan's discoveries cited above (see examples 
in §1.3 and §5.3). 

Now let us proceed to the description of the contents of this paper. 
In §§1 and 2, we shall review the Tanaka theory of regular differential 
systems. He introduced the graded algebras m(x) = EBp<O gp(x) of a 
regular differential system (M, D) at each x E M as the first invariant 
for the equivalence of differential systems, which are nilpotent graded 
Lie algebras satisfying g_ 1(x) = D(x) and gp(x) = [9p+i(x),g_ 1 (x)] for 
p < -1 (see §1.2 for the definition); Let m = EBp<O gP be a funda
mental graded algebra, that is, a nilpotent graded Lie algebra satisfy
ing gp = [9p+ 1 , g_ i] for p < -1. Then ( M, D) is called of type m, if 
m(x) is isomorphic with m at each x E M. Moreover, given a funda
mental graded algebra m, we can construct a model differential system 
(M(m), Dm) of type m group theoretically, which is called the standard 
differential system of type m (§1.2). Here we note that, when m is the 
negative part of a simple graded Lie algebra, (M(m), Dm) is naturally 
identified with an open dense submanifold of (M9 , D 9 ) (see §4.1). 

For a fundamental graded algebra m = ffip<O gp, Tanaka [T2] in-
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troduced the notion of the algebraic prolongation g(m) of m; g(m) = 
EBpEZ gp(m) is a graded Lie algebra satisfying the following conditions: 

(1) gp(m) = gP for p < 0. 

(2) For k ~ 0, if X E gk(m) and [X, m] = {0}, then X = 0. 

(3) g(m) is maximum among graded algebras satisfying conditions 
(1) and (2) above. 

Moreover, among the graded Lie algebra g = EBpEZ gp satisfying con
ditions (1) and (2) above, g(m) is characterized by the vanishing of 
the first cohomology groups HP• 1(m,g) for p ~ 0. Here Hq(m,g) = 
ffipEZHP,q(m,g) is the Lie algebra cohomology associated with the rep
resentation ad: m--+ g[(g), which is called the generalized Spencer coho
mology of the graded Lie algebra g = EBpEZ gp (§2.3). The prolongation 
g(m) plays a fundamental role in the equivalence problems of regular 
differential systems of type m. Especially g(m) describes the structure 
of the Lie algebra A(M(m), Dm) of all infinitesimal automorphisms of 
the standard differential system (M(m), Dm) of type m. In particular 
A(M(m), Dm) is isomorphic with g(m) when g(m) is finite dimensional. 
We shall review these facts in §§1 and 2 following [T2] and also discuss 
the Hilbert-Cartan equation as an example (§1.3). 

With these preparations, we shall be concerned with the following 
question: When does g(m) become finite dimensional and simple? The 
answer to this question (Theorems 5.2 and 5.3) gives us the result stated 
above. In order to answer this question, we first classify, for a simple 
Lie algebra g over K = JR or C, the gradations {gp}pEZ of g satisfying 
gP = [gp+l, g_1] for p < -l, which turns out to be equivalent to the 
classification of parabolic subalgebras g' = ffip~O gp of g. This allows us 

to describe the gradation {gp }pEZ of g in terms of the root ( or restricted 
root) space decomposition of g ( cf. [K-A]) and to apply the method of 
Kostant [K] to compute HP• 1(m,g) for p ~ 0, which is carried out in 
§5.2. Namely, for a complex simple Lie algebra g, let us fix a Cartan 
subalgebra fJ of g and a simple root system .D. = { a 1 , ... , a£} of the root 
system <I> relative to fJ. Take any non-empty subset .D.1 of .D. and put 

£ 

<I>t = {a= L ni(a) ai E <1>+ I L ni(a) = k} for k ~ 0. 
i=l 

Then we obtain a gradation {gp}pEZ of g satisfying gp = [gp+1,g-1] for 
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p < - l by putting 

9o =~EB EB (9a EB 9-a), 
aE1>ci 

9k = EB 9m 9-k = EB 9-a (k > 0), 

where 9a denotes the root space corresponding to a E <I>. We denote 
the simple graded Lie algebra g = E0pEZ gP obtained from A 1 in this 

manner by (Xt, A 1 ), when g is a simple Lie algebra of type Xt. Here Xt 
stands for the Dynkin diagram of g representing A and A 1 is a subset 
of vertices of Xt. Then every complex graded Lie algebra g = E0pEZ gP 

satisfying 9p = [9p+1,9-1] for p < -l is conjugate to (Xt,A1) for some 
A 1 C A (Theorem 3.12). In the real case, we can utilize the Satake 
diagram to describe the gradation of g (see §3.4). 

Now we can state one of the main results of this paper 

Theorem 5.21• Let g = E0pEZ gP be a simple graded Lie algebra 

over C such that gP = [9p+l, g_i] for p < -1. Then g = ffipEZ gP is the 
prolongation of m = ffip<O gP except for the following three cases. 

(1) g=g-1EB9oEB91-

(2) g = 9-2 EB 9-1 EB go EB 91 EB 92 is a complex contact gradation, 
that is, dimg_2 = 1. 

(3) g = E0pEZ9P is isomorphic with (At,{a 1 ,ai}) (1 < i <£)or 
(Ct, {a1, ae} ). 

We shall obtain also the real version of this theorem (Theorem 5.3). 

In §4, we shall discuss the standard differential system (Mg, Dg) of 
type g = E0pEZ gp- First we shall consider the contact gradation of 
g and show that every complex simple Lie algebra other than s[(2, C) 
admits a unique complex contact gradation up to conjugacy. We dis
cuss the unified description of the standard contact manifolds (Jg, Cg) 
associated with this contact gradation via the adjoint representation of 
Int(g), which were originally found by Boothby [Bo] as compact simply 
connected homogeneous complex contact manifolds. Moreover we shall 
reproduce the explicit matrix description, due to Takeuchi [Tkl], of the 
root space decompositions of simple Lie algebras over C of the classi
cal type, which gives us explicit pictures of Mg in these cases. With 
the aid of this description, we shall discuss those standard differential 
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systems (M9 , D9 ) which are isomorphic with the canonical systems on 
Grassmann bundles (geometric jet spaces). These are obviously excep
tions for the assertion of our main result stated at the beginning of 
this introduction. More precisely we shall show that the standard dif
ferential system (M9 ,D9 ) of types (Ac,{a1,ai+1}) and (Cc,{a1,ac}) 
are isomorphic with the canonical system (J(CPc,i),C) on the Grass
mann bundle J(CPc,i) over the complex projective space c,pc, consist
ing of i-dimensional contact elements to c,pc, and the canonical system 
(L(CP2£-l ), E) on the Lagrange-Grassmann bundle L(CP2£-l) over the 
odd dimensional (contact) projective space CP2£-l respectively. 

In §5, we shall first review the harmonic theory of Kostant [K] for 
the Lie algebra cohomology and apply his method to compute HP, 1 ( m, g) 
and HP, 2 (m, g) for p ~ 0, which gives us the main results (Theorems 5.2, 
5.3 and Corollary 5.4) of this article. Here we include the computation 
of HP• 2 (m, g) for p ~ 0, which is important to know the fundamental in
variants of the normal Cartan connection, constructed by Tanaka [T4], 
for the geometric structures associated with a simple graded Lie algebra 
g = EB pEZ gP such that g is the prolongation of ( m, g0 ). Especially, by 
these computations combined with Theorem of Tanaka [T4], we can find 
many examples of regular differential systems (M, D) of type m with no 
local invariants, whose Lie algebra A(M, D) of all infinitesimal auto
morphisms are finite dimensional and simple. Finally in §5.4, we shall 
discuss the reducible primitive actions of finite dimensional Lie groups, 
following [Go], [K-N, I and II] and [Gu], and characterize the standard 
differential systems (M9 , D9 ) of type g = EBpEZ gp whose isotropy sub

algebra g' are maximal parabolic, as homogeneous differential systems 
which have nonlinear reducible primitive actions of Lie groups ( cf. [01], 
[Go]). 

The main results of this paper (Theorems 5.2, 5.3 and Corollary 5.4) 
were obtained by the author around 1985 (unpublished) by a different 
method based on the finite dimensionality criterion of the prolongation 
g(m) (Corollary 2 to Theorem 11.1 of (T2]) due to Tanaka. The present 
cohomological method with the powerful theorem of Kostant has the 
advantage to produce the result for the second cohomology HP, 2 (m, g) 
at the same time. 

This article is based on the lectures given at University of Minnesota 
in 1990-1991. We are grateful to the participants of these lectures, 
especially to Professors Jack F. Conn and Leon Green for their interests 
to this work, and to Professor Peter Olver for bringing the Hilbert
Cartan equation to our attention. 
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The author wishes to express his gratitude to the referee for many 
helpful comments which resulted in various improvements of the presen
tation of this article. 

§1. Symbol algebras of (M, D) 

1.1. Regular differential systems 

By a differential system (M, D), we mean a subbundle D of the 
tangent bundle T(M) of a manifold M of dimension n. Locally D is 
defined by 1-forms W1, ; .. , Wn-r such that W1 A··· A Wn-r-:/= 0 at each 
point, where r is the rank of D; 

D = { W1 = · · · = Wn-r = 0 }. 

For two differential systems (M, D) and (M, D), a diffeomorphism 

¢ of M onto M is called an isomorphism of (M, D) onto (M, D) if the 

differential map ¢* of ¢ sends D onto b. Our subject will be the Lie 
algebra A(M, D) of infinitesimal automorphisms of (M, D). For a vector 
field X on M, X belongs to A(M, D) if and only if 

Lxwi = 0 (mod w1, ... ,wn-r) 

or equivalently, if and only if 

[X,'D]c'D, 

for i = 1, ... , n - r, 

where 1) = r(D) denotes the space of sections of D. 

By the Frobenius theorem, we know that D is completely integrable 
if and only if 

dwi = 0 (mod w1, ... , Wn-r) 

or equivalently, if and only if 

[D,'D]c'D. 

for i = 1, ... , n - r, 

When Dis completely integrable, it is easily seen that A(M, D) is infinite 
dimensional. 

Thus, for a non-integrable differential system D, we are led to con
sider the derived system 8D of D, which is defined, in terms of sections, 
by 

81) = 1) + [D, 'D]. 



Differential Systems Associated with Simple Graded Lie Algebras 419 

In general 8D is obtained as a subsheaf of the tangent sheaf of M (for 
the precise argument, see [T2] or [Yl]). Moreover higher derived systems 
ak D are usually defined successively by 

where we put a0 D = D for convention. 
On the other hand we define the k-th weak derived system a(k) D of 

D inductively by 

where a(o) D = D and a(k)v denotes the space of sections of a(k) D. 
A differential system (M, D) is called regular, if D-(k+l) = a(k) D 

are subbundles ofT(M) for every integer k ~ 1. For a regular differential 
system (M, D), we have ([T2, Proposition 1.1]) 

{ 

(1) 

(2) 

There exists a unique integer µ > 0 such that, for all k ~ µ, 

D-k = · · · = D-µ :) D-µ+l :) · · · :) D-2 :) D-1 = D 
~ ~ ~ ~ ' 

for all p, q < 0. 

where VP denotes the space of sections of DP. (2) can be checked easily 
by induction on q. 

Thus D-µ is the smallest completely integrable differential system, 
which contains D = D-1 . 

1.2. Graded algebras associated with (M, D) 

Let (M,D) be a regular differential system such that T(M) = D-µ. 
As a first invariant for non-integrable differential systems, we now define 
the graded algebra m(x) associated with a differential system (M, D) at 
x EM, which was introduced by N. Tanaka [T2]. 

We put g_ 1 (x) = D- 1 (x), gp(x) = DP(x)/DP+1 (x) (p < -1) and 

-µ 

m(x) = E9 gp(x). 
p=-1 

Let Wp be the projection of DP(x) onto gp(x). Then, for XE gp(x) and 
YE gq(x), the bracket product [X, Y] E 9p+q(x) is defined by 
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where X and Y are any element of VP and Vq respectively such that 

wp(Xx) = X and wq(Yx) = Y. From 

[f X,gY] = J. g[X, Y] + J(Xg)Y - g(YJ)x, 

for vector fields X, Y and functions f, g on M, it follows immediately 
that [X, Y] E 9p+q(x) is well-defined for X E gp(x) and Y E gq(x) 
(cf. [T2, Lemma 1.1]). 

Endowed with this bracket operation, by (2) above, m(x) becomes a 
nilpotent graded Lie algebra such that dim m( x) = dim M and satisfies 

for p < -1. 

We call m(x) the symbol algebra of (M, D) at x EM for short. 
Furthermore, let m be a fundamental graded Lie algebra of µ-th 

kind, that is, 
-µ 

m= EB gp 
p=-l 

is a nilpotent graded Lie algebra such that 

for p < -1. 

Then (M, D) is called of type m if the symbol algebra m(x) is isomorphic 
with mat each x EM. 

Conversely, given a fundamental graded Lie algebra m, we can con
struct a model differential system of type m as follows: Let M ( m) be 
the simply connected Lie group with Lie algebra m. Identifying m with 
the Lie algebra of left invariant vector fields on M(m), g_ 1 defines a left 
invariant subbundle Dm of T(M(m)). By definition of symbol algebras, 
it is easy to see that (M(m),Dm) is a regular differential system of type 
m. (M(m), Dm) is called the standard differential system of type m. 

1.3. The Hilbert-Cartan equation 

As a good illustration of our previous discussion, we shall now cal
culate the symbol algebras of a differential system (R, D), which is asso
ciated with the following underdetermined ordinary differential equation 
studied by Hilbert [H] and Cartan [C3]: 

(H.C) 
dv 
dx 

(d2u) 2 
dx 2 
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As usual, we consider a hypersurface R', defined by (H.C), in the 
space J 2 of 2-jets for 2-unknown and 1-independent variables with co
ordinate sytem (x u v u' v' u" v") · 

' ' ' ' ' ' ' 
R' = { v' = (u") 2 }. 

Our differential system (R', D') is obtained by restricting to R' the 
canonical ( or contact) system on J 2 ; 

where 

1 
w~ = dv - (u")2dx, 

w~ = du - u'dx, 

w~ = du' - u" dx, 

w~ = d( u") 2 - v" dx = 2u" du" - v" dx. 

For the regularity condition, we shall work on the domain R = { u"-:/- 0} 
in R' and take ( x, u, v, p, r, t) as a coordinate system on R, where p = u', 
r = u" and t ½(u")- 1v". Then (R,D) is given on this coordinate 
system by 

D = { W1 = W2 = W3 = W4 = 0 }, 

where w1 = dv-r2 dx, w2 = du-pdx, W3 = dp-rdx and W4 = dr-tdx. 
First we calculate 

(1.1) { 

dw1 = 2r dx /\ dr = 2r dx /\ W4, 

dw2 = dx /\ dp = dx /\ w3 , 

dw3 = dx /\ dr = dx /\ W4, 

dw4 = dx /\ dt. 

To locate the derived system 8D, we look at the equalities (1.1) modulo 
the ideal spanned by 1-forms w 1 , w 2 , w 3 and w 4 : 

Then, since dwi(X, Y) = -wi([X, Y]) for X, Y E V (i 
follows that 

D-2 = 8D = { W1 = W2 = W3 = 0 }. 

1, 2, 3), it 

To locate 8 2 D, we proceed to look at m.v1, dw2 and dw3 modulo 1-forms 
w 1 , w 2 and w3. Putting W1 = W1 - 2r W3, we have 
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Hence we get 

and 

This implies that 8 2 D = 8(D-2 ) is defined by w1 and w2 . However, in 
this case, from rankD-2 = rankD- 1 + 1, we have 

Namely we have D-3 = 8 2 D. To proceed, we put 2w1 = w1 + 2t w2 . 

Then we have 

and 

(1.2) { 

dw1 = w3 A w4 + w6 A w2, 

dw2 = W5 /\w3, 

dw3 = W5 /\W4, 

dw4 = W5 I\ W5. 

where w5 = dx and W5 

(mod w1 ,w2 ), we obtain 
dt. From dw1 

T(R) = 83D. 

On the other hand, to locate D-4 , we should ignore the contributions 
of elements in [V-3 , v-3], which are not contained in [v- 1 , v- 3]. Thus 
we must look at dw1 and dw2 modulo w1, W2 and W3 /\ W4: 

This implies that 

Furthermore, we have 

Hence we get 

T(R) = D-5 • 
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Thus we see that (R, D) is a regular differential system of type m6 , 

where 
-5 

ffi5 = 61 gp, 
p=-1 

is the fundamental graded algebra of 5-th kind, whose Maurer-Cartan 
equation is given by (1.2). Namely m6 is a 6-dimensional nilpotent 
graded Lie algebra, which is described as follows: There exists a basis 
{ e1 , ... , e6 } of m6 such that each gP is spanned by the following vectors 

and that the bracket product is given by 

[e6, es] = e4, [e4, es] = e3, [e3, es] = e2, 

[e2, e5] = [e4, e3] = e1, [ei, ej] = 0 otherwise. 

A notable fact for (R, D) is that we obtain the strict equalities (1.2) 
instead of mod equalities for defining 1-forms w1, w2 , w3 , w4 of D, that 
is, (R, D) is isomorphic with the standard differential system of type 
m6 • Because of this fact, we shall see later in §5.2 that the Lie algebra 
A(R, D) of infinitesimal automorphisms of (R, D) is isomorphic with the 
14-dimensional simple Lie algebra G2 (cf. [C3], [A-K-O]). In fact we shall 
encounter m6 in §3.4 in connection with the root space decomposition 
of G2 • 

Another example of a historical interest is the following differential 
system (X, E) on X = JR.5 , which was found by E. Cartan [C2]; 

where 

{ 
W1 = dx1 + (x3 + ½x4xs) dx4, 

W2 = dx2 + (x3 - ½x4xs) dxs, 

W3 = dx3 + ½(x4 dx5 - x5 dx4), 

and (x1, x2, x3, x4, x 5) is a coordinate system of X = JR.5. We have 

(1.3) { 
dw1 = W3 I\ W4, 

dw2 = W3 I\ Ws, 

dw3 = W4 I\ Ws, 
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where W4 = dx4 and W5 = dx5. In this case we may calculate symbol 
algebras of (X,E) as follows. We take a dual basis {X1, ... ,X5} of 
vector fields on X to a basis of 1-forms { w1, ... , w5} given above; 

Then we calculate, or from (1.3), 

and [Xi, XJ] = 0 otherwise. This implies that E-2 = { w1 = w2 = 0 }, 
E-3 = T(X) and that (X, E) is isomorphic with the standard differential 
system of type m5 , where 

m5 = 9-3 EB 9-2 EB 9-1 

is the fundamental graded algebra of third kind, whose Maurer-Cartan 
equation is given by (1.3). Here we note that the Lie algebra structure 
of m5 is uniquely determined by the requirement that m is fundamental, 
dim9_3 = dim9_1 = 2 and dim9_2 = 1 (cf. [C2], [T2]). In fact m5 is 
the universal fundamental graded algebra of third kind with dim 9-1 = 2 
(see [T2, §3]). We shall encounter m5 in §3.4 in connection with the root 
space decomposition of G2. 

§2. Algebraic prolongation of m = EBp<O 9p 

2.1. Review of the prolongation of G-structure 

We first review the notion of the algebraic prolongation of the usual 
G-structure theory (cf. [St], [K2]). Let G be a Lie subgroup of GL(V), 
where V is a real vector space of dimension n. A G-structure on a 
manifold M of dimension n is, by definition, a G-reduction Pa of the 
frame bundle F(M) of M. Let 9 be the Lie algebra of G. As is well
known (cf. [St], [K2]), the notion of the (algebraic) prolongation of 9 
originates from the calculation of infinitesimal automorphisms of the 
flat G-structure. A basis { e1, ... , en} of V gives a global trivialization 
of the frame bundle F(V) of V. Then the flat G-structure on Vis given 
as the G-subbundle Pa= V x G of F(V) = V x GL(V). 
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To seek infinitesimal automorphisms of Pc, we may proceed as fol
lows: Take a linear coordinate system (x1 , ... , Xn) given by the above 
basis of V. Owing to the global trivialization of F(V), every vector field 
X on Vis identified with a V-valued function fx on V by putting 

fx = l(X) = (6, ... , ln), 

where l = (dx1, ... , dxn) is a V-valued I-form on V and 

By utilizing the V-valued I-form l, the derivatives of fx can be 
expressed as the coefficient matrix !Jc of dfx with respect to l, that is, 
the g[(V) = V 0 V* -valued function !Jc on V is defined by 

v(f x) = d fx( v) = JJc(l( v )) = !Jc( v) for v E V ~ Tx(V), 

Here we regard v as a tangent vector at x E V on the left side of the 
equalities and as a vector in V on the right side. We shall write this 
equality, in short, as 

dfx 1 = [JJc,lL 

where fx 1 = fx. The second derivatives of fx can be obtained as the 
coefficient matrix f 5c of d !Jc with respect to l, that is, the g [(V) 0 V* -
valued function J} on Vis defined by 

dfJc = [J},ll-

Here, by the compatibility condition for second derivatives ( or by the 
chain rule), f} actually takes values in V 0 S2 (V*) C g[(V) 0 V* = 
V 0 V* 0 V*. Inductively the ( k+ I )-th derivatives off x can be expressed 

as the coefficient matrix J'x of dJ']c- 1 with respect to l, that is, the 
V 0 Sk+1 (V*)-valued function J'x on V is defined by 

where Sk+ 1 (V*) denotes the (k + I)-th symmetric power of V*. 
Now, for a vector field X on V, let X be the lift of X to F(V), that 

is, X is a vector field on F(V) generated by the differential fl.ow (c/Jt)* 
of the (local) flow c/Jt of X. Then X is an infinitesimal automorphism 

of the flat G-structure Pc; if and only if X is tangent to Pc. This is 
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equivalent to the condition that J'Jc is a g-valued function on V. Thus, 
for higher order derivatives, we see that J'x. takes values in 

Here g(k) is called the k-th prolongation of g. Especially the (k + 1)
th coefficient of the Taylor expansion of f x takes values in g(k) at the 
origin of V. Conversely, for an element a E g(k), there exists a unique 
polynomial ( of homogeneous degree k + 1) vector field X such that X 
is an infinitesimal automorphism of Pa and that the coefficient of the 
Taylor expansion off x at the origin coincides with a E g(k). 

In this way the structure of the Lie algebra of infinitesimal auto
morphisms of Pa can be expressed by the graded Lie algebra; 

00 

EB g(Pl, 
p=-1 

where g(-l) = V, g(o) = g, and the bracket operation is defined accord
ingly. Here we note that g ( - l l = V corresponds to constant coefficient 
vector fields. For the details, we refer the reader to [K2] or [St]. 

2.2. Infinitesimal automorphisms of (M(m), Dm) 

Let m be a fundamental graded Lie algebra of µ-th kind. In the 
same spirit as in the previous section, we are going to seek infinitesimal 
automorphisms of our model (flat) differential system of type m, that is, 
the standard differential system (M(m), Dm) of type m. 

Let~ be the Maurer-Cartan form on M(m), that is,~ is am-valued 
1-form on M(m) such that 

for X Em and x E M(m), 

where m is identified with the Lie algebra of left invariant vector fields 
on M(m). Then, for p < 0, D~ = a(-p-l)Dm is given by 

D~ = { cµ = ... = e-1 = o} = { e = o ( s < p) } , 

where ~P is the gP-component of t Namely we have a global trivializa
tion of F(M(m)) by a basis of m. Thus every vector field X on M(m) 
is identified with am-valued function f x by putting 

f x(x) = ~(Xx) at XE M(m). 
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In particular fx is a constant function if and only if X is left invariant. 
For two vector fields X, Y on M ( m), we have 

(2.1) f[X,Y](x) = [fx(x),fy(x)] +Xx(!Y)-Yx(fx), 

at x E M ( m). Here the bracket product on the right side is that of 
m. Moreover, according to the decomposition of m = EBp<O 9p, fx is 
written as a sum 

where ff is a 9p-valued function on M(m). 
Now recall that a vector field Xis an infinitesimal automorphism of 

(M(m), Dm) if and only if 

[X, 'Dm] C 'Dm, 

where 'Dm is the space of sections of Dm. Thus X E A(M(m), Dm) if 
and only if 

f[X,Y] = 0 for p < -l and Y E 'Dm. 

By (2.1), this condition is equivalent to the following equalities; 

for p <-land YE 'Dm, 

or equivalently 

(2.2) dff = [f1+1,C1] (mod C (s < -1)) for p < -1. 

The equalities (2.2) express the condition for a vector field X to be an 
infinitesimal automorphism of (M(m), Dm) in terms of fx- However, 
from the generating condition of m: 9p = [9p+l,9-1] for p < -l, XE 
A(M(m), Dm) satisfies additional equalities as follows: First we calculate 

Y(ZU1)) = Y([f1+1, fi 1D = [Yu_r+1), fi 1l + [f1+1, YUi1)l 
= rrf.r+2 ,fy1J,fi1l + [f1+l,YUi1)L 

for vector fields Y, Z E 'Dm and p < -2. Then, by (2.1), we get 

for p < -2. From [9_1, 9-i] = 9-2 , this implies 
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for p < -2 and W E fJ-2, since Jw = W is a constant function for 
WE g_2 • Proceeding by induction on r, we see that, for a fixed p < 0, 
the same calculation as above yields 

Y(fl) = [fl-r' Y], 

for r > p and YE fir· Summarizing, we obtain 

p+l 

(2.3) dJl = L [fl-r, n (mod C (s < p + l)) for p < -l. 
r=-1 

Starting from (2.3), we are going to seek all the (higher) derivatives 
of Jx. In order to do so, we first introduce a EBp<oflP 0 g;-valued 

function Ji by 

(fi(x))(Y) = Yx(fl) for YE fJp and x E M(m). 

Here we regard Y as a vector field on M ( m) on the right side of the 
equality and as a vector in fJp on the left side. We write this equality in 
short as 

Y(fl) = [Jf_k, Y] for YE 9p· 

Equivalently we can say that Ji is defined by the following equalities; 

p 

dJl = L [fl-r,fr] (mod C (s < p)) for p < 0. 
r=-1 

Namely we have strengthened the mod equalities (2.3) and add d J-;/ = 
[Jf_k,f-1] (mod C (s < -1)). From these equalities, it follows a com
patibility condition for Ji: For Y E fir and Z E 9s (r, s < 0), we 
calculate as above and get 

(2.4) [Y, Z](fi) = [[Ji, Y], Z] - [[J}, Z], Y], 

where k = /I, - ( r + s). This equality is valid as far as Ji and J'x are 
defined. When /I,= r + s, by definition of JlJc, we obtain 

[Jf_k, [Y, Z]] = [[ff_¾, Y], Z] - [[Ji, Z], Y]. 

This implies that Ji takes values in 

(p.0) fJo(m) = { u E E9 fJp 0 g; I u([Y, Z]) = [u(Y), Z] + [Y, u(Z)] }. 
p<O 
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Here we note that g0 (m) is the Lie algebra of all (gradation preserving) 
derivations of the graded Lie algebra m. 

Now we continue this procedure and introduce a 9k(m)-valued func
tion J'x. for positive integer k inductively as follows: Assume that 9£ = 
ge(m) and fk are defined for£< k such that 

l-k+l 

dfk= L [Ji-\~rl (mode (s<R-k+I)) forR<k-1. 
r=-1 

Here we understand that ~r = 0 for r < -µ. We introduce a 
EBp<D 9p+k ® g;-valued function J'x. by 

for YE 9p and x E M(m), 

or equivalently by the following equalities; 

l-k 

(2.5) dfk = L [fk-r,~rl (mode (s < £- k)) for£< k. 
r=-1 

Here we write J'x.(Y) = [J'x., Y] in short. Then, by definition of J'x. and 
(2.4), we have 

[f}, [Y, Z]l = [[!}, Y], Z] - [[!}, Z], Y], 

for YE 9r, Z E 9s (r, s < 0). Namely J'x. takes values in 

(p.k) 9k(m) = { u E ffigp+k ® g; I u([Y, Z]) = [u(Y), Z] - [u(Z), Y] }. 
p<O 

This finishes our inductive definition of f'x. and 9k(m). 
One should note that, for a fixed £, (2.5) becomes a strict equality 

when k increases sufficiently large. Thus, for a family {f'x. h~-µ of 
functions on M(m), we obtain ([T2, Lemma 6.2]) 

-µ 

(2.6) df'x. = L [J'x.-r,~r]. 
·r=-1 

In this way we get the whole information of all higher derivatives off x. 

2.3. Algebraic prolongation of m 

Motivated by the above discussion, we now give the definition of the 
algebraic prolongation g(m) of the fundamental graded Lie algebra m, 
which was introduced by N. Tanaka [T2]. 
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Let m = EBp<O fJp be a fundamental graded Lie algebra of µ-th kind 
defined over a field K. Here K denotes the field of real numbers 1Ft or 
that of complex numbers C. We put 

g(m) = EB 9p(m), 
pEZ 

where gp(m) = fJp for p < 0 and fJk(m) is defined inductively by (p.k) 
fork~ 0. Thus, as a vector space over K, fJk(m) is a linear subspace of 
End(m,mk) =mk®m*, wheremk =mEBg0 (m)EB···EBgk-I(m). The 
bracket operation of g(m) is given as follows: First, since go(m) is the Lie 
algebra of all (gradation preserving) derivations of graded Lie algebra 
m, we see that ffip::S:o gp( m) becomes a graded Lie algebra by putting 

[u, X] = -[X, u] = u(X) for u E go(m) and XE m. 

Similarly, for u E 9k(m) C mk ® m* (k > 0) and X E m, we put 
[u, X] = -[X, u] = u(X) (this justifies our use of [, ] in the previous 
paragraph). Now, for u E gk(m) and v E 91:(m) (k, £ ~ 0), by induction 
on the integer k + £ ~ 0, we define [u, v] E mkH ® m* by 

[u, v] (X) = [[u, X], v] + [u, [v, X]] for XE m. 

Here we note that, as the first case k = £ = 0, this definition begins 
with that of the bracket product in g0 (m). It follows easily that [u, v] E 

fJk+e(m). With this bracket product, g(m) becomes a graded Lie algebra. 
In fact the Jacobi identity 

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0, 

for u E gp(m), v E gq(m) and w E fJr(m), follows by definition when one 
of p, q or r is negative, and can be shown by induction on the integer 
p + q + r ~ 0, when all of p, q and r are non-negative. 

Let fJo be a subalgebra of 9o(m). We define a sbspace 9k of fJk(m) 
for k ~ 1 inductively by 

Then, putting 

9k = { u E 9k(m) I [u, 9-1] C 9k-l }. 

g(m, go) = m EB EB 9k, 
k;:;:o 

we see, with the generating condition of m, that g ( m, g0 ) is a graded 
subalgebra of g(m). g(m,g0 ) is called the prolongation of (m,g0 ). 
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Remark 2.1. The notion of the prolongation of m or (m, flo) plays 
quite an important role in the equivalence problems for the geometric 
structures subordinate to regular differential systems of type m, e.g., CR
structures, pseudo-product structures or Lie contact structures ( cf. [T3], 
[T5], [S-Y]). We could not touch upon the more important geometric 
aspect of the prolongation theory of these structures. On these subjects, 
we refer the reader to foundational papers [T2], [T3], [T4] of N. Tanaka, 
although we shall discuss some consequences of our results related to 
[T4] in §5.3. 

Now, going back to the discussion in 2.2, we shall see how 9(m) 
describes the structure of A(M(m), Dm), following the argument in §6 of 
[T2] rather closely. First let us fix a point x E M(m). Then {Ji (x He;;-µ 
has all the information of higher derivatives of fx at x. Conversely, given 
an element a of 9(m), we can construct an infinitesimal automorphism 
whose "Taylor expansion" at x coincides with a. Namely we have ([T2, 
Lemma 6.3]): 

Let a= ~p:::;k aP be any element of 9(m), where aP E 9p(m). Then 

there is a unique XE A(M(m), Dm) such that 

{ 
f)c(x) = aP 

Ji =o 
for p ~ k, 

for£> k. 

By (2.6), in order to construct such X, we need to solve the following 
differential equations for 9£ ( m )-valued functions uc = Ji ( -µ ~ £ ;;;; k); 

due= L [us,e-si 
C<s~k 

for£= -µ, ... , k, 

under the condition Uc ( x) = a£ E 9£ ( m) (here we understand that e = 

0 for r < - µ as before). However this can be accomplished by the 
Frobenius theorem. In fact, on M(m) x mk+ 1 , we consider a differential 
system E defined by 

ci=duc- L [us,fC-s] 
C<s~k 

for £ = -µ, ... , k, 

where uc is the linear coordinate on 9c(m). Then it follows 

dcl + L [a 8 /\e-si = 0. 
C<s~k 



432 K. Yamaguchi 

Namely E is completely integrable, Thus, since M(m) is simply con
nected, the graph of (!Jc )-µ:5,f:5,k is obtained as a leaf of E passing 

through ( x, a) E M ( m) x m k+ 1 . One should note here that, when a E m, 
we actually obtain a right invariant vector field X on M(m). 

Thus, by fixing a point of M(m), we obtain a linear isomorphism of 
g(m) into A(M(m), Dm)- For the correspondence of bracket operation, 
we have ([T2, Lemma 6.4]): For X, YE A(M(m), Dm), 

(2.7) 1fx,Y1 = - L r1x,Hl for£~-µ. 
r+s=f 

In fact, (2.7) follows easily from (2.1) and (2.6) when £ < 0. Thus, 
putting gf = - .I:r+s=R[Jx, fy], we have gP = l[X,Y] for p < 0. More

over, by (2.6), we calculate 

di= - L {[dfx,Hl + Ux,dH]} 
r+s=f 

L [[!1:,~u],fy]- L Ux,[g,~qll 
s+t+u=f p+q+r=f 

for£~-µ. 

Then, by the definition (2.5) of f[X,Y] for £ ~ 0, we conclude l = f[X,Y] 
for£~-µ. 

In this way the structure of the Lie algebra A(M(m), Dm) can be 
described by g(m). Especially A(M(m), Dm) is isomorphic with g(m), 
when g(m) is finite dimensional. In the subsequent sections, we shall 
be concerned with the following question: When does g(m) or g(m,g0 ) 

become finite dimensional and simple? 

Remark 2.2. (1) In infinite dimensional case, the completion g(m) 
of g(m) gives the formal algebra of the transitive Lie algebra sheaf A of 
infinitesimal automorphisms of (M(m), Dm)- On this subject, we refer 
the reader to the further discussion in §6 of [T2]. 

(2) We remark here that the discussions in §§1 and 2 are valid also in 
the complex analytic category. Thus, for a fundamental graded Lie alge
bra m = E:Bp<O flp over CC, the standard differential system (M(m), Dm) 
of type m is a holomorphic differential system on a complex Lie group 
M(m). Furthermore the prolongation g(m) of m over CC describes the 
stalk of the Lie algebra sheaf A of holomorphic infinitesimal automor
phisms of (M(m), Dm)-
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2.4. Generarized Spencer cohomology 

We now give some remarks on the algebraic prolongation g(m) of m. 
First g(m) is characterized as the graded Lie algebra which satisfies the 
following conditions: 

(1) gp(m) = gP for p < 0, where m = EBp<O 9p· 

(2) For k ;;=; 0, if X E 9k(m) and [X, m] = {0}, then X = 0. 
(3) g(m) is maximum among graded algebras satisfying conditions 

(1) and (2) above. 

More precisely, let ry = EBpEZ ryp be any graded algebra satisfying (1) 
and (2). Then ry is imbedded in g(m) as a graded subalgebra. 

In fact (1) and (2) are obvious. The imbedding l of ry into g(m) is 
obtained as follows: Since ffipSO ryP = m EEl ry 0 is a graded subalgebra, we 

get a homomorphism lo of ryo into 9o(m), which is injective by condition 
(2) above. Then, by definition (p.k) of 9k(m), we obtain a linear map lk 

of ryk into 9k(m) by induction on k ;;=; 1, which is also injective by (2). 
l is obviously a homomorphism. 

In the presence of the generating condition of m, the condition (2) 
above is equivalent to the following condition: 

For k ;;=; 0, if X E 9k(m) and [X, g_1 ] = {0}, then X = 0. 

From this, it follows that gk+1 (m) = {0} if 9k(m) = {0}, that is, ge(m) = 
{0} for C ;;=; kif 9k(m) = {0}. Hence g(m) becomes finite dimensional if 
and only if 9k(m) = {0} for some k ;;=; 0. 

Now we shall turn to another characterization of g(m). First, recall 
that the prolongation g(k) of a linear Lie algebra g C g[(V) is defined 
also by the following exact sequence; 

where the coboundary operator 8: ck+l,l -+ ck,2 is given by 

(8p)(X, Y) = [p(X), Y] - [p(Y),X]. 

In the same way, we can define 9k(m) as follows. First we decompose 

/\ 2 m* = EBj<-l AJm* according to the gradation m = EBp<O gp, where 

AJm* = E9 g; Ag;. 
p+q=j 

P tt . ck,1 ffi Iv, * d ck-1,2 _ ffi Iv, A 2 * u mg = Wp<O 9p+k 'CY 9p an - Wj<-1 9j+k 'CY "jm ' 

we can define 9k = 9k(m) for k ;;=; 0 inductively by the following exact 
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sequence; 

0 -----+ 9k -----+ ck,l _!!_. ck-1,2' 

where the coboundary operator 8: ck,l -----+ ck-l,2 is given by 

(8p)(X, Y) = [X,p(Y)] - [Y,p(X)] - p([X, Y]). 

We shall utilize this characterization in the following situation. Let 
fJ = EBpEZ Qp be a graded Lie algebra such that m = E9p<O Qp is a 
fundamental graded algebra of µ-th kind. To check whether fJ is the 
prolongation of m or (m, fJo), we consider the Lie algebra cohomology 
Hq(m, fJ) associated with the representation ad: m -----+ 9[(fJ). Namely, 
putting C(m,fJ) = E9Cq(m,fJ), Cq(m,fJ) = fJ ® /\/m*, we have the 
coboundary operator 8: Cq -----+ cq+1; 

+ I)-1)i+jp([xi, xji, x1, ... , xi, ... , xj, ... , xq+1), 
i<j 

for p E Cq(m, fJ) and X 1 , ... , Xq+l Em. Hq(m, fJ) is the cohomology 
group of this cochain complex ( C ( m, fJ), 8). According to the gradation 
of fJ, this complex has a bigradation given as follows ([T4, §1]): First 
/\/m* has the decomposition /\qm* = E9j~-q/\3m*, where 

h* /\ ... /\ h* . 
'h,1 'hq 

Then the bigradation of C(m, fJ) is introduced by 

Cp,q(m, fJ) = EB Qj+p+q-1 ® AJm*. 
j~-q 

Here we note that 

j<O j<-1 

and 8 sends cp,q into cp-l,q+l. With this bigradation, 

Hq(m, fJ) = EB Hp,q(m, fJ) 
p 

is called the generalized Spencer cohomology group of the graded Lie 
algebra fJ. 

Utilizing this cohomology group, we have (cf. [T4, Lemma 1.14]) 
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Lemma 2.1. Let ry = EBpEZ ryP be a graded Lie algebra such that 
ryP = [bp+I, b-1] for p < -1. Then ry is the prolongation of m (resp. of 
( m, bo)) if and only if the following two conditions hold: 

(1) Fork~ 0, if XE bk and [X, m] = {0}, then X = 0. 

(2) HP• 1 (m, ry) = {0} for p ~ 0 (resp. p ~ l). 

With this criterion in mind, in order to answer the question posed at 
the end of 2.3, we proceed as follows: First, for a (finite dimensional) sim
ple Lie algebra g, we shall classify, in §3, the gradations g = EBpEZ fJp of 

g such that m = EBp<O fJp is fundamental. Then we calculate HP,I ( m, g) 
by the method of Kostant [K] in §5.2. 

§3. Simple graded Lie algebras 

3.1. Semisimple graded Lie algebras 

We begin with generalities of semisimple graded Lie algebras 
(cf. [Hu], [K-N], [T4]). Let g be a (finite dimensional) semisimple Lie 
algebra over JR. A gradation of g is a direct decomposition g = EBpEZ gP 
such that 

for p, q E Z. 

As is well-known, there exists a unique element E E g0 such that 

fJp ={XE g I [E,X] =pX} for p E Z. 

In fact, for a graded Lie algebra g = EBpEZ fJp, we have a derivation D 

of g given by D(X) = pX for X E fJp• Then, since g is semisimple, 
there exists a unique E E g such that D = ad(E). Obviously we have 
E E fJo. In particular go =/- {0}. E is called the characteristic element 
of the semisimple graded Lie algebra g = EBpEZ flp· 

Moreover we get easily ([K2, p. 131, Proposition 4.1], [T4, Lemma 
1.2]) 

Lemma 3.1. 

(1) B(gp, gq) = 0 if p + q =/- 0. 
(2) The restriction of the Killing form B to flp x fJ-p is non-degen

erate if fJp =/- { 0}. 

Namely gradations of a semisimple Lie algebra g are always sym
metric, that is, gP =I- {0} if and only if fJ-p =I- {0} and the Killing form 
B gives a duality between fJp and fJ-p· The largest integer µ such that 
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gµ =I- {O} is called the depth of g = EBpEZ 9p· Furthermore we see that 
g is non-compact if the gradation is not trivial, that is, if gP =I- {O} for 
some p =I- 0. 

Now we consider the decomposition of g into simple ideals; 

s 

Then the characteristic element E decomposes as E = I:s Es. For 
XE 9p, we have X = I:s xs. Thus, from pX = [E,X] = I:JEs,xs], 
we get [Es' xs] = pXS. Namely Es defines a gradation gs = EBpEZ g; 
of g8, where g; = gs n 9p and 

s 

Therefore g = EBpEZ gP is a direct sum of simple graded Lie algebras 

gs = EBpEZ g;. 

A graded Lie algebra g = EBpEZ 9p is called effective if g' = EBp~o 9p 

contains no ideals of g. Then, by the above argument, we see that 
g = EBpEZ gp is effective if and only if none of simple ideals gs = EBpEZ g; 
has a trivial gradation. 

Some conditions on the gradation forces g to be a simple graded Lie 
algebra. Among these, we quote here the following two conditions: A 
gradation g = EBpEZ gp is called a contact gradation if g is effective and 

m = EBp<O gp satisfies 

(1) m = 9-2 EB 9-1 such that dimg_2 = 1. 

(2) The bracket operation [, ] : 9-1 x 9-1 ____, 9-2 is nondegenerate. 

In fact it follows from (1) that there exists a unique ideal gs 0 such that 
9-2 = g::.'.'2 and that gs = g~ 1 EB g0 EB g1 for s =/- s 0 • Then condition (2) 
forces g~ 1 = {O} for s =I- s 0 • Thus the effectiveness of g implies g = gs 0 • 

We shall see later in §4 that each simple Lie algebra over Chas a unique 
complex contact gradation up to conjugacy. 

A gradation g = EBpEZ 9p, such that m = EBp<O gp is fundamental, 
is called primitive if g is effective and ad: g0 ------, g[(g_1 ) is irreducible. It 
follows easily that g is simple if it is primitive. More generally we shall 
discuss primitive actions of finite dimensional Lie groups in §5.4. 

For simple graded Lie algebras, we prepare ( cf. [T4, Lemmas 1.3, 
1.6]) 
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Lemma 3.2. Let g = E9~=-µ gp be a simple graded Lie algebra 

over JR of depth µ such that m = ffip<O gp is fundamental. 

Then, for every p > -µ, 

(1) If XE 9p and [X,9-1] = {O}, then X = 0. 
(2) 9p = [9p-1, 91]-

In particular the centralizer Z9 (m) of ming coincides with g_,_,. 

Proof. From the generating condition of m: 9p = [9p+1,9-1] for 
p < -l, it follows 9k = [9k- 1 ,g1] fork> l (for this fact, see 3.3). Then 
we see that a linear subspace a of g is an ideal of g if a is ad(gi)-invariant 
fori=-1,0, 1. 

Now let us fix an integer q (-µ ~ q ~µ)and put 

aq(q) = {XE gq I [X, 9-1] = O }. 

We define a linear subspace aq = ffi~=q aq (p) of g inductively by 

By the Jacobi identity, we see that aq(q) is ad(g0 )-invariant. Moreover 
one can check that aq(p) is ad(g0 )-invariant and [aq(p+ 1), g_ 1] C aq(p), 
by induction on p ~ q. Thus aq is an ideal of g. When q > -µ, aq is a 
proper ideal of g. Hence, by the simplicity of g, aq = {O}, which proves 
(1). When q = -µ, we have a-1-'(-µ) = g_,_,. Hence a-µ = g, which 
implies (2). 

This lemma shows, in particular, that condition (1) of Lemma 2.1 
in §2.4 is always satisfied by a simple graded Lie algebra g = E9pEZ gp 

such that m = E9p<O gp is fundamental. In other words, g = E9pEZ gp is 
a graded subalgebra of the prolongation g(m) of m. 

3.2. Complexification of g = E9pEZ 9p 

Let g = E9pEZ gp be a simple graded Lie algebra over R Let Cg = 

<C 0JR g be the complexification of g. Then Cg = E9pEZ Cgp becomes a 
semisimple graded Lie algebra over C. First we recall the following fact 
(cf. [He, p. 443, Proposition 1.5]). 

The simple Lie algebras over JR fall into two disjoint classes: 

A. The simple Lie algebras over C, considered as real Lie algebras. 
B. The real forms of simple Lie algebras over C. 
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More precisely, a real simple Lie algebra g belongs to class A if Cg is 
not simple and there exists a complex structure J on g such that (g, J) 
is a simple Lie algebra over C. In this case we have 

whereg 1,0 = {X-y'=IJX IX E g} andg0 ,1 = {X+HJX IX E g} 
are simple ideals of Cg, which are isomorphic with (g, J). 

When a simple graded Lie algebra g = EBpEZ gp belongs to class A, 
we note that, since ad(E) -J = J-ad(E) for the characteristic element E, 
gp = { X E g I [E, X] = pX} is a complex subspace of (g, J). Namely, 
for a real simple Lie algebra g of class A, any gradation of g as a real Lie 
algebra is in fact a gradation as a complex Lie algebra. Thus we obtain 

Proposition 3.3. The simple graded Lie algebras g = EBpEZ gP 
over IR fall into two disjoint classes: 

A. The simple graded Lie algebras over C, considered as re,al graded 
Lie algebras. 

B. The real forms of simple Lie algebras over C so that Cg = 
EBpEZ gP become simple graded Lie algebras over C 

Now we give some remarks on the generalized Spencer cohomol
ogy of Cg = EBpEZ Cgp. We denote by Hl(Cm, Cg) the complex co
homology group associated with the complex representation ad: Cm -+ 

g((Cg). Namely we consider Ct(Cm, Cg) = Cg ®ic NCm*, which is nat
urally identified with the complexification CCq(m, g) = C ®JR Cq(m, g) 
of Cq(m,g) = g ®JR !\qm*. Under this identification, the coboundary 

operator 8: Ct -+ Ct+ 1 is a real operator. Hence Ht ( Cm, Cg) is nat
urally identified with the complexification CHq(m, g) of Hq(m, g). The 
bigradation is also preserved under this identification. Thus, by Lemma 
3.2 and Lemma 2.1 in §2.4, we have 

Lemma 3.4. Let g = EBpEZ gp be a simple graded Lie algebra over 

IR such that m = ffip<O gP is fundamental. 
Then g is the prolongation of m ( resp. of ( m, go)) if and only if 

Hl'1 (Cm,Cg) = {O} for p ~ 0 (resp. p ~ l). 

Let g = EBpEZ gP be of class A, that is, a simple graded Lie alge
bra over C In this case we have two cohomology groups Hfjm, g) and 
H:(m,g) associated with ad: m-+ g[ic(g) C g(JR(g). Namely Ht is ob
tained from the cochain complex ( Cic(m, g), 8), Cic = g ®ic /\m*, whereas 
H: is obtained from the co chain complex ( CJR ( m, g), 8), CJR = g ®JR /\m *. 
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From the complex structure J on g, CR. inherits a complex structure 
J i8lR. id such that 8 is complex linear. Hence H:(m, g) is a complex 
vector space. Then we have 

Lemma 3.5. Let g = EB~=-µ gp be a simple graded Lie algebra 
over C of depth µ such that m = ffip<O gP is fundamental. Then 

(1) Hf' 1 (m, g) and H''1 (m,g) are isomorphic for p > 0. 

(2) H~•1(m,g) and H~•1 (m,g) are isomorphic whenµ> l. 

Proof. Since CH~ ( m, g) is isomorphic with Ht ( Cm, Cg), we first 
calculate Ht(Cm, Cg). Utilizing the decomposition Cg= g1,0 EB g0 ,1 , we 
have 

Cc(Cm, Cg) = g1•0 l8l /\Cm* EB g0•1 18) /\Cm*. 

This is the eigenspace decomposition of the complex structure J i8lR. id. 
Obviously 8 preserves this decomposition. Thus to calculate HMm, g), 
we need only to calculate the cohomology of (C, 8), where C = g1,0 18) 

/\Cm*. Moreover we have the decomposition of /\Cm*; 

/\qCm* = ffi /\r,scm*, 
r+s=q 

which is induced from Cm = m l,O EB m0,1. Thus we have c0 = g1,0, 
0 1 = g1,018l(/\1,om*EB/\o,1m*) and 0 2 = g1,018l(/\2,om*EB/\1,1m*EB/\o,2m*). 
Then, from [g1 ,0 ,g0 ,1] = {O}, we get 

8 gl,O C gl,O 18) /\ 1,0m*, 

8 (gl,O 18) /\ 1,0m*) C gl,O 18) /\ 2,0m*, 

8 (gl,O 18) /\0,lm*) C gl,O 18) (/\1,lm* EB /\0,2m*). 

Here we note that g1,018)/\ 1•0m* (resp. g1•018l/\ 0,1m*) is naturally identified 
with the space of complex linear (resp. conjugate linear) mappings of 
(m, J) into (g, J). Hence H~(m,g) is isomorphic with 

Ht(m, g) EB Z, 

where Z = {p: m ---+ g; conjugate linear I 8p = 0 }. For a conjugate 
linear map p: m---+ g, we calculate 

(8p)(JX, Y) = [JX,p(Y)] - [Y,p(JX)] - p([JX, Y]) 

= J{[X,p(Y)] + [Y,p(X)] + p([X, Y])}, 
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for X, YE m. Hence op= 0 if and only if [X,p(Y)] = 0 and p([X, Y]) = 
0 for X, YE m. Then, by Lemma 3.2, we get 

Z = {p: m --t 9; conjugate linear I 
P(9-1) C 9-µ and p(9q) = {O} for q < -l }. 

Therefore we obtain 

Z- * c-µ+1,1( ) C 9-µ Q9 9-1 C IR m, 9 ' 

which completes the proof. 

Thus, if Ht'1 (m,9) = {O} for p ~ 0 (µ > 1), a simple graded Lie 
algebra 9 = ffipEZ 9p over <C, such that m = ffip<O 9p is fundamental, 
is the prolongation of m as a graded Lie algebra over JR as well as over 
<C. In this case, the standard differential system ( M ( m), Dm) of type 
m is a holomorphic differential system on a complex Lie group M(m). 

Then Lemma 3.5 implies that, if Hif'1 (m, 9) = {O} for p ~ 0, every real 
infinitesimal automorphism of (M(m), Dm) is necessarily holomorphic. 

In view of the discussion in this paragraph, we shall be mainly con
cerned with simple graded Lie algebras over (C in the susequent discus
sion. 

3.3. Gradation and the root space decomposition 

Let 9 be a semisimple Lie algebra over C. We shall describe the gra
dation of 9 in terms of the root space decomposition of 9. Our standard 
reference in this section are [Hu] and [He]. 

Let E be the characteristic element of 9 = ffipEZ 9p· Since ad(E) is 
a semisimple endomorphism of 9, we can take a Cartan subalgebra b of 
9 such that E E Q. Let <I> be the set of roots of 9 relative to Q. Then we 
have the root space decomposition of 9; 

where 9a = {XE 9 I [H, X] = a(H) X for all HE b} is the root space 
for a E <I>. It follows from E E b that 

9p = EB 9a (p I a), 
aE<l>v 
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where <I>p = { a E <I> I a(E) = p }. Moreover, since a(E) E Z for a E <I>, 
E belongs to the real part QIR = { X E b I a(X) E JR for a E <I>} of ry. 
Let ryU = (<I>)IR be the real linear subspace of b* spanned by all roots of 
g. Identifying b* with b by the Killing form B of g, we know that ryU 
corresponds to QIR and that the Killing form B gives a positive definite 
inner product (, ) on QIR• Then, by fixing a Weyl chamber D of QIR 
such that its closure D contains E, we can choose a simple root system 
~ = { a1, ... , ac} of <I> such that a(E) ~ 0 for all a E ~- Then E 
determines a partition <I>+ = Uk~o<I>t of the set <f>+ of positive roots by 

<I>t = { a E <f>+ I a(E) = k} such that 

go = b EB EB (ga EB g_a), 

(3.1) 
aE'Pci 

gk = EB ga, g_k = EB g_a (k > 0). 

This explains the symmetry of gradations of semisimple graded Lie alge
bras. Here we note that <I>o = { a E <I> I a(E) = 0} forms a subsystem of 
the root system <I> with a simple root system ~o = { a E ~ I a(E) = 0 }. 

Conversely let us fix a Cartan subalgebra b of a semisimple Lie 
algebra g and choose a simple root system ~ = { a 1 , ... , ag} of the root 
system <I> of g relative to ry. Then, given a £-tuple (a1, ... , ag) of non
negative integers, we see that an element E E QIR, which is defined by 
ai(E) = ai, gives a gradation g = ffipEZgP of g such that (3.1) holds. 

With the above choice of b and ~, putting g' = ffip~O gp, we have 

where~(~)= bEBEBaE1>+ g 0 is a standard Borel subalgebra of g relative 
to b ([Hu, Chapter IV]). Hence g' is a parabolic subalgebra of g. In fact 
g' = ~(~o) is the standard parabolic subalgebra corresponding to ~ 0 . 

For the subalgebra g0 , we have 

Proposition 3.6. go is a reductive Lie algebra such that 

(1) Dimension of the center Z(g0 ) of g0 is equal to the number of 
simple roots in ~ \ ~o. 

(2) [g0, g0] is a semisimple Lie algebra with the root system <I>0 and 
is a Levi subalgebra of g'. 
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Proof. Let bo = (D-0 )ic be the linear subspace of b* spanned by 
elements of D. 0 . Identifying b* with b via the Killing form duality, we 
have an orthogonal decomposition of b; 

which in fact arises from an orthogonal decomposition in bIR- Then we 
have [b},go] = {O} and 

[go, go] = bo EB EB (ga EB g_a)
aE<I>ci 

Thus, by Serre's Theorem ([Hu, Theorem 18.3]), [g0 , go] is a semisimple 
Lie algebra with a simple root system D-0 • Hence we have b} = Z(g0 ). 

Remark 3. 7. Let g = EBpEZ gp be a semisimple graded Lie algebra 

over C such that m = EBp<O gp is fundamental. g = EBpEZ gP is called 
primitive if g is effective and ad: g0 --+ g((g_i) is irreducible. If g = 
EBpEZ gP is primitive, then g is simple and it follows from Schur's Lemma 

that dim Z(go) = 1. Then, by Proposition 3.6, g' is a maximal parabolic 
subalgebra. In fact g = EBpEZ gp is primitive if and only if g is simple 

and g' is a maximal parabolic subalgebra of g ( cf. the proof of Lemma 
3.8. See also §5.4). 

Let g = EBpEZ gp be a semisimple graded Lie algebra over R In the 
real case, we should start with a Cartan decomposition 

g=£EBp 

of g such that E E p ( cf. [Ml). In fact such a Cartan decomposition 
can be found by Theorem 7.1 of [He, p. 182]. We first take a (complex) 

Cartan subalgebra ~ of Cg such that E E ~- Moreover we take a compact 

real form u of Cg by choosing a Weyl basis of g = ~ EB EB aEi ga. Then 

we have E E ~IR C Au. Let /J' and T denote the conjugations of 
Cg with respect to g and u respectively. Putting N = /J' • T, we have 
N(E) = -E. Hence P(E) = E for P = N 2 . By Theorem 7.1 of [He], a 
Cartan decomposition of g is obtained by putting 

e = g n cp(u), 

p = g n cp(-J=Tu), 

where 'P = p¼. Then, from cp(E) = E, we see that EE p. Here we note 
that, from T0 (E) = -E, the conjugation T 0 with respect to cp(u) reverses 
the gradation of g = EBpEZ gp, that is, Ta(gp) = g-p· 
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Let us take a maximal abelian subspace a of j) such that E E a. 
Moreover let b be a maximal abelian subalgebra of g containing a. Then 
Cb is a Cartan subalgebra of Cg such that a= (Cb)R n g ([He, p. 259, 
Lemma 3.2]). Hence the root space decomposition Cg= Cb EB EBaE<I> 9a 
of Cg or more directly the simultaneous diagonalization of adg ( a) induces 
the restricted root space decomposition of g; 

g = Z(a) EB E9 g,x, 
.\E:E 

where Z(a) is the centralizer of a in g and Eis the set ofrestricted roots 
of g relative to a ([He, p. 263]). A restricted root .X E a* is a non-zero 
linear form on a obtained as the restriction of some root o: E 4> C (Cb)* 
to the subspace a of (Cb)JR. E forms a root system in a*, which in general 
is not reduced ([He, Chapter VII]). Thus, by fixing a Weyl chamber D 

of a such that EE fJ, we have a simple root system Li= {.X1, ... , Ap} 

of E such that Ai(E) ~ 0 for Ai E Li. Then the gradation of g can be 
described as 

9o = Z(a) EB E9 (g,x EB 9-,x), 

.\E:Eci 

9k = E0 9.\, 9-k = E0 9-.\ (k > 0), 

where Et = {.XE E+ I .X(E) = k }. For the details, we refer the reader 
to [K-A]. 

3.4. Generating condition of m 

Let g = EBpEZ {Ip be a simple graded Lie algebra over C. As in the 
previous paragraph, let us fix a Cartan subalgebra b and a simple root 
system~ such that EE b and o:(E) ~ 0 for any o: E ~- Then, for the 
generating condition of m, we have ( cf. [K-A, Lemma 2.3]) 

Lemma 3.8. m = EBp<OgP satisfies {Ip= [9p+1,9-1] for p < -l, 
if and only if o:(E) = 0 or 1 for any o: E ~-

Proof. We have 9-k = EBaE<I>+ 9-a for k > 0, where 'Pt = { o: E 
k 

!J>+ I o:(E) = k} and !J>+ = Uk?;o'Pt. Then it follows that 9-(k+l) = 

[9-k, 9-1] if and only if each o: E !J>t+l can be written as a sumo: = /3 +, 
of some /3 E 'Pt and I E !J>t. Hence m satisfies the generating condition 
if and only if each o: E 'Pt can be written as a sum of k elements of 'Pt. 
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Therefore, if m satisfies the generating condition, every simple root must 
belong to <I>t or <I>cj. 

Conversely assume that a(E) = 0 or 1 for any a E ~- We start 
with the following property of roots (cf. [Hu, p. 50, Lemma Al): 

If f3 E <I> is positive but not simple, then f3 - a E q,+ for some a E ~-

Hence each (3 E q,+ can be written as f3 = a 1 + · · · + ak (ai E ~) such 
that a 1 + • • • + ai E q,+ for i = 1, 2, ... , k. This implies a root vector of 
9/3 can be written as [xak, [· · ·, [xa 2 , Xa 1 ] • • ·Jl, where Xa, is a root vector 
of 9a, ( ai E ~). By our assumption, Xa belong to 9o or 91 for any 
a E ~- Therefore it follows that 

(1) m EB 9o = EBv:So 9v is generated by 9-1 and 9o, 

(2) m EB 9o = EBv~o 9v is generated by 91 and 9o-

Moreover m = EB;:_19P for someµ> 0 such that 9v #- {0} for p = -1, 
-2, ... '-µ. 

Now starting from aµ = 9µ, we define a subspace llp of 9v for p < µ 
inductively by llp = [nv+1, 9_1 ] and put 

µ 

a= E9 nv· 
p=-µ 

Then, as in the proof of Lemma 3.2, we can check that llp is ad(g0)

invariant and satisfies [np, 91 ] C llp+i by (backward) induction on p. a is 
ad(9-1)-invariant by definition. Since 9 is generated by 9-1, 9o and 91, 
we conclude a is a non-trivial ideal of 9. Then the simplicity of 9 forces 
a= 9. Especially 9v = [9v+1,9-1] for p < -1. 

Now let 9 be a simple Lie algeba over C. Let us fix a Cartan subal
gebra ~ of 9 and a simple root system ~ = { a 1, ... , ac} of <I>. Take any 
non-empty subset ~ 1 of ~ and put 

f 

<I>t = {a= L ni(a) <Xi E q,+ I L ni(a) = k} fork~ 0. 
i=l a;EA1 

Then, by Lemma 3.8, we can construct a (non-trivial) gradation of 9 
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satisfying the generating condition for m = ffip<O 9p by putting 

9o = fJ EB EB (9a EB 9-a), 
aE<Pci 

9k = EB 9a, 9-k = EB 9-a (k > 0), 

or equivalently by defining the characteristic element E E fJ by 

{ 
1 if o:i E D-1, 

o:i(E) = 
0 if O:i E D.o = D. \ D.1. 

We denote the simple graded Lie algebra 9 = EB~=-µ 9p obtained from 
b.1 in this manner by (Xt, b.i), when 9 is a simple Lie algebra of type 
X,:. Namely Xt stands for the Dynkin diagram of 9 representing b. and 
D.1 is a subset of vertices of X,:. 

In this case the depthµ of (Xt, b.i) can be computed by means of 
the heighest root 0 of <I>. In fact we have 0 E <1>!, because 0 is the unique 
maximal root relative to the partial order >-- of <I>, where o: >-- /3 means 
that o: - /3 is a sum of positive roots or o: = /3 ( cf. [Hu, Lemma 10.4.A]). 
Thus µ is given by 

µ = L ni(e), 
aiE~1 

where 0 = I::;=1 ni ( 0) O:i. 

As an illustration, let us examine the case of G2. The Dynkin dia
gram of G2 is given by 

and the set <1>+ of positive roots consists of six elements ( cf. [Bu]): 

<1>+ = { 0:1, 0:2, 0:1 + 0:2, 20:1 + 0:2, 30:1 + 0:2, 30:1 + 20:2}. 

Here 0 = 3o:1 + 20:2 and we have three choices for b. 1 C b. = { 0:1, 0:2}. 
Namely b.1 = {0:1}, {0:2} or {0:1,0:2}- Then the structure of each 
(G2, b.1) is described as follows. 

(1) ( G2, { o:1} ). We have µ = 3 and <1>+ decomposes as follows; 

<1>t = {30:1 + 0:2, 30:1 + 20:2}, <1>t = {20:1 + 0:2}, 

<1>t = {0:1,0:1 + 0:2}, <1>t = {o:2}. 

Thus dim9_3 = dim9_1 = 2, dim9_2 = 1 and dimgo 4. Hence 
m = ffip<O 9p is isomorphic with Cm5 in §1.3. 
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(2) (G2 , {a2 }). We haveµ= 2 and cJ>+ decomposes as follows; 

cJ.>t = { a2, a1 + a2, 2a1 + a2, 3a1 + a2}-

Thus dimg_2 = 1 and dimg_ 1 = dimg0 = 4. Hence this is a contact 
gradation (cf. §4.2). 

(3) (G2 ,{a1 ,a2}). We haveµ= 5 and cJ>+ decomposes as follows; 

cJ.>t = {3a1 + 2a2}, 

cJ.>t = {a1 + a2}, 

cJ>! = {3a1 + a2}, 

cJ.>t = {a1,a2}, 

cJ.>t = {2a1 + a2}, 

cJ.>t = (/J. 

Namely (G2 , {a1 ,a2 }) is a gradation according to the height of roots 
and g' = EBv~o gP is a Borel subalgebra. In this case, by utilizing a 

Chevalley basis of g ( cf. [Hu, p. 14 7]), one can check that m = EBv<O gp 

is isomorphic with <Cm6 in §1.3 (cf. example (3) in §5.3). 

We shall see in §5.2 that G2 is the prolongation of (m, g0 ) in case 
(2), and is the prolongation of min case (1) and (3). 

Let g be a simple Lie algebra over IR such that <Cg is simple. In the 
real case, we can utilize the Satake diagram Sc of g to describe gradations 
of g. 

Let us fix a Cartan decomposition g = £ EB p, a maximal abelian 
subspace a of p and a Cartan subalgebra fJ of g containing a. <Cf) is a 
Cartan subalgebra of <Cg such that a = (<C!J)JR n g. Let cJ> be the root 
system of <Cg relative to <Cf) and ~ be the restricted root system of g 
relative to a. Each ,\ E ~ is obtained by restricting some a E cJ> to 
ac (<C!J)JR-

Let a denote the conjugation of <Cg with respect to g. Let us take 
a a-fundamental system A = { a 1 , ... , ac} of cJ> ([Sal). Namely A is a 
simple root system of cJ> satisfying the following property: 

If a E cJ>+ and ala=/=- 0, then a" E cJ>+, 

where a" E cJ> is defined by a"(H) = a(a(H)) for HE <Cf). Put A•= 
{ a E A I ala = 0} and A O = A \A•. Then there exists a permutation 
v of order 2 of A O such that 

(3" ~ v(/3) + I: mi ai, 
C>iE~• 

for (3 E A 0 ([Sa, Lemma 1]). The Satake diagram Sc of g is constructed 
from the Dynkin diagram Xe of <Cg representing A, firstly by marking 
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simple roots of ~ • by black vertices and secondly by connecting two 
white vertices ai and aj of ~ 0 by an arrow when aila = ajla, that is, 
when ai = v( aj ). A non-compact real form fl of a simple Lie algebra over 
(C is determined by its Satake diagram S,. For an explicit construction 
of real form fl from its Satake diagram S, in terms of root vectors of 
Cg, we refer the reader to §4 of [Tkl]. Thus, from a a-fundamental 

system~ of <T>, we obtain a simple root system l = {A1 , ... , Ap} of I:, 
by restricting ai E ~ to a. 

Now take any non-empty subset l 1 of l and define EE a by 

·( ) - { 1 if Ai E l1, A, E - ~ ~ ~ 
0 if Ai E ~o = ~ \ ~ 1. 

Here we note that a(E) = 0 or 1 for any a E ~ and that ~1 = { a E 

~ I ala E l 1 } is a subset of the Satake diagram S, of fl which consists 
of white vertices and is stable under v: ~ 0 __, ~ 0 , that is, ~ 1 is a v
invariant subset of ~ 0 • Then, by Lemma 3.8, E defines a gradation 
of g such that Cg = EBpEZ Cgp satisfies the generating condition for 

Cm = EBp<O Cflp· Hence fl = EB~=-µ £Ip is a simple graded Lie algebra 

over JR such that m = EBp<O flp is fundamental. Moreover ~o = ~ \ ~1 

is a a-subsystem containing ~ •, which corresponds to the parabolic 
subalgebra g' = EBp~o £Ip- We denote the simple graded Lie algebra 

over JR obtained in this manner by (St, ~1). In this case, the depth 
µ of (St, ~ 1 ) can be computed by means of the highest root 0 of the 
a-fundamental system~; 

µ = I: ni(e), 
a, Ell.1 

where 0 = ~;=1 ni(0) ai. 

3.5. Conjugacy of simple graded Lie algebras 

Let fl be a simple Lie algebra over K = JR or C. We denote by 
Aut(g) the group of Lie algebra isomorphisms of fl over K, and by Int(g) 
the adjoint group of g. Int(g) coincides with the identity component 
of Aut(g). We shall consider the conjugacy problems for gradations 
of g satisfying the generating condition for m = EBp<O flp under the 

group Aut(g) or Int(g). Two gradations {flp}pEz and {gp}pEZ are called 
conjugate under G if there exists r.p E G such that r.p(f!p) = i)p for all 
p E Z, where G = Aut(g) or Int(g). 
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Let g = EB;=-µ gp be a simple graded Lie algebra over K such that 

m = EBp<O gp is fundamental. First we consider the filtration {fP}pEZ of 
g defined by 

fP = ffigq for p E Z. 
q~p 

Then [fP, F] C fP+q for p, q E Zand we have fP = g for p ~ -µ, f = {O} 
for. k > µ and f0 = g'. Recall, by the argument in 3.3, that g' = ~ 
is a parabolic subalgebra of g (when K = JR, a subalgebra ~ of g is 
called parabolic if C~ is parabolic in Cg). Furthermore, by Lemma 3.1, 
Lemma 3.2 and the generating condition of m, we have 

Lemma 3.10. The filtration {fP}pEz of g is determined solely by 

~ = f0 and given as follows. 

(1) f1 = {XE~ I B(X, ~) = 0} and is the nilradical of ~-
(2) fk = Ckf1 = [f1, ck-1f1] for k ~ 2, where f1 = C 1f1 by conven

tion. 
(3) f- 1 ={XE g I [X,f1] C f0 }. 

(4) f-k = Ckf-1 = [f-1,ck-lf-1] fork~ 2, where f-1 = cif-1 by 

convention. 

The last statment in (1) can be obtained by describing the gradation 
in terms of the root space decomposition of Cg as in 3.3. 

By Lemma 3.10, we note that, for a simple graded Lie algebra 
g = EBpEZ gP such that m = EBp<O gP is fundamental, the gradation 
is recovered from the parabolic subalgebra ~ = g' firstly by forming the 
filtration {fP}pEz given by Lemma 3.10 and secondly by passing to the 
associated graded Lie algebra of {fP}pEZ· This observation leads us to 
the following. 

Proposition 3.11. Let {gp}pEZ and {gp}pEZ be two gradations 
of a simple Lie algebra g over K = JR or C. Then {gp}pEZ and {g}pEZ 
are conjugate under Aut(g) (resp. Int(g)) if and only if~= EBpzo9p 

and ll} = EBpzo9p are conjugate under Aut(g) (resp. Int(g)). 

Proof. Only if part is trivial. Let r.p be an automorphism of g such 

that r.p(~) = ll}. Then, by Lemma 3.10, r.p is an isomorphism as a filtered 

Lie algebra, that is, r.p(fP) = f P for all p E Z. Let Wp be the projection of 

f Ponto gP corresponding to the decomposition f P = EBq~p 9q· r.p induces 

a graded map [p of g = EBpEZ gp onto g = EBpEZ 9p by 

[p(X) = (wp · r.p)(X) for XE gp-
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It is easy to see that (j5 is a graded Lie algebra isomorphism of g = 
E9pEZ 9p onto g = E9pEZ 9p. This finishes the proof for Aut(g). Further
more put 'ljJ = (p- 1 -r.p. Then 'l/; is a filtration preserving automorphism of 
g = E9pEZ 9p· Hence, by Lemma 1.7 of [T4], 'ljJ can be written uniquely 
in the form 

'ljJ = r.po · expX1 · · · expXµ, 

where l.fio E Go, Xk E 9k and G0 is the subgroup of Aut(g) consisting 
of all gradation preserving automorphisms of g = E9pEZ 9p• Thus we 
obtain 

r.p = 0o · expX1 · · · expXµ, 

where (j50 = (j5 • r.p0 is a graded Lie algebra isomorphism of g = E9pEZ gP 

onto g = E9pEZ 1Jp, which completes the proof for Int(g). 

Thus the conjugacy of gradations of a simple Lie algebra g over 
K = IR or <C satisfying the generating condition for m is reduced to that 
of parabolic subalgebras of g. 

The classification of parabolic subalgebras of a simple Lie algebra 
over <C is achieved by the conjugacy of Borel subalgebras of g ( cf. [Hu, 
Chapter IV]): Every parabolic subalgebra in g is conjugate to a stan
dard parabolic subalgebra \lJ(.6.0), where .6.0 is a subset of .6.. Moreover 
the conjugacy class of parabolic subalgebras under Aut(g) is one to one 
correspondent to the equivalence class of (Xe, .6.0 ) under the diagram 
automorphisms of Xt, where Xt stands for the Dynkin diagram of g 
and .6.0 is any subset of Xt. Similarly, in the real case, we have ([M, 
p. 431, Theorem 3.1]); the conjugacy class of parabolic subalgebras un
der Aut(g) is one to one correspondent to the equivalence of (St, .6.0 ) 

under the diagram automorphisms of St, where St stands for the Satake 
diagram of g and .6.0 is any a-subsystem containing .6. •. For the details, 
we refer the reader to [M]. 

Summarizing we obtain (cf. [K-A, Theorem 2.7]. For the notation 
see 3.4.) 

Theorem 3.12. Let g = E9pEZ gP be a simple graded Lie algebra 

over K = IR or <C such that m = E9p<O gp satisfies gp = [9p+l, 9-1] for 
p < -1. 

(1) The complex case. Let Xt be the Dynkin diagram of g. Then 
g = E9pEZ gp is isomorphic with a graded Lie algebra (Xt, .6.1) for some 
.6.1 C .6.. Moreover (Xt, .6.1) and (Xt, .6.i) are isomorphic if and only if 
there exists a diagram automorphism ¢ of Xt such that ¢(.6.1) = .6.~. 
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(2) The real case. Let Sc be the Satake diagram of g. Then g = 
ffipEZ gp is isomorphic with a graded Lie algebra (Sc, ~ 1) for some v
invariant subset ~ 1 of ~ 0 • Moreover (Sc, ~1) and (Sc,~~) are isomor
phic if and only if there exists a diagram automorphism </> of Sc such 
that ¢(~i) = ~~-

§4. Standard differential system (Mg, Dg) of type g = ffipEZ 9p 

4.1. Standard differential system (Mg, Dg) 

First we shall give general remarks on the model space associated 
with a simple graded Lie algebra. 

Let g = ffipEZ gp be a simple graded Lie algebra over K = ~ or (C 

such that m = ffip<O gP is fundamental. We denote by Int(g) the adjoint 
group of g. Let G0 be the automorphism group of the graded Lie algebra 
g = ffipEZ gp, that is, the subgroup of Aut(g) consisting of elements 
which preserves the gradation. Then the Lie algebra of G0 coincides 
with g0 ([T3, Lemma 2.4]). Moreover let G' be the automorphism group 
of the filtered Lie algebra g = f-µ ( cf. Lemma 3.10). The Lie algebra of 
G I " I ffi 

lS 9 = Wp~O 9p· 

Now we define an open subgroup G of Aut(g) by 

G = Int(g) · G' = Int(g) · Go. 

We consider the homogeneous space Mg= G/G'. Mg is connected and 
compact (this is a consequence of the Iwasawa decomposition of G), 
on which G acts effectively. Mg = G/G' is the model space for the 
normal Cartan connection of type g constructed by N. Tanaka [T4]. 
Furthermore, when µ > 1, by identifying g with the Lie algebra of left 
invariant vector fields on G, f- 1 defines a left invariant subbundle of 
T(G), which is also preserved by the right action of G' on G. Hence r 1 

induces a G-invariant differential system Dg on Mg. 
Here we remark that, when g is a real simple Lie algebra of class A in 

Proposition 3.3, that is, when g is a complex simple Lie algebra regarded 
as a real simple Lie algebra, the identity component Int(g) of G is a com
plex Lie group. Hence Mg = Int(g)/G' n Int(g) is a complex manifold 
such that Dg is a holomorphic differential system on Mg. However G 
does not act on Mg as a group of holomorphic transformations, although 
Int(g) does. Namely the Lie group G changes depending on whether we 
regard g as a real Lie algebra or as a complex Lie algebra, whereas Mg 
remains the same. In fact the group of all automorphisms of (Mg, Dg), 
which coincides with G by Theorem 2.7 of [T4], under the assumption 
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that g is the prolongation of m, differs depending on whether we re
gard (Mg, Dg) as a real or a holomorphic differential differential system, 
whereas the Lie algebra A(M9 , Dg) of all infinitesimal automorphisms 
remains the same (cf. Remark at the end of §3.2). 

Thus (Mg, Dg) may be called the standard differential system of type 

g = E0pEZ 9p· In fact, let us fix a reference point o of Mg, Let M be 

the analytic subgroup of G with Lie algebra m = E0p<O 9p· Then, since 

MC G C GL(g), the unipotent linear subgroup Mis simply connected. 

Moreover, since g = mffig', Mhas an open orbit through o. (This orbit is 

in fact diffeomorphic with M. This follows from the generalized Bruhat 
decomposition [Tkl, Theorem 8].) Thus the restriction of the projection 

G----, Mg = G/G' gives a (local) diffeomorphism p of M = M(m) into 
Mg such that p(idM) = o. By the definition of Dg, we see that p is 

a (local) isomorphism of (M(m), Dm) into (Mg, Dg), We shall see in 
§5.2 that, in many cases, G coincides with the group Aut(Mg, Dg) of all 
automorphisms of (Mg, Dg)-

By the previous argument in §3, we know that Mg is in fact a R
space, that is, Mg = G / G' is a quotient space of a simple algebraic 
group G by a parabolic subgroup G' (cf. [Ttl], [Tkl]). Especially, when 
g is complex simple, we know that Mg is a compact simply connected 
projective algebraic manifold ( cf. [Wa], [Se], [Ttl], [Tkl]). Hence, in this 

case, starting from any connected complex Lie group G with Lie algebra 

g, we can construct Mg as G / G', where G' is the analytic subgroup of 

G with Lie algebra g'. 
Now let G be the simply connected Lie group with Lie algebra g and 

(p, V) be an irreducible representation of G with the highest weight A, 
which is strongly associated to 4>0 in the sense of Borel-Weil [Se]. Namely 
A is a dominant weight of g such that (A, a) = 0 for a E ~o and (A, a) > 
0 for a E ~ 1 . Then we obtain a G-equivariant projective imbedding of 

Mg by taking a G-orbit passing through [vA] in the projective space 
P(V) consisting of all lines in V, where VA is a maximal vector in V of 
the heighest weight A. For the discussion of the real case, we refer the 
reader to [Tkl]. 

In the following, we shall give an example of this construction and 
also discuss explicit examples of (Mg, Dg) for simple Lie algebras of the 
classical type. Our emphasis will be on the differential system Dg, 

Remark 4.0. In the complex case, since Mg is a compact complex 
manifold, the group Aut(Mg) of all holomorphic transformations of Mg 
is a Lie transformation group acting on Mg, It is known ([On]) that 
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Int(g) coincides with the identity component of Aut(M9 ) except when 
g = EBpEZ gP is isomorphic with ( Ct, { o:i}) (£ ~ 2), (Bt, { o:£}) (£ ~ 3) 
or ( G2, { o:2} ). In these exceptions, M 9 is biholomorphic with p 2£-1(1C), 
S0(2£ + 2)/U(£ + 1) or Q5 (1C) (complex quadric) and the Lie algebra of 
Aut(M9 ) is of type A 2t, DH1 or B 3 respectively. These facts are pointed 
out to us by the referee (see also Remark 4.3 (1)). 

4.2. Contact gradation 

For each simple Lie algebera over C, we shall show the existence of 
a complex contact gradation which is unique up to conjugacy ( cf. [Bo], 
[Wo], [Ch], [Tk2]). 

Let g be a simple Lie algebra over C. First assume that g has a 
contact gradation, that is, g admits a gradation of depth 2 such that 
9-1 -/- {O} and dimg_2 = l; 

g = 9-2 EB 9-1 EB go EB 91 EB 92• 

By Lemma 3.2 (1), the bracket operation [,]: g_1 x 9-1 ---, 9-2 is non
degenerate. Let us fix a Cartan subalgebra ~ and a simple root system 
~ = { o:1, ... , o:£} such that EE ~ and o:(E) ~ 0 for o: E ~- We have a 
partition of positive roots <1>+; 

<1>+ = <I>f u <I>t u <I>t. 
Then, since dimg_2 = 1, we have <I>f = {0}, where 0 is the highest 
root. Moreover, from the non-degeneracy of [, ] : 9-1 X 9-1 ---, 9-2, we 
see that, for each o: E <I>t, there exists /3 E <I>t such that o: + /3 = 0. 
Hence <I>t = { o: E <1>+ I 0 - a is a root}. Since <1>+ = <I>f U <I>t U <I>t is 
a partition, we get <I>t = { o: E <1>+ \ {0} I 0 - a is not a root}. On the 
other hand, since 0 is a long root and 0 + a is not a root for any o: E <1>+, 
we have ( cf. [Hu, 9.4]) 

(o:, 0) = 0 or 1 for any o: E <1>+ \ {0}, 

h ( 0) 2(o:, 8) · C · M b "d . h w ere o:, = (0, 0) 1s a artan mteger. oreover, y cons1 enng t e 

a-string through 0, we see that (0, o:) = 0 if and only if 0 - a is not a 
root. Therefore we obtain 

<I>t = { o: E <1>+ I (o:, 0) = k} for k = 0, l, 2. 

This implies that the characteristic element E of g = EBpEZ gP is given 
2 t0 

by h0 = (0, 0) E ~' where t0 E ~ is defined by B(t0, H) = 0(H) for 
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HE f). Conversely the above argument shows that ho E fJ indeed defines 
a contact gradation of g. 

Thus a contact graded Lie algebra g = EB!=-2 gP is isomorphic with 
(XR, Ao), where Ao = { a E A J (a, 0) = 1 }. Here we note that, since 
depth of ( Xt, Ao) is two, Ao should consist of two elements { O:i, a:1} of 
A satisfying ni(0) = n1(0) = l or consist of a single element O:i of A 
satisfying ni(0) = 2. In fact the information of Ao is expressed in the 
extended Dynkin diagram of g and the former case can occur only when 
g is of type A, (£ ~ 2). Thus Ao is the subset of A consisting of simple 
roots which are connected to -0 in the extended Dynkin diagram of g. 

Summarizing, we obtain (cf. [Wo, Theorem 4.2], [Ch], [Tk2, §1]) 

Theorem 4.1. Let g be a simple Lie algebra over (C such that 
rankg ~ 2. Then g admits a unique complex contact gradation up to 
conjugacy. This gradation is isomorphic with (Xt,Ao), where Ao = 
{ a E A J (a, 0) = 1} and 0 is the highest root. Furthermore the char
acteristic element of (X,, Ao) is given by E = ho E f). 

In the next page we show the extended Dynkin diagrams with the 
coefficient of the highest root. 

Remark 4.2. Let g be a simple Lie algebra over JR such that Cg is 
simple and rank Cg~ 2. By Theorem 4.1, to seek a real contact grada
tion of g, we need only to check whether Ao is a v-invariant subset of 
AO in its Satake diagram or whether the lowest root -0 is not connected 
to any black vertex in the extended Satake diagram of g ([Tk2, §3]). In 
this way, we obtain (cf. [Ch, Theorem 3]) 

A real simple Lie algebra g of class B admits a unique real contact 
gradation (St, Ao) up to conjugacy except for the cases when St is of 
typeAI (£ = 1), All, BIi, CII, DII, EIV or FIi in the list of table VI in 
[He, Chapter X, p. 532]. In the latter cases, they do not admit a contact 
gradation. 

For the details, we refer the reader to [Ch] and [Tk2, §1]. 

4.3. Standard contact manifolds 

We shall discuss the standard differential sytem (M9 , D9 ) associated 
with a contact gradation of a simple Lie algebra g over (C as an illustra
tion of the method, mentioned in 4.1, of constructing the model space 
via a certain representation. Here we note that, by Theorem 4.1, the 
heighest root 0 is a dominant weight strongly associated to A \ Ao, and 
0 is the heigh est weight of the adjoint representation ad: g --+ g [(g). In 
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The extended Dynkin diagrams 

fact the standard differential system (M9 , D 9 ) of type (X,1, ~0) can be 
constructed via the adjoint representation as follows. 

Let fl be a simple Lie algebra over K = JR or C: and let fl = EB!=-2 flv 
be a contact gradation over K. Let G = Int(fl) be the adjoint group of 
g. Let us fix a non-zero vector X 0 E f12 • First we consider the adjoint 
orbit S of G passing through X 0 • Since the adjoint representation and 
coadjoint representation of G are equivalent via the Killing form duality, 
it is well-known (cf. [Al) that S has a symplectic structure (over K). The 
symplectic structure on S is given as follows: Let w0 be the covector 
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corresponding to X 0 , that is, w0 E 9* is defined by w0 (X) = B(X0 , X) 
for XE 9. Then we have 

(4.1) f-l = EB 9p = { X E 9 I Wo(X) = 0 }. 
p;:::-1 

Let G be the isotropy subgroup of G at X 0 E 9; 

G = {g E GI Ad(g)(X0 ) = X 0 } = {g E GI Ad*(g)(w0 ) = w0 }. 

Then the Lie algebra g of G is given by 

On the other hand we see from the root space description of the 
contact gradation in 4.1 that Z9 (92) is an ideal of 9' = E9p~O 9p of 

codimension 1 such that 9' = (E)KEBZ9 (92) and that 9' is the normalizer 
N9 (92) of 92 in 9. In particular g C f- 1 = {XE 9 I wa(X) = 0 }. Then, 
for a left invariant 1-form w0 on G, we have R;w0 = Ad*(g- 1 )w0 = w0 

for g E G and w0 (X) = 0 for X E g, which implies that w0 is projectable 
to S = G/G. Namely there exists a G-invariant 1-form a on S such that 
1r*a = w0 , where 1r: G---+ S = G/G is the projection. Moreover, since 
l(X)dw0 = Lxw0 for a left invariant vector field XE 9, we see from (4.2) 
that X E g if and only if l(X)dw0 = 0. Therefore da is a symplectic 
form on S. (For an arbitrary coadjoint orbit Sw passing through w E 9*, 
only dw is projectable to Sw.) 

Now let us take a G-orbit J9 passing through [X0 ] = 92 in the 
projective space P(9) over K. Let G' be the isotropy subgroup of G at 
[X0 ] E P(9): 

G' = {g E GI Ad(g)(Xo) = p(g). Xo} 

= {g E GI Ad*(g- 1 )(w0 ) = p(g) · W 0 }, 

where p: G' ---+ K x defines a 1-dimensional representation of G'. From 
.the existence of the characteristic element E, we see that pis not trivial. 
Hence we get Ker p = G, G' JG is isomorphic with K* and the Lie algebra 
of G' coincides with 9' = N9 (92), where K* = <C* when K = <C and 
K* = JR+ or ]RX when K = JR (see Remark 4.3 below). In particular S 
is stable under the K* (scalar )-action of the ambient vector space g. Let p 
be the projection of S onto J9 , which is the restriction of the projection 
p: g \ {O} ---+ P(g). Then (S, J9 ,p) is a principal K*-bundle over J9 • 

From R;w0 = p(g) · w0 for g E G' and w0 (X) = 0 for XE g', we have 
R: a= a• a for a E K* and Ker p* C Ker a= { X E T(S) I a(X) = 0 }, 
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where Ker p* is the vertical sub bundle of T ( S) of the projection p: S ---+ 

Jg. Hence a G-invariant 1-form a on S defines a G-invariant differential 
system Cg on J9 of codimension 1 by 

at each u = p(x) E Jg. 

From ( 4.1), we see that (Jg, Cg) is a standard differential system of type 

g = EB;=_2 9v· (Jg, Cg) is called the standard contact manifold of type g. 
Furthermore we have an imbedding 'Y of S into T*(Jg), which com

mutes with K*-actions of Sand T*(Jg)- In fact, since Kerp* C Kera, 
for each x E S, a determines a covector 'Y( x) E T:;, (Jg) at u = p( x) 
such that 'Y(x)(p*(X)) = a(X) for X E Tx(S). Then, via 'Y, (S, da) is 
identified with the symplectification of (Jg, Cg) when K = <C and with 
a connected component of the symplectification (Jg, Cg) when K = IR 
(cf. [A], [Kl]). 

Standard contact manifolds associated with simple Lie algebras over 
<C were first found by Boothby [Bo] as compact simply connected homo
geneous complex contact manifolds. The above construction was also 
given in [Wo]. The advantage of this construction is a clarification of 
the contact structure on Mg in a unified manner. We shall give a more 
explicit picture of (Jg, Cg) for the classical type in 4.5. 

Remark 4.3. (1) In the complex case, it is known ([Wo]) that Int(g) 
coincides with the identity component of the group Aut( Jg, Cg) of all 
holomorphic contact transformations of (Jg, Cg)-

(2) In the real case, G' /G is not necessarily connected. In fact 
G' /G is connected if and only if (Jg, Cg) admits a global contact form, 
or equivalently, if and only if the symplectification of (Jg, Cg) has two 
connected components. For example, G' /G is connected when g = .su(r+ 
1, £ - r) (0 ;:£ r ;£ [n;-1]) and is not connected when g = .s[(£ + 1, IR) or 
.sp(£, IR). 

4.4. Gradation and matrices 

Let g be a simple Lie algebra over <C of the classical type. We shall 
describe gradations of g in terms of matrices. Here we reproduce the 
matrices description of the root space decomposition of g from §7 of 
[Tkl] (cf. [K-A], [V, Chapter 4.4]), which gives us explicit pictures of 
Mg. 

(1) Ae type (£ ~ 1). g = .s[(£ + 1, <C). We take a Cartan subalgebra 
f) consisting of all diagonal elements of .s[(£ + 1, <C), whose member we 
denote by diag(a1, ... , ae+i)- Let A1, ... , A£+1 be the linear form on 
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ry defined by Ai: diag(a1, ... ,a£+1) f-; ai. We write Eij (1 ~ i,j ~ 
£ + 1) for the matrix whose ( i, j)-component is 1 and all of whose other 
components are 0. Then we have 

for HE ry. 

Hence <I> = {Ai - Aj E ry* (1 ~ i, j ~ £ + 1, i =/- j)} and Eij spans 
the root subspace for Ai - Aj E <I>. Let us choose a simple root system 
~ = {a1, ... , ac} by putting 

We have Ai - A1 =Di+···+ Dj-1 when i < j. Hence 0 = a1 + · · · + ac. 
Then we see that the gradation of (Ac, {a;}) is given by ,s[(£ + 1, q = 
£!-1 EB {lo EB {!1; 

£!-1 = { ( ~ ~) ICE M(j, i)}, £!1 = { ( ~ ~) IDE M(i,j)}, 

{lo= { ( i ~) I A E M(i, i), BE M(j,j) and tr A+ tr B = 0}, 

where j = £ - i + 1 and M(p, q) denotes the set of p x q matrices. This 
decomposition can be described schematically by the following diagram; 

i j 

i~ 

j~ 

where the vertical (resp. horizontal) line stands for the i-th vertical 
(resp. horizontal) intermediate line of a matrix in ,s[(£ + 1, q. Then, 
for example, the diagram of (Ac, { ai, a 1}) (i < j) is obtained by super
posing the diagrams of (Ac, { ai}) and (Ac, { a 1} ); 

p:f=9 ioTI ~ 
l1__:J 6=hJ 

0 

-1 

-2 

1 2 

0 1 

-1 0 

In general the diagram of (Ac, { ai1 , ••• , aik}) is obtained by superposing 
the k diagrams of (Ac, { aii}), ... , (Ac, { aik}). Namely the gradation of 
(Ac, { Di1 , ••• , aik}) is obtained by subdividing matrices by both vertical 
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and horizontal k lines. Here i-th intermediate line corresponds to the 
simple root ai. 

By this description of gradations, we see that the model space Mg 
of (Ac, { ai}) is the complex Grassmann manifold Gr(i, V) consisting of 
all i-dimensional subspaces of V = c£+1. Furthermore the model space 
Mg of (Ac, { aii, ... , aik}) (1 ~ i1 < · · · < ik ~ £) is the flag manifold 
F(i1, ... , ik; V) consisting of all flags {½ C · · · C Vk} in V such that 
dim½= ij for j = 1, ... , k (cf. [Ttl]). 

(2) Cc type (£ ~ 2). Let (V, (, )) be a symplectic vector space 
over C of dimension 2£, that is, ( , ) is a non-degenerate skew sym
metric bilinear form on V. Then g = ,sp (V). Let us take a symlectic 
basis {e1, ... ,ec,fi, ... ,J£} of V such that (ei,ej) = (li,Jj) = 0 and 
(Ji,eHi-j) = 8ij for i, j = 1, ... , €. Thus we have a matrix represen
tation 

g ={XE g[(2£,C) I txJ + JX = 0}, where J = (-~ ~), 

and K is the £ x £ matrix whose (i,j)-component is 8i,Hl-j· We put 
A' = KA K for A E g[(£, C). Namely A' is the "transposed" matrix of 
A with respect to the anti-diagonal line. Each X E g is expressed as a 
matrix of the following form; 

where A, B, C are £ x £ matrices such that B and C satisfy B = B' 
and C = C'. Namely both B and C are symmetric with respect to 
the anti-diagonal line. Thus we see that X is determined by its upper 
anti-diagonal part. In the following we write X = (A, B, C) in short. 

We take a Cartan subalgebra I) consisting of all diagonal elements 
of the form H = (diag(a1, ... ,ac),0,0). Let .X1, ... , .Xc be the linear 
form on I) defined by Ai: H r-+ ai. We put Fij = Eij + EL, where 

Eij = Ec+1-j,£+l-i· Then we have 

[H, (Eij, 0, 0)] = (.Xi - .Xj)(H)(Eij, 0, 0), 

[H, (0, Fij, 0)] =(.Xi+ A£+1-j)(H)(0, Fij, 0), 

[H, (0, 0, Fij)] = -(.Xc+i-i + >.j)(H)(0, 0, Fij)-

Hence <I> = {.xi - Aj (i -/- j), ±(.Xi + Aj) (1 ~ i ~ j ~ £)} and 
(Eij,0,0), (0,Fi,Hl-j,0), (0,0,Fc+i-i,j) are root vectors for Ai - Aj, 
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Ai + Aj, -( Ai + Aj) E <I> respectively. Let us choose a simple root system 
~ = { a1, ... , ac} by putting 

for i = 1, ... , £ - 1, 

We have 

{ 
Ai - Aj = ai + · · · + °'j-1 (1 ~ i < j ~ £), 

Ai+ Aj = (ai + · · · + ac- 1) + (aj + · · · + ac) (1 ~ i ~ j ~ £). 

Hence 0 = 2 a 1 + · · · + 2 °'£-l + ac. Then we see that the gradation of 
( Cc, { ai}) is given by the following diagram; 

i i 
i 0 1 2 

-1 0 1 (1 ~ i < £) 

-2 -1 0 

Then the diagram of ( Cc, {°'ii, ... , °'ik}) is obtained by superposing the 
k diagrams of (Cc, { °'ii } ) , ... , (Cc, { aik}). Here two intermediate lines 
(i-th and (2£- i)-th lines) correspond to the simple root {ai} for i = 1, 
... , £ - 1 and the center line corresponds to { ac}. 

By this description of gradation, we see that the model space Mg 
of ( Cc, { ai}) is the Grassmann manifold Sp-Gr( i, V) consisting of all 
i-dimensional isotropic subspaces of (V, (, ) ). Furthermore the model 
space Mg of ( Cc, {°'ii, ... , °'ik}) (1 ~ i1 < · · · < ik ~ £) is the flag 
manifold Sp-F(i1, ... , ik; V) consisting of all flags {Vi C · · · C Vk} in V 
such that½ is an ij dimensional isotropic subspace of (V, (, ) ) ( cf. [Ttl]). 

(3) Be (£ ~ 3), De (£ ~ 4) type. Let (V, (I)) be an inner product 
space over C of dimension 2£ or 2£ + 1, that is, (I) is a non-degenerate 
symmetric bilinear form on V. Then g = o(V). Let us take a ba
sis {e1, ... ,ec,ec+1,fi, ... ,fc} ofV such that (eilej) = (ec+1lei) = 
(ec+1lfi) = (filh) = 0, (ec+1lec+1) = 1 and (eilfc+1-j) = 8ij for i, 
j = 1, ... , £. Here we neglect eH1, when dim V = 2£. Then we have a 
matrices representation 

g={XEg[(n,(C) ltXS+SX=O}, Where S __ ( Ko0 o~ K~ ) 
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and n = 2£ or 2£ + 1. Each X E g is expressed as a matrix of the form 

X = (t ~ ~') 
C -t -A' 

where A, B, Care£ x £ matrices such that B = -B', C = -C' and 
a, ~ are column and row £-vector respectively such that a' and l' are 
given by a'= (a,, ... ,a1), l' = t(~£,··•,6) for a= t(a1, ... ,a,), ~ = 
( ~1, ... , ~£) respectively. Here the center column and the center row of X 
should be deleted when dim V = 2£. Both B and C are skew symmetric 
with respect to the anti-diagonal line. In particular all the anti-diagonal 
components Xi,n+l-i of X are 0. Thus X is determined by its upper 
anti-diagonal part. We write X = (A, B, C, a,~), in short. 

We take a Cartan subalgebra fJ consisting of all diagonal elements 
of the form H = (diag(a1, ... ,a,),0,0,0,0). Let A1, ... , A£ be the 
linear form on fJ defined by Ai: H 1---+ ai. We put Gij = Eij - E:1 and 

Ei = (81i, ... , 8ti) EC'. Then we have 

[H,(Ei1,o,o,o,o)] = (Ai -A1)(H)(Ei1 ,o,o,o,o), 

[H, (0, Gij, 0, 0, 0)] = (Ai + A£+1-j) (H)(0, Gij, 0, 0, 0), 

[H, (0, 0, Gij, 0, 0)] = -(A£+1-i + A1 )(H)(0, 0, Gi1, 0, 0), 

[H, (o, o, o, Ei, 0)] = Ai(H)(o, o, o, Ei, 0), 

[H, (0, 0, 0, 0, Ei)] = -Ai(H)(0, 0, 0, 0, Ei)-

Hence we have 

{ 
{>.i - A1 (i _-I= j), ±(Ai+ A1'. (l -~ i < j ~ £)} 

<I>= {±Ai (1 ~ z ~ £), Ai - A1 (z-/= J), 

±(Ai+ A1) (1 ~ i < j ~ £)} 

if n = 2£, 

if n = 2£ + 1. 

(Eij, o, o, o, 0), (0, Gi,Hl-j, 0, o, 0), (0, o, GHl-i,j, o, 0), (0, o, o, Ei, 0) 
and (0,0,0,0,Ei) are root vectors for Ai - Aj, Ai+ Aj, -(Ai+ Aj), 
Ai and -Ai E <I> respectively. Let us choose a simple root system 
~ = { a1, ... , a£} by putting 

(i) B, type 

(ii) Dt type 

{ 
ai = Ai - Ai+ 1 

CT£ = A£. 

{ 
ai = Ai - Ai+1 

a, = At-1 + A£. 

for i = 1, ... , £ - 1, 

for i = 1, ... , £ - 1, 
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Then we have 

(i) Bt type 

(1 ~ i < j ~ £), 

(1 ~ i ~ £), { 
Ai - Aj = ai + · · · + ai-1 

Ai = ai + · · · + at 

Ai + Aj = ai + · · · + ai-1 + 2 ai + · · · + 2 at (1 ~ i < j ~ £). 

Hence 0 = a1 + 2 a2 + · · · + 2 0!£, 

(ii) Dt type 

Ai - Aj = ai + · · · + ai-1 

Ai+ At = ai + · · · + at-2 + at 

At-1 + At = at 

(1 ~ i < j ~ £), 

(1 ~ i ~ £ - 2), 

Ai+ At-1 = ai + · · · + 0!£-1 + at (1 ~ i ~ £ - 2), 

Ai + Aj = ai + · · · + ai-1 + 2 ai + · · · + 2 0!£-2 + at-1 + at 

(1 ~ i < i ~ e - 2). 

Hence 0 = a 1 + 2 a2 + · · · + 2 0!£-2 + 0!£-1 + 0!£, 

Then we see that the gradation of (Bt, { ai}) is given by the following 
diagram; 

1 n-2 1 i n-2i i 

0 1 * 0 1 2 

-1 0 1 (i = 1) -1 0 1 (1 < i ~ £) 

* -1 0 -2 -1 0 

The gradation of (Dt,{ai}) is given by the same diagram as above 
for i = 1, ... , £ - 2 and the above diagram with i = £ - 1 is that of 
(Dt, { 0!£-l, a£}). Moreover the diagrams of (Dt, { 0!£-l}) and (Dt, {a£}) 
are given as follows 

£-1 

1 

1 

£-1 

0 

-1 

0 

-1 

1 0 

0 * 
* 0 

0 -1 

1 e 0 1 
0 

1 
(i=f-1) (i = £) 

£ -1 0 
0 
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Clearly, by interchanging ee and Ji, matrices representations of 
(De,{ae-i}) and (De,{ac}) transforms each other, i.e., (De,{ae-d) 
and (Dt, { ae}) are conjugate. The other gradations of Be or De type 
can be obtained by the principle of superposition as in the previous 
cases. Here two intermediate lines (i-th and (n - i)-th lines) correspond 
to the simple root { ai} for i = 1, ... , £. in case of type Be and for i = 1, 
... , £. - 2 in case of type De. Moreover in case of type De, (£. - 1)-th 
and (£. + 1)-th intermediate lines correspond to the pair { °'£-I, ac} and 
the center line corresponds to { ac}. 

By this description of gradations, we see that the Grassmann man
ifold O-Gr(i, V) consisting of all i-dimensional isotropic subspaces of 
(V,(I)) is the model space Mg of (Be,{a;}) or (De,{a;}) according 
as dim V = 2£. + 1 or 2£., except for the case when i = £. - 1 and 
dim V = 2£.. In the latter case O-Gr(£. - 1, V) is the model space Mg 
of (D1,{a1_1,ac}), where dimV = 2£.. Thus, for D1 type, we make a 
following convention for a subset A 1 of A: If °'£-l E A 1 and o:e ,t A 1 , 

we replace o:e_ 1 by ae (the conjugacy class of (De, A 1 ) does not change 
by this replacement), and if both o:e_ 1 and o:e E A 1 , we write o:;_1 = 
{o:e-1,o:e}- Under this convention, we see that the model space Mg of 
(Be,{ai 1 , ••• ,aik})or(De,{ai1 , ••• ,aik}) (1 ~i1 <··· <ik~C) is the 
flag manifold O-F(i 1 , ••• ,ik;V) consisting of all flags {Vi C •·· C Vk} 
in V such that ½ is an irdimensional isotropic subspace of (V, (I)), 
according as dim V = 2£. + 1 or 2£. ( cf. [Tt 1]) . 

4.5. Canonical systems on Grassmann bundles 

First we recall the notion of canonical systems on Grassmann bun
dles ([Yl], [Y2]). Let M be a (real or complex) manifold of dimension 
m + n. We consider the Grassmann bundle J(M, n) over M consisting 
of all n-dimensional contact elements to M; 

J(M,n) = LJ Jx(M,n), 
xEM 

where Jx(M,n) = Gr(n,Tx(M)) is the Grassmann manifold of all n
dimensional subspaces of the tangent space Tx(M) to Mat x. Let 7f be 
the projection of J(M, n) onto M. Each element u E J(M, n) is a linear 
subspace of Tx(M) of codimension m, where x = 1r(u). Hence we have 
a differential system C of codimension m on J(M, n) by putting 

C(u) = 1r;1 (u) C Tu(J(M,n)) at u E J(M, n). 

C is called the canonical system on J(M, n). J(M, n) is the (geo
metrical) 1-jet space for n-dimensional submanifolds in M and C is 
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the contact system on this jet space ( cf. [Y2, § 1]). In fact let us fix 
u0 E J(M, n) and take an inhomogeneous Grassmann coordinate sys
tem (x1, ... ,xn,y1, ... ,Ym,P't) (1 ~ i ~ n, 1 ~ o: ~ m) of J(M,n) in a 
neighborhood U of u 0 , that is, (x1, ... , xn, y 1 , ... , ym) is a pull back of a 
coordinate system on M around x 0 = 7r(u0 ) such that dx 1 /\· • •/\dxn lu=~ 
0 for u EU and pf(u) is defined by dy°'lu = L~=1 pf(u)dxilu- Then the 
canonical system C is given in this coordinate system by 

C = { w 1 = · · · = Wm = 0 }, 

where w°' = dy°' - .._.....,n_ p':"dxi (1 :S: o: :S: m). L..i-1 i - _ 

Furthermore, starting from a contact manifold ( J, C) of dimension 
2n + 1, which can be regarded locally as a space of 1-jets for one un
known function by Darboux's theorem, we can construct a geometric 
second order jet space (L(J), E) as follows. We consider the Lagrange
Grassmann bundle L( J) over J consisting of all n-dimensional integral 
elements of ( J, C); 

L(J) = LJ Lu(J), 
uEJ 

where Lu(J) = Sp-Gr(n, C(u)) is the Grassmann manifold of all la
grangian ( or legendrian) subspaces of the symplectic vector space ( C ( u), 
dw). Here w is a local contact form on J. Let 7r be the projection of 
L(J) onto J. Then the canonical system Eon L(J) is defined by 

E( v) = 7r,;- 1 ( v) C Tv(L(J)) at v E L(J). 

Starting from a canonical coordinate system ( x 1 , ... , xn, z, Pl, ... , Pn) of 
(J, C), we can introduce a coordinate system (xi, z,pj,Pij) (1 ~ i ~ j ~ 
n) of L(J) such that Pij = Pji and Eis defined by 

E = { W ='WI=···= 'Wn = 0 }, 

n i ~n · ( < < ) where w = dz - Li=l Pidx and 'Wi = dpi - L..j=l Pijdx1 l = i = n . 
For the details, we refer the reader to [Yl]. 

These canonical systems appear among our standard differential sys
tems in the following cases. 

(1) (Ac, {o:1 ,o:i+1}) (1 ~ i < £). Let V be a complex vector space 
of dimension £ + 1. By the discussion in 4.4, we know that the model 
space Mg of (Ac,{o:1,o:H1}) is given by 

Mg= { ([v], W) E P(V) x Gr(i + 1, V) I [v] CW}. 
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Let p be the projection of Mg onto P(V). Each fibre of p: Mg --+ P(V) 
is a Grassmann manifold Gr(i, V/[v]). At each x = [v] E P(V), we can 
naturally identify Tx(P(V)) with the quotient space V/[v]. With this 
identification, we have a fibre-preserving diffeomorphism r.p of Mg onto 
J(P(V), i) defined by 

r.p(u) = W/[v] c V/[v] ~ Tx(P(V)) for u = ([v], W) E Mg. 

Moreover let us fix a basis { e0 , ... , ee} of V and put x 0 = [e0 ] and 
uo = ([eol, Wo), where W 0 = (e0 , .•. , ei). Let 1r1 and 1r2 denote the 
projection of G = SL(V) onto P(V) and Mg defined by 1r1(g) = g(x0 ) 

and 1r2 (g) = g( u0 ) for g E G respectively. Then, from the matrices 
description of (Ae, { a1, ll'.i+i}) in 4.4, we see that 

Hence it follows from p · 1r2 = 1r1 that (Mg, Dg) is isomorphic with the 
canonical differential system (J(P(V), i), C) via r.p. Especially (J(P(V), 
£ - 1), C) is the standard contact manifold of type Ae, which is also nat
urally identified with the projective cotangent bundle PT*(P(V)) over 
P(V) with its contact structure induced from the symplectic structure 
on T*(P(V)) (cf. [Bo], [Al). Here we note that the above argument is 
valid also for the normal real forms[(£+ 1, JR) of s[(£ + 1, q. 

(2) (Ce,{a1,ae}). Let us start with the contact gradation (Ce, 
{ ai}). From 4.4, we see that the model space of (Ce, { a 1}) is the pro
jective space P(V), where (V, (, ) ) is a symplectic vector space over (C 

of dimension 2£. Let us take a symplectic basis { e1, ... , ee, Ji, ... , Je} 
as in 4.4 and let 1r1 denote the projection of G = Sp(V) onto P(V) 
given by 1r1(g) = g([e1]) for g E G. Then, under the identification 
V/[e1] ~ Tx0 (P(V)), xo = [e1l, we see from the matrices description in 
4.4 that (1r;)-1([e1]..l /[e1]) = f-1, where [e1]..1. = { v EV I (v, e1) = 0 }. 
Thus we see that the contact structure C on P(V) is given by ( cf. [Kl]) 

C(x) = Kera/[v] C V/[v] ~ Tx(P(V)) at each x = [v] E P(V), 

where a is the linear symplectic form defined on V by av(w) = (v,w) 
for v, w EV. 

The model space of (Ce, { a 1, ae}) is given by 

Mg= { ([v],L) E P(V) x Sp-Gr(£, V) I [v] c L }. 

Let p be the projection of Mg onto P(V). We have a fibre-preserving 
diffeomorphism r.p of Mg onto the Lagrange-Grassmann bundle L(P(V)) 
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over P(V) defined by 

rp(u) = L/[v] C Kera/[v] ~ C(x) for u = ([v],L) and x = [v]. 

Let n 2 denote the projection of G onto Mg given by n2 (g) = g(ua) for 
g E G, where Ua = ([e1l, La) and La= (e1, ... , eR)- Then we have 

(1r;)-1(La/[e1]) = f-1 

from the following diagram for ( CR, { a 1, a£}); 

1 

C-I 

C-I 

1 

0 

-1 

-2 

-3 

1 

0 

-1 

-2 

2 3 

1 2 

0 1 

-1 0 

Hence it follows from p • n 2 = n1, that (Mg, Dg) is isomorphic with the 
canonical differential system (L(P(V)), E) via rp. We here note that the 
above argument is valid also for the normal real form sp(C, JR) of sp(C, <C). 

Finally we shall add another construction of standard contact man
ifolds of type BR or DR and those of their real forms. Let (V, ( J )) be an 
inner product space over K = JR or <C, that is, ( J ) is a non-degenerate 
symmetric bilinear form over Kon V. In the real case, we assume that 
(V, ( J ) ) is indefinite and admits 2-dimensional isotropic subspaces. 

Let W = V EB V be the direct sum of two copies of V. The inner 
product ( J ) induces a skew symmetric bilinear form ( , ) on W by 

Then (W, (, ) ) is a symplectic vector space. Let w be the I-form on 
W defined by w = (xJdy) - (yJdx), where (x, y) is the linear coordinate 
system of W. Put a= ½w. Thus (W, da) is a symplectic manifold. 

GL(2, K) acts on Won the right as follows; 

(x, y)a =(ax+ cy, bx+ dy) for a = (: : ) E GL(2, K). 

We have R~a = (det a) a for a E GL(2, K). Hence SL(2, K) acts on 
(W, da) as a group of symplectic transformations. Let { X, H, Y} be the 
basis of s((2, K) given by 

X = ( ~ ~) , H = ( ~ ~I) , Y ~ ( ~ ~) . 
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Then S£(2, K)-action on W induces hamiltonian vector fields 

n 0 
X* = LXi 8-' 

i=l Yi 

n O 0 
H* = "(xi - -yi -), 

~ ox· oy· 
i=I 2 2 

n 0 
Y* = LYi ox·' 

i=l 2 

with hamiltonians a(X*) = ½(xix), a(H*) = -(xly), a(Y*) = -½(YIY) 
respectively. Thus we have a momentum mapping 1: W _, ,s-((2, K)* 
given by 

l(w)(Z) = aw(Z*) for w E W and Z E ,s-((2, K). 

Then we have 

1-1 (0) = { (x, y) E WI (xix)= (xly) = (YIY) = 0 }. 

By our assumption on (I), 1-1 (0) is a non-empty variety in W. Let F 
be the regular part of 1-1 (0); 

F = { (x,y) E WI (xix)= (xly) = (YIY) = 0,x l\y =/= O}. 

GL(2, K) acts freely on F on the right. Moreover the orthogonal 
group O(V) of (V, (I)) acts on Fin the obvious way. As is well-known 
(cf. [A, Appendix 5]), the reduced phase space S = F/SL(2,K) is a 
symplectic manifold over K. In fact, since a is S£(2, K)-invariant, the 
restriction 0 = alp of a to F projects to S = F / SL(2, K) so that d0 is a 
symplectic form on S. Furthermore the quotient space J = F/GL(2, K) 
is naturally identified with O-Gr(2, V). Thus Fis the total space of the 
universal 2-frame bundle over J = O-Gr(2, V) and (S, J,p) is a principal 
Kx-bundle over J, where p: S -, J denotes the natural projection. 
Then as in 4.3, the contact structure C on J is defined by 0 = 0 so that 
( S, d0) is the symplectification of ( J, C). From the equivalence of the 
adjoint representation and the exterior representation on /\ 2 V for O(V), 
it follows that (S, d0) is isomorphic with the adjoint orbit constructed in 
4.3, which implies that ( J, C) is isomorphic with the standard contact 
manifold of type Be, De or one of their real forms. 

§5. Infinitesimal automorphisms of (M9 , D9 ) 

5.1. Review of harmonic theory (Kostant's Theorem) 

We here review the harmonic theory of Kostant [K] for the Lie alge
bra cohomology, which enables us to compute the generalized Spencer 
cohomolog~ groups Hq(m,g) (cf. [02]). 
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Let g = EBpEZ {Ip be a simple graded Lie algebra over IC such that 

m = EBp<O {Ip is fundamental. Let us fix a Cartan subalgebra fJ con
taining E. In accordance with Kostant's paper [K], let us fix a simple 
root system ~ = { a1, ... , at} such that a(E) = 0 or -1 for a E ~ 

throughout this section. Thus, by putting ~+ = q,+ \ <I>t, m is a direct 
sum of positive root subspaces: 

m = EB 9a· 
aEip+ 

Let us take a compact real form u of g by choosing a Weyl basis 
of the root space decomposition relative to fJ (cf. [He, p. 421]). Let T 

denote the conjugation of g with respect to u. Then E E fJJR C Au 
and we have a hermitian inner product {, } of g, which is given by 

{X, Y} = -B(X,T(Y)) forX,YEg. 

By our choice of u, we have T(9a) = 9-a for a E <I>. For a linear 
subspace a of g, we put a = T(a) and a0 = { X E g I B(X, a) = 0 }. 
Then the orthogonal complement a1- of a with respect to { , } coincides 
with a0 • By definition of {, }, it follows that the Killing form B gives a 
non-degenerate pairing of a and a (cf. Lemma 3.1). Especially we have 

where SJ3(~) = fJ EB EBaE<I>+ 9a is a standard Borel subalgebra relative 
to f). Moreover, starting from a parabolic subalgebra q'.L = ffip;£o {Ip 

containing SJ3(~), we have 

{lo= q'.L n$_, 

and the orthogonal decomposition of g; 

g = m EB {lo EB m. 
Thus m is a nilpotent Lie summand of g in the sense of §5 in [K] and 
the argument in [K] is thoroughly applicable to our situation. 

We shall summarize the argument in [K] in the following. Let 
(C(m,g),8) be the cochain complex (the generalized Spencer complex) 
associated with the representation ad: m-+ g!(g). Namely C(m,g) = 
g 0 /\m* and 8: Cq(m,g) -+ Cq+l(m,g) is given as in §2.4. The her
mitian inner product {, } of g')induces the hermitian inner product of 
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C(m, g) = g ® /\m* and g ® /\g in a natural manner. Let { e1, ... , en1 } 

be a ( orthnormal) basis of m and let { ei, ... , e~J be the dual ba
sis of m under the Killing form duality. Then the adjoint operator 
8*: cq+1 (m,g)----+ Cq(m,g) of 8 with respect to this inner product is 
given by the following formula ([T4, Lemma 1.10], [K, Lemma 4.2]); 

(8*p)(X1 , ... ,Xq) = L[e;,p(ej, X 1 , ... , Xq)] 
j 

1 ~ i+l * ~ + 2 L..,(-1) p([eJ, Xi]-, eJ, X 1 , ... , Xi, ... , Xq), 
i,j 

for p E cq+1 (m,g) and X1, ... , Xq Em, where [e;,xi]- denotes the 
m-component of [e;, Xi] with respect to the decomposition g = m E8 g'. 
Here we note that 8* sends CP,q+ 1 (m,g) into CP+l,q(m,g) and 8*p does 
not depend on the choice of the basis { e1, ... , en 1 }, hence, nor on the 
choice of the compact real form u. 

Now, in order to describe the harmonic space 1i = Ker• for the 
Laplacian D = 88* + 8*8, we shall utilize the natural representation of 
g0 on the cochain space C(m,g) = g ® /\m*. In fact m = EBp<OgP is 
ad(go)-invariant. Hence, from the go-module m, we have the go-module 
m * contragradient to m. Let 

p: go----+ g[(C(m,g)) 

be the representation of g0 on C(m, g) formed by taking the tensor prod
uct of ad: g0 ----+ g[(g) and the exterior representation of g0 on /\m*. p 
is a completely reducible representation of the reductive Lie algebra g0 

( cf. Proposition 3.6). Here we note that Q is also a Cartan subalgebra 

of g0 . Let G be the simply connected Lie group with Lie algebra g and 

let Go be the analytic subgroup of G with Lie algebra g0 • Then an irre
ducible representation of g0 , which is induced from a representation of 

Go, is described as a standard cyclic module with heighest weight~ E Do 
([K, §5.5], [Hu, Chapter Vil). Here~ is a dominant integral weight in 

Do = { µ E A I (µ, a) ~ 0 for each a E <I>t }, 

where A= { µ E Q~ I (µ, a) E Z for each a E <I>}. Moreover, under the 
identification of g®/\m* with g®/\m via the Killing form duality between 
m and in, the representation p is equivalent to the subrepresentation 

p = ;J:lg@Am on g ® Am of the tensor representation ;J: of g0 on g ® /\g 
induced from ad: go ----+ g[(g). Hence the weight space decomposition 
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of g0-module g 0 /\mis provided by the root space decomposition of g. 
More precisely, let AP be the set of weights of p. Then we have 

AP = { l = a - (A) E A I a E <I> U {0}, A C ~+ }, 

where (A) = I:aEA a. 
By Lemma 3.1, we know that the restriction of the Killing form B 

to g0 is non-degenerate. Let C P E g [( C ( m, g)) be the Casimir operator 
corresponding to the restriction of B to g0 , that is, 

no 

GP = ~ p(Xi) · p(Y;), 
i=l 

where {Xi, ... ,Xn0 } and {Yi, ... , Yn0 } are basis of 9o such that 
B(Xi, Y;) = 8iJ· We put 

where t01 is defined by B(t01 , H) = 81 (H) for H E f). Let a 0 denote the 
reflection in r:,1t = (<I>)JR corresponding to a E <I>, that is, 

a 0 ((3) = (3 - ((3, a) a for (3 E f)lt. 

From aa(81 ) = 81 for a E <I>0 , we have (81 , a) = 0 for a E <I>o, which 
implies that FE Z(g0 ) by Proposition 3.6. Then we have the following 
expression of the Laplacian • on C ( m, g) ( [K, Theorem 5. 7]); 

(5.1) 

where !al denotes the length of a E f)lt and 0 is the highest root. This 
expression of • can be obtained by expressing the operators 8 and 8* 
in terms of elementary operations in g 0 /\g under the identification of 
g 0 /\m* with g 0 /\m C g 0 /\g. For the details, we refer the reader to 
the discussion in §§3 and 4 of [K]. 

The important fact on the representation p: g0 ___, g[( C(m, g)) is that 
each p(Z) E g[(C(m,g)), Z E g0 , commutes with both operators 8 and 
8*, which can be easily checked by utilizing the above expression of 8 
and 8* ([K, §5], [T4, Lemma 1.11]). Thus the orthogonal decomposition 
of C(m,g); 

C(m,g) = Im8 EB Im8* EB 1t 
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is stable under p(Z) for all Z E g0 and C(m, g) has the isotypic decom
position as a g0-module; 

C(m,g) = EB c€, 
€EDo 

where C€ is the isotypic component of C(m, g) with highest weight ~ E 

D0 . Namely C€ is the sum of irreducible components in C(m,g) with 
highest weight t Then, by (5.1) and the Schur's Lemma, the Laplacian 
• reduces to a scalar on each isotypic component C€ and this scalar is 
given by ([K, Theorem 5.7]) 

½(18 + 01 2 - 18 + ~1 2 ). 

Hence 'H consists ofisotypic components C€ of C(m, g) such that 18+01 = 
18 + ~1-

Thus, to describe the harmonic space 'H, we need to find ~ E AP such 
that 18 + 01 = 18 + ~I- This is accomplished by the Weyl group W of the 
root system <I> as follows. For an element a E W, we put <I>- = -<I>+, 
<I>a = a(<I>-) n <t>+ and define the subset W 0 of W by putting 

W 0 = { a E W I <I> a C ~+ } . 

Put ~a = a-(8 + 0) - 8 for a E W 0 • Then, from a-(8) = 8 - (<I>a), we 
obtain ~a = a-(0) - (<I>a) E AP and 18 + 01 = 18 + ~al• Since 8 + 0 is a 
strongly dominant weight, the mapping a 1-> ~a of w0 into AP is one 
to one. In fact ([K, Lemma 5.12], [Cr]), this mapping gives a bijection 
of W 0 onto the set of highest weights in AP appearing in the isotypic 
decomposition of 'H and dim V€" = 1, where V€" is the weight space of 
weight ~a in g ® /\m ~ C(m, g). Furthermore we put 

W ( q) = { a E W I n( a) = q } and w0 ( q) = w0 n W ( q), 

where n(a) is the number of roots in <I>a. For an element a E w0 (q), we 

put Xq;" = x_131 I\ · · · I\ x_/3q, where <I>a = {,61, ... , ,6q} C <J>+ and x_/3, 

is a root vector for the root -,Bi E <i>- = -<J>+. Then we have 

which implies C€" Cg® !\qm* for a E W 0 (q). We denote by xq;" the 
element in /\qm* which corresponds to Xq;" under the identification of 
/\m* with /\m via the Killing form duality. 

Summ~izing we can state 
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Theorem (Kost ant). Let g = EB pEZ gp be a simple graded Lie 

algebra over C such that gp = [gp+l, g-1] for p < -1. Then the irre
ducible decomposition of the harmonic space 1-l = Ker • of the general
ized Spencer complex, as a g0 -module, is given by 

where 'Ha is the irreducible g O-module with highest weight la = 
(T(0 + 8)-8 generated by the highest weight vector Xa(e)®x"'" E g®/\m*. 
Moreover degree-wise, for any non-negative integer q, 

Utilizing this theorem, we shall compute HP, 1 (m, g) and HP, 2 (m, g) 
for p ~ 0 in the following paragraph. 

5.2. Theorem on infinitesimal automorphisms of (M9 , D9 ) 

First we shall compute HP, 1 (m,g) for p ~ 0 by virtue of Kostant's 
theorem. In order to apply the theorem to our computation, we note 
here that each p(Z) E g[( C(m, g)), Z E g0 , preserves the bigradation 
of C(m,g) given by CP,q(m,g) = ffij:,:;-qgHp+q-l ® A3m*. Hence each 
irreducible component 'Ha of the g0-module 1-l is a subspace of some 
CP,q ( m, g). Recall that gp is a direct sum of the root subspaces gi3 
satisfying p = (3( E) and that g; is identified with g_P by the Killing form. 
Then, for the generator Xa(0) ® X<f>a of 'Ha, we have Xa(0) E ga(e)(E) and 

X<f>a E A3m*, where q = n((T) and j = Li=l /3i(E) for <l>a = {/3i, ... , /3q}
Hence we have 

'Ha c Cp,q(m, g), 

where q = n( (T) and p can be computed from the following equality; 

q 

(5.2) (J'(0)(E) = L /3i(E) + p + q - 1, 
i=l 

One important consequence of Kostant's theorem is that Hq(m, g) never 
vanishes for q = 1. Thus our task is to find 6.1 c 6. and (J' E W 0 (1) so 
that 'Ha c GP, 1 ( m, g) for some p ~ 0. 

In the following we denote by (Ti = (T <>; the reflection in ~a corre
sponding to the simple root °'i E 6.. Then W(l) = { (Ti E W I i = 1, 
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... , .e} and <I>cri = {ai} (cf. [Hu, Lemma 10.3.A]). Thus we have 

W 0 ( 1) = { a i E W I ai E .6.1 } • 

Recall that the depthµ of g = EB;=-µ 9p is given byµ= I:aiEti.i ni(0), 

where 0 = I:f=l ni(0) ai (see §3.4). Then, by our choice of the simple 
root system .6. in 5.1, (5.2) reduces to 

-µ + (0, ai) = Pi - 1 for ai E W 0 (1). 

Hence we obtain 

for ai E W 0 (1), 

where Pi = (0, ai) - µ + 1. 
On the other hand, from the extended Dynkin diagram in §4.2, we 

know that (0, ai) = 0, 1 or 2, which implies that Pi ~ 0 occurs only 
when µ ~ 3. More precisely (0, ai) = 2 if and only if g is of type Cfl 
or A1 and ai = a 1, and (0, ai) = 1 if and only if g is not of typ.e Cfl 
nor A1 and ai E .6.0 (see 4.2). Especially if .6.1 n .6.0 = 0, we have 
Pi = 1 - µ for each ai E W 0 (1). Hence Pi ~ 0 occurs if and only if 
µ = 1. Namely .6.1 = {aiJ such that nio(0) = 1. In this case (cf. [02]) 
we have W 0 (1) = {ai0 } and Pio= 0, that is, 

Now assume that .6.1 n .6.0 # 0. If g is of type Cfl, we have Pi = 3 - µ 
and a1 E .6.1. Then Pi ~ 0 occurs only whenµ = 2 or 3, which forces 
.6.1 = {ai} or {a1,a£}. In these cases we have 

(1) .6.1 = { ai} 1{1 = 1{cr1 C c1,1 ( m, g), 

(2) .6.1 = { a1, afl} 'Hl = 11cr1 EB 1{CTt C cO,l(m,g) EB c-2,l(m,g) 

In the other cases we have Pi = 2 - µ. Moreover, except for type Afl, 
we have .6.0 C .6.1 and µ ~ 2. Hence, in these cases, Pi ~ 0 occurs only 
when .6.1 = .6.0. Namely Pi~ 0 occurs only if g = ffipEZgP is a contact 
gradation. In these cases we have 

where .6.0 = { ai 0 }. Finally, if g is of type Afl, we may assume a 1 E .6. 1, 
up to conjugacy. Then Pi ~ 0 occurs only when µ = 1 or 2, which forces 
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~1 = { 0:1}, { 0:1, O:j} (1 < j < £) or { 0:1, at}- In these cases we have 

(1) ~1={0:i} 1i1 = 1i<71 C c 1,1(m,g) (£ ~ 2), 

1i1 = 1iu1 C C2 '1 (m,g) (£ = 1). 

(2) ~1={0:1,aj} 

(3) ~1={0:1,aR} 

1tl = Jt<71 EB 1i<7j C cD,l(m, g) EB c-1,l(m, g). 

Hl = 1i<71 EB 1t<7£ C cD,l (m, g). 

Summarizing we have (here we follow [Bu] for the numbering of 
simple roots) 

Proposition 5.1. Let g = EBpEZ gP be a simple graded Lie algebra 

over C such that gp = [9p+1,g_1] for p < -1. Then HP•1(m,g) i- {O} 
for some p ~ 0 occurs only in the following cases. 

(1) g = 9-1 EB g0 EB g1 is of depth l ( cf [02]), that is, it is isomor
phic with (At, {ai}) (1 ;;; i;;; [Rf]), (Et, { 0:1} ), (Ct, {a£}), (Dt, { ai} ), 
(Dt,{aR}), (E5,{a1}) or (E1,{a7}). In these cases 

(i) (At, { ai}) 

(ii) otherwise 

H2,1(m,g) ~ 1tu1 (£ = 1), 

H1,1(m, g) ~ 1iu1 (£ ~ 2), 

HO,l(m, g) ~ JtO'io. 

(2) g = EB~=-2 gp is a contact gradation, that is, it is isomor

phic with (At,{0:1,aR}), (Bt,{0:2}), (Gt,{0:1}), (Dt,{0:2}), (E5,{a2}), 
(E1,{a1}), (Es,{as}), (F4,{a1}) or (G2,{a2}). In these cases 

(i) (At,{0:1,aR}) 

(ii) (Ct,{ai}) 

(iii) otherwise 

H 0 •1 ( m, g) ~ 1iu1 EB Hue, 

H1,1(m,g) ~ 1tu1, 

HO,l(m,g) ~ Jt<7io. 

(3) g = EBpEZgP is isomorphic with (At,{a1,ai}) (1 < i <£)or 
(Ct, { 0:1, O:£}). In these cases 

Combined with Lemma 2.1 in §2.4, we obtain 
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Theorem 5.2. Let 9 = EBpEZ 9p be a simple graded Lie algebra 

over <C such that 9p = [9p+i,9-1] for p < -1. Then 9 = EBpEZ9P is the 
prolongation ( over <C) of m = EBp<O 9p except for the following three 
cases. 

(1) 9 = 9-1 EB 9o EB 91 is of depth l. 

(2) 9 = EB~=-2 9p is a (complex) contact gradation. 

(3) 9 = EBpEZ 9p is isomorphic with (At, { a 1 , ai}) (1 < i < £) or 

(Ct, {a1, at}). 

Furthermore 9 = EBpEZ 9P is the prolongation of (m, 90 ) except when 

9 = EBpEZ 9p is isomorphic with (At, { a1}) or (Ct, { a1}). 

Here (At, { a 1}) is the graded Lie algebra 9 = VEB9((V)EB V* of depth 
1 associated with the ( complex) projective structure ( cf. [K2, Chapter 
IV]) and (Ct,{ai}) is known as the projective contact algebra (cf. [T2, 
p. 29]). 

Now, by Lemmas 3.4, 3.5 and their proof, we have the real version 
of Theorem 5.2, which answers the question posed in §2.3. Here we note 
that, in the Satake diagram of type A (resp. C), .6.1 = {ai} or {a1,ai} 
(1 < i < C) (resp . .6.1 = {a1} or {a1,a£}) is v-invariant subset of .6.0 

only for the normal real form AI (resp. CI). 

Theorem 5.3. Let 9 = EBpEZ 9p be a simple graded Lie algebra 

over JR such that 9p = [9p+l, 9-1] for p < -1. Then 9 = EBpEZ 9p is the 
prolongation of m = EBp<O 9p except for the following three cases. 

(1) 9 = 9-1 EB 9o EB 91 is of depth l. 

(2) 9 = EB~=- 2 9p is a real or complex contact gradation. 

(3) 9 = EBpEZ 9p is isomorphic with (At, { a1, ai} ), ( Ct, { a1, a£}) or 

their normal real forms (AI,{a1,ai}), (CJ,{a1,a£}) (1 < i < 
£). 

Furthermore 9 = EBpEZ 9p is the prolongation of (ni, 9o) except when 

9 = EBpEZ9P is isomorphic with (At,{ai}), (Ct,{a1}) or their normal 

real forms (AI,{ai}), (CI,{ai}). 

Real simple graded Lie algebra of depth 1 were classified by 
Kobayashi and Nagano [K-N]. In this case M 9 is a symmetric R-space 
( cf. [K-N], [Tkl]). The exceptional cases (2) and (3) are already dis
cussed in §4. In these cases m = EBp<O 9p is a symbol algebra of canon
ical systems on real or complex jet spaces. 
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Let g = EB;=-µ gp be a simple graded Lie algebra over K = JR 
or <C with µ > 1. Let A(Mg, Dg) denote the Lie algebra sheaf of all 
infinitesimal automorphisms (in the real or complex analytic category) 
of the standard differential system (Mg, Dg) of type g = EBpEZ 9p· We 
denote by A.,(Mg, Dg) the stalk of A(Mg, Dg) at x E Mg. Then we have 

Corollary 5.4. Let g = EB;=-µ gp be a simple graded Lie algebra 
over K = JR or <C with µ > 1. Then the following holds either in the 
real or complex analytic category. 

A.,(Mg, Dg) is isomorphic with g at each x E Mg except when 
(Mg, Dg) is locally isomorphic with a canonical system on a real or com
plex jet space. The latter case occurs if and only if (Mg, Dg) is one 
of the standard contact manifolds (Jg, Cg) over K, the canonical sys
tem (J(P(V), i), C) (1 ;£ i < f_ - 1) on the Grossmann bundle over the 
£-dimensional projective space P(V) over K or the canonical system 
(L(P(V)), E) on the Lagrange-Grossmann bundle over the odd dimen
sional (contact) projective space P(V) over K, where K = <C in the 
complex category and K = JR or <C in the real category. 

5.3. Calculation of HP,2 (m, g) 

First we shall compute HP,2 (m, g) for p ~ 0, which is important to 
know the fundamental invariants of the normal Cartan connection for 
the geometric structures subordinate to regular differential system of 
type m (cf. [T4, §2]). 

For simple reflections c,i = c,a.;, ai E .6., we put c,ij = c,i · c,j for 
i-/- j. Then we see that c,ij = c,ji if and only if (ai, aj) == 0 and that 

<I>.,.ij = {ai,aj-(aj,ai)ai}. 

Thus w0 (2) consists of c,ij E W(2) such that one of the following holds: 

(a) Both ai and aj belong to .6. 1 . 

(b) ai E D.1 and aj E .:lo such that (ai,aj)-/- 0. 

Then, by (5.2), we have 

where 

Pij = { 1 - µ + (0, ai) + (0, aj) - ( (0, aj) + 1) (aj, ai) in case (a), 

-µ+ (0,ai) -((0,aj) + 1) (aj,ai) in case (b). 

First assume that (aj, ai) = 0 for c,ij E W0 (2). Then we have 
c,ij = c,ji, {ai,aj} C D.1 and Pii = 1- µ + (0,ai) + (0,aj)- Especially 
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we have µ ~ ni ( 0) + nj ( 0) ~ 2. Hence Pii < 0 if .6.1 n .6.0 = 0, that is, 
if (0, ai) = (0, aj) = 0. If .6.1 n .6.0 -:/- 0, from the diagram in §4.2, we 
know that µ ~ 3 except for A,,-type. Thus Pii ~ 0 occurs only when 
g = EBpEZ 9p is isomorphic with (C,,, { a1, at}) (£ ~ 3), (Ac, { a1, Oj}) 

( 2 < j < C), (A£, { a1, at}) or (At, { a1, a i, ap}) ( 1 < j ;:; [ m. In fact we 

have Pli' = 0, Pli = 0 (2 < j < C), Pu = l and Pu= 0 (1 < j ;:; [m in 
each case. 

Secondly assume that (o:j, o:i) -:/- 0 and { o:i, aJ} n .6.0 = 0 for uij E 

w0 (2). Then we have 

_ { 1 - µ - (a1 , o:i) in case (a), 
Pii -

-µ-(o:j,o:i) incase(b). 

Moreover (o:1,o:i) = -2 or -1 and (o:1,ai) = -2 occurs only for 
(o:£-1, o:,,) in type Bfl (C ~ 4), (o:£, 0:£-1) in type Cp (C ~ 3) and (0:2, a3) 
in type F4. Thus, if (o:1, o:i) = -2, we see, from the diagram in 
§4.2, that Pij ~ 0 occurs only when g = EBpEZ gp is isomorphic with 

(C£,{O:£-l,o:£}) in case (a) and isomorphic with (B£,{o:£}) or (Ct, 
{ O:£-d) in case (b ). In fact we have PR-lfl = 0, Pu-1 = 0 and P£-H = 0 
in each case. If ( o:1, ai) = -1, Pii ~ 0 occurs only when g = EBpEZ gp 

is isomorphic with ( Afl, { ai, O:i+i}) ( 1 < i ;:; [ ½]) in case (a) and iso

morphic with (At, {0:2}), (At, {o:i}) (2 < i;:; [~]), (Gp, {o:t}) (C ~ 3), 
(Dp,{o:t}) (C ~ 5), (E5,{a1}) or (E1,{a7}) in case (b). In fact we 

have Pii+l = Pi+li = 0 (1 < i ;:; [½]), P23 = 0, Pii-1 = Pii+l = 0 
(2 < i;:; [£;1 ]), P££-1 = 0, PU-2 = 0, p13 = 0 and P76 = 0 in each case. 

Thirdly assume that (a1, ai) -:/- 0 and { o:i, a 1} n .6.0 -:/- 0 for uij E 
W 0(2). Then, from the diagram in §4.2, { o:i, a 1} equals to { o:1, o:2} or 
{0:£-1,0:d in type At, {o:1,a2} or {0:2,0:3} in type Bp, {o:1,o:2} in type 
Ct, { a1, a2} or { 0:2, 0:3} in type Dp, { 0:2, a 4} in type E6, { o:1, a 3} in type 
E1, { a7, o:s} in type Es, { 0:1, o:2} in type F4 or { o:1, o:2} in type G2. Now 
assume further (o:1, o:i) = -1 and rankg ~ 3. (In fact (o:1, o:i) < -1 
occurs only for (o:2, o:1) in type C2 (~ B 2), (o:2, o:1) in type G2 and 
(0:2, 0:3) in type B3.) Then { o:i, O:j} n .6.0 consists of a single element. 

In case (a), we have {o:i,o:1} C .6.1 and 

Pij = 2 - µ + (0, o:i) + 2 (0, o:1 ). 

More precisely, if g is of type Gp, Pij = 4 - µ or 6 - µ according 
to o:i E .6.0 or aj E .6.0. In other cases Pij = 3 - µ or 4 - µ ac
cording to O:i E .6.0 or o:1 E .6.0. For the exceptional types, from 
the diagram in §4.2, we observe that µ ~ ni(0) + nj(0) = 5. Hence 
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Pij < 0 if g is of type E6, E1, Es or F4. For the classical types, 
Pij ~ 0 occurs only when g = E0pEZ gp is isomorphic with ( Ae, { a 1 , a 2 }), 

(Ap,{a1,a2,ak}) (2 < k ~ £), (Ae,{a1,a2,ak,arn}) (2 < k < m ~ £), 
(Be,{a1,a2}), (Be,{a2,a3}), (Ce,{a1,a2}), (Cp,{a1,a2,ak}) (2 < k ~ 
£), (De,{a1,a2}), (De,{a1,a2,ap}) or (Dp,{a2,a3}). 

In case (b), we have Pij = 3-µ if g is of type Ce and Pij = 2-µ oth
erwise. Hence Pij ~ 0 occurs only when g = E9pEZ gp is isomorphic with 

(Ap,{a1}), (Ae,{a1,aj}) (2 < j < £), (Ae,{a2}), (Ae,{a2,aj}) (2 < 
j ~£), (Bp,{ai}), (Bp,{a3}), (Ce,{a1,ae}), (Cp,{a2}), (Cp,{a2,ae}), 
(De, { ai} ), (Dp, {a1, ae} ), (De, {a3}) or contact gradations of each type. 

We leave it to the reader to check the remaining cases, that is, the 
cases g is of type A2, B2 = C2, G2 or B3. 

Summarizing we obtain 

Proposition 5.5. Let (Xe, ~ 1 ) be a simple graded Lie algebra 
over (['. described in §3.4. Then the following are the list of (Xe, ~i) 
and Pij such that Pij ~ 0 holds for the irreducible component 1-i,,.'1 C 
CP'1 •2 (m, g) of the harmonic space 7-i2 ~ H 2 (m,g) corresponding to CTij E 
w0 (2) in Kostant's theorem. 

(I) Ae-type (£ ~ 2). 

(1) {ai} 

(2) { a2} 
(3) {ai} 
(4) {a1,a2} 

(5) { a1, ai} 
(6) {a1, ae-1} 
(7) { a1, ae} 
(8) { a2, a3} 

(9) { a2, ai} 
(10) {a2, ae-d 
(11) { ai, ai+i} 
(12) {a1,a2,ae} 

(13) {a1, ai, ae} 
(14) {a1,a2,ai,aj} 

P12=2 (£=2), 
P12 = 1 (£ ~ 3). 
P21 = 1, P23 = 0. 

Pii-1 = Pii+l = 0 (2 < i ~ [eti ]). 
P12 = P21 = 3 (£ = 2), 
P12=l, P21=2 (£~3). 
P12=P1i=0 (2<i<£-1). 
P12 = PlR-1 = Pe-1£ = 0 (£ ~ 4). 
P12 = PU-1 = 0, PH = 1 (£ ~ 3). 
P21 = P23 = p32 = p34 = 0 (£ = 4), 
P21 = P23 = p32 = 0 (£ ~ 5). 

P21 = 0 (3 < i < £ - 1). 
P21 = PR-1£ = 0 (£ ~ 5). 

Pii+l = Pi+li = 0 (2 < i ~ [!D-
P13 =p12 =p32 = 0, P21 =p23 = 1 (£ = 3), 
Pl£ = P12 = 0, P21 = 1 (£ ~ 4). 
Pl£ = 0 ( 2 < i ~ [ ½]) . 
P21 = 0 (2 < i < j ~ £). 
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(15) {a1,a2,at-1,ad P21 =pc-u =0. 

(II) Be-type (£ ~ 3). 

(1) {ai} µ=1 P12 = 1. 
(2) {a2} µ=2 P21 = P23 = 0. 
(3) {a3} µ=2 p32 = 2 (£ = 3), 

p32 = 0 (£ ~ 4). 
(4) {ad µ=2 PU-l = 0 (£ ~ 4). 

(5) {a1,a2} µ=3 P21 = 0, P12 = 1. 

(6) {a1,a3} µ=3 p32 = 1 (£ = 3). 
(7) {a2,a3} µ=3 P32 = 2 (£ = 3), 

p32 = 0 (£ ~ 4). 

(8) { a1, a2, a3} µ=5 p32 = 1 (£ = 3). 

(III) Cc-type (£ ~ 2). 

(1) {ac} µ=1 P21 =2 (£ = 2), PU-l = 0 (£ ~ 3). 
(2) {a1} µ=2 P12 = 2 (£ = 2), P12 = 1 (£ ~ 3). 
(3) {a2} µ=2 P21 = 2 (£ = 2), P21 = 1 (£ ~ 4), 

P21 = 1, P23 = 0 (£ = 3). 
(4) {ac-1} µ=2 PR-1£ = 0 (£ ~ 4). 
(5) { a1, ac} µ=3 P12 = 2, P21 = 3 (£ = 2), 

Pu= P12 = 0 (£ ~ 3). 
(6) {a2, ad µ=3 P21 = P23 = 0 (£ = 3), 

P21 = 0 (£ ~ 4). 

(7) {ac-1, ad µ=3 PR-U = 0 (£ ~ 4). 

(8) { a1, a2} µ=4 P12 = 0, P21 = 2 (£ ~ 3). 
(9) {a1, a2, ac} µ=5 P21 = 1. 

(10) { a1, a2, ai} µ=6 P21 = 0 (2 < i < £). 

(IV) De-type (£ ~ 4). 

(1) {a1} µ=l P12 = 1. 
(2) {ad µ =.1 PRR-2 = 0 (£ ~ 5). 
(3) {a2} µ=2 P21 = P23 = 0. 
(4) {a3} µ=2 P32 = 0 (£ ~ 5). 
(5) {a1, ac} µ=2 P12 = 0. 
(6) {a1,a2} µ=3 P12 = 1, P21 = 0. 
(7) { a1, a 2, ac} µ=4 P12 = 0. 
(8) { a2, a3} µ=4 p32 = 0 (£ ~ 5). 
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(V) Exceptional types. 

(1) (E5,{ai}), (E1,{a1}) µ=l Pij=0, where {ai}=~1 
and (ai, aj) ¥- 0. 

(2) (E5,{a2}), (E1,{ai}), (Es,{as}), (F4,{a1}) and(G2,{a2}). 
Contact gradations: µ=2 Pij = 0, where { ai} = ~0 

and (ai, Dj) ¥- 0. 

(3) (G2,{a1}) µ=3 P12 = 3. 
(4) (G2,{a1,a2}) µ=5 P12 = 3. 

Now we shall give some remarks on regular differential systems of 
type m. 

Let g = EBpEZ Qp be a simple graded Lie algebra over IR such that 

m is fundamentaL Let M be a manifold with a ci-structure of type m 
in the sense of [T4] (for the precise definition, see §2 of [T4]). In [T4], 
under the assumption that g is the prolongation of ( m, g0 ), N. Tanaka 
constructed a normal Cartan connection ( P, w) of type g over M, which 

settles the equivalence problem for the ci-structure of type m in the 

following sense: Let M and M be two manifolds with ci-structures 

of type m. Let (P,w) and (P,w) be the normal connections of type 

g over M and M respectively. Then a diffeomorphism <p of M onto 

M preserving the G~-structures lifts uniquely to an isomorphism <ptt of 

(P,w) onto (P,w) and vice versa ([T4, Theorem 2.7]). 

Here we note that, if g is the prolongation of m, a ci-structure 
on M is nothing but a regular differential system of type m (see [T4, 
§2.2]). Moreover let K be the curvature of the normal connection (P,w), 
which can be regarded as a C 2 (m, g)-valued function on P ([T4, Lemma 
2.2]). Then, by the normality condition for K: KP = 0 for p < 0 
and fJ* KP = 0 for p ~ 0, where KP is the CP,2 ( m, g )-component of K, 
and the Bianchi identity, it is further shown ([T4, Theorem 2.9]) that the 
harmonic part H(K) of K, with respect to the orthogonal decomposition 
C2 (m, g) = Im fJEf)Im f)* EBH, gives a fundamental system of invariants of 
the connection (P,w). Namely K vanishes if and only if H(K) vanishes. 
Hence, as a corollary to Theorems 2.7 and 2.9 of [T4], we have 

Let g = EBpEZ Qp be a simple graded Lie algebra over IR such that 

m = EBp<O Qp is fundamental. Assume that g is the prolongation of m 

and HP, 2 (m, g) = {0} for p ~ 0. Then every regular differential system 
(M, D) of type m is locally isomorphic with the standard differential 
system (M(m), Dm) of type m. 
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Thus, by Proposition 5.5, we can find many examples of regular 
differential systems (M, D) of type m with no local invariants, whose 
Lie algebra A(M, D) of all infinitesimal automorphisms are isomorphic 
with simple Lie algebras over R 

We shall give below some examples of fundamental graded algebras 
m = 9_ 2 E8 9_ 1 of the second kind whose prolongation 9(m) become 
finite dimensional and simple. Namely we shall describe the structure 
of m = 9-2 E8 9-1 of several simple graded Lie algebras (Xt, ~1) over 
C and their normal real forms such that HP,1(m, 9) vanishes for p ~ 0 
and µ = 2. In the following we shall discuss in the complex analytic or 
the real C 00 category depending on whether we treat complex simple 
graded Lie algebras (Xt, ~ 1) or their normal real forms. 

(1) (Bt, {CTR}) (C ~ 3). First we have (see §4.4) 

<I>t = { CTij = CTi + · · · + CTj-1 + 2 CTj + · · · + 2 CT£ (1 ~ i < j ~ C)}, 

<I>t = {,Bi = CTi +···+CT£ (1 ~ i ~ C)}. 

Each CTij E <I>! is uniquely written as a sum CTij = ,Bi + ,81 of roots in 
<I>f. We have dim9_1 = C and dim9_2 = ½C(C-1). Hence the structure 
ofm = 9-2 E8 9-1 is described by 

where we put 9-1 = V. Namely mis the universal fundamental graded 
algebra of second kind such that dim 9-l = C ~ 3. In this case, it is easy 
to see that 9o is naturally identified with 9((9_ 1 ) (see also the matrix 
representation of (Be, {CT£}) in §4.4). This example was first found by 
Tanaka [Tl, p. 245]. The standard differential system (M(m), Dm) of 
type mis given as follows: Let (x1, ... ,x£,Xij) (1 ~ i < j ~ C) be a 

1.£(£+1) coordinate system of M(m) K2 . Then Dm is defined by the 
following ½£( C - 1) forms 

A(M(m), Dm) is isomorphic with o(2C + 1, C) or o(C + 1, C) depending on 
K=CorR 
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(2) (D£, { 0!£-1, a£}) (£;;;; 4). First we have 

<I>t = { O!i£-1 = O!i + · · · + 0!£-1 + Cl!£ (1 ~ i ~ £ - 2), 

aij = ai + · · · + a 1-1 + 2 a1 + · · · + 2 0!£-2 + 0!£-1 + a£ 

(1 ~ i < j ~ £ - 2)}, 

<I>f = {/3i = ai + · · · + 0!£-1 (1 ~ i ~ £ - 1), 1'£-1 = a£, 

'Yi = ai + · · · + 0!£-2 + a, (1 ~ i ~ £ - 2)}. 

Each aij E <I>! (1 ~ i < j ~ £ - 1) is written as a sum 

Cl!ij = /3i + ")'j = /3j + 'Yi 

of roots in <I>f in two ways. We have dimg_ 1 = 2(£ - 1) and dimg_ 2 = 
½ (£-1)(£-2). By the explicit matrix representation of (D£, { a£-l, a£}) 

in §4.4, we can describe the structure of m = g_ 2 EB g_ 1 as follows: There 
exist basis {X1, .. ,,X£-i,Y1, ... ,17£_ 1 } of g_ 1 and {Zij (1 ~ i < j ~ 
£ - 1)} of g_2 such that 

Zij = [Xi, Yj] = [1'i,X1] (1 ~ i < j ~ £-1), 

[Xi, X1] = [Yi, Yj] = 0. 

Thus the standard differential system (M(m), Dm) of type m is given 
as follows: Let (xi, ... , X£-1, Y1, ... , Y£-1, Zij) (1 ~ i < j ~ £ - 1) be a 

1 
coordinate system of M(m) = K2(£-l)(H2). Then Dm is defined by the 

following½(£ - 1)(£ - 2) forms 

A(M(m), Dm) is isomorphic with o(2£, q or 0(£, £) depending on K = (['. 
or R 

Furthermore, by Proposition 5.5 (IV), we see that HP•2 (m,g) van
ishes for p ;;;; 0 when£ ;;;; 5. Hence, in this case (£;;;; 5), every regular dif
ferential system (M, D) of type mis locally isomorphic with (M(m), Dm) 
given above. Namely assume that (M, D) is a differential system which 
has local defining 1-forms 'Wij; 

D = { wi1 = 0 (1 ~ i < j ~ £ - 1) }, 

satisfying the following structure equation, for 1 ~ i < j ~ £ - 1 

dwij = Wi I\ 'Wj + 'Wi I\ Wj (mod 'Wrs (1 ~ r < s ~ £ - 1)), 
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where {w;j (1 ;£ i < j ;£ £- l),w1, ... ,W£-1,w1,•-·,w£-1} is a local 
(free) basis of I-forms on M. Then there exists a local coordinate system 
(x1, ... ,x£-1,Y1, ... ,YR-1,Zij) (1 ;£ i < j ;£ £-1) of M such that 

( 3) ( F4 , { a 4}). Here we shall show that the standard differential 
system (M(m), Dm) of type m in this case has a following description, 
which was discovered by E. Cartan [Cl]: Let (z, x1, x2, x3, x4, Y1, Y2, y3, 

y4 , Xij) (1 ;£ i < j ;£ 4) be a coordinate system on Mp = K 15 . Let Dp 
be a differential system on Mp defined by the following 7 forms; 

{ 
w = dz - y1 dx1 - Y2 dx2 - y3 dx3 - Y4 dx4 , 

'Cvij = dxij - (xi dxj - Xj dxi + Yh dyk - Yk dyh) (1 ;£ i < j ;£ 4) 

where (h, k) is determined by the requirement that (i,j, h, k) is an even 
permutation of (1, 2, 3, 4). By taking the dual vector fields Z, Xij, Xi, 

Yj of the basis { w, 'Cvij, dxi, dyj} of 1-forms on Mp, we have 

{ Z = [Yi,Xi] (i = 1, 2, 3, 4), 

2 Xij = [Xi, Xj] = [Yh, Yk] (1 ;£ i < j ;£ 4), 

where (i,j,h,k) isanevenpermutationof(l,2,3,4). Namely (Mp,Dp) 
is the standard differential system of type mp. Here mp = 9_2 EB 9_ 1 is 
the fundamental graded algebra of the second kind such that there exist 
bases {Z,X12,X13,X14,X23,X24,X34} of 9-2 and {X1,X2,X3,X4, Y1, 
Y2, Y3, Yi} of 9-1 satisfying ( *) above. Thus our aim here is to show that 
mp is isomorphic with the negative part m = 9_2 EB 9_ 1 of the simple 
graded Lie algebra (F4, { a4}) or its normal real form. 

For ( F4, { a4}), we have ( cf. [Bu, p. 272, Planche VIII]) 

<I>t = { ct14 = 0122, a13 = 1122, a12 = 1222, 

a= 1232, a34 = 1242, a 24 = 1342, a 23 = 2342}, 

<I>t = {,81 = 0001, "(2 = 0011, "(3 = 0111, ,84 = 0121, 

"fl= 1231, ,82 = 1221, ,83 = 1121, "(4 = 1111}. 

where a1 a2 a3 a4 stands for the coefficients of the positive root with 
respect to the simple roots a 1, a 2, a 3 and a 4. · Each root in <I>t is 
written as a sum of roots in <I>t as follows. 

{
a=,Bi+'Yi (i=l,2,3,4), 

°'ij = ,Bi + ,8j = 'Yh + 'Yk (1 ;£ i < j ;£ 4), 
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where {i,j,h,k} = {1,2,3,4}. 
Let us take a Chevalley basis {xa (a E <I>); hi (1 ~ i ~ 4)} of F4 

and put Yf3 = X-(3 for {3 E <J>+ (cf. [Hu, Chapter VII]). We consider the 
structure of the negative part m of (F4 , { a 4}) in terms of {Yf3}(3E<f>+u<T>+. 

1 2 

Here we note that a E <I>t and all roots in <I>i are short roots in <I>, 
whereas the other roots in <I>t are long roots in <I> (see [Bu, Planche 

VIII]). Moreover, in the root system <I> of type A 2 or C2 = B 2 , we 

observe that, if a+ {3 E <I>, the a-string through {3 starts from {3 - a 
when a, {3 are short and a+{] is a long root, and starts from {3 otherwise. 
(See [Hu, p. 44].) These observations readily show that m satisfies (*) 
above up to signs of the structure constants. However the question of 
signs is a subtle point of the Chevalley basis (cf. [Tt2]). We are obliged 
to check the ques_tion of signs as follows: First let us choose signs of 
Yi = Ya, (i = 1, 2, 3, 4) corresponding to the simple roots a1, a2, 
a 3 , a 4 by fixing the root vectors Yi E 9-a,. We fix the signs of Yf3 for 

{J E <I>i U <I>t by the following; 

Yf31 = Y4, y, .. 12 = [y3, Yf3,], Y,3 = [Y2, Y,2], 

Y,4 = [Y1, Y,3], Yf33 = [y3, Y,4], Yf32 = [Y2, Yf33], 

Yf34 = [y3, Y,3], Y,1 = [y3, Yf32L Ya = [Y4, Y,1], 

2 Ya14 = [Y4, Yf34], 2 Ya13 = [Y4, Yf33], 2 Ya12 = [Y4, Yf32], 

2 Ya34 = [y3, Yal, Ya24 = [y2, Ya34], Ya23 = [y1, Ya24J• 

Then, by the repeated application of Jacobi identity, one can check that, 
by putting 

Xi= Yf3,, Y; = (-l)iY,, (i = 1, 2, 3, 4), 

Z = Ya, Zij = Ya,3 (1 ~ i < j ~ 4), 

{ Z, Zij, Xi, Y:;} satisfies ( *) above, that is, mis isomorphic with mp. 
Finally we remark that, by Proposition 5.5 (V) and Tanaka's Theo

rem [T4], every regular differential system (M, D) of type mp is locally 
isomorphic with (MF, DF ). 

5.4. Reducible primitive actions 

We shall characterize the standard differential system (M9 , D 9 ) of 
type g = ffipEZ 9p, whose isotropy subalgeras g' = ffip~o 9p are maxi

mal parabolic, as homogeneous differential systems which have nonlinear 
reducible primitive actions of Lie groups ( cf. [01], [Go]). 
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We shall consider reducible primitive actions of finite dimensional 
Lie groups, following the arguments in [Go], [K-N, I and II] and [Gu]. 
We shall discuss in either real or complex category. 

Let L be a connected Lie group acting transitively and effectively 
on a manifold M. Let L' be the isotropy subgroup of L at a point o 
of M s~ that M = L / L'. We denote by .C and .C' the Lie algebras of 
L and L' respectively. Let --y: L' --+ GL(T0 (M)) be the linear isotropy 
representation of L' given by 

.c Ad(g) - .c 

for g EL', where n: L--+ Mis the projection defined by n(g) = g(o). 
Then a 'Y(L')-invariant subspace D0 of T0 (M) corresponds to an Ad(L')
invariant subspace .c- 1 of .C containing .C', which further corresponds 
to a L-invariant differential system D on M such that D(o) = D 0 • We 
say that L acts primitively on M if L leaves invariant no completely 
integrable differential systems on M (cf. [Go, Definition 1.3]). From the 
above diagram, it follows that L acts primitively on M if and only if 
.C' is a maximally Ad(L')-invariant subalgebra of .C. Namely (cf. [Go, 
Theorem 2.1]) 

If ~ is a subalgebra of .C satisfying ~ :J .C' and Ad(L')(~) = ~' then 
either ~ = .C or ~ = .C'. 

Here we note that .C' is self-normalizing in .C. In fact the normalizer 
N(.C') of .C' in .C is obviously preserved by Ad(L'). Hence we have 
N(.C') = .C' or .C. However N(.C') = .C implies .C' is an ideal of .C, 
which contradicts to the assumption that L acts effectively on M. Thus 
N(.C') = .C'. 

Now we consider the following situation: Assume that L acts primi
tively on Mand the linear isotropy representation --y: L'--+ GL(T0 (M)) 
is reducible. Namely L acts primitively on M and leaves invariant a 
differential system Don M (which is, of course, non-integrable). Let us 
take D to be minimal, that is, D 0 = D(o) is a 'Y(L')-irreducible subspace 
of T0 (M) . .C is naturally identified with the Lie algebra of vector fields 
on M induced by the L-action. We introduce a filtration {.CP}pEZ of .C 
induced from the L-invariant differential system D as follows ([T2, §6], 
[We], [Gu, §7], [Go, §4]), which will be the main tool in our argument. 
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Put ,e-1 = 1r:;1 (D0 ) or equivalently 

,e-l = { X E .C I X 0 E D( 0) }, 

under the above identification. Starting from (.C, ,e-1, .C'), we first define 
,CP for p < -1 inductively by 

,CP = [,P+l + [,CP+1,,e-1]. 

We put .c0 = .C' and define ,Ck for k > 0 inductively by 

,ek = { X E ,ek-1 I [X, ,e-11 C ,ek-1 }. 

Here we note that, since .C0 is self-normalizing, .C 1 is properly contained 
in .c0 • Obviously ,CP is Ad(L')-invariant for all p E Z. It is easy to check 
that { ,CP }pEz satisfies 

for all p, q E Z. 

Since ,C is finite dimensional, there exist integers µ > 1 and v ~ 0 such 
that 

,CP = ,e-µ ~ ,e-µ+l for p ~ -µ, C' ~ ,ev+l = ,ek for k ~ v + 1. 

Then ,e-µ is a Ad(L')-invariant subalgebra of ,C properly containing .c0 

and ,ev+l is an ideal of ,C properly contained in .C0 . Hence, by our 
assumption that L acts primitively and effectively on M, we obtain ,C = 
,e-µ and ,C"+l = {0}. Thus ,C = {.CP}pEz becomes a (transitive) filtered 
Lie algebra. This filtration { ,CP}pEZ is called the Weisfeiler filtration of 
(.C, .c0) in §7 of [Gu] and §4 of [Go]. 

We now consider the associated graded Lie algebra g = EBpEZ gp of 

,C = {.CP}pEZ· Namely we put 9p = ,CP / ,CP+l for p E Zand put 

Let Wp be the projection of £,P onto gp = £P / £P+l. Then, for X E 9p 
and YE gq, the bracket product [X, Y] E 9p+q is defined by 

[X, Y] = Wp+q([X, Y]), 

where .X E ,CP and Y E £,q are any element such that wp(X) = X and 

wq(Y) = Y (cf. §1.2). For each g E L', the graded map (p9 of Ad(g) 
is a graded Lie algebra automorphism of g = EE)pEZ Qp (cf. Proposition 
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3.11). Thus we have a representation /3: L' -+ Aut9 (g) by f3(g) = cp9 , 

where Aut9 (g) is the group of all graded Lie algebra automorphisms of 
fl= EBpEZ flp· G~ = /3(L') is a Lie subgroup of Aut9 (g) with Lie algebra 

isomorphic with {Jo = ,e,0 / £ 1. 
Then, by our choice of ,e,-1 and the construction of {£P}pEZ, we 

have 

{ 
(i) 

(5.3) (ii) 

(iii) 

{Jp = [f1p+1,JJ-1] for p < -l, 
For k ~ 0, if X E flk and [X, JJ-1] = {0}, then X = 0, 

G~ acts irreducibly on fl-1· 

Here we note that, from the structure equation of L, it follows that 
m = EBp<O {Jp gives the symbol algebra of (M, D) (cf. [T2, §6]). Any 
subalgebra a of£ becomes a filtered subalgebra of£ = {£P}pEz with 
the filtration { aP}pEZ given by aP = a n £P for p E Z:. Its associated 
graded Lie algrebra a= EBpEZ llp is a graded subalgebra of fl = EBpEZ {Jp 

satisfying dim a = dim a. Especially i 0 = EBp~O flp· Moreover a is an 

ideal of g if a is an ideal of£. With these preparation, we have ([K-N, 
I, p. 878, Lemmas 1 and 2]) 

Lemma 5.6. £ is simple. 

Proof. Let c be an Ad(L')-invariant ideal of£. Since £' = £ 0 is a 
maximally Ad(L')-invariant subalgebra and contains no ideal of £, we 
have £ = c + £ 0 . Then we have fl = c + g', where g' = ffip~O {Jp. Hence 

m = EBp<O {Jp C c. Here we note that c is abelian if c is so. On the 
other hand, by our assumption;µ> l, mis not abelian. Hence£ has no 
abelian ideals, which is Ad(L')-invariant. However if the radical t of£ is 
non-trivial, the last ideal in the derived series oft is a non-trivial abelian 
ideal, which is obviously invariant by Ad(L'). Therefore£ is semisimple. 
Then, since Ad(L') is a subgroup of the adjoint group Int(£) = Ad(L), 
each simple ideal of £ is Ad(L')-invariant. For two simple ideals of c1 

and c2 of£, we have c1 nc2 :::i m. Thus [c1,c2 ] -=I- {O}, which implies 
C1 = C2. Therefore£ is simple. 

Remark 5.7. When the linear isotropy representation 'Y: L' -+ 

G L(T0 ( M)) is irreducible, the nonlinearity of the action; Ker 'Y is non
discrete, is necessary to conclude that £ is simple (see [K-N, I, Lemma 
2]). In fact when £ is not simple, the structure of the pair (£, £') is 
determined by Morosov and Golubitsky (see [Go, Proposition 2.3]). Es
pecially £/ £' is £'-irreducible in this case. Lemma 5.6 follows also from 
this fact. 
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The structure of g = EBpEZ gP is determined by the following Lemma 
due to :Veisfeiler and Golubitsky ([We], [Go, Theorem 4.3]). 

Lemma 5.8. Let g = EBpEZ gP be a graded Lie algebra over K = 
JR or <C satisfying conditions in (5.3). Then 

(l) If 91 -=I- {0}, g is semisimple. 
(2) If g1 = {0}, g = m EB go, that is, 9k = {0} fork;;;; l, and go is 

reductive. 

Proof We reproduce the proof from Lemma 8.1 of [Gu] and Lemma 
4.2 of [Go]. Let D0 be the derivation of g = EBpEZ gP defined by 80 (X) = 
pX for X E 9p· We consider the radical t of g. tis preserved by any Lie 
algebra automorphism of g. Hence t is invariant by Cb and by D0 as well. 
Thus tis a graded ideal of g, that is, t = EBpEZ tp, where tp = t n 9p· 

Then t-1 is a Cb-invariant subspace of g_1. Hence, by (iii) of (5.3), we 
have two cases to distinguish; (1) t-1 = {0} or (2) L1 = 9-1· 

In case (1), by (ii) of (5.3), we get tk = {0} fork;;;; 0 by induction 
on k ;;;; 0. Let g = r EB s be a Levi decomposition of g. With respect to 
the filtration {fP}pEZ, fP = ffi1~P g1, of g, we take the associated graded 

Lie algebras of both sides of g = t EB s. Then, since t is graded, we get 
g = t + s. Hence, from tk = {0} for k;;;; -l, s ::i g_1 EB f0 . Thus, by (i) 
of (5.3), we obtains= g. From dims= dims, it follows that g =sand 
t = {0}. Hence g is semisimple in this case. In particular g1 -=I- {0}. 

In case (2), t is a Cb-invariant graded ideal of g containing 9-1· 
First we shall show that g1 = {0} in this case, which implies 9k = {0} 
fork> l by (ii) of (5.3) and g = mEBgo. Assume the contrary; 91 -=I- {0}. 
Then we claim 

If c is a Cb-invariant graded ideal of g containing 9-1, then [c, c] 
is also a Cb-invariant graded ideal of g containing 9-1 · 

In fact, obviously, [c, c] is a Cb-invariant graded ideal of g. By (ii) of 
(5.3), [9-1, 91] -=I- {0} if 91 -=I- {0}. Since c is an ideal satisfying '-1 = 9-1, 
we get c0 -=I- {0}. Then, again by (ii) of (5.3), [c1, c0 ] -=I- {0}. Since c is 
Cb-invariant, we obtain [c1, c0 ] = g_1 by (iii) of (5.3). The above claim 
implies that c cannot be solvable. Therefore g1 = {0} in case (2). 

Finally we shall show that g0 is reductive following Lemma 4.2 of 
[Go]. We consider the representation ad: g0 -+ g((g_1). Let us take a 
nonzero ad(90 )-irreducible subspace V of 9-1· For a graded Lie algebra 
automorphism r.p E Cb, r.p(V) is also ad(g0)-irreducible and is isomorphic 
with Vas a g0-module. Put W = I:<pEG~ r.p(V). Then Wis a non-trivial 

Cb-invariant subspace of 9-1· Hence, by (iii) of (5.3), we get 9-1 = W. 
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Thus 9_1 can be written as a direct sum of ad(90 )-irreducible subspaces. 
Hence ad: g0 --+ 9((9_1 ) is completely reducible and also faithful by (ii) 
of (5.3), which shows that 90 is reductive (cf. [V, Theorem 3.16.3]). 

Next we recall the following Lemma ([K-N, IV, Theorem 4.1], [Gu, 
Proposition 7.2]), which enables us to determine the structure of the 
filtered Lie algebra ,C = {.CP}pEZ in case (1) of Lemma 5.8. 

Lemma 5.9. Let ,C = {.CP}pEZ be a filtered Lie algebra over K = 

IR. or C, whose associated graded Lie algebra 9 = EB;=-µ 9p satisfies 
conditions (i) and (ii) of (5.3). Then if 9o contains an element E such 
that 

[E,X] = -X for XE 9-1, 

then ,C is isomorphic with 9 as a filtered Lie algebra, where the filtration 
{fP}pEZ of 9 is given by fP = EBj;,:p9j for p E Z. 

Proof. First we note that, for all p E Z, 

(5.4) [E,X] =pX for XE 9p· 

In fact, for p < 0, this follows from the generating condition (i) of (5.3). 
For p ;;;; 0, we have 

[Y, [E, Xl] = [Y, X] + [E, [Y, X]] for Y E 9-1 and X E 9v· 

Then, for XE 90 , we get [Y, [E, X]] = 0 for all YE 9-l· Hence, by (ii) 
of (5.3), we get EE Z(90). Thus, for p;;;; 0, (5.4) follows from (ii) of 
(5.3) by induction on p ;;;; 0. 

Let us take an element E of £ 0 such that rv0 (E) = E. Then, by 

(5.4), we see that the eigenvalues of ad(E) are -µ, ... , v and ,CP is the 

direct sum of the primary components .Cj = Ker(ad(E) - j · id)nj of 

ad(E) for the eigenvalues j = p, p + 1, ... , v. Moreover [.Cp, .Cq] C .Cp+q 

(cf. [Hu, §15.1]). Namely the primary decomposition ,C = EB;=-µ ,CP 

with respect to ad( E) gives a gradation of ,C such that ,CP = EB;=p ,Cj. 
By definition of the associated graded Lie algebra, it follows that ,C = 
EBpEZ .Cp is isomorphic with 9 = EBpEZ 9p as a graded Lie algebra. 

Now we have 

Theorem 5.10. Let L be a connected real ( or complex) Lie group 
acting transitively and effectively on a real ( or complex) manifold M and 
L' be the isotropy subgroup of L at a point o of M so that M = L/ L'. 
Let .C and .C' be the Lie algebras of L and L' respectively. Assume that 
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L acts primitively on M and leaves invariant a differential system D 
on M. Then L is simple. Moreover let us take D to be minimal and 
introduce a filtration {.cP}pEZ of £ induced from D. Assume further 
£ 1 -I- {O}. Then the following holds in either real or complex category. 

(1) £' is a maximal parabolic subalgebra of £. 
(2) £ = { £P}pEZ is naturally isomorphic with the associated graded 

Lie algebra g = E0pEZ gp as a filtered Lie algebra. In particular 

g = E0pEZ gP is a simple graded Lie algebra such that m = 
ffip<O gp is fundamental, and the filtration { £P}pEZ of £ is the 
one uniquely determined by £' as in Lemma 3.10. 

(3) M is a covering space over Mg such that D is the lift of Dg, 
where (Mg, Dg) is the standard differential system of type g = 
E0pEZ gP. Especially (M, D) is isomorphic with (Mg, Dg) always 
in the complex category and when £ is complex simple in the real 
category. 

(4) Except when (M, D) is locally isomorphic with a real or complex 
standard contact manifold, Ax(M, D) is isomorphic with £, at 
each x E M, where Ax(M, D) denotes the stalk at x of the 
Lie algebra sheaf A(M, D) of all infinitesimal automorphisms 
of (M,D). 

Proof. By Lemma 5.6, £ is simple over K = JR or CC, depending on 
whether we work in the real or complex category. Put G = Int(£) and 
let G' be the normalizer of£' in G: 

G' = {g E GI Ad(g)(£') = £'}. 

Since£' is self-normalizing, G' is the largest Lie subgroup of G with Lie 
algebra£'. Then, for the adjoint representation Ad: L------, CL(£) (in the 
category we are working), we have Ad(L) = G and Ad: L------, G is a cov-

ering homomorphism such that Ad(L') CG'. Put L' = Ad- 1 (G'). Then 

L' is a closed subgroup of L containing L' such that L/L' is diffeomor
phic with G / G'. Thus we see that the projection p: M = L / L' ------, G / G', 
defined by the following commutative diagram, is a covering map; 

L ~ G 

(5.5) ! ! 

M _____!!___,, G / G' 

Now assume that £ 1 -=/- {O}. Then the assertion (2) follows from 
Lemmas 5.8 and 5.9 and £' is a parabolic subalgebra of £. The last 
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statement of (2) is a consequence of (i) of (5.3) and Lemma 3.10. Then, 
by the construction of the standard differential system (Mg, D9 ) of type 
g = ffipEZgP (see §4.1) and (5.5), we see that G/G' = Mg and D = 

p-;; 1 (Dg), which shows the first assertion in (3). 
Next let us show the second assertion in (3) and the assertion (1). 

First we treat the case when£ is a simple Lie algebra over C. In this case, 
G and G' are complex Lie groups. It is well-known ( cf. [Wal, [Ttl], [Tkl]) 
that the complex R-space Mg = G / G' is simply connected, which implies 
the second assertion in (3) and that G' is connected. Hence Ad(L') = G' 
in this case. Then, by (iii) of (5.3), g_1 is ad(g0 )-irreducible, which 
implies£' is maximal parabolic (see Remark 3.7). Moreover, from the 
assumption that L acts effectively on M = L / L', it is easy to see that 
Ad: L ---, G is an isomorphism such that Ad( L') = G' (in the category 
we are working) in this case. 

Now we treat the case when£ is a simple Lie algebra over IR such 
that <CL is complex simple. We put <CG= Int(<C£) and 

<CG'= {g ECG I Ad(g)(<C£') =CC£'}. 

Then G is identified with the identity component of the closed real Lie 
subgroup of <CG consisting of all elements of <CG which commutes with 
the conjugation with respect to the real form £, of <CJ:, ( cf. [He, Chapter 
III, Lemma 6.2]). We have G' = G n <CG' and <CG' is connected. If there 
exists a proper subalgebra [J of £ containing £' properly, <C[J is <CG'
invariant by the connectivity of <CG'. Hence [J is G'-invariant and also 
Ad(L')-invariant from Ad(L') C G', which contradicts the assumption 
that L acts primitively on M = L / L'. Therefore £' is maximal parabolic, 
which completes the proof of (1). 

Finally, observing that g' = ffip:2'.o gp is not maximal parabolic in 

case (3) of Theorem 5.3, the assertion ( 4) follows from (3) and Corol
lary 5.4. 

Remark 5.11. (1) Since the Lie algebera of Ker 1' coincides with £µ 
in case (1) and vanishes in case (2) of Lemma 5.8, the condition £ 1 -1- {O} 
is equivalent to the nonlinearity of the action: Ker 1' is nondiscrete. 
The finite dimensional nonlinear primitive Lie algebras (£, £') were first 
classified by Ochiai [01], where a primitive subalgebra £' of£ is, by 
definition, a maximal subalgebra of £. In the present article, we follow 
the definition given in [Go] for the primitive action of a connected Lie 
group L. Fixing a Lie algebra pair (£, £'), where £ is the Lie algebra 
of L, this notion of primitivity depends on the choice of L', although 
if £' is maximal, L acts primitively on L / L' for any choice of L'. In 
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fact Golubitsky [Go] has shown many examples of (.C, .C') such that .C' 
is nonmaximal and L = Int(.C) acts primitively on L/L', where L' is the 
normalizer of .C' in L. Moreover he has shown that this phenomenon 
(nonmaximality of .C') occurs only when .C is simple and .C' is reductive. 
For the details, we refer the reader to the original paper [Go]. 

(2) The nonlinearity of the action: .C1 =/- {O} is necessary in Theorem 
5.10 as the following example shows (cf. [D]): We consider the simple Lie 
algebra .C of type G2. Let us fix a Cartan subalgebra 1J and simple root 
system .6. = {a1,a2} as in §3.4. Let .C(a1) be the subalgebra of .C 
generated by the root vectors for the roots a 2, -0, -a2 and 0, where 
0 = 3 a1 + 2 a2 is the highest root. Then we have 

.C(a1) = 80-a2 EB 80 EB 9-a2 EB IJ EB 9a2 EB 8-0 EB 9a2 -0· 

.C(a1) is a maximal simple subalgebra of type A2. This is an example of 
the construction of regular semisimple subalgebras due to Dynkin [D]. 
Moreover we have an ad(.C(a1))-irreducible decomposition of .C; 

where 

{ 
V1 = 8a1 EB 8a1 +<>2 EB 9-(2a1 +a2), 

V2 = 8-a1 EB 9-(a1 +a2) EB 82a1 +<>2 · 

In fact we have [.C(ai), ½] = ½ (i = 1, 2), [V1, V1] = Vi, [V2, Vi] = ½ 
and [V1, V2] = .C(a1). Put L = Int(.C) and let L' be the analytic sub
group of L with Lie algebra .C(a1). Then, since .C(a1) is a maximal 
subalgebra, L acts primitively and effectively on L/ L' such that the lin
ear isotropy representation is reducible. Since ½ and Vi are isomorphic 
as an .C(a1)-module, there are many minimal Ad(L')-invariant subspaces 
.c-1 containing .C(a1). However, for any choice of .c-1 , we see that the 
associated graded Lie algebra g has a following description; 

g = 8-2 EB 8-1 EB 9o, 

such that g_2 = /\2V and g0 = s[(V) by putting V = g_1 . Namely m = 
g_2EBg_1 is isomorphic with the universal fundamental graded algebra of 
second kind with dimg_1 = 3 (cf. [T2, §3]) and g0 = s[(g_i) C g[(g_i), 
where g[(g_1 ) is naturally identified with the Lie algebra of all gradation 
preserving derivations of m. 

Finally we note that, if we take L' to be the normalizer of .C(a1) 
in L, L acts primitively and effectively on L/ L' such that the linear 
isotropy representation is irreducible. 
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