Bubbling of Minimizing Sequences for Prescribed Scalar Curvature Problem

Shoichiro Takakuwa

§1. Introduction

Let (M, g) be a compact Riemannian manifold of dimension $n(\geq 3)$ and K be a smooth function on M. In this paper we consider the problem of finding a metric conformal to g having the scalar curvature K. Any conformal metric to g can be written $\tilde{g}=u^{2 /(n-2)} g$ where u is a positive smooth function on M. From the transformation law for the scalar curvature, this problem is equivalent to solve the nonlinear partial differential equation

$$
\begin{gather*}
L_{g} u:=-\kappa \Delta_{g} u+R u=K u^{N-1}, \quad u>0 \quad \text { in } M \\
\kappa=\frac{4(n-1)}{n-2}, \quad N=\frac{2 n}{n-2} \tag{1.1}
\end{gather*}
$$

where Δ_{g} denotes the negative definite Laplacian and R is the scalar curvature of g. The linear elliptic operator L_{g} is called the conformal Laplacian of (M, g). In the case K is a constant the problem was first studied by Yamabe [26]. For general K the problem was presented by Kazdan-Warner [16], [17]. Since their pioneer work, the problem has drawn attentions of both geometers and analysts (for example, see [3], [11], [14]).

As proved in [15], the problem can be reduced to the case where scalar curvature R is everywhere either positive, zero or negative. Here we consider only the case that R is positive everywhere. In this case, we easily see that a necessary condition for the solvability of (1.1) is that K is positive somewhere. For such function K, the problem has the variational formulation. We consider the functional

$$
E(u)=\int_{M}\left(\kappa|\nabla u|^{2}+R u^{2}\right) d V
$$

on the constraint set $\mathcal{C}_{K}=\left\{u \in H^{1}(M) \mid F_{K}(u)=1\right\}$ where

$$
F_{K}(u)=\int_{M} K|u|^{N} d V
$$

and $d V$ is the volume element of (M, g). Here $H^{1}(M)$ is the Sobolev space of L^{2} functions whose first derivatives are in $L^{2}(M)$. The condition that K is positive somewhere guarantees that \mathcal{C}_{K} is not empty. We set

$$
\lambda_{K}=\lambda_{K}(M, g)=\inf \left\{E(u) \mid u \in \mathcal{C}_{K}\right\}
$$

From the Sobolev inequality we see that λ_{K} is a positive constant. As stated in [11], [14], if a function u of \mathcal{C}_{K} achieves the infimum λ_{K}, then $u / \lambda_{K}^{(n-2) / 4}$ is a smooth solution of (1.1).

Take a minimizing sequence $\left\{u_{j}\right\}$ of \mathcal{C}_{K} for E, that is, $E\left(u_{j}\right)$ tends to λ_{K} as $j \rightarrow \infty$. We may assume that each u_{j} is non-negative almost everywhere. In fact, if $\left\{u_{j}\right\}$ is a minimizing sequence, then so is $\left\{\left|u_{j}\right|\right\}$. Since \mathcal{C}_{K} is closed in $H^{1}(M)$, the infimum is achieved if $\left\{u_{j}\right\}$ is compact in $H^{1}(M)$. Aubin [2] showed that any minimizing sequence is compact in $H^{1}(M)$ if the strict inequality

$$
\begin{aligned}
& \lambda_{K}<\Lambda /(\max K)^{2 / N} \\
& \quad \text { where } \quad \Lambda=\lambda_{K=1}\left(S^{n}, g_{0}\right)=n(n-1) \operatorname{vol}\left(S^{n}\right)^{2 / n}
\end{aligned}
$$

holds (also, see [7], [14]). However, the non-existence results of KazdanWarner [17] and Bourguignon-Ezin [4] for the equation (1.1) lead to the fact that no minimizing sequence is compact in $H^{1}(M)$.

The purpose of this paper is to describe how a minimizing sequence behaves if its compactness in $H^{1}(M)$ fails. In section 2 we prove the following result.

Theorem A. Let $\left\{u_{j}\right\} \subset \mathcal{C}_{K}$ be a minimizing sequence for E with $u_{j} \geq 0$ almost everywhere. If $\left\{u_{j}\right\}$ is not compact in $H^{1}(M)$, then there exist
(i) a subsequence $\{k\} \subset\{j\}$,
(ii) a point $a \in M$,
(iii) a sequence $\left\{r_{k}\right\}$ of \mathbb{R}_{+}with $r_{k} \rightarrow 0$ as $k \rightarrow \infty$, and
(iv) a sequence $\left\{a_{k}\right\}$ of M with $a_{k} \rightarrow a$ as $k \rightarrow \infty$,
satisfying the following conditions :
(1) u_{k} converges to 0 in $H_{\text {loc }}^{1}(M \backslash\{a\})$.
(2) The measure $u_{k}^{N} d V$ converges to $K(a)^{-1} \delta_{a}$ weakly in the sense of measures on M where δ_{a} denotes Dirac measure.
(3) The renormalized sequence $\tilde{u}_{k}(x)=r_{k}^{(n-2) / 2} u_{k}\left(\exp _{a_{k}}\left(r_{k} x\right)\right)$ converges to the function
$v(x)=\left(\frac{2^{n}}{\operatorname{vol}\left(S^{n}\right) K(a)^{2}}\right)^{(n-2) / 2 n}\left(\frac{\rho}{\rho^{2}+|x-b|^{2}}\right)^{(n-2) / 2}$,
in $H_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ for some $\rho>0, b \in \mathbb{R}^{n}$. Here, $\exp _{a_{k}}$ denotes the exponential map of M at a_{k}.
(4) $\lambda_{K}=\Lambda /(\max K)^{(n-2) / n}$.
(5) The point a attains the maximum of K.

A similar phenomenon to Theorem A has been observed in various nonlinear problems and called bubbling or concentration (for example, see [5], [9], [20], [22], [23]). P. L. Lions obtained the same results of (2) and (5) in Theorem A by using his theory of concentration-compactness principle [19]. Our proof differs from his. We only use the notion of the concentration function introduced in [19]. the statement (1), (3) and (4) of our result give a more precise description of the behavior of minimizing sequences. In the case $K \equiv 1$ the results corresponding to the statements (1)-(4) are proved in [24]. We note that the above mentioned result of Aubin can also be derived from Theorem A (4).

In section 3 we consider the case $(M, g)=\left(S^{n}, g_{0}\right)$ where g_{0} denotes the standard metric of the sphere. We prove the following result.

Theorem B. Let $\left\{u_{j}\right\} \subset \mathcal{C}_{K}$ be a minimizing sequence for E with $u_{j} \geq 0$ almost everywheree. If $\left\{u_{j}\right\}$ is not relatively compact in $H^{1}\left(S^{n}\right)$, then there exist
(i) a subsequence $\{k\} \subset\{j\}$,
(ii) a sequence $\left\{\psi_{k}\right\}$ of conformal transformations on S^{n},
(iii) a conformal transformation ψ on S^{n},
such that
(1) the renormalized sequence $\left\{\tilde{u}_{k}\right\}$ defined by
$\tilde{u}_{k}^{N-2} g_{0}=\psi_{k}^{*}\left(u_{k}^{N-2} g_{0}\right)$
converges to a positive smooth function u_{0} in $H^{1}\left(S^{n}\right)$, and
(2) the function u_{0} is determined by the equality

$$
u_{0}^{N-2} g_{0}=(\max K)^{-2 / n} \psi^{*}\left(g_{0}\right)
$$

This theorem states that on the sphere we are able to take the globally defined renormalized sequence by using conformal transformations. In the case $K \equiv 1$, Lee-Parker [18] proved an analogous result for the special minimizing sequence of approximate solutions for (1.1).

Finally, in Section 4 we state some results related to Theorems A and B.

§2. Proof of Theorem A

We first recall several known facts about the minimizing problem. Take a minimizing sequence $\left\{u_{j}\right\}$ of \mathcal{C}_{K} for E with $u_{j} \geq 0$ almost everywhere. Since the quantity $\sqrt{E(\cdot)}$ is equivalent to the Sobolev norm $\|\cdot\|_{H^{1}}$, we see that $\left\{u_{j}\right\}$ is bounded in $H^{1}(M)$. Therefore, $\left\{u_{j}\right\}$ is compact in the weak topology of $H^{1}(M)$. Using the Rellich compactness theorem, we may assume

$$
\begin{array}{ll}
u_{j} \longrightarrow u \quad & \text { weakly in } H^{1}(M) \\
& \text { strongly in } L^{2}(M), \\
& \text { almost everywhere on } M,
\end{array}
$$

for some $u \in H^{1}(M)$ with $u \geq 0$ a.e. From the general theory of calculus of variation we obtain

$$
\begin{equation*}
L_{g} u_{j}-\lambda_{K} K(x) u_{j}^{N-1} \longrightarrow 0 \quad \text { in } H^{-1}(M)=\left(H^{1}(M)\right)^{*} \tag{2.1}
\end{equation*}
$$

(for example, see [10], [13]).
Proposition 2.1. If the weak limit $u \not \equiv 0$, then
(1) u belongs to \mathcal{C}_{K} and achieves the infimum λ_{K}.
(2) $\left\{u_{j}\right\}$ converges to u in the strong topology of $H^{1}(M)$.

Proof. Passing to the limit in (2.1), we get

$$
\begin{equation*}
L_{g} u=\lambda_{K} K(x) u^{N-1} \in H^{-1}(M) \tag{2.2}
\end{equation*}
$$

From the regularity result of Brezis-Kato [6] and Trudinger [26] we see that u is a smooth function. Multiplying the both side of (2.2) by u and integrating over M, we have $E(u)=\lambda_{K} F_{K}(u)$. By the assumption that $u \not \equiv 0$, we get $F_{K}(u)>0$. From the definition of λ_{K} we have

$$
\lambda_{K} \leq E\left(u / F_{K}(u)^{1 / N}\right)=E(u) / F_{K}(u)^{2 / N}=\lambda_{K} F_{K}(u)^{2 / n}
$$

This shows $F_{K}(u) \geq 1$. On the other hand, since E is weakly lower semi-continuous, we have

$$
\lambda_{K} F_{K}(u)=E(u) \leq \liminf _{j \rightarrow \infty} E\left(u_{j}\right)=\lambda_{K}
$$

Then, we obtain $F_{K}(u)=1$ and $E(u)=\lambda_{K}$. Since u_{j} converges to u weakly in $H^{1}(M)$, we get

$$
E\left(u_{j}\right)=\kappa \int_{M}\left|\nabla\left(u_{j}-u\right)\right|^{2} d V+E(u)=\lambda_{K}+o(1)
$$

Hence, we have

$$
\int_{M}\left|\nabla\left(u_{j}-u\right)\right|^{2} d V=o(1)
$$

The proof is completed.
The next theorem plays a crucial role in the proof of our main results.
Theorem 2.2. (Local convergence theorem). Let Ω be a domain in M. Suppose that sequences $\left\{u_{j}\right\} \subset H^{1}(\Omega)$ and $\left\{\lambda_{j}\right\} \subset \mathbb{R}$ satisfy
(1) $u_{j} \longrightarrow u$ weakly in $H^{1}(\Omega)$,
(2) $\lambda_{j} \longrightarrow \lambda>0$,
(3) $L_{g} u_{j}-\lambda_{j} K(x)\left|u_{j}\right|^{N-2} u_{j} \longrightarrow 0 \quad$ in $H^{-1}(\Omega)=\left(H_{0}^{1}(\Omega)\right)^{*}$.

If each u_{j} satisfies

$$
\begin{equation*}
\int_{\Omega} K^{+}\left|u_{j}\right|^{N} d V \leq \epsilon \quad \text { for some } \epsilon<\left(\frac{\Lambda}{\lambda}\right)^{n / 2}(\max K)^{-(n-2) / 2} \tag{2.3}
\end{equation*}
$$

where $K^{+}(x)=\max \{K(x), 0\}$, then $u_{j} \longrightarrow u$ in $H_{\mathrm{loc}}^{1}(\Omega)$.
This theorem was proved in [24] in case K is a constant. For general K the proof in [24] also works with a slight modification.

Remark 2.3. We may replace the condition (2.3) by

$$
\begin{equation*}
\int_{\Omega}\left|u_{j}\right|^{N} d V \leq \epsilon /(\max K) \tag{2.4}
\end{equation*}
$$

We now give a proof of Theorem A. From Proposition 2.1 we know the weak limit u is identically zero if $\left\{u_{j}\right\}$ is not compact in $H^{1}(M)$.

Proof of statement (1). We take ϵ as in Theorem 2.2. We define the set \mathcal{S} as

$$
\begin{equation*}
\mathcal{S}=\bigcap_{r>0}\left\{\left.x \in M\left|\liminf _{j \rightarrow \infty} \int_{B(x, r)} K^{+}\right| u_{j}\right|^{N} d V \geq \epsilon\right\} \tag{2.5}
\end{equation*}
$$

where $B(x, r)$ is the open geodesic ball with center x and radius r. As proved in [23], \mathcal{S} is a compact subset of M. We first show that $K(x)>0$ for any $x \in \mathcal{S}$.

Take any point y in M with $K(y) \leq 0$. Since $K^{+}(x)$ is Lipschitz continuous, we have

$$
\begin{aligned}
\int_{B(y, r)} & K^{+} u_{j}^{N} d V \\
& \leq K^{+}(y) \int_{B(y, r)} u_{j}^{N} d V+\max _{B(y, r)}\left|K^{+}(\cdot)-K^{+}(y)\right| \int_{B(y, r)} u_{j}^{N} d V \\
& \leq O(r)
\end{aligned}
$$

This leads to $y \notin \mathcal{S}$.
We next show that a subsequence $\left\{u_{k}\right\}$ of $\left\{u_{j}\right\}$ converges to 0 in $H_{\text {loc }}^{1}(M \backslash \mathcal{S})$. If y in $M \backslash \mathcal{S}$, then there exist $r>0$ and infinitely many j such that the inequality

$$
\int_{B(y, r)} K^{+} u_{j}^{N} d V \leq \epsilon
$$

holds. By Theorem 2.2 we show that such u_{j} converges to 0 strongly in $H^{1}(B(y, r / 2))$. By a diagonal subsequence argument, a subsequence $\left\{u_{k}\right\}$ of $\left\{u_{j}\right\}$ converges to 0 strongly in $H^{1}(\Omega)$ for each $\Omega \Subset M \backslash \mathcal{S}$.

We finally show that \mathcal{S} consists of a single point. Note that we may take $\epsilon=1-\delta$ for any sufficiently small $\delta>0$. For $r>0$, we take a maximal family $\left\{B\left(x_{1}, r\right), \cdots, B\left(x_{I}, r\right)\right\}$ of $I=I(r)$ disjoint geodesic balls of radius r with center $x_{i} \in \mathcal{S}$. By maximality \mathcal{S} is covered by $B\left(x_{1}, 2 r\right), \cdots, B\left(x_{I}, 2 r\right)$. Since each x_{i} lies in \mathcal{S}, for any $\delta>0$

$$
\int_{B\left(x_{i}, r\right)} K^{+} u_{k}^{N} d V \geq(1-\delta)^{2}
$$

holds if k is sufficiently large. Summing up these, we get

$$
\begin{aligned}
I & \leq \frac{1}{(1-\delta)^{2}} \sum_{i=1}^{I} \int_{B\left(x_{i}, r\right)} K^{+} u_{k}^{N} d V \leq \frac{1}{(1-\delta)^{2}} \int_{M} K^{+} u_{k}^{N} d V \\
& \leq \frac{1}{(1-\delta)^{2}}\left(1+\int_{M} K^{-} u_{k}^{N} d V\right) \\
& \leq \frac{1}{(1-\delta)^{2}}\left(1+\|K\|_{\infty} \int_{M^{-}} u_{k}^{N} d V\right)
\end{aligned}
$$

where $M^{-}=\{x \in M \mid K \leq 0\}$. Since M^{-}is a compact set in $M \backslash \mathcal{S}$, u_{k} converges to 0 in the strong H^{1} topology on some neighborhood of
M^{-}. Thus, by taking k sufficiently large, we have

$$
I \leq \frac{1+\delta}{(1-\delta)^{2}}
$$

This shows $\mathcal{H}^{0}(\mathcal{S}) \leq(1+\delta) /(1-\delta)^{2}$ where \mathcal{H}^{0} denotes the 0 -dimensional Hausdorff measure on M. If we choose δ small enough, we have $\mathcal{H}^{0}(\mathcal{S})<$ 2. Since the 0 -dimensional Hausdorff measure coincides with the counting measure, either $\mathcal{S}=\{a\}$ for some $a \in M$ or \mathcal{S} is empty. If \mathcal{S} is empty, $\left\{u_{k}\right\}$ converges strongly in $H^{1}(M)$ because of Theorem 2.2 and the compactness of M. Thus, we obtain the desired result.

Proof of statement (2). For each k, we define the Radon measure μ_{k} on M by

$$
\mu_{k}(A)=\int_{A} u_{k}^{N} d V \quad \text { for } A \subset M
$$

Since $\left\{u_{k}\right\}$ is bounded in $L^{N}(M)$, the total variation of μ_{k} is uniformly bounded. Then, taking a subsequence if necessary, μ_{k} converges to some Radon measure μ weakly. Since $\left\{u_{k}\right\}$ converges to 0 in $H_{\text {loc }}^{1}(M \backslash\{a\})$, the support of the measure μ is contained in $\{a\}$. Thus, we have $\mu=\alpha \delta_{a}$ for some $\alpha \geq 0$. Since each u_{k} lies in \mathcal{C}_{K}, we have

$$
1=\lim _{k \rightarrow \infty} \int_{M} K u_{k}^{N} d V=\lim _{k \rightarrow \infty} \int_{M} K d \mu_{k}=K(a) \alpha
$$

The proof is completed.
Proof of statement (3)-(5). We take a normal coordinate neighborhood W of a and a normal coordinate system x of M centered at a. Through this coordinate W can be regarded as a neighborhood of the origin 0 in \mathbb{R}^{n}. So we note that the metric g satisfies $g_{\alpha \beta}=\delta_{\alpha \beta}+O\left(|x|^{2}\right)$ in the x-coordinate. Let $B(x, r)$ be the open ball with center x and radius r and let $B(r)=B(0, r)$. We choose $R>0$ small enough. As in [19] and [24], we introduce the concentration function

$$
Q_{j}(t)=\sup _{y \in B(R)} \int_{B(y, t)} u_{j}^{N} d x \quad \text { for } 0 \leq t \leq R
$$

Each function Q_{j} is continuous and non-decreasing in t, and $Q_{j}(0)=0$. We fix an arbitrary small $\delta>0$. By the definition of the point a,

$$
Q_{j}(R) \geq \int_{B(R)} u_{j}^{N} d x \geq(1-\delta) /(\max K)
$$

holds for sufficiently large j. By continuity of Q_{j}, there exist $0<r_{j}<R$ and $a_{j} \in \overline{B(R)}$ such that

$$
Q_{j}\left(r_{j}\right)=\int_{B\left(a_{j}, r_{j}\right)} u_{j}^{N} d x=\epsilon(1-2 \delta) /(\max K)
$$

Then we easily see that

$$
r_{j} \longrightarrow 0 \quad \text { and } \quad a_{j} \longrightarrow 0 \quad \text { as } \quad j \longrightarrow \infty
$$

We set $U(j)=B\left(a_{j} / r_{j}, 2 R / r_{j}\right) \subset \mathbb{R}^{n}$ and

$$
\tilde{u}_{j}(x)=r_{j}^{(n-2) / 2} u_{j}\left(a_{j}+r_{j} x\right)
$$

Since a_{j} lies in $B(R / 2)$ for sufficiently large j, we have $B\left(R / r_{j}\right) \subset U(j)$ which leads to $U(j) \longrightarrow \mathbb{R}^{n}$ as $j \rightarrow \infty$. We fix any bounded domain Ω of \mathbb{R}^{n}. Then we have

$$
\begin{aligned}
\int_{\Omega}\left|\nabla \tilde{u}_{j}\right|^{2} d x & \leq\left(1+C_{1} R^{2}\right) \int_{M}\left|\nabla u_{j}\right|^{2} d V \leq C_{2}<\infty \\
\int_{\Omega} \tilde{u}_{j}^{N} d x & \leq\left(1+C_{1} R^{2}\right) \int_{M} u_{j}^{N} d V \leq C_{3}<\infty
\end{aligned}
$$

From (2.1) we have

$$
\kappa \Delta_{j} \tilde{u}_{j}-R\left(a_{j}+r_{j} \cdot\right) r_{j}^{2} \tilde{u}_{j}+\lambda_{j} K\left(a_{j}+r_{j} \cdot\right) \tilde{u}_{j}^{N-1} \longrightarrow 0 \quad \text { in } \quad H^{-1}(\Omega),
$$

where Δ_{j} is the Laplacian with respect to the metric $g_{j}=g\left(a_{j}+r_{j}\right)$. Since g is the standard Euclidean metric up to second order, we have

$$
\begin{equation*}
\kappa \Delta \tilde{u}_{j}-\lambda_{K} K(a) \tilde{u}_{j}^{N-1} \longrightarrow 0 \quad \text { in } \quad H^{-1}(\Omega) \tag{2.6}
\end{equation*}
$$

Using the diagonal subsequence argument, we can take a subsequence $\{k\} \subset\{j\}$ so that for each domain $\Omega \Subset \mathbb{R}^{n}$,

$$
\begin{array}{cl}
\tilde{u}_{k} \longrightarrow v & \\
\tilde{u}_{k}(x) \longrightarrow v(x) & \\
\text { weakly in } H^{1}(\Omega) \\
\text { almost everywhere on } \mathbb{R}^{n}
\end{array}
$$

for some $v \in H_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ with $v \geq 0$ almost everywhere. Passing to the limit in (2.2), we know that v is a weak solution of

$$
\begin{equation*}
\kappa \Delta v+\lambda_{K} K(a) v^{N-1}=0 . \tag{2.7}
\end{equation*}
$$

By the regularity theorem in [6], [26] and the maximum principle, v is either a positive smooth function or identically zero.

We prove that $\left\{\tilde{u}_{k}\right\}$ converges in $H_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$. Fix any $z \in \mathbb{R}^{n}$. By the definition of a_{k}, r_{k}, we have

$$
\int_{B(z, 1)} \tilde{u}_{k}^{N} d x \leq \int_{B(1)} \tilde{u}_{k}^{N} d x=(1-2 \delta) /(\max K)<(1-\delta) /(\max K)
$$

By Theorem 2.2 and Remark 2.3, \tilde{u}_{k} converges to v strongly in $H^{1}(B(z, 1 / 2))$. Also, we obtain $v \not \equiv 0$, that is, v is positive everywhere.

From the result of Gidas-Ni-Nirenberg [12], all positive solutions of (2.7) are completely determined. Hence, we have

$$
v(x)=\left(\frac{4 n(n-1)}{\lambda_{K} K(a)}\right)^{(n-2) / 4}\left(\frac{\rho}{\rho^{2}+|x-b|^{2}}\right)^{(n-2) / 2}
$$

for some $\rho>0$ and $b \in \mathbb{R}^{n}$. By the result of Talenti [25] on the Sobolev inequality such v satisfies the equality

$$
\left(\int_{\mathbb{R}^{n}} v^{N} d x\right)^{2 / N}=\frac{\kappa}{\Lambda} \int_{\mathbb{R}^{n}}|\nabla v|^{2} d x .
$$

Then we have

$$
\int_{\mathbb{R}^{n}} v^{N} d x=\left(\frac{\Lambda}{\lambda_{K} K(a)}\right)^{n / 2}
$$

From the result of Aubin [2], we have the upper estimate of λ_{K} as

$$
\lambda_{K} \leq \Lambda /(\max K)^{2 / N}
$$

Thus we have

$$
\begin{aligned}
1 & \leq\left(\frac{\Lambda}{\lambda_{K}(\max K)^{2 / N}}\right)^{n / 2} \leq\left(\frac{\Lambda}{\lambda_{K} K(a)^{2 / N}}\right)^{n / 2}=K(a) \int_{\mathbb{R}^{n}} v^{N} d x \\
& \leq \liminf _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} K\left(\exp _{a_{k}}\left(r_{k} x\right)\right) \tilde{u}_{k}(x)^{N} d x \\
& \leq \liminf _{k \rightarrow \infty} \int_{M} K\left|u_{k}\right|^{N} d V+C_{1} R^{2} \leq 1+C_{1} R^{2}
\end{aligned}
$$

Hence we obtain

$$
\lambda_{K}=\Lambda /(\max K)^{2 / N}, \quad K(a)=\max K
$$

The proof is completed.

§3. Proof of Theorem B

Since $\left\{u_{j}\right\}$ is not compact in $H^{1}(M)$, Theorem A implies that the bubbling phenomenon occurs at a point a of S^{n}. We may assume that a is the south pole. Let $P=(0, \cdots, 0,1)$ be the north pole and π : $S^{n} \backslash\{P\} \longrightarrow \mathbb{R}^{n}$ be the stereographic projection. We take the local coordinate system defined by π. Using the similar argument to the proof of (3) in Theorem A, we can choose
(a) a subsequence $\{k\} \subset\{j\}$,
(b) a sequence $\left\{r_{k}\right\}$ of \mathbb{R}_{+}with $r_{k} \rightarrow 0$ as $k \rightarrow \infty$, and
(c) a sequence $\left\{a_{k}\right\}$ of \mathbb{R}^{n} with $a_{k} \rightarrow a$ as $k \rightarrow \infty$,
so that the sequence $\left\{r_{k}^{(n-2) / 2} u_{k}\left(\pi^{-1}\left(r_{k} \cdot+a_{k}\right)\right)\right\}$ converges in $H_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$.
We define the mapping $\psi_{k}: S^{n} \longrightarrow S^{n}$ by $\psi_{k}(x)=\pi^{-1}\left(r_{k} \pi(x)+\right.$ a_{k}). Then we easily see that each ψ_{k} is a conformal transformation of S^{n}. We set the renormalized sequence $\left\{\tilde{u}_{k}\right\}$ by the relation $\tilde{u}_{k}^{N-2} g_{0}=$ $\psi_{k}^{*}\left(u_{k}^{N-2} g_{0}\right)$. We easily obtain

$$
\tilde{u}_{k}(x)=r_{k}^{(n-2) / 2} u_{k}\left(\pi^{-1}\left(r_{k} \pi(x)+a_{k}\right)\right)
$$

Thus, we get

$$
\begin{aligned}
\tilde{u}_{k} \longrightarrow u_{0} \quad & \text { weakly in } H^{1}\left(S^{n}\right), \\
& \text { strongly in } H_{\mathrm{loc}}^{1}\left(S^{n} \backslash\{P\}\right), \\
& \text { almost everywhere on } S^{n},
\end{aligned}
$$

for some $u_{0} \in H^{1}\left(S^{n}\right)$ with $u_{0} \geq 0, u_{0} \not \equiv 0$.
We show the statement (2). Using the same argument as the proof of Theorem A (3), we see that the sequence $\left\{\tilde{u}_{k}\right\}$ satisfies

$$
\begin{equation*}
L_{g} \tilde{u}_{k}-\lambda_{K}(\max K) \tilde{u}_{k}^{N-1} \longrightarrow 0 \quad \text { in } \quad H_{\mathrm{loc}}^{-1}\left(S^{n} \backslash\{P\}\right) \tag{3.1}
\end{equation*}
$$

Passing to the limit in (3.1), we have

$$
L_{g} u_{0}+\lambda_{K}(\max K) u_{0}^{N-1}=0 \in H_{\mathrm{loc}}^{-1}\left(S^{n} \backslash\{P\}\right)
$$

By the regularity theorem in [6], [26] and the maximum principle, u_{0} is a positive smooth function on $S^{n} \backslash\{P\}$ satisfying

$$
\begin{equation*}
L_{g} u_{0}=\lambda_{K}(\max K) u_{0}^{N-1} \tag{3.2}
\end{equation*}
$$

in $S^{n} \backslash\{P\}$. The result of Caffarelli-Gidas-Spruck [8] implies that u_{0} can be extended to a positive function defined on the whole of S^{n} and
satisfies (3.2) on S^{n}. This means that the conformal metric $u_{0}^{N-2} g_{0}$ on S^{n} has constant scalar curvature. From the result of Obata [21], we can take a conformal transformation ψ so that the statement (2) holds.

Finally we prove that $\left\{\tilde{u}_{k}\right\}$ converges in $H^{1}\left(S^{n}\right)$. The result of Obata [21] leads to

$$
\Lambda=\inf \left\{E(u) /\|u\|_{N}^{2} \mid u \in H^{1}\left(S^{n}\right), u \not \equiv 0\right\}=E\left(u_{0}\right) /\left\|u_{0}\right\|_{N}^{2}
$$

Multiplying (3.2) by u_{0} and integrating over S^{n}, we have

$$
E\left(u_{0}\right)=\lambda_{K}(\max K)\left\|u_{0}\right\|_{N}^{N}
$$

Noting that the relation $\lambda_{K}(\max K)^{2 / N}=\Lambda$, we obtain

$$
\left\|u_{0}\right\|_{N}=(\max K)^{-1 / N}, \quad E\left(u_{0}\right)=\lambda_{K}
$$

Since the functional E is conformally invariant, we have

$$
E\left(\tilde{u}_{k}\right)=E\left(u_{k}\right)=\lambda_{K}+o(1) .
$$

Thus, we get

$$
\int_{S^{n}}\left|\nabla\left(\tilde{u}_{k}-u_{0}\right)\right|^{2} d V=\frac{1}{\kappa}\left(E\left(\tilde{u}_{k}\right)-E\left(u_{0}\right)\right)=o(1) .
$$

The proof is completed.

§4. Some remarks

We first remark that the bubbling phenomenon in Theorem A may occur at each point where K achieves the maximum.

Proposition 4.1. \quad Suppose (M, g) and K satisfy the equality $\lambda_{K}=$ $\Lambda /(\max K)^{2 / N}$. For each $p \in M$ with $K(p)=\max K$, there exists a minimizing sequence $\left\{u_{j}\right\} \subset \mathcal{C}_{K}$ satisfying
(1) each u_{j} is a non-negative smooth function on S^{n},
(2) $u_{j}^{N} d V \longrightarrow(\max K)^{-1} \delta_{p}$ weakly in the sense of measures on M.

Proof. We take a radial cutoff function $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying

$$
\begin{aligned}
& \eta(x)=\left\{\begin{array}{lll}
1 & \text { if } & |x| \leq 1, \\
0 & \text { if } & |x| \geq 2,
\end{array}\right. \\
& 0 \leq \eta \leq 1, \quad|\nabla \eta|=|\partial \eta / \partial r| \leq 2 .
\end{aligned}
$$

Take a normal coordinate of M centered at p. For small $\epsilon>0$ and $\rho>0$ we define

$$
u_{\epsilon, \rho}(x)=\eta\left(\frac{x}{\epsilon}\right)\left(\frac{\rho}{\rho^{2}+|x|^{2}}\right)^{(n-2) / 2}
$$

If we choose ϵ small enough, we have $F_{K}\left(u_{\epsilon, \rho}\right)>0$ for any $\lambda>0$. The calculation in [1], [14] gives

$$
\lambda_{K} \leq E\left(u_{\epsilon, \rho}\right) / F_{K}\left(u_{\epsilon, \rho}\right)^{2 / N} \leq \Lambda(1+C \epsilon)(1+C \rho) /(\max K)^{2 / N}
$$

Taking sequences $\epsilon_{j} \rightarrow 0$ and $\rho_{j} \rightarrow 0$ as $j \rightarrow \infty$, we obtain the sequence $u_{j}(x)=u_{\epsilon_{j}, \rho_{j}}(x) / F_{K}\left(u_{\epsilon_{j}, \rho_{j}}\right)^{1 / N}$ having the desired properties.

We next consider the case that (M, g) is the sphere S^{n} with the standard metric g_{0}. Consider the case that K is a constant. We remark that the functional F_{K} is conformally invariant if K is a constant. This implies that renormalized sequence $\left\{\tilde{u}_{k}\right\}$ in Theorem B is also a minimizing sequence of E. Thus we obtain the following theorem as a corollary of Theorem B.

Theorem 4.2. If $(M, g)=\left(S^{n}, g_{0}\right)$ and K is a constant, then every minimizing sequence of \mathcal{C}_{K} for E can be renormalized to converge in the strong topology of $H^{1}\left(S^{n}\right)$ by conformal transformations.

On the other hand, if K is not a constant, then the following nonexistence result was proved.

Theorem 4.3 (Kazdan [15]). If $(M, g)=\left(S^{n}, g_{0}\right)$ and K is not a constant, then the infimum λ_{K} is never achieved.

Proof. Suppose that there exists a function $u \in \mathcal{C}_{K}$ with $E(u)=$ λ_{K}. We may assume that u is a positive smooth function on S^{n}. From the definition of Λ, we have

$$
\lambda_{K}=\frac{E(u)}{F_{K}(u)^{2 / N}} \geq \frac{E(u)}{(\max K)^{2 / N}\|u\|_{N}^{2}} \geq \frac{\Lambda}{(\max K)^{2 / N}}=\lambda_{K}
$$

This leads to

$$
F_{K}(u)=\int_{S^{n}} K|u|^{N} d V=\max K \int_{S^{n}}|u|^{N} d V
$$

Since u is positive everywhere, K is a constant. the proof is completed.
Thus we obtain the following.

Corollary 4.4. If K is not a constant, then no minimizing sequence is compact in $H^{1}\left(S^{n}\right)$.

Also, we observe that the renormalized sequence in Theorem B is not a minimizing one.

References

[1] T. Aubin, Équations différentielles non linéares et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., 55 (1976), 269-296.
[2] , "Nonlinear Analysis on Manifolds. Monge-Ampère Equations", Springer-Verlag, New York, 1982.
[3] A. Bahri and J.M. Coron, The scalar-curvature problem on the standard three-sphere, J. Funct. Anal., 95 (1991), 106-172.
[4] J.P. Bourguignon and J.P. Ezin, Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. A. M. S., 301 (1987), 723-736.
[5] H. Brezis and J.M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Archive Rat. Mech. Anal., 89 (1985), 21-56.
[6] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potential, J. Math. Pures et Appl., 58 (1979), 137-151.
[7] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983), 437-477.
[8] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
[9] S.K. Donaldson, An application of gauge theory to 4-dimensional topology, J. Diff. Geom., 18 (1983), 279-315.
[10] H.I. Eliasson, On variation of metrics, Math. Scand., 29 (1971), 317-327.
[11] J.F. Escober and R.M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., 86 (1986), 243-254.
[12] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
[13] A. Inoue, On Yamabe's problem-by a modified direct method, Tôhoku Math. J., 34 (1982), 499-507.
[14] J.L. Kazdan, "Prescribing the curvature of a Riemannian manifold", CBMS Regional Conf. Ser. in Math. No. 57, Amer. Math. Soc., Providence, R. I., 1985, pp. 113-134.
[15] \quad, Nonlinear problem in geometry, in "Study of Riemannian Geometry by Analytic Method", RIMS Kokyuroku No. 600, RIMS Kyoto Univ., 1986, pp. 1-51.
[16] J.L. Kazdan and F.W. Warner, Curvature functions for compact 2-manifolds, Ann. of Math., 99 (1974), 14-47.
[17] Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geom., 10 (1975), 113-134.
[18] J.M. Lee and T.M. Parker, The Yamabe problem, Bull. Amer. Math. Soc., 17 (1987), 37-91.
[19] P.L. Lions, The concentration-compactness principle in the calculus of variations : the limit case, Part I, Revista. Mat. Ibero., 1(1) (1985), 145-201; Part II, Revista. Mat. Ibero., 1(2) (1985), 45-121.
[20] N. Nakauchi, Concentration behavior in solutions of Hamilton's evolution equation, preprint.
[21] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom., 6 (1972), 247-258.
[22] J. Sacks and K.K. Uhlenbeck, The existence of minimal immersions of 2spheres, Ann. of Math., 113 (1981), 1-24.
[23] S. Sedlacek, A direct method for minimizing the Yang-Mills functional over 4-manifolds, Comm. Math. Phys., 86 (1982), 515-527.
[24] S. Takakuwa, Behavior of minimizing sequences for the Yamabe problem, Tokyo Metropolitan University Mathematics Preprint Series 1990 No. 7.
[25] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
[26] N.S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 265-274.
[27] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., 12 (1960), 21-37.

Department of Mathematics
Tokyo Metropolitan University
Minami-Ohsawa 1-1, Hachioji-shi
Tokyo 192-03
Japan

