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Bubbling of Minimizing Sequences 
for Prescribed Scalar Curvature Problem 

Shoichiro Takakuwa 

§1. Introduction 

Let (M, g) be a compact Riemannian manifold of dimension n ( 2: 3) 
and K be a smooth function on M. In this paper we consider the 
problem of finding a metric conformal to g having the scalar curvature 
K. Any conformal metric to g can be written g = u2l(n-2 )g where u 
is a positive smooth function on M. From the transformation law for 
the scalar curvature, this problem is equivalent to solve the nonlinear 
partial differential equation 

L9 u := -!i.6..9 u +Ru= KuN-l, u > 0 inM, 

(1.1) 
Ii= 4(n - 1) ' N = --'!!.!_ 

n-2 n-2' 

where .6..9 denotes the negative definite Laplacian and R is the scalar 
curvature of g. The linear elliptic operator L 9 is called the conformal 
Laplacian of ( M, g). In the case K is a constant the problem was first 
studied by Yamabe [26]. For general K the problem was presented by 
Kazdan-Warner [16], [17]. Since their pioneer work, the problem has 
drawn attentions of both geometers and analysts (for example, see [3], 
[11], [14]). 

As proved in [15], the problem can be reduced to the case where 
scalar curvature R is everywhere either positive, zero or negative. Here 
we consider only the case that R is positive everywhere. In this case, we 
easily see that a necessary condition for the solvability of (1.1) is that 
K is positive somewhere. For such function K, the problem has the 
variational formulation. We consider the functional 
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on the constraint set CK= { u E H 1 (M) I FK(u) = 1} where 

FK(u) = JM KlulNdV, 

and dV is the volume element of (M,g). Here H 1 (M) is the Sobolev 
space of L2 functions whose first derivatives are in L2 (M). The condition 
that K is positive somewhere guarantees that CK is not empty. We set 

AK= AK(M,g) = inf{ E(u) I u ECK}. 

From the Sobolev inequality we see that AK is a positive constant. As 
stated in [11], [14], if a function u of CK achieves the infimum AK, then 

u/Ac;- 2)/4 is a smooth solution of (1.1). 
Take a minimizing sequence {uj} of CK for E, that is, E(u1) tends 

to AK as j --+ oo. We may assume that each Uj is non-negative almost 
everywhere. In fact, if {u1} is a minimizing sequence, then so is {lu11}. 
Since CK is closed in H 1 (M), the infimum is achieved if {uj} is compact 
in H 1 (M). Aubin [2] showed that any minimizing sequence is compact 
in H 1 (M) if the strict inequality 

AK< A/(maxK)2fN 

where A= AK=l (Sn, go) = n(n - 1) vol (Sn) 2/n, 

holds (also, see [7], [14]). However, the non-existence results of Kazdan
Warner [17] and Bourguignon-Ezin [4] for the equation (1.1) lead to the 
fact that no minimizing sequence is compact in H 1 ( M). 

The purpose of this paper is to describe how a minimizing sequence 
behaves if its compactness in H 1 (M) fails. In section 2 we prove the 
following result. 

Theorem A. Let { u1} C CK be a minimizing sequence for E with 
u1 ~ 0 almost everywhere. If { Uj} is not compact in H 1 ( M), then there 
exist 

(i) a subsequence {k} C {j}, 
(ii) a point a E M, 

(iii) a sequence {rk} of lR+ with rk --+ 0 ask--+ oo, and 
(iv) a sequence { ak} of M with ak --+ a as k --+ oo, 

satisfying the fallowing conditions : 

(1) Uk converges to O in Hfoc(M\{a}). 
(2) The measure uf dV converges to K(a)- 1 8a weakly in the sense 

of measures on M where 8a denotes Dirac measure. 
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(3) The renormalized sequence uk(x) = rkn-Z)/zuk(expak(rkx)) 
converges to the function 

v( ) _ ( 2n )(n-2)/2n( P )(n-2)/2 
x - vol(Sn)K(a)2 p2 + Ix - bl2 ' 

in H1~c(1Rn) for some p > 0, b E lRn. Here, expak denotes the 
exponential map of M at ak. 

(4) >..K = A/(max.K)(n-Z)/n_ 
(5) The point a attains the maximum of K. 

A similar phenomenon to Theorem A has been observed in various 
nonlinear problems and called bubbling or concentration (for example, 
see [5], [9], [20], [22], [23]). P. L. Lions obtained the same results of (2) 
and (5) in Theorem A by using his theory of concentration-compactness 
principle [19]. Our proof differs from his. We only use the notion of 
the concentration function introduced in [19]. the statement (1), (3) 
and (4) of our result give a more precise description of the behavior 
of minimizing sequences. In the case K = 1 the results corresponding 
to the statements (1)-(4) are proved in [24]. We note that the above 
mentioned result of Aubin can also be derived from Theorem A (4). 

In section 3 we consider the case (M,g) = (Sn,g0 ) where g0 denotes 
the standard metric of the sphere. We prove the following result. 

Theorem B. Let { u1} C CK be a minimizing sequence for E with 
u1 2: 0 almost everywheree. If { u1} is not relatively compact in H 1 ( sn), 
then there exist 

(i) a subsequence {k} C {j}, 
(ii) a sequence { '!,bk} of conformal transformations on sn, 

(iii) a conformal transformation 'l,b on sn, 

such that 

(1) the renormalized sequence { uk} defined by 
uf-2go = 'l,b'iJuf-2 go) 
converges to a positive smooth function u0 in H 1 ( sn), and 

(2) the function u0 is determined by the equality 
u~-2go = (max.K)- 2ln'l,b*(go)-

This theorem states that on the sphere we are able to take the glob
ally defined renormalized sequence by using conformal transformations. 
In the case K = 1, Lee-Parker [18] proved an analogous result for the 
special minimizing sequence of approximate solutions for (1.1). 
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Finally, in Section 4 we state some results related to Theorems A 
and B. 

§2. Proof of Theorem A 

We first recall several known facts about the minimizing problem. 
Take a minimizing sequence { u1} of CK for E with u1 2: 0 almost ev-

erywhere. Since the quantity JEn is equivalent to the Sobolev norm 
JI· IJH1, we see that {u1} is bounded in H 1 (M). Therefore, {u1} is com
pact in the weak topology of H 1 ( M). Using the Rellich compactness 
theorem, we may assume 

u1 ..-u weakly in H 1 (M), 

strongly in L 2 ( M), 

almost everywhere on M, 

for some u E H 1 (M) with u 2: 0 a.e. From the general theory of calculus 
of variation we obtain 

(2.1) 

(for example, see [10], [13]). 

Proposition 2.1. If the weak limit u "t 0, then 

(1) u belongs to CK and achieves the infimum AK-
(2) {u1} converges to u in the strong topology of H 1 (M). 

Proof. Passing to the limit in (2.1), we get 

From the regularity result of Brezis-Kato [6] and Trudinger [26] we see 
that u is a smooth function. Multiplying the both side of (2.2) by u and 
integrating over M, we have E(u) = AKFK(u). By the assumption that 
u "t O, we get FK(u) > 0. From the definition of AK we have 

This shows FK(u) 2:: 1. On the other hand, since E is weakly lower 
semi-continuous, we have 

AKFK(u) = E(u) :S: liminf E(u1) =AK. 
J--+00 
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Then, we obtain FK(u) = l and E(u) = AK. Since u1 converges to u 
weakly in H 1 (M), we get 

Hence, we have 

JM l'v(u1 - u)l2dV = o(l). 

The proof is completed. 

The next theorem plays a crucial role in the proof of our main results. 

Theorem 2.2. (Local convergence theorem). Let D be a domain 
in M. Suppose that sequences {u1} C H 1 (D) and {>..1} C JR satisfy 

(1) u1 ---+ u weakly in H 1 (D), 
(2) >..J ---+ >.. > 0, 
(3) L 9 uJ - >..JK(x)luJIN-2u1 ---+ 0 in H-1 (D) = (HJ(D))*. 

If each u1 satisfies 

where K+(x) = max{K(x), O}, then u1 ---+ u in H1~c(D). 

This theorem was proved in [24] in case K is a constant. For general 
K the proof in [24] also works with a slight modification. 

Remark 2.3. We may replace the condition (2.3) by 

We now give a proof of Theorem A. From Proposition 2.1 we know 
the weak limit u is identically zero if { Uj} is not compact in H 1 ( M). 

Proof of statement (1). We take E as in Theorem 2.2. We define 
the set Sas 

(2.5) s = n { X E M I lim inf 1 K+ luj IN dV ;::::: E } , 
r>D J-HXJ B(x,r) 

where B(x, r) is the open geodesic ball with center x and radius r. As 
proved in [23], Sis a compact subset of M. We first show that K(x) > 0 
for any x ES. 
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Take any point y in M with K(y) ::; 0. Since K+(x) is Lipschitz 
continuous, we have 

{ K+uf dV 
jB(y,r) 

:S K+(y) { uf dV + max JK+(-) - K+(y)J { uf dV 
} B(y,r) B(y,r) } B(y,r) 

:S O(r). 

This leads to y (/_ S. 
We next show that a subsequence { uk} of { Uj} converges to 0 in 

H1~c ( M \ S). If y in M \ S, then there exist r > 0 and infinitely many 
j such that the inequality 

holds. By Theorem 2.2 we show that such Uj converges to 0 strongly 
in H 1 (B(y,r/2)). By a diagonal subsequence argument, a subsequence 
{uk} of {uJ} converges to 0 strongly in H 1 (0.) for each 0. <s M\S. 

We finally show that S consists of a single point. Note that we may 
take E = 1 - 8 for any sufficiently small 8 > 0. For r > 0, we take a 
maximal family { B(x1 , r), · · · , B(x1, r)} of J = I(r) disjoint geodesic 
balls of radius r with center Xi E S. By maximality S is covered by 
B(x1 ,2r), · · · ,B(x1,2r). Since each Xi lies in S, for any 8 > 0 

{ K+uf dV 2: (1 - 8)2 , 

} B(x,,r) 

holds if k is sufficiently large. Summing up these, we get 

where M- = { x EM I K :SO}. Since M- is a compact set in M\S, 
Uk converges to 0 in the strong H 1 topology on some neighborhood of 
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M-. Thus, by taking k sufficiently large, we have 

1+8 
I~ (l - 8)2. 

339 

This shows H 0 (S) ~ (1+8)/(1-8) 2 where 1{0 denotes the 0-dimensional 
Hausdorff measure on M. If we choose 8 small enough, we have H0 (S) < 
2. Since the 0-dimensional Hausdorff measure coincides with the count
ing measure, either S = {a} for some a E M or S is empty. If S is 
empty, {uh} converges strongly in H 1 (M) because of Theorem 2.2 and 
the compactness of M. Thus, we obtain the desired result. 

Proof of statement (2). For each k, we define the Radon measure 
µk on M by 

µk(A) = L uf dV for ACM. 

Since { uh} is bounded in LN ( M), the total variation of µk is uniformly 
bounded. Then, taking a subsequence if necessary, µk converges to some 
Radon measureµ weakly. Since {uk} converges to O in H1~c(M\{a}), 
the support of the measureµ is contained in {a}. Thus, we haveµ= a8a 
for some a 2 0. Since each Uk lies in CK, we have 

1 = lim f Kuf dV = lim f Kdµk = K(a)a. 
k---+oo j M k---+oo j M 

The proof is completed. 

Proof of statement (3)-(5). We take a normal coordinate neigh
borhood W of a and a normal coordinate system x of M centered at a. 
Through this coordinate W can be regarded as a neighborhood of the 
origin O in lRn. So we note that the metric g satisfies gaf3 = 8af3+0(lxl 2 ) 

in the x-coordinate. Let B(x, r) be the open ball with center x and ra
dius rand let B(r) = B(O,r). We choose R > 0 small enough. As in 
[19] and [24], we introduce the concentration function 

Qi(t) = sup f uf dx 
yEB(R) j B(y,t) 

for O ~ t ~ R. 

Each function Qj is continuous and non-decreasing int, and Qj(O) = 0. 
We fix an arbitrary small 8 > 0. By the definition of the point a, 

Qj(R) 2 f uf dx 2 (1- 8)/(maxK) 
jB(R) 



340. S. Takakuwa 

holds for sufficiently large j. By continuity of Q j, there exist O < r j < R 

and aj E B(R) such that 

Qjh) = 1 uf dx = E(l - 28)/(maxK). 
B(a; ,r;) 

Then we easily see that 

and as j -----+ oo. 

We set U(j) = B(aj/rj, 2R/rj) C )Rn and 

~ ( ) (n-2)/2 ( ) Uj X = rj Uj aj + TjX . 

Since aj lies in B(R/2) for sufficiently large j, we have B(R/rj) C U(j) 
which leads to U(j) -----+ JR.n as j -too. We fix any bounded domain r2 
of JR.n. Then we have 

k lv7ujl 2dx :S (1 + C1R2 ) JM lv7ujl 2dV :S C2 < 00, 

k uf dx :S (1 + C1R2) JM uf dV :S C3 < 00. 

From (2.1) we have 

where L:ij is the Laplacian with respect to the metric gj = g(aj + rj)
Since g is the standard Euclidean metric up to second order, we have 

(2.6) 

Using the diagonal subsequence argument, we can take a subsequence 
{k} C {j} so that for each domain r2 (S JR.n, 

weakly in H 1 (r2), 

almost everywhere on )Rn, 

for some v E H1~c(JR.n) with v 2: 0 almost everywhere. Passing to the 
limit in (2.2), we know that v is a weak solution of 

(2.7) 

By the regularity theorem in [6], [26] and the maximum principle, v is 
either a positive smooth function or identically zero. 



Prescribed Scalar Curvature 341 

We prove that {uk} converges in H1~c(lRn). Fix any z E !Rn. By the 
definition of ak, rk, we have 

{ u{: dx::; { u{: dx = (l - 28)/(maxK) < (1 - 8)/(maxK). J B(z,l) J B(l) 

By Theorem 2.2 and Remark 2.3, Uk converges to v strongly in 
H 1 (B(z, 1/2)). Also, we obtain v ¢. 0, that is, v is positive everywhere. 

From the result of Gidas-Ni-Nirenberg [12], all positive solutions of 
(2. 7) are completely determined. Hence, we have 

for some p > 0 and b E !Rn. By the result of Talenti [25] on the Sobolev 
inequality such v satisfies the equality 

Then we have 

{ N ( A )n/2 
}]Rn V dx = AKK(a) . 

From the result of Aubin [2], we have the upper estimate of AK as 

AK ::; A/(maxK)2/N. 

Thus we have 

Hence we obtain 

AK= A/(maxK) 2fN, K(a) = maxK. 

The proof is completed. 
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§3. Proof of Theorem B 

Since {uj} is not compact in H 1 (M), Theorem A implies that the 
bubbling phenomenon occurs at a point a of sn. We may assume that 
a is the south pole. Let P = (0, · · ·, 0, 1) be the north pole and 7T : 

sn \ { P} --t JR_n be the stereographic projection. We take the local 
coordinate system defined by 7T. Using the similar argument to the 
proof of (3) in Theorem A, we can choose 

(a) a subsequence {k} C {j}, 
(b) a sequence {rk} of lR+ with rk--+ 0 ask--+ oo, and 
( c) a sequence { ak} of JR_n with ak --+ a as k --+ oo, 

so that the sequence {rkn- 2 )12uk(1r-1 (rk · +ak))} converges in H1~c(JR.n). 
We define the mapping '!pk : sn - sn by 'l/Jk(x) = 1T- 1(rk1T(x) + 

ak)- Then we easily see that each 'l/Jk is a conformal transformation of 
sn. We set the renormalized sequence {-ih} by the relation uf-2 g0 = 
'l/JZ(uf- 2go). We easily obtain 

Thus, we get 

weakly in H 1 (Sn)' 

strongly in H1~c(Sn\ { P}), 

almost everywhere on sn , 

for some u0 E H 1 (Sn) with u0 ~ 0, u0 't 0. 
We show the statement (2). Using the same argument as the proof 

of Theorem A ( 3), we see that the sequence {Uk} satisfies 

(3.1) 

Passing to the limit in (3.1), we have 

By the regularity theorem in [6], [26] and the maximum principle, u0 is 
a positive smooth function on sn \ { P} satisfying 

(3.2) 

in sn\{P}. The result of Caffarelli-Gidas-Spruck [8] implies that u0 

can be extended to a positive function defined on the whole of sn and 
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satisfies (3.2) on sn. This means that the conformal metric u{1-2g0 on 
sn has constant scalar curvature. From the result of Obata [21], we can 
take a conformal transformation 'ljJ so that the statement (2) holds. 

Finally we prove that {uk} converges in H 1 (Sn). The result of 
Obata [21] leads to 

A= inf{ E(u)/llull7'r I u E H 1 (Sn), u-=/= 0} = E(uo)/lluoll7'r. 

Multiplying (3.2) by u0 and integrating over sn, we have 

E(uo) = AK(maxK)lluoll~ • 

Noting that the relation >.K(maxK) 2IN = A, we obtain 

lluoJIN = (maxK)-l/N, 

Since the functional E is conformally invariant, we have 

Thus, we get 

The proof is completed. 

§4. Some remarks 

We first remark that the bubbling phenomenon in Theorem A may 
occur at each point where K achieves the maximum. 

Proposition 4.1. Suppose ( M, g) and K satisfy the equality AK = 
A/(maxK) 21N_ For each p E M with K(p) = maxK, there exists a 
minimizing sequence { Uj} C CK satisfying 

(1) each Uj is a non-negative smooth function on sn, 
(2) uf dV --+ (maxK)-1 8P weakly in the sense of measures on 

M. 

Proof. We take a radial cutoff function T/ E C0 (!Rn) satisfying 

TJ(x) = { ~ 
O:S:TJ:S:l, 

if lxl :s: 1, 

if lxl 2 2, 

lv'TJI = ioTJ/orl :s: 2. 
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Take a normal coordinate of M centered at p. For small E > 0 and p > 0 
we define 

( ) _ (x)( P )(n-2)/2 
Ue,p X - T/ ~ p2 + lxl2 . 

If we choose E small enough, we have FK(ue,p) > 0 for any A> 0. The 
calculation in [1], [14] gives 

AK :S E(ue,p)/FK(Ue,p) 2/N :S A(l + CE)(l + Cp)/(max.K)2fN_ 

Taking sequences Ej -+ 0 and p1 -+ 0 as j-+ oo, we obtain the sequence 

u1(x) = Ue1 ,p1 (x)/FK(ue1 ,pJ 1fN having the desired properties. 

We next consider the case that (M,g) is the sphere sn with the 
standard metric g0 . Consider the case that K is a constant. We re
mark that the functional FK is conformally invariant if K is a constant. 
This implies that renormalized sequence { uh} in Theorem B is also a 
minimizing sequence of E. Thus we obtain the following theorem as a 
corollary of Theorem B. 

Theorem 4.2. If ( M, g) = ( sn, g0 ) and K is a constant, then 
every minimizing sequence of CK for- E can be renormalized to converge 
in the strong topology of H 1 (Sn) by conformal transformations. 

On the other hand, if K is not a constant, then the following non
existence result was proved. 

Theorem 4.3 (Kazdan [15]). If (M,g) = (Sn,g0 ) and K is not a 
constant, then the infimum AK is never- achieved. 

Proof. Suppose that there exists a function u E CK with E(u) = 
AK. We may assume that u is a positive smooth function on sn. From 
the definition of A, we have 

AK= E(u) > E(u) > A 
FK(u)2/N (max.K)2/Nilulli - (max.K)2/N =AK. 

This leads to 

Since u is positive everywhere, K is a constant. the proof is completed. 

Thus we obtain the following. 
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Corollary 4.4. If K is not a constant, then no minimizing se
quence is compact in H 1 ( sn). 

Also, we observe that the renormalized sequence in Theorem B is 
not a minimizing one. 
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