
Advanced Studies in Pure Mathematics 21, 1992 
Zeta Functions in Geometry 
pp. 181-218 

Selberg Zeta Functions and Jacobi Forms 

Tsuneo Arakawa 

§0. Introduction 

0.1. The purpose of this paper is to generalize our previous work 
[Ar2, 3] to the case of the spaces of Jacobi forms of a more general type. 
We define Selberg zeta functions associated with certain theta multiplier 
systems of SL2(Z). Those Selberg zeta functions can be continued to 
meromorphic functions in the whole complex plane satisfying certain 
functional equations in virtue of the general theory of Selberg trace 
formula for SL2(1R) due originally to Selberg [Sel, 2], and recently to 
Hejhal [Hel, 2], Fischer [Fi]. A remarkable thing to be stressed is that 
our Selberg zeta functions have close relations with the dimensions of 
the spaces of Jacobi forms. We show that the dimensions of the spaces 
of certain Jacobi forms of lower weights can be explicitly expressed in a 
closed form with the use of the orders of the zeros of our Selberg zeta 
functions via the Selberg trace formula. To describe the Selberg trace 
formula we need the theory of real· analytic Eisenstein series associated 
with the theta multiplier systems of SL2(Z). As a byproduct we show 
that the functional equation satisfied by the real analytic Eisenstein 
series for the Jacobi group can be obtained from the one satisfied by 
the real analytic Eisenstein series associated with the theta multiplier 
systems. 

0.2. We explain our results more precisely. Let l be a positive 
integer and S a half-integral positive definite symmetric matrix of size 
l. For v a positive integer and r, a subgroup of SL2(Z) of finite index 
having the element -12, we denote by Jv,s(r) (resp. J:,s(r)) the space 
of holomorphic Jacobi forms (resp. skew-holomorphic Jacobi forms) of 
weight v and index S with respect to the Jacobi group rJ (for the 
precise definition see (5.3) in§ 5). Let J~~P(r) and J:,~usp (r) denote the 

subspaces consisting of cusp forms in Jv,s(r) and J:,s(r), respectively. 
If l = l (i.e., Sis a positive integer), Jacobi forms of Jv,s(r) have been 
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studied by Eichler-Zagier [E-Z] from various points of view. In that 
case (l = 1) skew-holomorphic Jacobi forms have been introduced and 
studied by Skoruppa (cf. [Skl], [S-Zl], [Sk2, 3]). Set Rs= (2S)- 17i}j7l}. 
Denote by d the cardinality of the set Rs (d = det(2S)). Let V = (Cd, 

the CC-vector space of column vectors (xr)rERs (xr E CC) equipped with 
the scalar product (x,y)s = ~rERs XrYr for x = (x,,.), y = (y,,.) EV. 
For each r E Rs the theta series 0,,.(T,z) is defined by (1.1) in§ 1. It is 
known that these theta series satisfy the theta transformation formula: 

0,,.(M(T, z)) = e ( ctzSz) (CT+ dil2 '°' u,,.q(M)0q(T, z) 
CT+ d L.., 

qERs 

with Urq(M) E CC for any M = (: : ) E SL2(2"..), 

where M(T,z) = (MT, _z_) and the branch of (CT+d) 112 is chosen so 
cT+d 

that -1r < arg(cT + d) ::S 7r. The d X d matrix U(M) = (urq(M))r,qERs 
is a unitary matrix ( or a unitary transformation of V) with respect to 
the scalar product ( , )s. Denote by x(M) the complex conjugate of 
U(M). Since x(-12) has the eigenvalues ±e1ril/2, the vector space V 
has the decomposition V = V+EBV-, V+ (resp. V_) being the e1ril/2-eigen 
subspace (resp. -e1ril/Z_eigen subspace) of V. The spaces V+ and V_ are 
x(M)-invariant subspaces of V for any ME SL2(2"..). Denote by x+(M) 
(resp. x-(M)) the restriction of x(M) on V+ (resp. V_). We define the 
Selberg zeta functions Zr,s,+(s), Zr,s,-(s) associated with X+, X- by 
the identity (1.8) in § 1. The zeta functions Zr,s,±(s) are absolutely 
convergent for Re( s) > 1. We formulate the resolvent trace formula 
(Theorem 4.1 in § 4) associated with r and x following Fischer [Fi]. 
It can be shown that via the resolvent trace formula the zeta functions 
Zr ,s,± ( s) are analytically continued to meromorphic functions of s in the 
whole s-plane satisfying the functional equation (4.7). The dimensions 
of the spaces of Jacobi forms can be computed in a closed form thanks 
to the resolvent trace formula. In particular we obtain certain relations 
between the dimensions of the spaces of Jacobi forms of lower weights 
and the orders of the zeros of our Selberg zeta functions. Our main 
results are the following: 

(i) 
dime ~~;P(r) = >.r(k; S) 

dime Jz*_ctJ(f) = µr(k; S) 

if k > l/2 + 2, 

if k < l/2 - 2, 

where >.r(k; S), µr(k; S) (k E 2"..) are the numbers given by (5.9). 
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(ii) Assume that l is odd. Let c denote the sign + or - according as 
l = 1 mod 4 or l = 3 mod 4. Then, 

dime Jcz'~f);2,8 (f) = Ords=3/4 Zr,s,c:(s) + >-r((l + 3)/2; S), 

dime J(l+l)/2,8 (f) = Ords=3;4 Zr,s,c:(s), 

dime Jci~~)/2,8 (f) = Ords=3/4 Zr,s,-c:(s) + µr((l - 3)/2; S), 

dime J(l+1)/2,s(f) = Ords=3/4 Zr,s,-e:(s). 

(iii) Assume that l is even. Let c denote the sign + or - according as 
l = 0 mod 4 or l = 2 mod 4. Then, 

dime J;;'~~2,8 (f) = Ords=l Zr,s,c:(s) + >-r(l/2 + 2; S), 

dime J1j~:f, 8 (f) = Ords=l Zr,s, 0 (s) + µr(l/2 - 2; S), 

dime{ v EV I x(M)v = v for any ME r} = Ords=l Zr,s, 0 (s), 

and 

dime J 01~s~1,8 (r) + dime JtA:f,8 (f) = Ords=l/2 Zr,s,-e:(s). 

In the last paragraph we obtain the functional equation satisfied by 
the real analytic Eisenstein series for the Jacobi group. 

We make two significant remarks. 

Remark 1. Murase-Sugano in their note [M-S] have already ob­
tained a dimension formula for the space JZ';l (r) under the condition 

k > l/2+2 (the first identity in the above (i)). They have used the trace 
formula involving the Bergman kernel function for the space Jt?(r). 

Remark 2. In [Skl] and [S-Zl] Skoruppa-Zagier calculated the di­
mensions of the spaces J1,m(SL2(Z)) and Ji,m(SL2(Z)) in the case of 
l = 1 and S = m, a positive integer: 

dime J1,m(SL2(Z)) = 0, 

dime J; m(SL2(Z)) = !{ '°' 1 + 5(m = D)}, 
' 2 ~ 

dlm,d>O 

where the symbol 5(m = D) indicates 1 or O according as mis a square 
of some integer or not. If r = SL2(Z), then by these identities and the 
above (ii), the Selberg zeta function Zr,m,+(s) has a zero at s = 3/4 of 
a strictly positive order, and moreover, Zr,m,-(3/4) =I= 0. 

0.3. Hejhal [Hel, 2] and Fischer [Fi] discussed the Selberg trace 
formula for SL2(1R) associated with r, a discrete subgroup of SL2(1R) of 
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finite covolume, and X, a unitary multiplier system of r, in full details 
with proofs. In the present paper we have employed Fischer's resolvent 
trace formula which fits very well to the calculation of the dimensions 
of the spaces of Jacobi forms. 

This work was done while the author was staying at Max-Planck 
Institut fiir Mathematik in Bonn in 1989-1990, to which he expresses 
his gratitude. 

Notation. As usual we denote by CC, JR, Z, and N, the complex 
number field, the real number field, the ring of rational integers, and the 
set of positive integers, respectively. Denote by CC1 (resp. JR.1) the CC-vector 
(resp. JR-vector) space of complex (resp. real) column vectors of size l 
and by Z1 the Z-lattice of integral column vectors of size l in JR.1• Denote 
by Sym1(JR.) (resp. Sym1 (Z)) the set of symmetric matrices of size l with 
entries in JR ( resp. Z). Let r ( s) and ( ( s) be the gamma function and 
the Riemann zeta function, respectively. For a meromorphic function 
f(z), denote by Resz=a f(z) (resp. Ordz=/3 f(z)) the residue of f(z) at 
the pole z = a (resp. the order of the zero at z = /3). For z E CC, denote 
by Re( z) and Im ( z) ( or Im z) the real part of z and the imaginary part 
of z, respectively. For a finite set A, #(A) denotes the cardinality of the 
set A. We use the symbol e(a) as an abbreviation of exp(21ria). 

§1. Theta multiplier systems of SL2 (Z) and Selberg zeta 
functions 

We choose the branch of za = exp(alogz) (z f. 0, a E JR) with 
-1r < arg z S 1r throughout the paper. 

First of all we recall theta transformation formulas for classical theta 
series. Let l be a positive integer. Let S be a positive definite half­
integral symmetric matrix of size l and fix it once and for all. Let Rs 
denote the Z-module (2S)- 1Z1/Z1. We set 

d = det(2S), 

which is a positive integer. Then, #(Rs)= d. We write 

S(u,v)=tusv and S[u]=tuSu foru,vECC1. 

Denote by V = (Cd the CC-vector space consisting of column vectors 
(xr )rERs (xr E CC). Let (x, y) s be the positive definite hermitian scalar 
product given by 

(x,y)s= L XrYr (x=(xr)rERs,Y=(Yr)rERs EV). 
rERs 
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Denote by Sj the upper half plane on which the group SL2 (JR) acts in a 
usual manner. For each r E (2S)- 1Z1, the classical theta series 0r( T, z) 
is defined by 

(1.1) 0r(T, z) = L e(TS[q + r] + 2S(q + r, z)) 
qEZ1 

By abuse of notation one can define 0r(T, z) for each r E Rs. For each 
T E Sj, let 8s,r denote the space of holomorphic functions 0: !C1 ------, (C 

satisfying 

0(z + ,\T + µ) = e(-TS[>.] - 2S(>., z))0(z) for any>.,µ E Z1. 

Obviously, 0r(T, z) E 8s,r• We set, for A = (; ! ) E SL2(1R) and 

TE Sj, z E C1, 

AT = aT +b ( z ) CT+d' J(A,T)=cT+d, and A(T,z)= AT'J(A,T) . 

For a real numberµ, denote by o-µ,(A, B) (A, BE SL2(JR)) the number 
defined by 

o-µ,(A, B) = exp(iµ(arg J(A, BT)+ arg J(B, T) - arg J(AB, T))), 

where argw (w -I- 0) is chosen so that -n < argw S 7r. The number 
a-µ, ( A, B) is independent of the choice of T E Sj in the above definition. 
Necessary properties of o-µ,(A,B) for later use are referred to (1.3.3)­
(1.3.9), p.18 of [Fi]. We arrange the theta series 0r(T, z) as a column 
vector: 

8(T,z) = (0r(T,z))rERs EV. 

It is known that the theta series 0r ( T, z) satisfy the theta transformation 
formula: 

(1.2) 

8(M(T,z)) = J(M,T)1l2 e (J(;,T/[z]) U(M)8(T,z) 

forany M=(: !)ESL2(Z), 

where U(M) is a certain unitary matrix of size d with respect to the 
scalar product ( , )s. For the proof of (1.2) we refer for instance to 
Shintani [Sh]. For convenience we consider the complex conjugate of 
U(M). Set 

(1.3) x(M) =U(M) 
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Then the formula (1.2) implies the following property of x(M) as a 
unitary multiplier system: 

(M1, M2 E SL2(Z)). 

By this identity x becomes a unitary representation of SL2 (Z) if l is a 
positive even integer. For each r E Rs, denote by er the column vector 
of V whose q-th component equals one or zero according as q = r or not. 
Namely, 

er= (brq)qERs, brq standing for the Kronecker symbol. 

Denote by L the matrix of size d ( or a linear transformation of V) 
characterized by 

(1.5) Ler = e_r for any r E Rs. 

Substituting M = -lz in (1.2), we easily have 

(1.6) x( - lz) = enil/2 L. 

Since all the eigen values of L are ±1, one can define V+ (resp. V_) to 
be the C-subspace of V consisting of all vectors v E V satisfying 

Lv =v (resp. Lv = -v). 

We set 

(1.7) Ri = {r E Rs Ir= -r mod Z1 } and do= #(R~). 

Then, 

dime V+ = (d + d0 )/2 and dime V_ = (d - d0 )/2. 

Since every x(M) (M E SL2(Z)) commutes with L via (1.4), one can 
define x+(M) (resp. X-(M)) to be the restriction of x(M) onto the 
subspace V+ (resp. V_). Then, x+(M) and x-(M) are unitary endo­
morphisms of V+ and V_, respectively. Under these preparations we 
can define two Selberg zeta functions associated with X±· Let f be 
a subgroup of SL2(Z) of finite index having the element -12. Every 
hyperbolic element P of r has an expression 

(
N(P)l/2 

P=±A 
0 

0 ) A-l 
-N(P)l/2 . 

with N(P) > 1 and some A E SL2(JR). 
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Then, N(P) is uniquely determined and called the norm of P. Denote by 
{ P}r (resp. { P0 }r) the f-conjugacy classes of hyperbolic (resp. primitive 
hyperbolic) elements of r. Let id(½) denote the identity map of ½ 
(c: =+or -). We set 

00 

(1.8) Zr,s,e(s) = II II det(id(½) - Xe(Po)N(Po)-s-n), 
{Po}r,trPo>2 n=O 

where c: is the sign + or - and where the first product indicates that 
P0 runs over the f-conjugacy classes of primitive hyperbolic elements 
of r with tr P0 > 2. The infinite products on the right hand side of 
(1.8) are absolutely and uniformly convergent on any compact sets in 
the half-plane Re(s) > 1 (see, for instance, Corollary 2.2.6 of [Fil). Thus 
the zeta function Zr,s,+(s), Zr,s,-(s) indicate holomorphic functions of 
sin Re(s) > 1. Then the logarithmic derivatives of the zeta functions 
have the form 

(1.9) 

Z' 
r,s,e (s) = L tr(xe(P)) log N(Po)· 

Zr,s,c: {P}r,trP>2 

N(P)-s 
1- N(P)- 1 

(Re(s) > 1), 

where c: = + or - and P0 is the primitive hyperbolic element associated 
to P with tr Po > 2. 

§2. Certain L2-spaces of automorphic forms and Eisenstein 
series 

We recall some basic facts of Roelcke [Rol, 2] and Fischer [Fi] con­
cerning certain automorphic forms and Eisenstein series associated with 
x in a manner convenient to our situation. 

Let k be a rational integer and set 

(2.1) K = (k - l/2)/2. 

In the sequel let c:(k) denote the sign + or - according ask is even or 
odd. Then it is easy to see from (1.4), (1.6) that 

{ 
X±(M1M2) = o-2"'(M1, M2)X±(M1)X±(M2) 

(2.2) (M1, M2 E SL2(Z)) 

Xe(k)(-b) = e-21ri1< id(½(k)), 
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where in the first equality the signs +, - are chosen in the corresponding 
manner. Notice that in (2.2), u2"(M1 , M2 ), which takes the values ±1, 
depends on l and not on k. We set 

JM(T, K) = exp(2iKarg J(M, T)) (ME SL2 (1R.), TE SJ). 

We write j M ( T) in place of j M ( T, K) if there is no fear of confusion. This 
factor of automorphy satisfies the property 

We set 

(~ = Re(T), 77 = Im(T)). 

Let r be a subgroup of SL2 (Z) of finite index with the element - b. Let 

H",s,r ( resp. rt:'.";),r) be the space of measurable functions f: Sj ---+ V 
(resp. f: S'J ---+ Vt:(k)) satisfying 

(2.4) 
i) f(MT) = x(M)jM(T)j(T) (resp. f(MT) = Xe(k)(M)jM(T)j(T)) 

for all ME f 

ii) r (j(T), f(T))s dw(T) < +oo, 
lr\n 

where f\S'J is a fundamental domain of r in Sj. For instance, the space 
Ht,s,r is defined, only if k is even. If f is an element of H",s,r, then by 
(i) of (2.4) and (1.6), (2.3), the equality 

holds and accordingly f(T) is contained in ½(k)· Thus each element f 

of H",s,r is canonically identified with an element of rt:'.ir· Via this 
identification we may set 

1t - He(k) x:,s,r - "'-,s,r· 

Then the space H",s,r forms a Hilbert space via the Petersson scalar 
product (J, g): 

(f, g E H",s,r ). 
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We set 

( 82 3 2 ) 8 
~" = T/2 8e + 8TJ2 - 2ir;,TJ 8~ 

as in Definition 1.4.3 of [Fi]. Denote by D" the set of all twice continu­
ously differentiable functions f E H",s,r with ~"f E H",s,r (notice that 
the condition (i) for ~"f in (2.4) is automatically fulfilled). According 
to Satz 3.1 of [Rol] the linear operator -~": D" --+ H",s,r satisfies the 
property 

and moreover it can be extended to the unique self-adjoint operator 
-~;;:v--;;--+ H",s,r with v;; as its domain (Satz 3.2 of [Roll). 

For each cusp ( of r, denote by r c the stabilizer of ( in r: r c = 
{ M E r [ M( = ( }. Denote by h the cardinality of the r-equivalence 
classes of cusps of r and let ( 1 , ... , (h be a complete set of representatives 
of the r-equivalence classes of cusps of r. Choose Ai, ... , Ai;, E SL2 (Z) 
such that A;(j = oo (1 :S j :Sh). Then for each j there exists a positive 
integer l 1 such that 

(1 :S j :Sh). 

The positive integer l1 is uniquely determined by the r-equivalence class 
of the cusp (j- Put, for each j (1 :S j :S h), 

Aj = r; 112 ( ~ l~) A; and Tj = A_;-1U A1, 

(2.5) 

where U = ( ~ ~ ) : 

Then the stabilizer r (; is generated by the elements - lz and Tj. 
We have to consider a further decomposition of the set Rs 

(2S)- 12 1/21. Let Ri be the subset of Rs given by (1.7). Then there 
exists a subset R8 of Rs such that 

( disjoint union), 

where - Rs denotes the subset { -r I r E Rs } of Rs. We fix such a 
subset Rs once and for all. Moreover for the fixed integer k we define 
the subset Rs,k as follows: 

Rsk = s s { 
R~ uR0 

, Rs 
if k is even, 

if k is odd. 
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Set, for each j (1 S j Sh) and r E Rs, 

(2.6) 

Then for each j, { Vjr }rERs forms an orthonormal basis of V. Set, for 
each j (1 S j Sh), 

(2.7) 
ifrERi 

if r E Rs - Ri. 

By the property (1.5), we have Lvjr = Vj,-r· Therefore, { Wjr }rERs,k 
forms an orthonormal basis of Ve(k)· 

It is easy to see from the definition (1.1) of 0r('r, z) that 

0r(T + n, z) = e(nS[r])0r(T, z) for any n E Zand r E Rs, 

In view of the relation 

8(T, z) = L 0r(T, z)er 
rERs 

and by the linearly independence of the theta series {0r(T,z)}rERs, we 
thus have 

This identity is changed into the form 

(2.8) (1 S j Sh, r E Rs), 

since one can prove 

similarly as in Corollary 1.3.8 of [Fi]. We further decompose the set Rs,k 
into two parts. Set, for each j (1 S j Sh), 

(2.9) { 
Rs,j,k = { r E Rs,k I ljS[r] E z} 

Rs,j,k = { r E Rs,k I ljS[r] (j. z }. 

Let f: Sj _, V be a twice continuously differentiable function satis­
fying the condition (i) of (2.4) and -b..,J = s(l - s)f with some s EC. 



Jacobi Forms 191 

We discuss the Fourier expansion of f at each cusp (j. As we have seen 
before, f(r) is a Vc(k)-valued function. Therefore the function 

can be written in a linear combination of Wjr (r E Rs,k): 

fA;(r) = L f~;(r)wjr· 
rERs,k 

For any real number x, let (x) denote the real number with the conditions 
x - (x) E Z and O :S (x) < 1. We set 

(2.10) (1 :S j :Sh, r E Rs). 

Then we see easily from (i) of (2.4) and (2.8) that 

(r E Rs,k)-

As is discussed by Roelcke [Rol, pp.300-301] and Fischer in Proposition 
1.5.4 of [Fi] in a general situation, f1A. ( T) has a Fourier expansion of the 

J 

form: 

(2.11) 

where 

nEZ 

and 

s =/= 1/2 

s = 1/2 

if r E Rs,j,k 

if r E Rs,j,k 

with some functions q";,n(TJ) and some constants brj, Crj· Thus f(r) has 
a Fourier expansion at each cusp (j of the form: 

f(r) = JA; (r)- 1{uj(Im(Ajr)) + qj(Ajr)} 

(2.12) Uj(TJ) = L u';(TJ)Wjr, Qj(T) = L q';(r)Wjr, 
rERs,k rERs,k 
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where u;(ri), q'S(T) are the same as in (2.11). 
Now we define the real analytic Eisenstein series at each cusp (j 

associated with r, x following Definition 1.5.3 of [Fi]. We set, for each 
j (l S j Sh) and r E R's,j,k' 

(2.13) 

Ejrh s) = L 0"21<(Aj, M)- 1x(M)- 1wjrJAjM(T)- 1 (ImAjMT)8. 
MEr,j \r 

The infinite series on the right hand side is well-defined and absolutely 
convergent for Re(s) > 1. Since the vectors Wjr are in ½(k), on the 
right hand side of the definition (2.13), x(M)- 1 may be replaced with 
Xe(k)(M)- 1 according to the definition of X±· It is easy to see that 

Ejr(MT, s) = x(M)jM(T)Ejr(T, s) for any ME r 
and that 

-~i<Ejr(*, s) = s(l - s)Ejr(*, s). 

The Eisenstein series Ejr ( T, s) has the Fourier expansion at each cusp 
(1 of the form: 

Ejr(T, s) = ]A1 (T)- 1 {Ujr,1(ImA1T, s) + Qjr,1(A1T, s)}, 

where Ujr,1(ri,s) (TJ > 0) is the constant term (i.e., the zeroth Fourier 
coefficient) and where Ujr,l(TJ, s), Qjr,1(T, s) have the forms similar as in 
(2.12). The constant term Ujr,l(rJ,s) has the following expression: 

Ujr,t(TJ, s) = Oj!T/8 Wjr + Pjr,1(s)ry1-s 

with a certain ½(k)-valued function Pjr,1(s). Set 

(TJ > 0) 

'Pjr,lp(s) = (pjr,1(s), W!p)S (1 S j S h, r E R's,j,k, PE Rs,k)-

Notice that 'Pjr,tp( s) = 0 if p E Rs,l,k. These functions 'Pjr,lp( s) are 
holomorphic in Re( s) > 1. We set 

h 

too = L #(Rs,j,k)-
j=l 

We note that t00 depends on k mod 2. This number t00 represents the 
degree of singularity of Xe(k) (see Notation 1.5.1 of [Fil). The t00 x t00 

matrix <l?( s) is defined by 

(2.14) P( S) = ( 'Pjr,lp( S)) (1 S j, l Sh, r E Rs,j,k, p E Rs,1,k), 



Jacobi Forms 193 

jr being the line index, lp being the column index, both in lexicographic 
order. By (10.30) in [Ro2], we have 

Cf!jr,lp ( S) = 'Plp,jr (s) (i.e., t<l>(s) = <l>(s)). 

Let E( T, s) denote the d x t 00-matrix whose column vectors are the 
Eisenstein series E j r ( T, s): 

E(T, s) = (Ejr(T, s))j=l, ... ,h;rER~. k · ,J, 

The main theorem for the Eisenstein series due to Selberg [Sel,2] and 
Roelcke [Rol,2] is formulated in our terminology as follows (see also 1.5, 
pp.28-35 in [Fil). The special case of l = l (l being the size of the matrix 
S) and r = S12 (::Z) is discussed in [Ar2]. 

Theorem 2.1. The Eisenstein series Ejr(T, s) and 'Pir,lp(s) are 
analytically continued to meromorphic functions of s in the whole com­
plex plane that are holomorphic in the half plane Re(s) 2: 1/2 except for 
the real segment (1/2, 1]. They satisfy the functional equations 

E(T,l-s)=E(T,sl<I>(l-s) and <l>(s)<I>(l-s)=lt=· 

Namely, 

h 

Ejr(T, 1- s) = L L Etp(T,s)cpjr,lp(l - s), 
l=l pER~,l,k 

h 

L L 'Pjr,lp(s)cplp,iq(l - s) = 8jr,iq 
l=l pER~,l,k 

(1 ::;; i, j ::;; h, r E Rs,j,k, q E Rs,i,k), 

8jr,iq being the Kronecker symbol. Moreover the Eisenstein series 
Ejr( T, s) (1 ::;; j ::;; h, r E R's,j,k) are linearly independent for s # 1/2, if 

all Ejr(T, s) are holomorphic at s. 

This theorem has an application to the determination of the func­
tional equation satisfied by real analytic Eisenstein series for the Jacobi 
group, on which we shall discuss in the last paragraph. 

§3. Computation of tr x(M) 

To describe the resolvent trace formula for H";,s,r as explicit as 
possible with the help of the special properties of the theta multiplier 
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systems X±, one has to calculate the traces of x(M) (ME S12(.Z.::)) in a 
convenient form. The calculation oftr x(M) has been done by Skoruppa­
Zagier [S-Z2] in the case of l, the size of S, being one. They extended 
U(M) to certain linear operators of the space 8s,T of the theta series 
and computed the traces of those operators by analyzing their explicit 
actions on theta series. In the present paper we select another method 
which is based on the theory of Bergman kernel function of the space 
8s,T• It seems that such a method is essentially known, but for the 
convenience of the reader we exhibit it here briefly. 

Let G = SL2(JR). First we define the Jacobi group GJ. Set 

(3.1) cJ = { (M, (>.., µ), p) IM E G, >.., µ E JRZ, p E Sym1(JR) }. 

Then, GJ forms a group by the composition law 

9192 = (M1M2, (>..1, µ1)M2 + (>..2, µ2), 

Pl + P2 - µ1 t >..1 + µ* t )._ * + )._ * t µ2 + µ2 t A*) 

(91 =(M1,(>..1,µ1),p1)EGJ, j=l,2) 

with (>..*,µ*) = (>..1,µ1)M2. 

The center of the group GJ is given by the subgroup 

{ (12, (0, 0), p) Ip E Sym1(JR) }. 

Then any element M of G and any Y of JR1 x JR1 may be canonically 
identified with the elements (M, (0, 0), 0) and (lz, Y, 0) of GJ, respec­
tively. We often write M (resp. Y) in place of the corresponding element 
(M, (0, 0), 0) (resp. (12, Y, 0)) of GJ. Denote by D the product of the 
upper half plane Sj and (['.1: D = Sj x (['.1. The Jacobi group GJ acts on 
D in the manner 

(3.2) 
( z +AT+µ) 

9(T,z)= MT, cT+d • 

(9 = (M, (>.., µ), p) E GJ, (T, z) ED). 

A factor of automorphy Jk,s(9, (T, z)) associated with the given Sand 
an integer k is defined by 

Jk,s(9, (T, z)) 

= J(M, Tte (-tr(Sp) - TS[>..] - 2S(>.., z) + J(;, T) S[z +AT+µ]) 

(9 = (M, (>.., µ), p) E GJ, (T, z) ED). 
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Then it satisfies 

(3.3) 
Jk,s(g1g2, (T, z)) 

= Jk,s(g1,g2(T, z))Jk,s(g2, (T, z)) (g1,g2 E GJ). 

For each T E 5'), denote by LT the Z-lattice Z 1T + Z1 in cC1 and by 
<C1 / LT a fundamental domain of LT in <C1• For any z E <C1 we write 
z =UT+ v with u, v E IR1 and define a volume form dw(z) on <C1 by 

l l 

dw(z) = IT duj IT dvj 
j=l j=l 

For 01,02 E 8s,n a scalar product (01,02) is defined by 

It is easy to show the following orthogonality relation for the theta series 
Br(T, z) (r E Rs): 

a¢. b mod Z1 

a= b mod Z1. 

It is known that { Br ( T, z )}rERs forms an orthogonal basis of the space 
8s,T- We set, following (1), § 2 in [S-Z2], 

hs((T, z), (T', z')) = e(-S[z - z']/(T - T')). 

We easily have 

(3.5) hs((T, z), (T', z')) = hs((T', z'), (T, z)), 

(3.6) 
hs(g(T, z),g(T', z')) 

= Jo,s(g, (T, z))hs((T, z), (T', z'))Jo,s(g, (T', z')) 

Lemma 3.1. Let T, T 1 E 5'J and z E C1• Then, 

{ hs((T, z), (T', z'))0r(T1 , z') exp(-4nry'S[u']) dw(z') 
lei 

- 1/2 

( T-T1 ) = det(2S)- 1 -. - Br(T, z) 
2iry' 

for any r E Rs, 
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where r/ = Im T 1 and z' = u' T 1 + v' with u', v' E JR.1. 

Since the proof is done by a straightforward computation with the 
use of (1.1), we omit it. 

Via Lemma 3.1, a linear map i: 8s,r' _____, E>s,r can be defined by 

We set 

(lr,r 1 0)(z) 

= f hs((T, z), (T 1 , z'))0(z') exp(-41rr/ S[u']) dw(z'). lc1 

Hs((T, z), (T 1, z')) 

(3-7) = L e(-T1S[>..]-2S(>..,z'))hs((T,z),(T1,z1 +>..T'+µ)), 
>.,µ,E'Z} 

which is absolutely convergent for any (T,z),(T',z') ED and indicates 
a holomorphic (resp. anti-holomorphic) function in (T, z) (resp. (T', z')). 
Then we get immediately, for 0 E E>s,r', 

( lr,r' 0) ( Z) 

(3.8) 
= f Hs((T, z), (T1, z'))0(z') exp(-4m-,'S[u']) dw(z'). 

Jc1;LT, 

The following lemma shows the essential feature of the function 
Hs((T, z), (T', z')). 

Lemma 3.2. Let T, T 1 E Sj and z, z' E C1. Then, 

- 1/2 

(
T - T 1 ) Hs((T, z), (T1, z')) = (det sr1/ 2 ~ L 0r(T, z)0r(T1, z'). 

rERs 

Proof. As a function of z', Hs((T,z), (T',z')) belongs to the space 
E>s,r' and therefore, 

Hs((T, z), (T 1, z')) = L Ar· 0r(T1, z') 
rERs 

with some functions Ar in T, z, T 1. On the other hand Lemma 3.1 
immediately implies 
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Thus getting this identity together with (3.8), we can calculate Ar and 
hence have the assertion of Lemma 3.2. 

q.e.d. 

We have, immediately by Lemma 3.2, 

(3.9) Hs((T, z), (T', z')) = Hs((T', z'), (T, z)). 

It follows from (3.5), (3.7), and (3.9) that this function has another 
expression: 

Hs((T, z), (T', z')) 

(3.10) L Jo,s(X, (T, z))- 1 hs(X(T, z), (T', z')). 
XEZ1 xZ1 

The following integral expression for tr U ( M) easily follows from the 
theta transformation formula (1.2), Lemma 3.2, and the orthogonality 
relation (3.4). 

Proposition 3.3. Let ME SL2 (Z) and TE 5). Then, 

(3.11) 

det(2S)-1 (MT.- T) 112 
J(M, T) 112 tr U(M) 

2zr, 

= 1 Jo,s(M, (T, z))- 1 Hs(M(T, z), (T, z)) exp(-41rr,S[u]) dw(z). 
IC1 / LT 

For simplicity set L = Z1 x Z1, on which any integral matrix of size 
two acts by right multiplication. We have, by the expression (3.10), 

Jo,s(M, (T, z))-1 Hs(M(T, z), (T, z)) 
(3.12) = L Jo,s(XM, (T, z))- 1hs(XM(T, z), (T, z)). 

XEL 

Lemma 3.4. Let M E SL2 (Z) with det(M - b) =/- 0. For each 
X E L, the element X M in CJ can be expressed as 

XM = y-1 MX'Y ·J 

with X', YE Land J = (b, (0, 0), p), p E Sym1(Z), where we notice that 
XM = X' + Y(12 -M) in L. Moreover by this expression, X runs over 
all elements of L, if and only if Y runs over all elements of L and X' 
over all residue classes of L modulo L(M - b). 

We omit the proof, which is easy. 
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Lemma 3.5. Let ME SL2(Z) with det(M - lz)-/=- 0. Then, 

(3.13) 

where we put 

det(2S)- 1 (MT.-'f) 112 J(M,T)112trU(M) 
2iry 

I: J(T,M;X), 
XEL/L(M-1,) 

I(T,M;X) 

= f Io,s(MX, (T, z))- 1hs(MX(T, z), (T, z)) exp(-4nryS[u]) dw(z). fez 

Proof. It is easy to see from (3.12), Lemma 3.4 and (3.6) that 

Io,s(M, (T, z))- 1 Hs(M(T, z), (T, z)) 

YEL XEL/ L(M-12) 

hs(Y-1 MXY(T, z), (T, z)) 

10 ,s(MX, Y(T, z))- 1 

YEL XEL/L(M-1,) 

· hs(MXY(T, z), Y(T, z))llo,s(Y, (T, z))l- 2 • 

Since we have 

IJo,s(Y, (T, z))l-2 exp(-4nryS[u]) = exp(-4nryS[u + -\]) 
(Y = (-\, µ) EL), 

the integral on the right hand side of the equality (3.11) turns out the 
expression on the right hand side of the equality (3.13). 

q.e.d. 

Now we compute trU(R) for elliptic elements R of SL2(Z). 

Let R = (: : ) be an elliptic element of SL2(Z) and TE SJ a fixed 

point of R (we may choose T = i or e21ri/3 ). Set, for simplicity, 

w = cT+d, ( = T - T ( = 2iry). 
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We have RX(T,z) = (T, (z +AT+ µ)/w) for X = (A,µ) EL. Noticing 
that z =UT+ v (u, v E IR1) and c/w + 1/(w2() = 1/(, we see easily that 

(3.14) 
Jo,s(RX, (T, z))- 1 hs(RX( T, z), (T, z)) exp( -41r71S[u]) 

= e(TS[>.] + 2S(>., z) - cS[z +AT+ µ]/w) 

· e(-S[(z +AT+ µ)w- 1 - z]/()e(S[z - z]/() 

= e( _t(Xf + µ)S(>.T + µ)/() 

. e ( 2(\: w) S(z, z) + 2S (-(>.: + µ), z) + 2S (ATw7 µ, z)) 
= e(-t(Xf + µ)S(>.T + µ)/()e ( (tu tv )3 (:) + 2(tu tv)Px) 

where we put 

P = ( Tl~! ~~l) (E GL21(CC)), 

=1-w ( 2ITl 2S (T+r)S) 
3 (w ( T + r)S 2S 

and 
X = (-S(>.r + µ)/() ( E c21). 

S(>.T + µ)/w( 
The matrix 3 is a point of the Siegel upper half plane of degree 2l. If we 
put A= -21ri3 and note that ((w - 1)/w)2 = (t - 2)/w with t =a+ d, 
then by a standard calculation of the integral, 

I(T, R; X) =e( _t(>.r + µ)S(>.T + µ)/() ( 4(~: t) y12 

· det(s)- 1e(21ritxtPA- 1Px). 

Since T is a root of the quadratic equation: cT2 + ( d - a )T - b = 0, an 
elementary calculation shows that the integral I ( T, R; X) equals 

det(2S)- 1 (2 - t)-112(-w) 112 

. e ( (-z + ((1 ~ w)) t(AT + µ)S(AT + µ)) 

= det(2S)- 1 (2 - t)-112 (-w) 112 

. e (-1-(bS[>.] - (a - d)S(>., µ) - cS[µ])) . 
t-2 
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Each elliptic element R of SL2(1R) is SL2(1R)-conjugate to some element 

( c~s 0° -sin°0 ) with O < 0 < 21r. We write 0(R) for this 0 if Risto be 
Slil COS 

specified. Thus the following expressions for tr U(R) for elliptic elements 
R of SL2 (Z) immediately follows from Lemma 3.5 and the above last 
identity, if we notice that RT= T and w = J(R, T). 

Proposition 3.6. Let R = (; ! ) be an elliptic element of 

SL2 (Z) and set t = a + d. Then, 

trU(R) = 

(2 ~:;1; 2 L e C ~ 2 (bS[.\] - (a - d)S(,\, µ) - cS[µ])) , 
(>-.,µ)EL/L(R-12) 

where 
0 < 0(R) < 1r 

1r < 0(R) < 21r. 

Remark. In the case of l = 1, this proposition is nothing but only 
a special case of Theorem 2 in [S-Z2]. 

We set, for v = 2 or 3, 

G,,(S) = v-l/Z L eCxSx/v). 
xE(Z/vZ)1 

Denote by J ( resp. W) the matrix ( ~ - ~) ( resp. ( ~ - ~)) of 

SL2(Z). It is well-known that {J, J 3 , W, W 2 , W4, W 5 } forms a complete 
set of representatives of the SL2 (Z)-conjugacy classes of elliptic elements 
of SL2(Z). Obviously, 0(J) = 1r /2, 0(W) = 1r /3. We have, immediately 
by Proposition 3.6, 

tr U(J) = e-1rilf2G2(S), 

(3.15) tr U(W) = e-1ril/Z, 

tr U(W4 ) = e1ril/z · G3(S), 

tr U(J3) = e1rilf2G2 (S), 

tr U(W2) = e-1rilf2G3(S), 

tr U(W5) = e1ril/2. 

Let r be a subgroup of SL2(Z) of finite index having the element -lz. 
Denote by { R}r the r-conjugacy classes of elliptic elements of rand for 
each elliptic element R of r denote by 2v(R) the order of the centralizer 
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Zr(R) of R in r. Let 'l/J(z) denote the logarithmic derivative of the 
gamma function: 

'l/J(z) = I''(z)/I'(z). 

Let k be an integer and "'the number given by (2.1). Now to describe 
the resolvent trace formula in an explicit form we compute the following 
function of s in a reasonable form (see Theorem 2.5.1 of [Fil): 

(3.16) 
1 

2s -1 
C(R,k;s) 

{R}r O<0<1r 

where R runs over a complete set of representatives of the I'-conjugacy 
classes of elliptic elements of r with O < 0(R) < 1r and where we put 

(3.17) 
ie2i"'0(R) 

C(R, k; s) = tr Xc:(k) (R) . 2v(R)2 sin 0(R) 

Denote by ev (I') ( v = 2 or 3) the number of I'-conjugacy classes of 
elliptic elements of r of order 2v. Since any elliptic element R of r is 
SL2(Z)-conjugate to one of J, J 3, W, W 2, W4, W 5 , and by Corollary 
1.3.8 of [Fi], X±(URU-1 ) = X±(U)x±(R)x±(u)-1 if U E SL2(Z) and 
0 < 0(R) < 1r, the quantity (3.16) equals 

(3.18) 
1 2 

--{e2(I')C(J, k; s) + e3(I') '"'C(WJ, k; s)}. 
2s - 1 ~ 

j=l 

For any element A= (: ! ) E SL2(IR), denote by c(A) the (2, 1)-entry 

c of A. We have, by the identities (1.4), (1.6), and the definition of X±, 

trx(M) =trx+(M)+trx_(M) 
. (ME SL2 (Z)). 

trx(-M) = a-2><(-12, M)e1r"112 (trx+(M) - tr x-(M)) 

We notice that, if c( M) > 0, then, a-2"' ( -lz, M) = ( - 1 )1. In this case 
we get 

tr Xc:(k)(M) = ~(tr x(M) + e1ri(k+l/Z) tr x(-M)) if c(M) > 0. 
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Therefore with the help of (3.15) and the equality (1.3), the traces which 
we need are expressed as follows: 

trxe(k)(J) = G2(S)(e1rilf2 + e-rrik)/2, 

(3.19) trxe(k)(W) = (e1ril/2 + e1rikG3(S))/2, 

tr Xe(k) (W2 ) = ( e1ril/2 · G3(S) + e1rik) /2. 

We define the numbers Ev(n; S) (v = 2 or 3, n E Z) by 

E2 (n; S) = -G2 (S) cos((n + l/2)1r/2) 

E (n· S) = sin((n + l - l)1r/3) 
(3.20) 3 ' 2sin(1r/3) + 

. i (c3(S)e-21ri(n+l/4-l)/3 _ G3(S)e21ri(n+l/4-l)/3). 
4sm(1r/3) 

Then it easily follows from (3.17), (3.19), and (3.20) that 

(3.21) 

C(J, k; s) = 
1 1 

8 L E2(k - 2j; S)(1P((s - ,-,, + j)/2) -1P((s + ,-,, + 1- j)/2)) 
j=O 

2 

LC(Wa,k;s) = 
a=l 

1 2 

9 L E3(k - 2j; S)(1P((s - ,-,, + j)/3) - 1P((s + ,-,, + 2 - j)/3)). 
j=O 

It is worth while to mention that E2 (n; S), E3 (n; S) take only the values 
0, ±1, if l = 1 (i.e., Sis a positive integer) or S = 11. 

§4. Selberg trace formula 

Let k be an integer and,-,, the number given by (2.1). Let c(k) dee 
note the sign + or - according as k is even or odd as before. The theta 
multiplier system X.e(k) defined in § 1 satisfies the property (2.2) and 
hence forms a unitary multiplier system of SL2 (Z) in the sense of Defi­
nition 1.3.4 in [Fi]. Therefore the general theory of the resolvent trace 
formula (Theorem 2.5.1, p.106 in [Fil) can be applicable to our space 

7-l:;"fJ,r which is associated with X.e(k)· Recall that 7-l:;"fJ,r is canonically 
identified with the space 7-l"',s,r as we have observed in § 2. 
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Let Ao, A1, ... , An, ... be all the eigen values of the self-adjoint 
operator -~~: 'D'; ----+ ri",s,r counted with multiplicities. Since they are 
all real numbers, one can arrange them in the manner 

Moreover one can write 

An= 1/4 + r; with 
1 

rnE[O,oo)U---:-(0,oo) (nENU{O}). 
i 

Set, for s, a E CC, 

00
( 1 1 ) (4.1) Dk,s,r(s,a)=~ (s-1/2)2+r~-(a-1/2)2+r~. 

It is known for instance by Theorem 1.6.5 in [Fi] that the infinite series on 
the right hand side of ( 4.1) is absolutely convergent and that Dk,s,r(s, a) 
indicates a meromorphic function of s, a. 

We note that 

dime Ve:(k) = (d+ (-l)kdo)/2. 

Denote by v(f\Sj) the volume of a fundamental domain f\Sj with respect 
to dw(T): v(f\Sj) = fr\SJ dw(T). 

In view of the results in§ 2 and the expressions (1.9), (3.16), (3.18), 
(3.21), the resolvent trace formula of Fischer ([Fi], Theorem 2.5.1) can 
be reformulated in our situation as follows. 

Theorem 4.1 (Resolvent trace formula for ri",s,r). Let r be a 
subgroup of SL2 (Z) of finite index having the element -12. Let k be an 
integer and"' the real number given by (2.1). Denote by rp(s) the deter­
minant of the scattering matrix <P(s) given by (2.14): tp(s) = <let <P(s). 
Assume thats, a E CC with Re(s), Re(a) > 1 and IK,1-s, IK,1-a (/. NU{O}. 
Then, 



204 T. Arakawa 

(4.2) 
Dk,s,r(s, a)= 

1 
- -(d + (-lldo)v(r\n)(v,(s + t;;) + 1/J(s - t;;)) 

81r 
Z' + _1_. r,S,.e(k) (s) 

2s - 1 Zr,S,.e(k) 

1 
1 e2(r)""""' . +--{--~E2(k-2J;S) 

2s -1 8 
j=O 

e3(r) ~ . + -9-~ E3(k - 2J; S) 
j=O 

1 [ 1 h(d + (-l)kdo) 1 rrh IT + -- - og 2 · ----- - og sin( 7r/Jjr) 
2s - 1 2 

j=l rER;,j,k 

+ (,P(s + <) _ ,P(s _ ,)) ( h(d + (~ l)'do) _ t,µ,) 
+ t00 (1jJ(s - t;;) -1/J(s) -1/J(s + 1/2))] 

1 
+ 2s - 1 . <;par,<I>(s) 

- {the same expression withs being replaced by a}, 

where we set 

1 
<;par,<I>(s) = 28 _ 1 tr(lt= - <J?(l/2))+ 

(4.3) 
2s - 1 100 

( 1 1 ) r.p' -- - · - 1 2 it dt 
4n _ 00 ( s - 1/2)2 + t2 1; 4 + t2 r.p ( I + ) , 

and 

/Jj = L /Jjr (15,j -5, h). 
rER;,j,k 
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Moreover the integral on the right hand side of ( 4.3) is absolutely conver­
gent for Re(s) > 1/2 and ~par,<I>(s) is analytically continued to a mero­
morphic function in the wholes-plane ( see also Lemma 2.4.19 and (2.4.6) 
of [Fil). 

It has been verified by the expression (2.4.6), p.103 of [Fi] that 
~par,<I>(s) has at most simple poles whose residues are rational integers 
and that in particular it has a simple pole at s = 1/2 with the residue 
(t00 - tr <1?(1/2)) /2 E Z (note that <J?(l /2) is a hermitian matrix with 
<1?(1/2) 2 = lt 0J. Proposition 2.17 of [He2], p.440 implies the functional 
equation of ~par,<I>(s): 

(4.4) 
r.p' 

~par,<I>(s) + ~par,<I>(l - s) = -(s), 
'P 

which can be verified also by Lemma 2.4.16 and (2.4.6) of [Fi]. 

Now we determine briefly the explicit form of the functional equation 
satisfied by our Selberg zeta functions Zr,s,±(s). Denote by G(z) the 
Barnes G-function which is an entire function of z satisfying G(z + 1) = 
r(z)G(z). For the precise definition of G(z) we refer to Definition 3.1.1 
of [Fi]. Following Fischer [Fi], we define the functions 3 1(s), 3hyp(s), 
Ben(s), and s;ar(s) as follows: 

~ d+ (-lldo 
.::.1(s) = exp( 4n · v(r\S:,){slog(2n) + s(l - s) 

+ (1/2 + ,._) logr(s + ,._) + (1/2 - ,._) logr(s - ,._) 

- log G ( s + ,._ + l) - log G ( s - ,._ + l)}), 

3hyp(s) = Zr,s,c(k)(s), 

';:;' -{ 1 ( r((s -1'£ + j)/2) )e2(k-2j;S) }e2(r)/4 

~en(s) - II r((s + ,._ + 1- j)/2) 
J=O 

·{ 2 ( r((s-1'£+j)/3) )ea(k-2j;S)}ea(r)/3 

}l r((s+,._+2-j)/3) 
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and 

h (r( ) ) (d+(-lldo)/4-/3j 
3* (s) = 2-h(d+(-lldo)s/2. IT s + Ii 

par . f(s - ii) 
J=l 

( 
f(s - K) )too h · ----- · IT IT (sinnf3jr)-s. 

r(s)f(s + 1/2) 
j=l rER;,j,k 

Then, 3 1 ( s), Ben ( s), s;ar ( s) define holomorphic functions in 
CC - (-oo, IKI)- Set 

B*(s) = B1(s)Bhyp(s)Ben(s)B;ar(s). 

Then the resolvent trace formula (Theorem 4. 1) turns out 

Dk,s,r(s, a)= 
( 4.5) 

1 (3*' ) 1 (3*' ) 2s - 1 3* (s) + ~par,<l>(s) - 2a - 1 3* (a)+ ~par,<l>(a) . 

Via this formula and by (4.4) the function (3*' /B*)(s) is continued ana­
lytically to a meromorphic function in the whole s-plane which satisfies 
the functional equation 

(4.6) (3*' /B*)(s) + (3*' /3*)(1- s) + (cp' /cp)(s) = 0. 

By the same formula (4.5), (3*' /B*)(s) has only simple poles with the 
residues all rational integers. Therefore, 3* ( s) itself can be continued 
analytically to a meromorphic function in the whole s-plane and the 
equation ( 4.6) implies the functional equation of 3* ( s): 

(4.7) 3*(1 - s) = cp(s)B*(s) (see [He2], Ch.IO, (5.7) and [Ar3]). 

This functional equation follows also from (3.1.3), (3.2.1) of [Fi]. It has 
been proved in (3.1.4), p.116 of [Fi] that Bhyp(s) itself can be continued 
to a meromorphic function in the wholes-plane. 

Let 7-l",s,r, .6.", Vr;,, .6.;, and v; be the same as in § 2. For s E C, 
denote by 7-l",s,r(s) the subspace consisting off Ev; with -.6.; f = 
s(l - s )f. Let dk,s,r(s) denote the multiplicity of the eigenvalue s(l - s) 
of the self-adjoint operator -.6.~: .6.; ---, 7-l",s,r- It has been proved by 
Roelcke in Satz 5.6, 5.7 of [Rol] that 

(4.8) 7-l",s,r(s) = { f EV" I -.6."f = s(l - s)f }. 
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Obviously, 

(4.9) dk,s,r(s) = dimic1t"',s,r(s). 

Furthermore by the definition of the numbers Tn (n EN U {0} ), 

1t"',s,r(s)-/- {O} if and only if s = 1/2 ± irn for some n. 

We are much concerned with the subspace H"',s,r("') (resp. 1t-.,s,r(-t;,)) 
if"' > 0 (resp. "' < 0), by evaluating at s = "' (resp. s = -t;,). As is 
easily seen from the results of Roelcke in § 2-5, [Roll, we have 

(4.10) 
1t-.,s,r("') = { f E H-.,s,r I 'f/-"' f(T) is holomorphic in T} if"'> 0, 

1t"',s,r(-t;,) = { f E H"',s,r I 'f/" f(T) is anti-holomorphic in T} 

if"' < 0, 

'T/ denoting Im T. 

§5. Dimension formulas for the spaces of Jacobi forms 

We recall the definition of Jacobi forms and skew-holomorphic Ja­
cobi forms following Eichler-Zagier [E-Z] and Skoruppa [Sk2]. 

Let GJ be the real Jacobi group given by (3.1) acting on D = jj x (C1 

via (3.2). Assume that r is a subgroup of SL2(Z) of finite index with 
-12 Er. Set 

rJ = { (M, (>.,µ),p) IM Er,>.,µ E 'll}, p E Symz(Z) }. 

Then rJ forms a discrete subgroup of GJ. Let v be a positive integer. 
For any function ¢:D __, (C and g = (M, (>.,µ),p) E GJ, we set 

(¢1,,,sg)(T, z) = J,,,s(g, (T, z))- 1¢(g(T, z)), 

(¢1:,sg)(T, z) = Jo,s(g, (T, z))-1 · (J(M, T))-v+llJ(M, T)l-1¢(g(T, z)). 

It is immediate to see from (3.3) that, for g1 , g2 E GJ, 

For each element M of SL2 (Z), put M = = (, which is a cusp of r. 
Denote by r( the stabilizer of ( in r. Then the subgroup M-1r<M of 
SL2(Z) is generated by 
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(5.2) 

-12 and ( ~ ~) with a uniquely determined positive integer N. 

The space Jv,s(I') (resp. Ji,s(I')) of holomorphic Jacobi forms (resp. 
skew-holomorphic Jacobi forms) of index S and weight v is defined to 
be the space consisting of all functions ¢: D - CC which satisfy the 
following three conditions: 

(5.3) 

(i) ¢( T, z) is holomorphic in T and z 
(resp. cp(T, z) is a smooth function in T and holomorphic in z). 

(ii) ¢( T, z) satisfies the identity 

c/Jlv,Sr = <P (resp. ¢1i,s, = ¢) for any I E I'J_ 

(iii) The function <Plv,sM (resp. c/Jli,sM) for any M E SL2(Z) has a 
Fourier Jacobi expansion of the form 

(<Plv,sM)(T, z) = 

(resp. (¢1i,sM)(T, z) 

nEZ, rEZ1 

4n-N'rS- 1 r$0 

nEZ, rEZ1 

4n-N'rS- 1 r?_O 

c(n,r)e(m/N + trz) 

where T/ = Im T and we choose a positive integer N as in (5.2) for 
each M. Furthermore in the above (iii), M ( E SL2 (Z)) is identified 
with the corresponding element of CJ. 

Denote by Ji~P(I') (resp. J:,~usp) the subspace of cusp forms of Jv,s(I') 
(resp. Ji,s(I')). Namely, Ji~P(I') (resp. J:}usp(r)) consists of all Jacobi 

forms¢ E Jv,s(I') (resp. all skew-holomorphic Jacobi forms¢ E Ji,s(I')) 
whose Fourier coefficients c(n,r) in the above (iii) equals zero if 4n -
Ntrs- 1r = 0. 

Let k be a rational integer and K the number given by (2.1). Now we 
consider the relation between the spaces of Jacobi forms and the spaces 
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H"',s,r(K) (K > 0) or H"',s,r(-K) (K < 0). First assume that K > 0 (i.e., 
k > l/2). We set, for each element f = Ur)rERs E H"',s,r(K), 

(5.4) cp(T, z) = L 'f/-"' fr(T)0r(T, z) ((T, z) ED, 'f/ = Im T). 
rERs 

This identity is written of the form 

(5.5) 

In this case it is not difficult to see from (1.2) and the identity (i) of (2.4) 
that ¢ksM = cp for any ME r. Moreover the identity ¢ik,sX = cp for 
any X E L follows directly from (5.4). In the Fourier expansion (2.11) 
off E H"',s,r(K) at each cusp (1 (1 ~ j ~ h), the functions 'f/-"'q1(T) 
and 'r/-"'u1('fl) are found to be holomorphic functions in T and constant 
functions, respectively, since 'f/_,,, j(T) is holomorphic in T according to 
(4.10). Taking the square integrability (2.4), (ii) of f(T) into account, we 
see from (2.11), (2.12) that 'f/-"' f(T) has the following Fourier expansion 
at the cusp (1: 

'f/-1< j(T) = J(A1, T)-2"' L J;(A1T)Vjr, 
rERs 

(5.6) 00 

J1";.(T) = L ajrne((n + ,81r)T) with a1rn EC, 
n=O 

where { Vjr }rERs is an orthonormal basis of V given by (2.6) and ,81,.'s 
are the constants defined by (2.10). Moreover by the square integrability 
of j(T) again, we observe that in the case of K :::=: 1/2, 

(5.7) a1rn = 0 if n = 0 and ,81r = 0. 

Substituting the expression (5.6) for 'f/-"' f(T) in (5.5) and then using 
(2.5) and the theta transformation formula (1.2), we have 

cp(T, z) = z-;"' Jk,s(A;, (T, z))- 1 L J;((A;T)/l1)0r(A;(T, z)), 
rERs 

which turns out the identity 

(¢ik,sA;- 1 )(T,z) = z-;"' L J1";.(T/l1)0r(T,z). 
rERs 
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Thus we see easily from (5.6) that </>lk,sA;- 1 has a Fourier-Jacobi ex­
pansion of the form 

nEZ, rEZ1 

4n-lj trs-'r2:0 

Moreover if,-,,~ 1/2, then by the property (5.7), the Fourier coefficients 
c1(n, r) are necessarily zero if 4n - z1trs- 1r = 0. Consequently we have 
proved that, by the correspondence (5.4), for f E 'H",s,r(,-,,), 

</> E Jk,s(f) if ,-,, > 0 and </> E 1i:~?(r) if ,-,, ~ 1/2. 

Conversely, since each </>(T,z) E Jk,s(f) belongs to the space 8s,r as a 
function of z, </> has the expression of the form (5.4) with holomorphic 
functions fr(T) (r E Rs) on 5). It is easy to see from the condition (ii) 
of (5.3) and (1.2) that f = Ur )rERs satisfies the condition (i) of (2.4). 
Moreover it follows from the Fourier-Jacobi expansion of</> ((iii) of (5.3)) 
that the function 77-"f(T) has a Fourier expansion of the form (5.6) at 
each cusp (1 . In this case as is easily seen, ifO < ,-,, < 1/2 (resp.,-,,~ 1/2), 
then, f = Ur)rERs corresponding to</> E Jk,s(f) (resp. </> E Ji~;P(f)) 
via the correspondence (5.4) is an element of 'H",s,r(,-,,). 

Next assume,-,,< 0. Let g(T) = (gr(T))rERs be a V-valued function 
on Sj. We consider the correspondence g = (gr )rERs -----, </> by 

(5.8) </>(T, z) = L ry"gr(T)0r(T, z) = (ry"g(T), B(T, z))s. 
rERs 

In a manner similar to the case of,-,, > O, it can be shown with the use of 
(1.2) that the space 'H",s,r(-t,,) corresponds one to one onto the space 
Iz*-k,s(f) (resp. Jz*_ci,i(r)) if -1/2 < ,-,, < 0 (resp. ,-,, :S: -1/2) via the 
correspondence (5.8): g -+ </;. Thus we obtain 

Proposition 5.1. Let k be an integer and,-,,= (k - l/2)/2. 

(i) If k ~ l + l/2 (resp. l/2 < k < l + l/2), then the space Ji~;P(f) 
(resp. Jk,s(f)) is isomorphic to the space 'H",s,r(,-,,) via the correspon­
dence 4>-----, Ur)rERs in (5.4) as CC-vector spaces. 

(ii) If k :S l/2 - 1 (resp. l/2 - 1 < k < l/2), then the space Jz*_ci,"J(f) 
(resp. Jz*_k 8(f)) is isomorphic to the space 'H",s,r(-t,,) via the corre­
spondence </> -----, (gr )rERs in (5.8) as CC-vector spaces. 

In the final step of this paragraph we employ Theorem 4.1 (the 
resolvent trace formula for 'H1<,s,r) to calculate the dimensions of the 
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spaces of Jacobi forms. Set, for any integer k, 

(5.9) 

.\r(k; S) = d + (-l)kdo (k - l/2 - l)v(r\SJ) - e2(r) · E2(k; S) 
8K 4 

_ e3(r) . E3(k· S) + h(d + (-l)kdo) _ ~ /3· _ t 
3 ' 4 ~ 1 cxo, 

j=l 

211 

µr(k; S) = d + (-l)kdo (-k + l/2 - l)v(r\SJ) + e2(r) · E2(k - 2; S) 
8K 4 

+ e3t) ·E3(k-4;S)- h(d+(~l)kdo) + t/3J-
J=l 

Since the scattering matrix <I>(s) given by (2.14) depends on r, S, and 
the weight k, we write <I> k ( s) in place of <I> ( s) if the weight k is to be 
specified. Our main theorem is the following. 

Theorem 5.2. Let S be a positive definite half-integral symmetric 
matrix of size l and k an integer. Assume that r is a subgroup of SL2 (Z) 
of finite index having the element -12 . 

(i) If k > l/2 + 2 (i.e., 11, > 1), then, dime JZ:?(r) = .\r(k; S). 

(ii) If k < l/2 - 2 (i.e., 11, < -1), then, dime Ji*_ctp(r) = µr(k; S). 

(iii) Suppose that l is odd. Let E denote the sign s((l-1)/2). Namely, E 

takes the sign+ or - according as l = l mod 4 or l = 3 mod 4. Then, 

dime Ju:[);2 ,8 (r) = Ress=3/4(Z~,s,e:fZr,s,e:)(s) + .\r((l + 3)/2; S), 

dime J(~+l)/2,8 (r) = Ress=3/4(Z~,s,e:fZr,s,e:)(s), 

dime J(~~~l/2,8 (r) = Ress=3/4(Z~,s,-e/Zr,s,-e)(s) + µr((l - 3)/2; S), 

dime J(l+l)/2,s(r) = Ress=3j4(Z~,s.-e/Zr,s,-e)(s). 

(iv) Suppose that l is even. Let E denote the sign s(l/2). Namely, E 

takes the sign + or - according as l = 0 mod 4 or l = 2 mod 4. Then, 

dime Jt';!2,8 (r) = mult(lr,x) + .\r(l/2 + 2; S), 

dime J1j~:{8 (r) = mult(lr,x) + µr(l/2 - 2; S), 
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and 

dime J1/".;!1,8 (f) = ~ Ress=1;2(Z~,s,-c:/Zr,s,-c:)(s), 

1 1 + 2>..r(l/2 + 1; S) + 4(too - tr <I>1;2+1(s)), 

dime J1i~:f, 8 (f) = ~ Ress=1;2(Z~,S,-c:/Zr,s,-c:)(s), 

1 1 + 2µr(l/2 - 1; S) + 4(too - tr <1>1;2-1 (s)), 

dime J1/".;!1,8 (r) + dime J1i~:f, 8 (f) = Ress=l/2(Z~,s,-c:/Zr,s,-c:)(s), 

where mult(lr, x) denotes the multiplicity of the identity representation 
lr of r occuring in the unitary representation x-

Proof of Theorem 5.2. In the resolvent trace formula (4.2) we con­
sider (2s - l)Dk,s,r(s, a) as a meromorphic function of s with a being 
fixed (Re(a) > Max(l, IKI)). Notice that the residue at s = p of this 
function equals dk,s,r(p) (resp. 2dk,s,r(p)) if p -/- 1/2 (resp. p = 1/2), 
by the definition (4.1) and that dk,s,r(p) = dk,s,r(l - p). Moreover we 
note that the function 'lfJ(z) has simple poles at z = -n (n EN U {O}) 
with the residue -1 and has no other poles. 

First assume that IKI > 1. We see easily from the expression on the 
right hand side of (4.2) that the residue at s = K (resp. s = -K) of the 
function (2s - l)Dk,s,r(s, a) coincides with >..r(k; S) (resp. µr(k; S)) if 
K > 1 (resp. K < -1). The assertions (i), (ii) immediately follows from 
(4.9) and Proposition 5.1. 

Next assume that IKI :S 1. Suppose that l is odd. Then, IKI = 3/4 or 
1/4. If IKI = 3/4 (i.e., k = (l ± 3)/2), then the first and third identities 
in the assertion (iii) easily follows in a manner similar to the case of 
IKI > 1. Let K = ±1/4 (k = (l ± 1)/2). We calculate the residue at the 
poles= 3/4 of the function (2s-l)Dk,s,r(s, a) on the both sides of (4.2). 
We get, by Proposition 5.1 and the relation dk,s,r(l/4) = dk,s,r(3/4), 
the second and fourth identities in (iii). 

Suppose that l is even. Then, IKI = 1, 1/2, or 0. If K = 1 (i.e., 
k = l/2 + 2), we have, in a manner similar to the case of IKI > 1, 

dime J1/".;!2(f) = Ress=1(Z~,s,c:/Zr,s,c:)(s) + >..r(l/2 + 2; S). 

If K = 0 (i.e., k = l/2), we calculate the residue at the pole s l 
(= 1- K) of the function (2s - l)Dk,s,r(s, a) similarly and get 

dk,s,r(O) = Ress=1(Z~,s,c:/Zr,s,c:)(s). 
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By (4.8), (4.9), we have 

dk,s,r(O) = dime{ v E V I x(M)v = v for any M E r} = mult(lr, x). 

The second identity in the assertion (iv) is quite similarly verified. If 
I/ii = 1/2 (i.e., k = l/2 ± l), again by calculating the residue at the pole 
s = 1/2 of the function (2s - l)Dk,s,r(s, a) in two manners via the trace 
formula ( 4.2), the third and fourth identities in the assertion (iv) are 
similarly derived (cf. Proposition 2.2, (i) of [Arl]). It is easy to see from 
(5.9) that 

>..r(l/2 + l; S) + µr(l/2 - l; S) = -t=, 

since E2 (n; S) (resp. E3 (n; S)) depends on n mod 4 (resp. n mod 6). 
Denote by cpJr,lp ( s) the (jr, lp )-entry of the matrix ih ( s) to specify the 
weight k. Applying Lemma 1.1 of [Arl] to the present situation, we see 
easily that 

!/2+1( ) !/2-1( ) 
cp jr,lp 8 = -cp jr,lp 8 , 

since X, X± depends only on Sand not on k. Therefore the last identity 
in (iv) follows. 

q.e.d. 

§6. Real analytic Eisenstein series for the Jacobi group 

In this paragraph we assume that r = SL2 (Z) for simplicity (we can 
get rid of this assumption, but it is much more tedious to treat with any 
subgroup r of SL2 (Z) of finite index). 

For r E (2S)- 12 1, s EC, and k E Z, define a function ¢k,r,s:D--+ (C 

by 

r/Jk,r,s(T, z) = e(TS[r] + 2S(r, z))TJs-,-;; (TJ = Im T, Ii= (k - l/2)/2). 

Let r~,+ denote the subgroup of the Jacobi group rJ given by 

r~.+={((~ ~),(o,µ),p) lnEZ,µEZ\pESym1(Z)}. 

We set, for each r E (2S)- 121 with the condition S[r] E Z, 

(6.1) Ek,s,r((T, z), s) = ((T, z) ED). 

By (5.1) and the property ¢k,r,slk,Sr'l = r/Jk,r,s for any ')'1 E r~,+, the 
infinite series on the right hand side of (6.1) is well-defined and, as we 
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shall see later, absolutely convergent for Re( s) > 1 + l / 4. As a complete 
set of representatives of the right cosets r~,+ \rJ, we may take the set 

{ (M, (.\ o), o) IM E rt \r, >- E z1 }, 

where rt= { ( ~ ~) In E Z }. 

Then we have 

Ek,s,r((r, z), s) 

(6.2) 
L L J(M,r)-ke (- J(;,r)S[z]) 

MErt \r qEZ1 

· e (Mr· S[q + r] + 2S(q + r, J(;,r))) (ImMr) 8
-", 

where M = (: ! ) . We divide the first summation into two parts 

according as e = 0 ore =fa 0. We denote by El,s,r((r,z),s) (resp. 

Ef,:s,r ( ( r, z), s)) the infinite series obtained by replacing the first sum­

mation with LMErt, \r, c=O (resp. LMEr;;;, \r, c;io) on the right hand side 
of (6.2). Then we get, in a manner similar to the argument in p.18 of 
[E-Z] (see also [Ar2], § 3), 

El,s,r((r, z), s) ="78 -"(0r(r, z) + (-l)k0_r(r, z)), 

EII ((r z) s) - ~ ~ 'T/s-1< 
k,S,r ' ' - ~ ~ (er+ d)kler + dl2(s-i<) 

(c,d)=l, c;iO qEZ1 

( -eS[z - (q + r)/e] aS[ l) · e -~--'------'-'---'- + - q + r . 
er+ d e 

Replacing q with ,,\ - eq and d with d + ep, we have another expression 
for Efs,r((r, z), s): 

(6.3) 

00 'T/s-i< a 
El/s,r((r,z),s)=L L L e2s+1;2·e(;S[--\+r]) 

c=l d mod C .\EZI /czl 
(d,c)=l 

· ( F ( ( r + d / e, z - ( ,,\ + r) / e), s) + 

( -1) k F ( ( r + d / e, z + ( ,,\ + r) / e), s)) , 
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where we put 

~ ~ 1 ( S[z + q]) 
F((T,z),s) =LL I 12c - l( )k. e -~~ . T+p 8 " T+p T+p 

pEZ qEZ1 

It is easy to see that this infinite series F( ( T, z), s) is absolutely conver­
gent for Re(s) > (l+l/2)/2 and moreover from the expression (6.3) that 
Ef/s,r ( ( T, z), s) is absolutely convergent if Re( s) > 1 + l / 4. Thus we have 
proved the assertion concerning the absolutely convergence of the infinite 
series (6.1). By the expression (6.2), the Eisenstein series Ek,s,r((T, z), s) 
depends on r mod 'll}. Hence one can define Ek,s,r((T,z),s) for r E Rs 
with S[r] E Z. In the case of r = SL2 (Z), h, the number of the r­
equivalence classes of cusps of r, equals one. Hence we denote by Hs,k 
(resp. Rs,k) for the set Rs,l,k (resp. Rs,i,k) (see (2.9) in§ 2). In this 

case we may put Aj' = b and V1r = er (r E Rs) in (2.6). Denote by Wr 
in place of w1r in (2.7). Set 

r ER~ 

r E Rs -R~. 

Moreover we denote by Er ( T, s) in place of the Eisenstein series E1r ( T, s) 
given by (2.13). 

Proposition 6.1. Let r E Rs,k· Then, 

Proof. In virtue of (6.2) we have 

Ek,S,r((T, z), s) 

L J(M,T)-k(ImMT) 8 -"e (- J(;,T/[z]) 0r(M(T,z)) 
MErt\r 

L J(M, T)-k(ImMT) 8 -" 

MEr00 \r 

where r 00 is the stabilizer of the cusp oo in r = SL2 (Z). Namely, 
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Thus the theta transformation formula (1.2) implies the assertion of 
Proposition 6.1. 

q.e.d. 

We have, in this case of h = 1, t 00 = #(R8 k). We arrange the 
Eisenstein series Ek,S,r ( ( T, z), s) as a column vector of t 00-components: 

For r,p E Rs,k, we write simply 'Prp(s) for the function 'Plr,lp(s) in 

(2.14). In this case, <I>(s) = ('Prp(s))r,pER~ k. Denote by <I>*(s) the 

t 00 x t 00-matrix whose (r,p)-entry is given by ErEi 1'Prp(s): 

The following is a direct consequence of Theorem 2.1 and Proposition 
6.1. 

Theorem 6.2. The Eisenstein series Ek,s,r((T,z),s) can be ana­
lytically continued to meromoryhic functions of s in the whole s-plane 
that are holomorphic in the half plane Re( s) ~ 1 /2 except on the interval 
(1/2, 1]. They satisfy the functional equation 

Ek,s((T, z), 1- s) = <I>*(l - s)Ek,s((T, z), s). 

Moreover, Ek,S,r((T, z), s) (r E Rs,k) are C-linearly independent for s =/-
1/2, if they are holomorphic at s. 

Remark. Sugano [Su] obtained Theorem 6.2 under a certain con­
dition for S (then, t 00 = 1) by a different method which is based on 
an explicit calculation of the Fourier coefficients of the Eisenstein se­
ries. More information on the Eisenstein series can be obtained by his 
method. 

Example. If l = 1 and S = m is a square free positive integer, 
then t00 = 1 and <I>*(s) = <I>(s) = cp(s). In this case we have computed 
an explicit form of <I>( s) in [Ar2]. We exhibit it here again: 

e-1rik/2 22-2s1rf(2s - 1) ((4s - 2) 1 + p3/2-2s 
<I>( s) = _y2rn_2_m_ . -r-( s_+_K_)f_(_s ---K-) . -( (-4-s ---1-) . II _1 _+_p-1/c-2--2-s ' 

Pim 

where K = (k -1/2)/2. 
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