Advanced Studies in Pure Mathematics 18-I, 1990 Recent Topics in Differential and Analytic Geometry pp. 271-281

Poincaré Bundle and Chern Classes

Mitsuhiro Itoh

§1. Theorems

Let (X,g) be a compact Kähler surface and P an SU(2) bundle over X of index $k = c_2(P \times_{\rho} \mathbb{C}^2)$. We denote by $M_k = M_{k,X}$ the set of all gauge equivalence classes of anti-self-dual connections on P.

It is known that (i) the moduli space M_k is a Kähler manifold (possibly with singularities) and the dimension of the non-singular part of M_k is from the Atiyah-Singer index theorem $4k-3(1-q(X)+p_g(X))$ ([12],[14]) and (ii) in particular when (X,g) is Ricci flat Kähler, i.e., hyperkähler, the non-singular part \widehat{M}_k is also hyperkähler ([13]).

So, we have

Theorem 1. The first Chern class $c_1(\widehat{M}_k)$ vanishes provided X is hyperkähler.

This fact was shown also by S. Kobayashi by using complex symplectic geometry ([17]). See also [19].

This theorem shows that the moduli space of anti-self-dual connections inherits the Ricci flatness from the base manifold.

With respect to this, one can raise the following problem: does the moduli space M_k inherit the positivity (or negativity) of the first Chern class from the base manifold?

For this problem we can say the following. On M_k a Kähler metric is defined naturally by means of the L_2 inner product over X. The curvature and hence the Ricci tensor of this metric are expressed in terms of integration over X by using the Green operator for an elliptic operator ([14]).

However, the Ricci form and hence $c_1(\widehat{M}_k)$ can not in general be computed in a straightforward way.

In this paper we will discuss the positivity (resp., negativity) of the first Chern class $c_1(\widehat{M}_k)$ by observing that it is the first Chern class of

Received March 10, 1989.

the holomorphic tangent bundle $T\widehat{M}_k$ and this bundle can be regarded as an index bundle arising from the Dolbeault operator coupling to all anti-self-dual connections on P.

Each anti-self-dual connection A on the bundle P gives rise to an elliptic complex

$$0 \to \Omega^0(\mathrm{ad}P) \to \Omega^1(\mathrm{ad}P) \to \Omega_+(\mathrm{ad}P) \to 0,$$

(ad P is the adjoint bundle of P, Ω^k denotes the space of k-forms and Ω_+ is the space of self-dual 2-forms).

We call anti-self-dual connection A generic if the associated cohomology groups H^0 and H^2 vanish.

Then the moduli space \widehat{M}_k of generic anti-self-dual connections is non-singular.

The fibre of $T\widehat{M}_k$ at $[A] \in \widehat{M}_k$ can be identified with $\operatorname{Ker} D_A$ of the Dolbeault operator coupled to the connection A ([12]);

$$D_A = (\overline{\partial}_A^*, \overline{\partial}_A) : \Omega^{0,1}(\mathrm{ad}P^\mathbb{C}) \to \Omega^{0,0}(\mathrm{ad}P^\mathbb{C}) \oplus \Omega^{0,2}(\mathrm{ad}P^\mathbb{C}).$$

Since D_A is gauge equivariant, the set of all formal differences $[\operatorname{Ker} D_A]$ – $[\operatorname{Coker} D_A]$ for all connections A on P defines over the space of gauge equivalence classes of connections $B_{k,X}$ a virtual vector bundle, which we call index bundle $\operatorname{Ind} D$.

We notice that the index bundle becomes a proper vector bundle when restricted to the moduli space \widehat{M}_k .

The virtual rank of $\operatorname{Ind} D$, $\operatorname{dim} \operatorname{Ker} D_A - \operatorname{dim} \operatorname{Coker} D_A$, is given by $\int_X \mathcal{T}_X \wedge \operatorname{ch}(\operatorname{ad} P)$, where \mathcal{T}_X is the total Todd class and $\operatorname{ch}(\operatorname{ad} P)$ denotes the Chern character of $\operatorname{ad} P$.

The index theorem for elliptic operators is generalized by Atiyah and Singer ([2]) as that for a family of elliptic operators $D_t, t \in T$. The formal differences $[\text{Ker}D_t] - [\text{Coker}D_t], t \in T$ define over the parameter space T a virtual vector bundle.

Atiyah-Singer index theorem for a family gives an expression of its Chern character $(\in H^*(T))$.

For our index bundles over $B_{k,X}$ the following Chern character formula is basic ([3]):

$$\operatorname{ch}(\operatorname{Ind} D) = \int_X \mathcal{T}_X \wedge \operatorname{ch}(\operatorname{ad} \mathsf{P}).$$

Here \mathbb{P} is the PU(2) principal bundle over $X \times B_{k,X}$, which we call the Poincaré bundle and $\operatorname{ch}(\operatorname{ad}\mathbb{P})$ implies a total differential form $(\in \Omega^*(X \times B_{k,X}))$ representing the Chern character.

The Poincaré bundle \mathbb{P} admits a natural connection \mathbb{A} with curvature \mathbb{F} so that the total differential form defined by $\operatorname{Tr}(\exp(\frac{i}{2\pi}\operatorname{ad}\mathbb{F}))$ represents the Chern character $\operatorname{ch}(\operatorname{ad}\mathbb{P})$ ([3],[15]).

In what follows, we identify Chern classes and forms representing them. We denote by $\operatorname{ch}(\operatorname{adP})_k$ the 2k-component of $\operatorname{ch}(\operatorname{adP})$. So, $\operatorname{ch}(\operatorname{adP})_0 = 3$, $\operatorname{ch}(\operatorname{adP})_1 = 0$ and $\operatorname{ch}(\operatorname{adP})_2 = (-1/8\pi^2)$ Tr adF adF, for example.

Then, $c_1(T\widehat{M}_k)$ is written by

$$c_1(T\widehat{M}_k) = rac{1}{2} \int_X c_1(X) \wedge \operatorname{ch}(\operatorname{ad}\mathbb{P})_2 + \int_X \operatorname{ch}(\operatorname{ad}\mathbb{P})_3.$$

We have the following theorem for compact Kähler surfaces of definite first Chern class.

Theorem 2. Let X be a compact Kähler surface. Assume that $c_1(X) > 0$ or < 0 (we choose a Kähler metric g with Kähler form ω_X so that $c_1(X) = [\epsilon_X \omega_X]$, $\epsilon_X = \pm 1$ corresponding to the sign of $c_1(X)$). Let P be an SU(2) bundle over X of $c_2 = k$. Then, the first Chern class of the moduli space \widehat{M}_k of generic anti-self-dual connections on P is given by

$$c_1(\widehat{M}_k) = rac{1}{4\pi^2} \epsilon_X \,\, \omega_M + \int_X \mathrm{ch}(\mathrm{ad}\mathbb{P})_3,$$

where ω_M denotes the naturally defined Kähler metric on \widehat{M}_k .

It is not easy to calculate the term $\int_X \operatorname{ch}(\operatorname{ad}\mathbb{P})_3$ over the entire space \widehat{M}_k . However, its estimation can be made at an end $M_0 \times S^k(X)$, the moduli space of ideal anti-self-dual connections, by using Donaldson's compactification ([7]).

In fact, if we let [A] tend to the end, then $\int_X \operatorname{ch}(\operatorname{ad}\mathbb{P})_3 \to 0$. Therefore, we get the following inheritance theorem with respect to the positivity (or the negativity) of the first Chern class.

Theorem 3. Let X be a compact Kähler surface with $c_1(X) = [\epsilon_X \omega_X]$, where $\epsilon_X = \pm 1$. Then, the first Chern class of the moduli space \widehat{M}_k , $c_1(\widehat{M}_k)$ tends to $1/4\pi^2$ ϵ_X ω_M if [A] goes to $M_0 \times S^k(X)$ ($S^k(X)$ denotes the k-fold symmetric product of X).

Remarks. (1) The 2-form $\int_X \operatorname{ch}(\operatorname{adP})_3$ is closed and of type (1,1). It is moreover an exact form in the case of hyperkähler surfaces X.

(2) Estimation of $c_1(\widehat{M}_k)$ at other ends, for example, at $M_{k-1} \times X$ is also available.

(3) We can identify over a nonsingular algebraic surface X the moduli space of anti-self-dual connections and the moduli of stable holomorphic vector bundles which are topologically isomorphic with $P \times_{\rho} \mathbb{C}^2$. Over $X = P^2(\mathbb{C})$ the moduli is asserted to be rational ([4]). Since $c_1 > 0$, Theorem 3 can be regarded as a differential-geometrical approach to this assertion.

Finally we should make additional remarks. One is on the moduli space of Einstein-Hermitian bundles over a Riemann surface. Another is on the moduli space $M_{k,X}$ over a Hodge surface.

Let E be a holomorphic vector bundle over a Riemann surface Σ . We denote by M_{EH} the moduli space of Einstein-Hermitian fibre metrics on E. Since each Einstein-Hermitian fibre metric exactly induces an Einstein-Hermitian connection on the associated U(n) bundle, M_{EH} parametrizes gauge equivalence classes of Einstein-Hermitian connections on the U(n) bundle (see [13], [16] for the definition of Einstein-Hermitian connection).

If we denote by $M_{EH,0}$ the subspace $\{[A] \in M_{EH}; \operatorname{Tr} F(A) = \omega\}$ for a fixed harmonic (1,1)-form ω , then it gives the fibre of the natural projection: $M_{EH} \to \operatorname{Jac}(\Sigma)$, the Jacobian variety of Σ .

We can here apply the Chern character formula for index bundles and then get the following positivity theorem.

Theorem 4. The first Chern class $c_1(M_{EH,0})$ is positive.

We already know that the moduli space $M_{EH,0}$ of connections of vanishing traceless curvature carries a Kähler metric of non-negative scalar curvature ([14]). So, the above theorem is consistent with this result. As we will see at Theorem 5.1 in §5, the Chern class $c_1(M_{EH,0})$ is in fact represented by $c \omega_M$ for a constant c > 0 and the Kähler form ω_M .

For the moduli space over a Hodge surface we obtain also the following positivity theorem

Theorem 5. Let X be a Hodge surface and $\widehat{M}_{k,X}$ the moduli space of anti-self-dual connections of $c_2 = k$. Then, there exists a holomorphic line bundle \bigsqcup over $\widehat{M}_{k,X}$ whose first Chern class is $1/4\pi^2 \ \omega_M$.

The line bundle L in this theorem is associated with the determinant bundle of a suitable index bundle over \widehat{M}_k induced by the holomorphic line bundle L on X defining the Kähler class $[\omega_X]$.

This theorem gives a complete answer to the observation on the positivity of the moduli space over a Hodge surface, conjectured by the

author ([15]). An approach to this positivity from algebro-geometrical argument is given by Donaldson ([9]).

In the subsequent sections we will prove briefly the above theorems, which seem to be related essentially with physical anomalies.

§2. The Poincaré bundle

Let P be an SU(2)-bundle over a compact Kähler surface X. Associated with P the Poincaré bundle $\mathbb P$ is defined over the product space $X \times B_{k,X}$. The bundle $\mathbb P$ parametrizes gauge equivalently P with connections A where A runs over the set A(P) of all irreducible connections on P. In fact, the group $\mathcal{G}(P)$ of gauge transformations of P acts freely on the product $P \times A(P)$ as

$$(u,A) \longrightarrow (gu,g(A)),$$

where

$$g(A) = gAg^{-1} + dgg^{-1}.$$

This action commutes with the right translation of P. So, it is easily seen that the quotient $P \times \mathcal{A}(P)/\mathcal{G}(P)$ has a fibration over $X \times B_{k,X} = SU(2) \setminus P \times \mathcal{A}(P)/\mathcal{G}(P)$ with fibre PU(2). This fibration is the Poincaré bundle associated with the bundle P.

Note that local trivializing neighborhoods U of P and slices S of $B_{k,X}$ at any connection A give local trivializing neighborhoods of the bundle P.

The Poincaré bundle admits a connection A in a natural way ([3], [15]).

The connection A is defined as A when restricted to $X \times [A]$ and as $\operatorname{ev}_x(\omega)$ over $\{x\} \times B_{k,X}$, here ev_x is the evaluation map at x; $\Omega^0(\operatorname{ad} P) \to (\operatorname{ad} P)_x$ and ω is the $\Omega^0(\operatorname{ad} P)$ -valued 1-form over each slice S given by $\omega(\alpha) = G_A(d_A^*\alpha)$, $\alpha \in T_AS$, and $(\operatorname{ad} P)_x$ is identified with $\mathfrak{su}(2)$ through a trivialization over U around x.

Proposition 2.1 ([15]). The curvature $\mathbb{F} = \mathbb{F}(A)$ of A is written with respect to the product space decomposition in the following form;

$$\mathbb{F} = \mathbb{F}^{2,0} + \mathbb{F}^{1,1} + \mathbb{F}^{0,2},$$

where $\mathbb{F}^{2,0} = F(A)$, the curvature of A, $\mathbb{F}^{1,1}(u,\alpha) = -\alpha(u)$ for $(u,\alpha) \in T_{(x,[A])}(X \times B_{k,X})$ and $\mathbb{F}^{0,2}(.,.) = -2\mathrm{ev}_x(G_A\{.,.\})$.

Then, the adjoint bundle adP of the Poincaré bundle has the induced connection ∇^{A} whose curvature is adF.

Remark. The connection A on P is natural in the sense that its curvature is type (1,1) when P is restricted to the product Kähler manifold $X \times M_{k,X}$. Then, any complex vector bundle associated with P carries a holomorphic structure induced by the connection (see Proposition 5.2, [15]).

§3. The Chern character formula

The index formula for the family of Dolbeault operator $D=(\overline{\partial}^*, \overline{\partial})$ coupled to anti-self-dual connections A on P;

$$D_A = (\overline{\partial}_A^*, \overline{\partial}_A) : \Omega^{0,1}(\mathrm{ad}P^\mathbb{C}) \to \Omega^{0,0}(\mathrm{ad}P^\mathbb{C}) \oplus \Omega^{0,2}(\mathrm{ad}P^\mathbb{C})$$

is stated in the form of the Chern character for the index bundle as

$$\operatorname{ch}(\operatorname{Ind} D) = \int_X \mathcal{T}_X \wedge \operatorname{ch}(\operatorname{ad} \mathsf{P}).$$

So, since $\mathcal{T}_X = 1 + \frac{1}{2}c_1(X) + \frac{1}{12}(c_1^2 + c_2)(X)$, $c_1(\operatorname{Ind}D) = \operatorname{ch}_1(\operatorname{Ind}D)$ is given by

$$c_1(\operatorname{Ind} D) = rac{1}{2} \int_X c_1(X) \wedge \operatorname{ch}(\operatorname{ad} \mathbb{P})_2 + \int_X \operatorname{ch}(\operatorname{ad} \mathbb{P})_3.$$

Since $\operatorname{ch}(\operatorname{ad}\mathbb{P})_2 = -1/8\pi^2$ Tr $\operatorname{ad}\mathbb{F} \wedge \operatorname{ad}\mathbb{F}$ and \mathbb{F} is decomposed as in Proposition 2.1, only $\operatorname{Tr}(\operatorname{ad}\mathbb{F} \wedge \operatorname{ad}\mathbb{F})^{2,2}$ together with $c_1(X)$ is valid for the first integration term, where $(\operatorname{ad}\mathbb{F} \wedge \operatorname{ad}\mathbb{F})^{2,2}$ is the (2,2)-component of $\operatorname{ad}\mathbb{F} \wedge \operatorname{ad}\mathbb{F}$.

We have Tr adYadZ = 4Tr $YZ,Y,Z \in \mathfrak{su}(2)$. So,

$$\operatorname{Tr}(\operatorname{ad} \digamma \wedge \operatorname{ad} \digamma)^{2,2} = 4(2\operatorname{Tr} \ \digamma^{2,0} \wedge \digamma^{0,2} + \operatorname{Tr} \ \digamma^{1,1} \wedge \digamma^{1,1}).$$

At $(x, [A]) \in X \times M_k$, Tr $F^{2,0} \wedge F^{0,2} = \text{Tr} F(A) \wedge F^{0,2}$ is anti-self-dual 2-form in the X-direction.

Assume that $c_1(X)$ of X is positive (or negative), and hence X has a Kähler form ω_X with $[\epsilon_X\omega_X]=c_1(X)$ (ϵ_X is the sign of $c_1(X)$). Then $c_1(X) \wedge \operatorname{Tr} \, \mathbb{F}^{2,0} \wedge \mathbb{F}^{0,2}$ vanishes at every point of X so that $\int_X c_1(X) \wedge \operatorname{Tr} \, \operatorname{ad}\mathbb{F}^{2,0} \wedge \operatorname{ad}\mathbb{F}^{0,2}=0$.

For the second term we have the following

Lemma.

$$\int_X \omega_X \wedge \operatorname{Tr} \, {\mathbb F}^{1,1} \wedge {\mathbb F}^{1,1} = -rac{1}{2}\omega_M.$$

This is derived from the expression of $\mathbb{F}^{1,1}$ and straightforward computation of the integrand. Therefore we have as Theorem 2 in §1 over the moduli space M_k

$$c_1(\widehat{M}_{m{k}}) = rac{1}{4\pi^2} \epsilon_X \omega_M + \int_X \operatorname{ch}(\operatorname{ad}\mathbb{P})_3.$$

§4. The compactification of the moduli space

In order to estimate the remainder term $\int_X \operatorname{ch}(\operatorname{ad}\mathbb{P})_3$ we must study ends of the moduli space M_k giving rise to its compactification.

A tuple $(A; x_1, ..., x_\ell)$ is called an ideal anti-self-dual connection of index k when A is an anti-self-dual connection of index $k-\ell$ and $x_1, ..., x_\ell$ are points of X, not necessarily distinct.

The curvature density of $(A; x_1, ..., x_\ell)$ is defined by

$$|F(A)|^2 + 8\pi^2 \sum_i \delta(x_j)$$

so that its action integral is $8\pi^2(k-\ell) + 8\pi^2\ell = 8\pi^2k$.

Denote by M_k^{id} the set of gauge equivalence classes of ideal anti-self-dual connections of index k. Then,

$$M_k^{\mathrm{id}} = M_k \sqcup (M_{k-1} \times X) \sqcup ...$$

$$\sqcup (M_1 \times S^{k-1}(X)) \sqcup (M_0 \times S^k(X)),$$

 $S^{j}(X)$ denoting the j-fold symmetric product of X.

Relative to the naturally defined topology the closure of M_k in M_k^{id} is compact. Indeed, the compactness theorem due to Uhlenbeck states that if a sequence $\{[A_i]\}$ in M_k is not convergent, then

$$|F(A_i)|^2 o |F(A_0)|^2 + 8\pi^2 \sum_{j=1}^{\ell} \delta(x_j)(i o \infty)$$

for an anti-self-dual connection A_0 of index $k-\ell$ and points $x_1, ..., x_\ell$ in X so that $[A_i]$ goes to a point $([A_0]; x_1, ..., x_\ell)$ of M_k^{id} ([10]).

Now we let $[A] \in \widehat{M}_k$ be close to $M_0 \times S^k(X)$. Then the curvature density $|F(A)|^2 = -\text{Tr } F \wedge F$ concentrates like delta functions at some points $x_1, ..., x_k$ of X. Here there are certain number of constraints on local scales, that is, degrees of curvature concentrations $\lambda_1, ..., \lambda_k$ ([7]).

We may assume $x_i \neq x_j$, $i \neq j$ without loss of generality.

The terms Tr $\mathbb{F}^{2,0} \wedge \mathbb{F}^{2,0} \wedge \mathbb{F}^{0,2}$ and Tr $\mathbb{F}^{2,0} \wedge \mathbb{F}^{1,1} \wedge \mathbb{F}^{1,1}$ appear as the (4,2)-component of the character $\operatorname{ch}(\operatorname{ad}\mathbb{P})_3$.

Each basic anti-instanton $I=I_{(0,\lambda)}$ with center $0\in\mathbb{R}^4$ and scale λ satisfies the curvature identity

$$F_I \wedge F_I = rac{24\lambda^2}{(\lambda^2 + |x|^2)^4} \,\operatorname{dvol} \otimes \operatorname{Id}_{su(2)},$$

(dvol denotes the standard volume element of the 4-space \mathbb{R}^4).

The Green operator G_A appeared in the curvature term $F^{0,2}$ has an expression of integrated form with respect to a certain Green kernel ([18]).

For the tangent space $T_{[A]}\widehat{M}_k$ at [A] which is close to $M_0 \times S^k(X)$ there exists a subspace $T^a_{[A]}$ in $\Omega^1(\operatorname{ad} P)$ approximating $T_{[A]}\widehat{M}_k$ in a suitable way ([11]).

Using these facts and applying also a convergence theorem on Schwartz hyperfunctions (see Theorem 13, Chapter II, [20]), we see

$$\int_X {\rm Tr} \; {\mathbb F}^{2,0} \wedge {\mathbb F}^{2,0} \wedge {\mathbb F}^{0,2} \to 0,$$

as [A] goes to $M_0 \times S^k(X)$. Similarly,

$$\int_X {\rm Tr} \ {\mathbb F}^{2,0} \wedge {\mathbb F}^{1,1} \wedge {\mathbb F}^{1,1} \to 0.$$

So, the proof of Theorem 3 is completed.

§5. Einstein-Hermitian bundles and Riemann surfaces

Let P be a U(n) bundle over a compact Riemann surface Σ . A connection A on P is called Einstein-Hermitian if its curvature F(A) equals $\lambda \operatorname{Id}_E \otimes \omega_\Sigma$ for a constant λ , where Id_E is the identity endomorphism of the associated vector bundle $E = P \times_\rho \mathbb{C}^n$ and ω_Σ is the volume form of Σ .

The moduli space \widehat{M}_{EH} of irreducible Einstein-Hermitian connections on P is identified with the moduli M(n,k) of stable holomorphic vector bundles of degree $k=c_1(E)$ which are topologically isomorphic to the bundle E.

Assigning the trace component to each A induces naturally a fibration of \widehat{M}_{EH} over the Jacobian variety $\operatorname{Jac}(\Sigma)$ of Σ whose fibre is $\widehat{M}_{EH,0}$, the subset $\{[A] \in \widehat{M}_{EH}; \operatorname{Tr} F(A) = n \ \lambda \ \omega_{\Sigma}\}$. This corresponds exactly

to the map: $M(n,k) \to J_k$ by taking determinants, where J_k is the Jacobian variety of Σ , which parametrizes holomorphic line bundles of degree k (see Section 9, [1]).

From the Chern character formula we get similarly as in the antiself-dual moduli space case

$$\mathrm{ch}(\widehat{M}_{EH,0}) = \int_{\Sigma} \mathcal{T}_{\Sigma} \wedge \mathrm{ch}(\mathrm{ad}\mathbb{P}),$$

where \mathbb{P} is the Poincaré bundle defined over $\Sigma \times \widehat{M}_{EH,0}$ with structure group PU(n).

The first Chern class $c_1(\widehat{M}_{EH,0})$ is then $\int_{\Sigma} \operatorname{ch}(\operatorname{ad}\mathbb{P})_2$ and $\operatorname{ch}(\operatorname{ad}\mathbb{P})_2$ is represented by $-1/8\pi^2$ Tr ad $\mathbb{P} \wedge \operatorname{ad}\mathbb{P}$. The (2,2)-component of Tr ad $\mathbb{P} \wedge \operatorname{ad}\mathbb{P}$ is $\operatorname{Tr}(2 \operatorname{ad}\mathbb{P}^{2,0} \wedge \operatorname{ad}\mathbb{P}^{0,2} + \operatorname{ad}\mathbb{P}^{1,1} \wedge \operatorname{ad}\mathbb{P}^{1,1})$.

Since $\mathbb{F}^{2,0}$, the traceless part of F(A), vanishes at all [A] in $\widehat{M}_{EH,0}$, the first Chern class of the moduli space reduces to $-c(n)/8\pi^2$ $\int_{\Sigma} \operatorname{Tr} \, \mathbb{F}^{1,1} \wedge \mathbb{F}^{1,1}$. Here the constant c(n)>0 is given by $\operatorname{Tr} \operatorname{ad} Y \operatorname{ad} Z = c(n)\operatorname{Tr} YZ,Y,Z \in \mathfrak{su}(n)$.

Therefore we have by using the formula for $\mathbb{F}^{1,1}$

Theorem 5.1. The first Chern class of $\widehat{M}_{EH,0}$ is positive. In fact, $c_1(\widehat{M}_{EH,0}) = c(n)/16\pi^2 \ \omega_M$.

Remark. If (n,k)=1, then $\widehat{M}_{EH,0}$ turns out to be compact and the second Betti number is one ([1]). So, from the fact that the scalar curvature is non-negative but not identically zero, the first Chern class must be positive. However, the above theorem asserts the positivity of the Chern class even in cases of $(n,k)\neq 1$.

§6. Hodge structure and the determinant bundle

Finally we assume that (X,g) is a Hodge surface. So, the Kähler form ω_X represents the first Chern class of a holomorphic line bundle L and also defines on L a connection a whose curvature form coincides with ω_X .

Consider the following twisted Dolbeault operators coupling to not only connections on a bundle P but also the connection a;

$$D_{a,A}: \Omega^{0,1}(L \otimes \operatorname{ad} P^{\mathbb{C}}) \to \Omega^{0,0}(L \otimes \operatorname{ad} P^{\mathbb{C}}) \oplus \Omega^{0,2}(L \otimes \operatorname{ad} P^{\mathbb{C}}).$$

While the index bundle $\operatorname{Ind} D_a = \{ [\operatorname{Ker} D_{a,A}] - [\operatorname{Coker} D_{a,A}] \}$ for operators $D_{a,A}$ is virtual, its determinant $\operatorname{detInd} D_a = \{ (\bigwedge^{\max} \operatorname{Ker} D_{a,A}) \otimes A_{a,A} \}$

 $(\bigwedge^{\max} \operatorname{Coker} D_{a,A})^*$ defines a proper complex line bundle over the moduli space \widehat{M}_k of generic anti-self-dual connections on P ([5], [8]).

To this determinant bundle we use the Chern character formula. Then we have

$$\operatorname{ch}(\operatorname{Ind} D_a) = \int_X \mathcal{T}_X \wedge \operatorname{ch}(L) \wedge \operatorname{ch}(\operatorname{ad} \mathbb{P}),$$

from which

$$c_1(\mathrm{det}\mathrm{Ind}D_a) = c_1(\widehat{M}_k) + \int_X c_1(L) \wedge \mathrm{ch}(\mathrm{ad}\mathsf{P}).$$

Because $c_1(L)$ is represented by ω_X , the second term can be reduced in the same way as in §2 to $1/4\pi^2$ ω_M . So, the complex line bundle $\mathbb{L} = (\det \operatorname{Ind} D_a) \otimes (\bigwedge^{\max} T\widehat{M}_k)^*$ has positive first Chern class given by the Kähler form on \widehat{M}_k . Hence, \mathbb{L} becomes a holomorphic line bundle. Thus we obtain Theorem 5.

Remark. The determinant bundle detInd D_a carries a holomorphic structure because of detInd $D_a = L \otimes (\bigwedge^{\max} T\widehat{M}_k)$. See [6] for an argument on holomorphic structure of determinant bundles.

References

- [1] M.F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London, A,308 (1982), 523-615.
- [2] M.F. Atiyah and I.M. Singer, The index of elliptic operators: IV, Ann. Math., 92 (1970), 119-138.
- [3] _____, Dirac operators coupled to vector potentials, Proc. Natl. Acad. Sci. U.S.A., 1984 (1984), 2597-2600.
- [4] W. Barth, Moduli of vector bundles on the projective plane, Invent. Math., 42 (1977), 63-91.
- [5] J.-M. Bismut and D. Freed, The analysis of elliptic families, I., Commun. Math. Phys., 106 (1986), 159-176.
- [6] J.-M. Bismut, H. Gillet and C. Soulé, Analytic torsion and holomorphic determinant bundles, III, Commun. Math. Phys., 115 (1988), 301-351.
- [7] S.K. Donaldson, Connections, cohomology and the intersection forms of 4-manifolds, J. Diff. Geom., 24 (1986), 275-341.
- [8] _____, Infinite determinants, stable bundles and curvature, Duke Math. J., 54 (1987), 231-247.
- [9] _____, Polynomial invariants for smooth four-manifolds, preprint.
- [10] D. Freed and K. Uhlenbeck, "Instantons and 4-manifolds", M.S.R.I. Publication, Springer, New York, 1984.

- [11] D. Groisser and T. Parker, The geometry of the Yang-Mills moduli space for definite manifolds, preprint.
- [12] M. Itoh, The moduli space of Yang-Mills connections over a Kähler surface is a complex manifold, Osaka J. Math., 22 (1985), 845-862.
- [13] _____, Quaternion structure on the moduli space of Yang-Mills connections, Math. Ann., 276 (1987), 581-593.
- [14] _____, Geometry of anti-self-dual connections and Kuranishi map, J. Math. Soc. Japan, 40 (1988), 9-33.
- [15] _____, Yang-Mills connections and the index bundles, Tsukuba J. Math. (1989), to appear.
- [16] M. Itoh and H. Nakajima, Yang-Mills connections and Einstein-Hermitian metrics, preprint.
- [17] S. Kobayashi, "Differential goemetry of complex vector bundles", Publication of Math. Soc. Japan, Iwanami, Tokyo, 1987.
- [18] K. Kodaira, Harmonic fields in Riemannian manifolds (generalized potential theory), Ann. Math., 50 (1949), 587-665.
- [19] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K 3 surface, Invent. Math., 77 (1984), 101-106.
- [20] L. Schwartz, "Méthods mathématiques pour les sciences physiques", Hermann, Paris, 1961.

Institute of Mathematics University of Tsukuba Tsukuba, 305 Japan