
Advanced Studies in Pure Mathematics 17, 1989 
Algebraic Number Theory - in honor of K. Iwasawa 
pp. 271-287 

Behavior of the Zeta-Function of Open Surfaces· at s=l 

S. Licbtenbaum* 

Dedicated to Professor Kenkichi Iwasawa 

A major theme in the work of Iwasawa is the interplay between 
theorems and conjectures concerning zeta-functions in the number-field 
case with analogous theorems and conjectures in the function-field case. 
A particularly striking example of this was provided by Tate and M. Artin, 
who considered the function-field analogue of the conjecture of Birch and 
Swinnerton-Dyer, and largely showed that this conjecture was equivalent 
to a conjecture about the zeta-function of certain complete non-singular 
surfaces X over finite fields [T]. They also showed that this conjecture 
(Z(X, 1)= ±X(X, Ga.)/X(X, Gm) in the notation of this paper) was true if 
and only if the Brauer group H 2(X, Gm) of X was finite (which it may al­
ways be, as far as we know). 

However, the number-theoretic case in someways resembles more 
closely the case where the surface, although still non-singular, is no·longer 
complete. In this paper, we consider an open subset U of X obtained by 
removing a curve C, and show that the analogous conjecture (Z(U, 1) = 
± X(X, G 1;{)/X(X, G ~ remains true, if the Brauer group of Xis finite. 

The reader should be cautioned that, because of a 2-torsion defect in 
[L2], all theorems are only valid up to 2-torsion groups or powers of 2, as 
the case may be. 

§ 1. Definition and properties of Euler characteristics 

We begin with some algebraic preliminaries. Let &' be the abelian 
category whose objects are given by triples consisting of two finitely­
generated abelian groups A, A' of the same rank and a non-degenerate 
bilinear map (, )A: AXA'-Q. A morphism from (A, A', (, )A) to 
(B, B', (, ) 8 ) is a pair of morphisms a: A-Band /3: B'-A' such that 
(a(a), b') 8 =(a, f3(b'))A for all a e A, b' e B'. 
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Definition 1.1. A pairing is an object of &'. Let d ={A, A', ( , ) 4 } 

be a pairing. Let a1, • • ·, an be a basis of A modulo torsion, and a~, · · · , a~ 
be a basis of A' modulo torsion. 

Definition 1.2. The regulator R(d) of d=ldetl(ai, a~)IJ. Clearly 
R(d) does not depend on the choice of bases for A and A'. 

Definition 1.3. The Euler characteristic X(d) of d = Of Ator)Of Aior) . 
R(d) 

Definition 1.4. A sequence of pairings di--~·· ·-+dn is exact if the 
two induced sequences A1-+ ···-+An and A~-+·· ·-+A~ are exact sequences 
of abelian groups. 

Lemma 1.5. Let 0-+.911-+ · · · -+d n-+0 be an exact sequence of pair­
ings. Then IU=1 X(di)<-1)'= 1. 

Proof We may assume as usual that n=3. Let the exact sequence 
of pairings be 0-+d-+flA-+<t-+0 and the two associated exact sequences 
of abelian groups be 0-+A-+B-+C-+0 and 0-+C'-+B'-+A'-+0. We first 
observe that if all six groups are torsion-free the lemma follows imme­
diately from standard facts about determinants. 

In the general case, if Dis any abelian group, let D0 be D/Dtor- Let 
A1 be the kernel of the surjective map B0-+C 0, and let C~ be the kernel of 
the surjective map B~-A~. 

and 

We claim there are natural exact sequences 

The snake lemma applied to the diagram 

o~A--- B --- C ~o 

l l l 
O~A®Q~B®Q~C®Q~O 

1 t l 
A2------+B2 

l l 
0 0 

yields 0-+Ator-+Btor-+Ctor-+Ker t-+0. (Here the exact sequence serves to 
define A2 and B2). 
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Now apply the snake lemma again to 

0 0 

l l 
0----+ A 0-~ A®Q----+ A2----+0 

l l lt 
B0----+ B®Q----+ B2 

l 
C®Q 

l 
0 

to obtain 

0----+Ker f----+B 0/A 0----+C®Q. 

But the image of B0/A 0 in C®Q is clearly C0 =BofA 1. Hence Ker t is 
isomorphic to A 1/ A 0, and the proof of the claim is completed. 

Let d 0 be the pairing (A0 , A;, ( , ) A) and similarly for P-10 and '1&'0• 

Let d 1 be the pairing (A1, A;, (, )A) and '1&'1 be the pairing (C0, c:, (, )0 ). 

Now we have the following list of identities: 
(1) X(P-10)=X('i&'1)X(d 1) (by the torsion-free case), 
(2) X(P-lo)= R(P-lo)-I = R(P-1)-1 = X(P-1)(# Btor)-1(# B[0 r)- 1, 
(3) X('i&'1)=X('i&'o)(#(C:/cm=X('i&')(# Ctor)-1(# C[or)-1(# (c:;cm, 
(4) X(d1)=X(d)(# Ator)-1(# A[or)-1(#(A1/Ao)), 
(5) (# Btor)(# (A1/Ao)) =(# Ator)(# Ctor), 
(6) (#B[or)(#(C:/Co))=(#A:or)(# c:or), 

which clearly imply X(P,i}=X(d)X('i&'). 

§ 2. Pairings, duality and zeta-functions of curves 

Let C be a geometrically reduced curve proper over a field k. If x 
is a point of C, let f,,: Speck(x)-C be the natural map. Let c<i> denote 
the set of points of C of codimension i. Define the etale sheaf Z' on C 
to be EB.xeaco, (j.,,)*Z. Following Deninger [DJ we define the complex of 
sheaves G:,, on C to be 0.,,ea<o> (j.,,)*Gm-EBxeaw (j.,,)*Z. (Note that if C 
is regular, Z' is isomorphic to Z and G:,, is quasi-isomorphic to Gm, but 
not in general). 

There is a natural map Z'EBGm-G:,, given by {n.,,}EBu>--+{u~"}, where 
the notation is clear. This induce_s bilinear maps H 0(C, Z')XH 1(C, Gm)­
H1(C, G:,,) and H 0(C, Z')XH 3(C, Gm)-H 3(C, G:,,), which we wish to study. 
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We note first that we have the exact sequence 

(1.c) E9 H 0(C, (j,,)*Gm)~ E9 H 0(C, (j,,)*Z)~H 1(C, G:,.)--~o, 
xec<oJ xec<1) 

since H 1(C, (j,,)*Gm)=0 by Hilbert Theorem 90. There is the usual degree 
map from E9,,eo11> H 0(C, (j,,)*Z)-.Z which factors through H 1(C, G:,.) 
since the divisor of a function has degree zero, even on singular curves. This 
degree map then induces a bilinear map<, )a from H 0(C, Z')X H 1(C, Gm) 
to Z. 

Now let k be a finite field. 

Proposition 2.1. a) H 2(C, Gm)=0. 
b) Hs(c, Gm) is naturally isomorphic to (Q/Z)', where r is the number 

of irreducible components of C. 
c) H 0(C, Z') and H 1(C, Gm) are finitely-generated groups of rank r 

and the bilinear map <, )a is non-degenerate if taken mod torsion, with regu­
lator Ra equal to 1. 

d) There is a natural trace map from Hs( C, G:,.) to QI Z, and the in­
duced bilinear map from H 0( C, Z ') X Hs( C, Gm) to QI Z identifies H 3( C, Gm) 
with the Q/Z-dual of H 0(C, Z'). 

Proof. Let C be the normalization of C in its total ring of quotients, 
and let re be the natural map from C to C. Then we have the exact se­
quence of etale sheaves on C 

where this sequence serves to define Qm. Since re is an isomorphism out­
side of the singular set Sa of C, Qm is a punctual sheaf. Since H 1(Gm) is 
locally trivial for the Zariski topology, the map from Zariski stalks of 
rc*Gm,v to Zariski stalks of Qm is surjective, which lets us identify H 0(C, Qm) 
as E9Pes0 01,/01,. (Recall that since re is finite, re* is exact, so H 1(C, rc*Gm,o) 
may be identified with H'(C, Gm). Also, Op is the integral closure of Op 
in its total rings of quotients.) 

Next we claim that H 1(C, Qm)=0 for i> 1. It is shown in [Se] when 
C is irreducible and in [O] in general that Qm is represented by a con­
nected commutative algebraic group over the finite field k, and hence 
H 1(k, Qm)=0 by Lang's theorem and H'(k, Qm)=0 for i>I because 
cd(k)= 1. 

Since H 2(C, Gm) is well-known to be zero (C is the disjoint union of 
complete non-singular connected curves), it now follows that H 2(C, Gm) 
=0. Since Hs(C', Gm)=Q/Z for complete non-singular C' (loc. cit.), we 
also get b). Since 01,/0'1, is finite, we see that H 1(C, Gm) has rank r. It is 



Zeta-Function of Open Surfaces 275 

immediate that H 0(C, Z') also has rank r. Up to torsion, the pairing 
may be computed on C, where it is clearly non-degenerate. Since we may 
easily construct a divisor on C with support concentrated on one com­
ponent, of degree one there, and disjoint from 1r- 1(Sc), the regulator is 1, 
which proves c). 

Since H 0(C, Z') may be identified with H 0(C, Z')=H 0(C, Z) and 
H 8(C, Gm) may be identified with H 8(C, Gm), d) follows from the standard 
duality theory on C. (See [Ml]). 

Definition 2.2. The Euler characteristic X( C, Gm) is equal to 

#H 0(C, Gm)(#H'(C, Gm)tor)-1 #H 2(C, Gm)(#H3(C, Gm)eot)-'·Rc 

= (in view of Proposition 2.1) # H0( C, Gm)/# H1( C, G m)tor• 

Definition 2.3. 

Definition 2.4. If P is a point, 

X*(P)=#H 0(P, Ga)/#H 0(P, Gm)• 

Theorem 2.5. 

X(~, Ga) . X(C, Gm) == CT (( I1 X*(Q))/X*(P)). 
X(C, Gm) X(C, Ga) PESo Q-P 

Proof We also have the exact sequence of etale sheaves on C 

where this sequence defines Qa, which is punctual as in the case of Q"'. 
Also as before we may identify H 0(C, Qa) as E0Peso Op/Op. Since Ht(C, Ga) 
=H!ar(C, Ga)=O for i>2, and Hi(C, Ga)=O we have Hi(C, Qa)=O for 

i>2, and H 1(C, Ga)_:!__,,.H'(C, Ga)-.H'(C, Qa)-.0. Looking at this se­
quence in the Zariski topology shows that if, is surjective, hence H1( C, Qa) 
=0 as well. 

Now the theorem immediately follows from 

which we will now proceed to prove. 
Let (!)=Op, Let l={x e 0: x@C(!J}=conductor of(!). Let m be the 

maximal ideal of(!) and m=ker(0-.E0Q-Pk(Q)). We claim first that, 
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#((1 +m)/(1 +I))=# (m/1) 

and 

# ((1 + m)/(1 + J)) =#(ml I). 

Proof of claim. Since 0 is a finitely-generated 0-module contained in 
the total quotient ring of 0, I contains a non-zero-divisor in 0. Hence 0/1 
is zero-dimensional, hence finite, so 3n: mnr;;_J. 

Next, we have #(m/mn)=#((l +m)/(l+mn)). It suffices to show 
#(mk/mw)=#((I+mk)/(l+mk+t)), for all k> 1. But the map of l+mk 
to mk/mk+t given by (1 +x) I-)- class (x) is clearly a surjective homomor­
phism with kernel 1 + mk + 1• 

Now, #((In mk)/(Jn mk+1))=#((1 +In mk)/(1 +In mk+1)) by the 
same argument, hence as before, 

#((In m)/(Jn mn))= #((1 +In m)/(1 +In mn)), 

or 

But 

and 

#((1 +m)/(1 +1))#((1 +J)/(1 +mn))= #((1 +m)/(1 +mn)), 

which imply: 

#(m//)=#((1 +m)/(1 +J)). 

Similarly, 

#(m/1)=#((1 +m)/(1 +I)), 

hence #(m/m)= #((1 +m)/(1 +m)), and the proof of the claim is completed. 
Finally,#(Op/Op). #(0;/0;)- 1 =#(0p/mp). #(Op/mp)- 1 - #(0;/(1 +mp))- 1 -

#(0;/(I +mp))· #(mp/mp)· #((1 +mp)/(1 +mp))- 1• But Op/mp=EBQ-Pk(Q), 
0;/(1 +mp)=EBQ-P k(Q)*, Op/mp=k(P) and O;/m;=k(P)*. So 

#(Op/Op)·#(0;/0;)- 1 =( TI X*(Q))/X*(P), 
Q-P 

which was what we claimed, and we have finished the proof of Theorem 
2.5. 

Let q be the order of k and W a scheme of finite type over k. Recall 
that the zeta-function ,(w, s) is a rational function Z(W, t) of t=q-•. 
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Assume Z(W, t) has a pole of order rw at t=q-1. 

Definition 2.6. Z(W, l)=limi-q-• (1-qt)"Z(W, t). 
Recall that if W = C as above, r w is the number of irreducible components 
ofC. 

Corollary 2.7. Z(C, 1)= ±X(C, Ga)/X(C, Gm). 

Proof It is immediate that Z(C, 1)/Z(C, l)= IlPesa«Il Q-PZ(Q, 1))/ 
Z(P, 1)- 1) and that Z(Q, l)=X*(Q), Z(P, l)=X*(P). Theorem 2.5 then 
reduces Corollary 2. 7 to the case where C = C, where it is classical. 

Now let Jlt'f be the pairing {H 0(C, Z'), H 1(C, Gm), <, )c} and let Jlt'f 
be the pairing {O, H 0(C, Gm), 0}. 

Proposition 2.8. X(C, Gm)=X(Jlt'f)X(Jlt'f)-1• 

Proof This follows immediately from the definitions and Proposition 
2.1. 

§ 3. Construction of various regulators 

We begin by reviewing the regulator pairings for complete non­
singular surfaces. 

In [L2], we have defined a sequence of complexes of etale sheaves 
I'(X, i) for i=O, 1, 2 on any regular noetherian scheme X, such that 
I'(X, O)=Z, I'(X, l)=Gm[-1], and I'(X, 2) is given by a two-term com­
plex of sheaves in degrees 1 and 2. For the basic properties of these 
complexes, we refer the reader to [L2] and [L3]. 

Let X be a complete non-singular surface over a field k (X/k is proper 
smooth and geometrically connected). We have shown in [L2] and [L3] 
that there is a natural map v in the derived category of etale sheaves on X 
from I'(X, l)@L I'(X, 1) to I'(X, 2). Taking hypercohomology, this map 
induces a pairing H 2(X, I'(l))@H 2 (X, I'(I))--+H 4(X, I'(2)). 

But H 2(X, I'(l)) is by definition Pie (X)=H 1(X, Gm), and it is shown 
in [L3] that H 4(X, I'(2))®z Q is CH 2(X)®Q, where CH 2(X) is the group of 
cycles of codimension two on X modulo rational equivalence. It is also 
shown in [L3] that, as one might guess, the bilinear map from Pie (X)® 
Pie (X) to CH 2(X)®Q is the intersection pairing. 

We wish to compare this bilinear map with the one defined in§ 2 for 
curves. To do this, we recall the Gersten complex for motivic coho­
mology from [L3]. 

Theorem 3.1. Let X be a regular noetherian scheme. Then there exists 
an object T in the derived category of etale sheaves on X and distinguished 
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triangles (up to 2-torsion) 

I'(X, 2)-~ EB t,;,3R(jx)*I'(k(x), 2)-~T--+I'(X, 2)[1] 
XEX(Ol 

and 

T--+ EB t,;,2R(jx)*I'(k(x), 1))[-1] 
XEX(1> 

We can more concretely describe T by considering the exact sequence 
of sheaves: 

0--.-+V--+ EB (jx)*Gm--+ EB (jx)*Z--+0, 
xex<1> xex<2> 

and observing that T= Vl-2] in the derived category. 
We must also recall the description of the map from T to I'(X, 2) [l], 

or, equivalently, from V to I'(X, 2) [3]. 

Lemma 3.2. Let B. and D. be complexes of objects in an abelian cate­
gory d which are acyclic outside of [l, 2]. Let cp: B.-D. be a map of 
complexes such that <p induces an isomorphism on H 1 and such that there 
exists an exact sequence 

Then there exists a natural map p from W to B.[3] in the derived category 
of d such that if B~, D~, cp', W' have the analogous properties and we have 
maps ln: B-B', ln: D-D' such that the diagram 

commutes, then the diagram 

commutes, where the vertical maps are clear. 

Proof This is a routine derived category exercise. 
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In order to use Lemma 3.2 to define our map from V to I'(X, 2)[3], 
we choose B, to be I'(X, 2) and D, to be t,;;.2Rj*I'(x, 2), where x is the 
generic point of X andj: x-x. We refer to the proof of Theorem 4.4 of 
[L3] for a proof that B, and D. satisfy the hypotheses of the lemma. Of 
course Wis now V. 

We next note that if C lies on X, the pairing previously defined from 
Z'®Gm to G:,. on C can naturally be viewed as having its image in V. In 
view of our first triangle, this induces a map µ: i*Z'®L i*I'(C, 1)­
I'(X, 2)[2], where i: c-x. 

There is of course a natural map p from Gm,x to i*Gm,c, so from 
I'(X, 1) to i*I'(C, 1). In addition, the Gersten complex for Gm on X: 

induces a map() from i*Z' to Gm[l] or I'(X, 1)[2]. We now claim 

Theorem 3.3. The maps µ and 1,1 are compatible with p and (), i.e. the 
diagram 

commutes. 

Proof. Pick U etale over X and fix a e Gm(U). Let Z~= 
EBueu<ll(j.,)*Z. It then suffices to show the diagram 

commutes, where C is now a curve on U, Vu= V x I U, and li is the class of 
a e Gm(C). 

It is evident that the triangle commutes, and the square commutes by 
Lemma 3.2. Here, as before, B: is I'(U, 2), n: is t,;;.2Rj*I'(u, 2). B is 
I'(U, 1)[-1] and D isj*I'(u, 1)[-1], wherej maps the generic point u of 
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U into U. W' is Vu, and Wis Z~. We here take for I'(U, 1) and I'(u, 1) 
the torsion-free complexes defined in [L2], § 2, so that (8)a: I'(U, 1) to 
I'(U, 2)[1] and I'(U, I) is acyclic outside of degrees O and l. We remind 
the reader of the commutative diagram of sheaves on U: 

0 

1 
O~B 1-""B 2 ~ Gm ~o 

l l l 
O-~D 1~D 2-~j*Gm 

1 
z~ 

1 
0 

3.4. We now come to the case of open surfaces. Let U=X-C and 
let GI;. be the kernel of the map from Gm,x to i*Gm,c· 

The long exact sequence of cohomology coming from the short exact 
sequence o-G!/4-Gm,x-i*Gm,C-o yields 

O~H 0(X, G!;;,)-~H 0(X, Gm)~H 0(C, Gm)---+H 1(X, G!;;,) 

~H 1(X, Gm)~H 1(C, Gm)~H 2(X, G!;;.)-~H 2(X, Gm). 

Since H 2(X, Gm)=Br(X) is torsion, after tensoring with Q we obtain 

H 1(X, G!;;.)®Q~H 1(X, Gm)®Q-~H 1(C, Gm)®Q 

~H2(X, G!;;,)®Q~O. 

On the other hand, we have the standard sequence 

o~H 0(X, Gm)~H 0(U, Gm)~H 0(C, Z') 

~H 1(X, Gm)~H 1(U, Gm)~O. 

which, after tensoring with Q becomes 

H 0(U, Gm)®Q~H 0(C, Z')®Q--'>-H 1(X, Gm)®Q 

~H1(U, Gm)®Q~O. 

It is also easily checked that the map from H 0(C, Z') to H1(X, Gm) is the 
same as that induced by the map 0 above from i*Z' to Gm[l]. 
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Proposition 3.5. 8 and p define a commutative diagram 

Proof This is immediate from Theorem 3.3 and the fact that the de­
gree map from H 1( C, G~) to Z is compatible with the degree map from 
H 4(X, I'(2)) to Z, since both are iQ.duced by the usual degree map on points. 

:, 

Proposition 3.6. The commutative diagram of Proposition 3.5 induces 
bilinear maps 

(, ) 1 : H 1(U, Gm)XH 1(X, G~)--+Q 

(, )2: H 0(U, Gm)XH 2(X, G~)~Q. 

Proof Evident. 
Now assume that k is finite. Theorem 3.3. implies that we have a 

compatible system of bilinear maps: 

It is known that the duality on Xis induced from the pairing I'(l)®L 
I'(I)-I'(2) [Sa]. We also wish to show that the map from H 0(X, i*Z')® 
H 3(X, i*Gm,o)-Q/Z agrees with the duality H 0(C, i*Z')®H 3(C, Gm)­
Q/Z described in § 2. In view of the definitions of these two maps, it 
suffices to prove that the two trace maps from H 6(X, I'(2)) and from 
H 8(C, G~) into Q/Z are compatible. Since the trace map on curves is 
compatible with the trace map on points ([D]), it suffices to show the 
following: 

Proposition 3.7. There exists a trace isomorphism H 6(X, I'(2))~ 
Q/Z, which is compatible with the cycle class map in the sense that, if Pis 
any closed point of X, the map (ip)*Z-I'(2)[4] defined in [L3] induces a 
commutative diagram 

where Trp is the usual identification of H 2(P, Z) with Q/Z. 
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Proof We begin with a lemma. 

Lemma 3.8. Let X =XX" le, P=PX k le. Then 

H 6(X, I'(2))=H 5(X, I'(2))=H~(X, I'(2))=0. 

Proof We first observe that it follows from Theorem 3.1 that 
H~(X, I'(2)) and Hi(X, I'(2)) are both torsion for i> 5. First, Hi(X, V) 
is clearly torsion for iz2, so Hi(X, T) is torsion for i>4. Next, Rq(I,,)* 
I'(k(x), 2) is a torsion sheaf for q z 3, so up to torsion t~ 3R(j"')*I'(k(x), 2) 
is equal to R(j"')*I'(k(x), 2). But Hi(X, R(I,,)*I'(k(x), 2))=Hi(k(x), 
I'(k(x), 2)) which is torsion for iz 3. The cohomology sequence of the 
first distinguished triangle then shows that Hi(X, I'(2)) is torsion for i > 5. 
Let V = X - P. Comparing the cohomology sequences of Hi(X, I'(2)) 
and Hi(V, I'(2)) and observing that the map from EBxEX"' H 0(X, Ux)*Z) 
to EBxE<i7l'"' H 0(V, Ux)*Z) is surjective we see that H~(X, I'(2)) is also 
torsion for i > 5. 

First let n be prime top. In [L3] it was shown that there is a com­
mutative diagram 

H°r,(X, (ip)*Z)/n ~H},(X, I'(2))/n 

11 }s 
H°r,(X, (ip)*Z/nZ)~ H},(X, µ~2), 

where t is the Gysin map, hence in this situation an isomorphism. Hence 
<fa is surjective, and the Kummer sequence for I'(2) ([L2]) implies that 
H"I,(X, I'(2))n =0. 

Similarly, there is a commutative diagram 

H°r,(X, (ip)*Z'/pm)~H},(X, I'(2))/pm 

l l 
H°r,(X, i*v(0))---H~(X, vim)), 

which implies that H~(X, I'(2))pn =0. (See [M4] for the analogue of the 

Kummer sequence deduced from the distinguished triangle I'(2)~I'(2)-. 
vim)-.I'(2)[1], and [M3] for the analogue of the Gysin homomorphism). 
It follows readily from Theorem 3.1 (see also [Sa]) that H1},(X, I'(2)) is 
torsion, which then implies that H1},(X, I'(2))=0 

This proof works equally well if the supports are removed, since the 
Gysin map is still an isomorphism. The Gysin and Milne sequences simi­
larly show that since H 6(X, I'(2)) is torsion, it is zero. 

We resume the proof of Proposition 3.7. 
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In [L3], it was shown that the cycle class map defined there was com­
patible with the classical /-adic and p-adic cycle class maps, which implies 
the existence of a commutative diagram 

0 

l 
H};(X, µ~2) = 0 

l 
H~(P, Z) ·-+ Hj,(X, I'(2)) 

ln l 
H~(P,Z) ~ HHX, I'(2)) 

l l 
H~(P, Z/nZ) ~ 

l 
0 

Hj,(X, µ~2) 

l 
H},(X, I'(2))=0 

of Gk-modules. H};(X, µ~2)=0 by purity ([Ml]), and H}.(X, I'(2))=0 by 
Lemma 3.8. Hence there is a chain of comm:uting squares 

and 

where rp is an isomorphism again by Lemma 3.8. 

We now recall the well-known commutative diagram 

Ho(P, Z/nZ) Gysin H4(X, µ~2) 

11 1 lTr 
Z/nZ ---~ Z/nZ, 

and apply the functor H 1(Gk, ·) to obtain 

H 1(P, Z/nZ) ~ H 5(X, µ~2) 

lTr 1 lTr 
Z/nZ--~ZfnZ, 



284 S. Lichtenbaum 

which still commutes. Now define the prime-to-p part of the trace map 
by using the Kummer sequence, and the prime-to-p part of the proposi­
tion follows at once. By referring to [M2] instead of [Ml] for the corre-

sponding purity and Gysin results, and using the Milne sequence I'(2)~ 
I'(2)- ,..,zen )- I'(2)[1] ([M3]) instead of the Kummer sequence, we com­
plete the proof by proving the p-power part in exactly the same way. 

Corollary 3.9. a) There is a natural duality pairing H 3(X, G~) X 
H 1(U, Gm) into H 6(X, I'(2))=Q/Z and hence #H 3(X, G~)00 t=#H 1(U, Gm)tor· 

b) #H 4(X, G~cot=#H 0(U, Gm)tor· 

and 

and 

Proof We have the two long exact sequences 

O~H 3(X, G~~H 3(X, Gm)~H 3(X, i*Gm) 

~H 4(X, G~~H 4(X, Gm)~O 

0+-----H 1(U, Gm)+-----H1(X, Gm)~H 0(C, Z') 

+-----H0(U, Gm)+-----H0(X, Gm)+----------0. 

There are perfect pairings compatible with a and f3: 

Hence H 3(X, G~) is the dual of H 1(U, Gm), which proves a). 
Also coker a is dual to ker /3, and we have the exact sequences 

0~ Coker a ~H 4(X, G~)---)-H 4(X, Gm)~O 

and 

Since H 4(X, Gm) and H 0(X, Gm) are finite, these give rise to the exact 
sequences: 

and 

By duality, #(Cokera)eot=#(Ker f3)tor and #H 0(X, Gm)=#H 4(X, Gm) hence 
#H 4(X, G~)eot=#H 0(U, Gm)tor· 
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Remark 3.10. Note that this stops just short of proving that 
H 4(X, G:-;:) is dual to H 0(U, Gm), which must certainly be true. 

§ 4. Zeta-functions of surfaces 

Let X, C, and Ube as in § 3 but now assume that k is finite. Also 
assume that the Brauer group H 2(X, Gm) is finite. (That this is true of all 
such X would follow from the Tate conjecture for divisors). Then ([T], 
[M2], [Sa]) H 1(X, Gm) is finite for i ::/= 1, 3, H 0(X, Gm) and H 4(X, Gm) are 
dual abelian groups, H 1(X, Gm) is a finitely-generated abelian group of 
rank r= the order of the pole of the zeta-function of X at s = 1. The 
map from Gm®L Gm--+I'(2)[2] induces an isomorphism of H 3(X, Gm) with 
the Q/Z-dual of H 1(X, Gm) by means of the induced pairing of these two 
groups into H 6(X, I'(2)) which is canonically isomorphic to Q/Z. It also 
induces a pairing .Yff ={H'(X, Gm), H'(X, Gm), <, )x} where <, )x is 
given by intersection of divisors. 

Definition 4.1. Let 

#H 0(X, Gm)#H 2(X, Gm)#H 4(X, Gm)R(.Yff) 

# H'(X, Gm)tor # H 3(X, Gm)cot 

Let X(X, Ga)=#H 0(X, Ga)#H 2(X, Ga)#H'(X, Ga)·'. 

Let .Yff be the pairing {O, H 0(X, Gm), O} and .Yff be the pairing {H 0(X, Gm), 
H 2(X, Gm), O}. 

Proposition 4.2. X(X, Gm)=X(.Yff)X(.Yff)·1X(.Yff)·1• 

Proof We need only observe that the duality theorems for Hi(X, Gm) 
imply that # H 0(X, Gm)=# H 4(X, Gm) and # H'(X, G m)tor = # H 3(X, G m)eot, 
and that H 2(X, Gm) is finite. 

Proposition-Definition 4.3. Under the current hypothesis that k is 
finite, the triples {H'(U, Gm), H'(X, G:-;:), <, )1} and {H 0(U, Gm), H 2(X, G:-;:), 
< , )2} of Proposition 3.6 are pairings, and we call these pairings .Yff and 
.Yf!/ respectively. We denote their regulators by Rf and R!f, Let .Yff be 
the pairing {O, H 0(X, Gm), O}. 

Proof This follows immediately from Proposition 3.5, Proposition 
2.1.c and the non-degeneracy of the intersection pairing on X. 

Definition 4.4. Let 

X(X Gu)= # H 0(X, G:-;:) # H 2(X, G:-;:)tor # H 4(X, G:-;:)cotRf • 
' m #H'(X, G:;:)tor#H3(X, G:;:\ot·Rf 
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Proposition 4.5. X(X, G~)=X(Jll'f)X(Jll'f)X(Jll'f)-1. 

Proof. X(Jll'f) = #Ho(X, G~, X(Jll'f)= #Hi(X, G~t°J?.:Hi(U, Gm)tor' 

but by corollary 3.9, #H 1(U, Gm)t0 ,=#H 3(X, G~ 0w 

X(Jll'f) # H 2(X, G~tor # H 0(X, G~)tor 
Rf 

but again by Corollary 3.9 #H 0(X, G~tor=#H 4(X, G~ 0w The proposi­
tion follows immediately. 

Theorem 4.6. 

Proof This follows immediately from Propositions 4.5, 4.2, and 
2.8, Lemma 1.5, and the exact sequence of pairings 

Now let Gf be the kernel of the map from Ga,x to (i0 )*G.,,0 • Then 
H 1(X, Gf) is zero for i> 3 and finite for all i. Let 

X(X, Gf) #H 0(X, Gf)#H 2(X, Gf) 
#H 1(X, Gf) 

Proposition 4.7. X(X, G.,)=X(X, Gf)X(C, G.,). 

Proof This is evident from the exact sequence 

Theorem 4.8. Z(U, l)= ±X(X, Gf)X(X, G~- 1• 

Proof Since Z(X, t)=Z(U, t)Z(C, t), it follows that Z(X, l)= 
Z(U, l)Z(C, 1). In [T] and [M2] it is shown that (see [Ll] for a transla­
tion of language) Z(X, l)= ±X(X, G.,)X(X, G,,,.)-1• The theorem now fol­
lows from Proposition 4.7, Theorem 4.6, and Corollary 2.7. 
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