Advanced Studies in Pure Mathematics 17, 1989 Algebraic Number Theory — in honor of K. Iwasawa pp. 271–287

Behavior of the Zeta-Function of Open Surfaces at s=1

S. Lichtenbaum*

Dedicated to Professor Kenkichi Iwasawa

A major theme in the work of Iwasawa is the interplay between theorems and conjectures concerning zeta-functions in the number-field case with analogous theorems and conjectures in the function-field case. A particularly striking example of this was provided by Tate and M. Artin, who considered the function-field analogue of the conjecture of Birch and Swinnerton-Dyer, and largely showed that this conjecture was equivalent to a conjecture about the zeta-function of certain complete non-singular surfaces X over finite fields [T]. They also showed that this conjecture $(Z(X, 1) = \pm \chi(X, G_a)/\chi(X, G_m)$ in the notation of this paper) was true if and only if the Brauer group $H^2(X, G_m)$ of X was finite (which it may always be, as far as we know).

However, the number-theoretic case in someways resembles more closely the case where the surface, although still non-singular, is no longer complete. In this paper, we consider an open subset U of X obtained by removing a curve C, and show that the analogous conjecture $(Z(U, 1) = \pm \chi(X, G_u^n)/\chi(X, G_m^n))$ remains true, if the Brauer group of X is finite.

The reader should be cautioned that, because of a 2-torsion defect in [L2], all theorems are only valid up to 2-torsion groups or powers of 2, as the case may be.

§ 1. Definition and properties of Euler characteristics

We begin with some algebraic preliminaries. Let \mathscr{P} be the abelian category whose objects are given by triples consisting of two finitelygenerated abelian groups A, A' of the same rank and a non-degenerate bilinear map $\langle , \rangle_A \colon A \times A' \to Q$. A morphism from $(A, A', \langle , \rangle_A)$ to $(B, B', \langle , \rangle_B)$ is a pair of morphisms $\alpha \colon A \to B$ and $\beta \colon B' \to A'$ such that $\langle \alpha(a), b' \rangle_B = \langle a, \beta(b') \rangle_A$ for all $a \in A, b' \in B'$.

Received April 1, 1988.

^{*} The author would like to acknowledge his gratitude to the I.H.E.S. where much of this work was done. He was partially supported by a grant from the National Science Foundation.

Definition 1.1. A *pairing* is an object of \mathscr{P} . Let $\mathscr{A} = \{A, A', \langle , \rangle_A\}$ be a pairing. Let a_1, \dots, a_n be a basis of A modulo torsion, and a'_1, \dots, a'_n be a basis of A' modulo torsion.

Definition 1.2. The regulator $R(\mathscr{A})$ of $\mathscr{A} = |\det|\langle a_i, a'_j \rangle||$. Clearly $R(\mathscr{A})$ does not depend on the choice of bases for A and A'.

Definition 1.3. The Euler characteristic $\chi(\mathscr{A})$ of $\mathscr{A} = \frac{(\# A_{tor})(\# A'_{tor})}{R(\mathscr{A})}$.

Definition 1.4. A sequence of pairings $\mathscr{A}_1 \rightarrow \cdots \rightarrow \mathscr{A}_n$ is *exact* if the two induced sequences $A_1 \rightarrow \cdots \rightarrow A_n$ and $A'_n \rightarrow \cdots \rightarrow A'_1$ are exact sequences of abelian groups.

Lemma 1.5. Let $0 \rightarrow \mathscr{A}_1 \rightarrow \cdots \rightarrow \mathscr{A}_n \rightarrow 0$ be an exact sequence of pairings. Then $\prod_{i=1}^{n} \chi(\mathscr{A}_i)^{(-1)^i} = 1$.

Proof. We may assume as usual that n=3. Let the exact sequence of pairings be $0 \rightarrow \mathscr{A} \rightarrow \mathscr{B} \rightarrow \mathscr{C} \rightarrow 0$ and the two associated exact sequences of abelian groups be $0 \rightarrow \mathscr{A} \rightarrow \mathscr{B} \rightarrow \mathscr{C} \rightarrow 0$ and $0 \rightarrow \mathscr{C}' \rightarrow \mathscr{B}' \rightarrow \mathscr{A}' \rightarrow 0$. We first observe that if all six groups are torsion-free the lemma follows immediately from standard facts about determinants.

In the general case, if D is any abelian group, let D_0 be D/D_{tor} . Let A_1 be the kernel of the surjective map $B_0 \rightarrow C_0$, and let C'_1 be the kernel of the surjective map $B'_0 \rightarrow A'_0$.

We claim there are natural exact sequences

 $0 \longrightarrow A_{\rm tor} \longrightarrow B_{\rm tor} \longrightarrow C_{\rm tor} \longrightarrow A_1/A_0 \longrightarrow 0$

and

$$0 \longrightarrow C'_{\text{tor}} \longrightarrow B'_{\text{tor}} \longrightarrow A'_{\text{tor}} \longrightarrow C'_1/C'_0 \longrightarrow 0.$$

The snake lemma applied to the diagram

yields $0 \rightarrow A_{tor} \rightarrow B_{tor} \rightarrow C_{tor} \rightarrow Ker \psi \rightarrow 0$. (Here the exact sequence serves to define A_2 and B_2).

Now apply the snake lemma again to

to obtain

$$0 \longrightarrow \operatorname{Ker} \psi \longrightarrow B_0/A_0 \longrightarrow C \otimes Q.$$

But the image of B_0/A_0 in $C \otimes Q$ is clearly $C_0 = B_0/A_1$. Hence Ker ψ is isomorphic to A_1/A_0 , and the proof of the claim is completed.

Let \mathscr{A}_0 be the pairing $(A_0, A'_0, \langle , \rangle_A)$ and similarly for \mathscr{B}_0 and \mathscr{C}_0 . Let \mathscr{A}_1 be the pairing $(A_1, A'_0, \langle , \rangle_A)$ and \mathscr{C}_1 be the pairing $(C_0, C'_1, \langle , \rangle_C)$.

Now we have the following list of identities:

(1) $\chi(\mathscr{B}_0) = \chi(\mathscr{C}_1)\chi(\mathscr{A}_1)$ (by the torsion-free case),

(2) $\chi(\mathscr{B}_0) = R(\mathscr{B}_0)^{-1} = R(\mathscr{B})^{-1} = \chi(\mathscr{B})(\# B_{tor})^{-1}(\# B'_{tor})^{-1},$

(3) $\chi(\mathscr{C}_1) = \chi(\mathscr{C}_0)(\sharp(C'_1/C'_0)) = \chi(\mathscr{C})(\sharp C_{\text{tor}})^{-1}(\sharp C'_{\text{tor}})^{-1}(\sharp(C'_1/C'_0)),$

(4) $\chi(\mathscr{A}_1) = \chi(\mathscr{A})(\# A_{tor})^{-1}(\# A'_{tor})^{-1}(\# (A_1/A_0)),$

(5) $(\# B_{tor})(\# (A_1/A_0)) = (\# A_{tor})(\# C_{tor}),$

(6) $(\# B'_{tor})(\# (C'_1/C_0)) = (\# A'_{tor})(\# C'_{tor}),$

which clearly imply $\chi(\mathscr{B}) = \chi(\mathscr{A})\chi(\mathscr{C})$.

§ 2. Pairings, duality and zeta-functions of curves

Let C be a geometrically reduced curve proper over a field k. If x is a point of C, let j_x : Spec $k(x) \rightarrow C$ be the natural map. Let $C^{(i)}$ denote the set of points of C of codimension *i*. Define the étale sheaf Z' on C to be $\bigoplus_{x \in C^{(0)}} (j_x)_* Z$. Following Deninger [D] we define the complex of sheaves G'_m on C to be $\bigotimes_{x \in C^{(0)}} (j_x)_* G_m \rightarrow \bigoplus_{x \in C^{(1)}} (j_x)_* Z$. (Note that if C is regular, Z' is isomorphic to Z and G'_m is quasi-isomorphic to G_m , but not in general).

There is a natural map $Z' \oplus G_m \to G'_m$ given by $\{n_x\} \oplus u \to \{u_x^{n_x}\}$, where the notation is clear. This induces bilinear maps $H^0(C, Z') \times H^1(C, G_m) \to$ $H^1(C, G'_m)$ and $H^0(C, Z') \times H^{\mathfrak{g}}(C, G_m) \to H^3(C, G'_m)$, which we wish to study. We note first that we have the exact sequence

$$(1.c) \quad \bigoplus_{x \in C^{(0)}} H^0(C, (j_x)_*G_m) \longrightarrow \bigoplus_{x \in C^{(1)}} H^0(C, (j_x)_*Z) \longrightarrow H^1(C, G'_m) \longrightarrow 0,$$

since $H^1(C, (j_x)_*G_m) = 0$ by Hilbert Theorem 90. There is the usual degree map from $\bigoplus_{x \in C^{(1)}} H^0(C, (j_x)_*Z) \rightarrow Z$ which factors through $H^1(C, G'_m)$ since the divisor of a function has degree zero, even on singular curves. This degree map then induces a bilinear map \langle , \rangle_C from $H^0(C, Z') \times H^1(C, G_m)$ to Z.

Now let k be a finite field.

Proposition 2.1. a) $H^2(C, G_m) = 0$.

b) $H^{3}(C, G_{m})$ is naturally isomorphic to $(Q/Z)^{r}$, where r is the number of irreducible components of C.

c) $H^0(C, \mathbb{Z}')$ and $H^1(C, G_m)$ are finitely-generated groups of rank r and the bilinear map \langle , \rangle_c is non-degenerate if taken mod torsion, with regulator R_c equal to 1.

d) There is a natural trace map from $H^{\mathfrak{g}}(C, G'_m)$ to \mathbb{Q}/\mathbb{Z} , and the induced bilinear map from $H^{\mathfrak{g}}(C, \mathbb{Z}') \times H^{\mathfrak{g}}(C, G_m)$ to \mathbb{Q}/\mathbb{Z} identifies $H^{\mathfrak{g}}(C, G_m)$ with the \mathbb{Q}/\mathbb{Z} -dual of $H^{\mathfrak{g}}(C, \mathbb{Z}')$.

Proof. Let \overline{C} be the normalization of C in its total ring of quotients, and let π be the natural map from \overline{C} to C. Then we have the exact sequence of étale sheaves on C

 $0 \longrightarrow G_m \longrightarrow \pi_* G_{m,\overline{c}} \longrightarrow Q_m \longrightarrow 0,$

where this sequence serves to define Q_m . Since π is an isomorphism outside of the singular set S_c of C, Q_m is a punctual sheaf. Since $H^1(G_m)$ is locally trivial for the Zariski topology, the map from Zariski stalks of $\pi_*G_{m,\overline{c}}$ to Zariski stalks of Q_m is surjective, which lets us identify $H^0(C, Q_m)$ as $\bigoplus_{P \in S_C} \overline{O}_P^*/\overline{O}_P^*$. (Recall that since π is finite, π_* is exact, so $H^1(C, \pi_*G_{m,\overline{c}})$ may be identified with $H^i(\overline{C}, G_m)$. Also, \overline{O}_P is the integral closure of O_P in its total rings of quotients.)

Next we claim that $H^1(C, Q_m)=0$ for $i \ge 1$. It is shown in [Se] when C is irreducible and in [O] in general that Q_m is represented by a connected commutative algebraic group over the finite field k, and hence $H^1(k, Q_m)=0$ by Lang's theorem and $H^i(k, Q_m)=0$ for i>1 because cd(k)=1.

Since $H^2(\overline{C}, G_m)$ is well-known to be zero (\overline{C} is the disjoint union of complete non-singular connected curves), it now follows that $H^2(C, G_m) = 0$. Since $H^3(C', G_m) = Q/Z$ for complete non-singular C' (loc. cit.), we also get b). Since \overline{O}_P^*/O_P^* is finite, we see that $H^1(C, G_m)$ has rank r. It is

immediate that $H^0(C, \mathbb{Z}')$ also has rank r. Up to torsion, the pairing may be computed on \overline{C} , where it is clearly non-degenerate. Since we may easily construct a divisor on \overline{C} with support concentrated on one component, of degree one there, and disjoint from $\pi^{-1}(S_c)$, the regulator is 1, which proves c).

Since $H^0(C, Z')$ may be identified with $H^0(\overline{C}, Z') = H^0(\overline{C}, Z)$ and $H^3(C, G_m)$ may be identified with $H^3(\overline{C}, G_m)$, d) follows from the standard duality theory on \overline{C} . (See [M1]).

Definition 2.2. The Euler characteristic $\chi(C, G_m)$ is equal to

$$\# H^{0}(C, G_{m})(\# H^{1}(C, G_{m})_{\text{tor}})^{-1} \# H^{2}(C, G_{m})(\# H^{3}(C, G_{m})_{\text{cot}})^{-1} \cdot R_{C}$$

$$= (\text{in view of Proposition 2.1}) \# H^{0}(C, G_{m})/\# H^{1}(C, G_{m})_{\text{tor}}.$$

Definition 2.3.

$$\chi(C, G_a) = \#H^0(C, G_a)/\#H^1(C, G_a) = \#H^0_{zar}(C, O_c)/\#H^1_{zar}(C, O_c).$$

Definition 2.4. If *P* is a point,

$$\chi^{*}(P) = \# H^{0}(P, G_{a})/\# H^{0}(P, G_{m}).$$

Theorem 2.5.

$$\frac{\chi(\overline{C}, G_a)}{\chi(\overline{C}, G_m)} \cdot \frac{\chi(C, G_m)}{\chi(C, G_a)} = \prod_{P \in S_G} ((\prod_{Q \to P} \chi^*(Q)) / \chi^*(P)).$$

Proof. We also have the exact sequence of étale sheaves on C

 $0 \longrightarrow G_a \longrightarrow \pi_* G_{a,\overline{c}} \longrightarrow Q_a \longrightarrow 0,$

where this sequence defines Q_a , which is punctual as in the case of Q_m . Also as before we may identify $H^0(C, Q_a)$ as $\bigoplus_{P \in S_G} \overline{O}_P/O_P$. Since $H^i(C, G_a) = H^i_{zar}(C, G_a) = 0$ for $i \ge 2$, and $H^i(\overline{C}, G_a) = 0$ we have $H^i(C, Q_a) = 0$ for $i \ge 2$, and $H^1(C, G_a) \xrightarrow{\phi} H^1(\overline{C}, G_a) \rightarrow H^1(C, Q_a) \rightarrow 0$. Looking at this sequence in the Zariski topology shows that ϕ is surjective, hence $H^1(C, Q_a) = 0$ as well.

Now the theorem immediately follows from

$$\#\overline{O}_P/O_P = \#\overline{O}_P^*/O_P^* \cdot \prod_{Q \to P} \chi^*(Q)/\chi^*(P)$$

which we will now proceed to prove.

Let $\mathcal{O} = O_P$. Let $I = \{x \in \overline{\mathcal{O}} : x\overline{\mathcal{O}} \subseteq \mathcal{O}\} = \text{conductor of } \mathcal{O}$. Let *m* be the maximal ideal of \mathcal{O} and $\overline{m} = \ker(\overline{\mathcal{O}} \to \bigoplus_{Q \to P} k(Q))$. We claim first that,

$$\#((1+m)/(1+I)) = \#(m/I)$$

and

$$\#((1+\overline{m})/(1+I)) = \#(\overline{m}/I).$$

Proof of claim. Since $\overline{\mathcal{O}}$ is a finitely-generated \mathcal{O} -module contained in the total quotient ring of $\overline{\mathcal{O}}$, I contains a non-zero-divisor in \mathcal{O} . Hence \mathcal{O}/I is zero-dimensional, hence finite, so $\exists n : m^n \subseteq I$.

Next, we have $\#(m/m^n) = \#((1+m)/(1+m^n))$. It suffices to show $\#(m^k/m^{k+1}) = \#((1+m^k)/(1+m^{k+1}))$, for all $k \ge 1$. But the map of $1+m^k$ to m^k/m^{k+1} given by $(1+x) \mapsto$ class (x) is clearly a surjective homomorphism with kernel $1+m^{k+1}$.

Now, $\#((I \cap m^k)/(I \cap m^{k+1})) = \#((1+I \cap m^k)/(1+I \cap m^{k+1}))$ by the same argument, hence as before,

$$\#((I \cap m)/(I \cap m^n)) = \#((1 + I \cap m)/(1 + I \cap m^n)),$$

or

$$\#(I/m^n) = \#((1+I)/(1+m^n)).$$

But

 $\#(m/I)\#(I/m^n) = \#(m/m^n),$

and

$$\#((1+m)/(1+I))\#((1+I)/(1+m^n)) = \#((1+m)/(1+m^n)),$$

which imply:

$$\#(m/I) = \#((1+m)/(1+I)).$$

Similarly,

$$\#(\overline{m}/I) = \#((1+\overline{m})/(1+I)),$$

hence $\#(\overline{m}/m) = \#((1+\overline{m})/(1+m))$, and the proof of the claim is completed. Finally, $\#(\overline{O}_P/O_P) \cdot \#(\overline{O}_P^*/O_P^*)^{-1} = \#(\overline{O}_P/\overline{m}_P) \cdot \#(O_P/m_P)^{-1} \cdot \#(\overline{O}_P^*/(1+\overline{m}_P))^{-1} \cdot \#(O_P^*/(1+m_P)) \cdot \#(\overline{m}_P/m_P) \cdot \#((1+\overline{m}_P)/(1+m_P))^{-1}$. But $\overline{O}_P/\overline{m}_P = \bigoplus_{Q \to P} k(Q)$, $\overline{O}_P^*/(1+\overline{m}_P) = \bigoplus_{Q \to P} k(Q)^*$, $O_P/m_P = k(P)$ and $O_P^*/m_P^* = k(P)^*$. So

$$\#(\overline{O}_P/O_P) \cdot \#(\overline{O}_P^*/O_P^*)^{-1} = (\prod_{Q \to P} \chi^*(Q))/\chi^*(P),$$

which was what we claimed, and we have finished the proof of Theorem 2.5.

Let q be the order of k and W a scheme of finite type over k. Recall that the zeta-function $\zeta(W, s)$ is a rational function Z(W, t) of $t=q^{-s}$.

276

Assume Z(W, t) has a pole of order r_W at $t = q^{-1}$.

Definition 2.6. $Z(W, 1) = \lim_{t \to q^{-1}} (1 - qt)^r Z(W, t)$. Recall that if W = C as above, r_W is the number of irreducible components of C.

Corollary 2.7. $Z(C, 1) = \pm \chi(C, G_a)/\chi(C, G_m).$

Proof. It is immediate that $Z(\overline{C}, 1)/Z(C, 1) = \prod_{P \in S_{\overline{C}}} ((\prod_{Q \to P} Z(Q, 1))/Z(P, 1)^{-1})$ and that $Z(Q, 1) = \chi^*(Q)$, $Z(P, 1) = \chi^*(P)$. Theorem 2.5 then reduces Corollary 2.7 to the case where $C = \overline{C}$, where it is classical.

Now let \mathscr{H}_1^c be the pairing $\{H^0(C, \mathbb{Z}'), H^1(C, G_m), \langle , \rangle_c\}$ and let \mathscr{H}_0^c be the pairing $\{0, H^0(C, G_m), 0\}$.

Proposition 2.8. $\chi(C, G_m) = \chi(\mathscr{H}_0^C) \chi(\mathscr{H}_1^C)^{-1}$.

Proof. This follows immediately from the definitions and Proposition 2.1.

§ 3. Construction of various regulators

We begin by reviewing the regulator pairings for complete nonsingular surfaces.

In [L2], we have defined a sequence of complexes of étale sheaves $\Gamma(X, i)$ for i=0, 1, 2 on any regular noetherian scheme X, such that $\Gamma(X, 0) = \mathbb{Z}, \Gamma(X, 1) = G_m[-1]$, and $\Gamma(X, 2)$ is given by a two-term complex of sheaves in degrees 1 and 2. For the basic properties of these complexes, we refer the reader to [L2] and [L3].

Let X be a complete non-singular surface over a field k (X/k is proper smooth and geometrically connected). We have shown in [L2] and [L3] that there is a natural map ν in the derived category of étale sheaves on X from $\Gamma(X, 1) \otimes^{L} \Gamma(X, 1)$ to $\Gamma(X, 2)$. Taking hypercohomology, this map induces a pairing $H^{2}(X, \Gamma(1)) \otimes H^{2}(X, \Gamma(1)) \rightarrow H^{4}(X, \Gamma(2))$.

But $H^2(X, \Gamma(1))$ is by definition Pic $(X) = H^1(X, G_m)$, and it is shown in [L3] that $H^4(X, \Gamma(2)) \otimes_{\mathbb{Z}} \mathbb{Q}$ is $CH^2(X) \otimes \mathbb{Q}$, where $CH^2(X)$ is the group of cycles of codimension two on X modulo rational equivalence. It is also shown in [L3] that, as one might guess, the bilinear map from Pic $(X) \otimes$ Pic (X) to $CH^2(X) \otimes \mathbb{Q}$ is the intersection pairing.

We wish to compare this bilinear map with the one defined in § 2 for curves. To do this, we recall the Gersten complex for motivic cohomology from [L3].

Theorem 3.1. Let X be a regular noetherian scheme. Then there exists an object T in the derived category of étale sheaves on X and distinguished triangles (up to 2-torsion)

$$\Gamma(X,2) \longrightarrow \bigoplus_{x \in X^{(0)}} t_{\leq 3} R(j_x)_* \Gamma(k(x),2) \longrightarrow T \longrightarrow \Gamma(X,2)[1]$$

and

$$T \longrightarrow \bigoplus_{x \in X^{(1)}} t_{\leq 2} R(j_x)_* \Gamma(k(x), 1))[-1]$$
$$\longrightarrow \bigoplus_{x \in X^{(2)}} t_{\leq 1} R(j_x)_* \Gamma(k(x), 0)[-2] \longrightarrow T[1].$$

We can more concretely describe T by considering the exact sequence of sheaves:

$$0 \longrightarrow V \longrightarrow \bigoplus_{x \in X^{(1)}} (j_x)_* G_m \longrightarrow \bigoplus_{x \in X^{(2)}} (j_x)_* Z \longrightarrow 0,$$

and observing that T = V[-2] in the derived category.

We must also recall the description of the map from T to $\Gamma(X, 2)$ [1], or, equivalently, from V to $\Gamma(X, 2)$ [3].

Lemma 3.2. Let B and D be complexes of objects in an abelian category \mathscr{A} which are acyclic outside of [1, 2]. Let $\varphi: B \rightarrow D$ be a map of complexes such that φ induces an isomorphism on H^1 and such that there exists an exact sequence

$$0 \longrightarrow H^{2}(B) \longrightarrow H^{2}(D) \longrightarrow W \longrightarrow 0.$$

Then there exists a natural map ρ from W to B.[3] in the derived category of \mathscr{A} such that if B', D', φ' , W' have the analogous properties and we have maps $\lambda_B: B \rightarrow B', \lambda_D: D \rightarrow D'$ such that the diagram

commutes, then the diagram

$$W \xrightarrow{\rho} B_{\cdot}[3]$$

$$\downarrow \qquad \qquad \downarrow$$

$$W' \xrightarrow{\rho'} B'_{\cdot}[3]$$

commutes, where the vertical maps are clear.

Proof. This is a routine derived category exercise.

In order to use Lemma 3.2 to define our map from V to $\Gamma(X, 2)[3]$, we choose B to be $\Gamma(X, 2)$ and D to be $t_{\leq 2}Rj_*\Gamma(x, 2)$, where x is the generic point of X and j: $x \rightarrow X$. We refer to the proof of Theorem 4.4 of [L3] for a proof that B and D satisfy the hypotheses of the lemma. Of course W is now V.

We next note that if C lies on X, the pairing previously defined from $Z' \otimes G_m$ to G'_m on C can naturally be viewed as having its image in V. In view of our first triangle, this induces a map $\mu: i_*Z' \otimes^L i_*\Gamma(C, 1) \rightarrow \Gamma(X, 2)[2]$, where $i: C \rightarrow X$.

There is of course a natural map ρ from $G_{m,x}$ to $i_*G_{m,c}$, so from $\Gamma(X, 1)$ to $i_*\Gamma(C, 1)$. In addition, the Gersten complex for G_m on X:

$$0 \longrightarrow G_m \longrightarrow \bigoplus_{x \in X^{(0)}} (j_x)_* G_m \longrightarrow \bigoplus_{x \in X^{(1)}} (j_x)_* Z \longrightarrow 0$$

induces a map θ from i_*Z' to $G_m[1]$ or $\Gamma(X, 1)[2]$. We now claim

Theorem 3.3. The maps μ and ν are compatible with ρ and θ , i.e. the diagram

commutes.

Proof. Pick U étale over X and fix $a \in G_m(U)$. Let $Z'_U = \bigoplus_{u \in U(U)} (j_u)_* Z$. It then suffices to show the diagram

commutes, where C is now a curve on U, $V_U = V_X | U$, and \bar{a} is the class of $a \in G_m(C)$.

It is evident that the triangle commutes, and the square commutes by Lemma 3.2. Here, as before, B'_{\cdot} is $\Gamma(U, 2)$, D'_{\cdot} is $t_{\leq 2}Rj_*\Gamma(u, 2)$. B is $\Gamma(U, 1)[-1]$ and D is $j_*\Gamma(u, 1)[-1]$, where j maps the generic point u of

U into U. W' is V_{U} , and W is Z'_{U} . We here take for $\Gamma(U, 1)$ and $\Gamma(u, 1)$ the torsion-free complexes defined in [L2], § 2, so that $\otimes a: \Gamma(U, 1)$ to $\Gamma(U, 2)$ [1] and $\Gamma(U, 1)$ is acyclic outside of degrees 0 and 1. We remind the reader of the commutative diagram of sheaves on U:

3.4. We now come to the case of open surfaces. Let U=X-C and let G_m^U be the kernel of the map from $G_{m,X}$ to $i_*G_{m,C}$.

The long exact sequence of cohomology coming from the short exact sequence $0 \rightarrow G_m^U \rightarrow G_{m,x} \rightarrow i_*G_{m,c} \rightarrow 0$ yields

$$0 \longrightarrow H^{0}(X, G_{m}^{U}) \longrightarrow H^{0}(X, G_{m}) \longrightarrow H^{0}(C, G_{m}) \longrightarrow H^{1}(X, G_{m}^{U})$$
$$\longrightarrow H^{1}(X, G_{m}) \longrightarrow H^{1}(C, G_{m}) \longrightarrow H^{2}(X, G_{m}^{U}) \longrightarrow H^{2}(X, G_{m}).$$

Since $H^2(X, G_m) = Br(X)$ is torsion, after tensoring with **Q** we obtain

$$H^{1}(X, G_{m}^{U}) \otimes \mathbf{Q} \longrightarrow H^{1}(X, G_{m}) \otimes \mathbf{Q} \longrightarrow H^{1}(C, G_{m}) \otimes \mathbf{Q}$$
$$\longrightarrow H^{2}(X, G_{m}^{U}) \otimes \mathbf{Q} \longrightarrow 0.$$

On the other hand, we have the standard sequence

$$0 \longrightarrow H^{0}(X, G_{m}) \longrightarrow H^{0}(U, G_{m}) \longrightarrow H^{0}(C, Z')$$
$$\longrightarrow H^{1}(X, G_{m}) \longrightarrow H^{1}(U, G_{m}) \longrightarrow 0.$$

which, after tensoring with Q becomes

$$H^{0}(U, G_{m}) \otimes Q \longrightarrow H^{0}(C, Z') \otimes Q \longrightarrow H^{1}(X, G_{m}) \otimes Q$$
$$\longrightarrow H^{1}(U, G_{m}) \otimes O \longrightarrow 0.$$

It is also easily checked that the map from $H^{0}(C, Z')$ to $H^{1}(X, G_{m})$ is the same as that induced by the map θ above from $i_{*}Z'$ to $G_{m}[1]$.

Proposition 3.5. θ and ρ define a commutative diagram

$$\begin{array}{c} H^{0}(C, \mathbf{Z}') \times H^{1}(C, G_{m}) \longrightarrow \mathbf{Z} \\ \downarrow^{\theta} \qquad \uparrow^{\rho} \\ H^{1}(X, G_{m}) \times H^{1}(X, G_{m}) \longrightarrow \mathbf{Z}. \end{array}$$

Proof. This is immediate from Theorem 3.3 and the fact that the degree map from $H^1(C, G'_m)$ to Z is compatible with the degree map from $H^4(X, \Gamma(2))$ to Z, since both are induced by the usual degree map on points.

Proposition 3.6. The commutative diagram of Proposition 3.5 induces bilinear maps

$$\langle , \rangle_1 \colon H^1(U, G_m) \times H^1(X, G_m^U) \longrightarrow \mathcal{Q}$$
$$\langle , \rangle_2 \colon H^0(U, G_m) \times H^2(X, G_m^U) \longrightarrow \mathcal{Q}.$$

Proof. Evident.

Now assume that k is finite. Theorem 3.3. implies that we have a compatible system of bilinear maps:

It is known that the duality on X is induced from the pairing $\Gamma(1) \otimes^{L} \Gamma(1) \rightarrow \Gamma(2)$ [Sa]. We also wish to show that the map from $H^{0}(X, i_{*}Z') \otimes$ $H^{3}(X, i_{*}G_{m,C}) \rightarrow Q/Z$ agrees with the duality $H^{0}(C, i_{*}Z') \otimes H^{3}(C, G_{m}) \rightarrow Q/Z$ described in § 2. In view of the definitions of these two maps, it suffices to prove that the two trace maps from $H^{6}(X, \Gamma(2))$ and from $H^{3}(C, G'_{m})$ into Q/Z are compatible. Since the trace map on curves is compatible with the trace map on points ([D]), it suffices to show the following:

Proposition 3.7. There exists a trace isomorphism $H^{\mathfrak{s}}(X, \Gamma(2)) \xrightarrow{\operatorname{Tr}} Q/Z$, which is compatible with the cycle class map in the sense that, if P is any closed point of X, the map $(i_P)_*Z \rightarrow \Gamma(2)[4]$ defined in [L3] induces a commutative diagram

where Tr_P is the usual identification of $H^2(P, \mathbb{Z})$ with \mathbb{Q}/\mathbb{Z} .

Proof. We begin with a lemma.

Lemma 3.8. Let
$$\overline{X} = X \times_k \overline{k}$$
, $\overline{P} = P \times_k \overline{k}$. Then
 $H^{\mathfrak{s}}(\overline{X}, \Gamma(2)) = H^{\mathfrak{s}}(\overline{X}, \Gamma(2)) = H^{\mathfrak{s}}_{\overline{P}}(\overline{X}, \Gamma(2)) = 0$

Proof. We first observe that it follows from Theorem 3.1 that $H_{\overline{P}}^{i}(\overline{X}, \Gamma(2))$ and $H^{i}(\overline{X}, \Gamma(2))$ are both torsion for $i \ge 5$. First, $H^{i}(\overline{X}, V)$ is clearly torsion for $i \ge 2$, so $H^{i}(\overline{X}, T)$ is torsion for $i \ge 4$. Next, $R^{q}(j_{x})_{*}$ $\Gamma(k(x), 2)$ is a torsion sheaf for $q \ge 3$, so up to torsion $t_{\le 3}R(j_{x})_{*}\Gamma(k(x), 2)$ is equal to $R(j_{x})_{*}\Gamma(k(x), 2)$. But $H^{i}(\overline{X}, R(j_{x})_{*}\Gamma(k(x), 2)) = H^{i}(k(x), \Gamma(k(x), 2))$ which is torsion for $i \ge 3$. The cohomology sequence of the first distinguished triangle then shows that $H^{i}(\overline{X}, \Gamma(2))$ is torsion for $i \ge 5$. Let $\overline{U} = \overline{X} - \overline{P}$. Comparing the cohomology sequences of $H^{i}(\overline{X}, \Gamma(2))$ and $H^{i}(\overline{U}, \Gamma(2))$ and observing that the map from $\bigoplus_{x \in \overline{X}^{(1)}} H^{0}(\overline{X}, (j_{x})_{*}Z)$ to $\bigoplus_{x \in (\overline{U})^{(1)}} H^{0}(\overline{U}, (j_{x})_{*}Z)$ is surjective we see that $H_{\overline{P}}^{i}(\overline{X}, \Gamma(2))$ is also torsion for $i \ge 5$.

First let n be prime to p. In [L3] it was shown that there is a commutative diagram

where ψ is the Gysin map, hence in this situation an isomorphism. Hence ϕ is surjective, and the Kummer sequence for $\Gamma(2)$ ([L2]) implies that $H_{P}^{5}(\overline{X}, \Gamma(2))_{n} = 0$.

Similarly, there is a commutative diagram

$$\begin{array}{c}H^{0}_{P}(\overline{X},(i_{\overline{P}})_{*}Z'/p^{m}) \longrightarrow H^{4}_{P}(\overline{X},\Gamma(2))/p^{m} \\ \downarrow \\ \downarrow \\ H^{0}_{P}(\overline{X},i_{*}\nu(0)) \longrightarrow H^{2}_{P}(\overline{X},\nu_{2}(m)), \end{array}$$

which implies that $H_P^{\delta}(\overline{X}, \Gamma(2))_{p^n} = 0$. (See [M4] for the analogue of the Kummer sequence deduced from the distinguished triangle $\Gamma(2) \xrightarrow{p^n} \Gamma(2) \rightarrow \nu_2(m) \rightarrow \Gamma(2)$ [1], and [M3] for the analogue of the Gysin homomorphism). It follows readily from Theorem 3.1 (see also [Sa]) that $H_P^{\delta}(\overline{X}, \Gamma(2))$ is torsion, which then implies that $H_P^{\delta}(\overline{X}, \Gamma(2)) = 0$

This proof works equally well if the supports are removed, since the Gysin map is still an isomorphism. The Gysin and Milne sequences similarly show that since $H^{\mathfrak{s}}(\overline{X}, \Gamma(2))$ is torsion, it is zero.

We resume the proof of Proposition 3.7.

282

In [L3], it was shown that the cycle class map defined there was compatible with the classical l-adic and p-adic cycle class maps, which implies the existence of a commutative diagram

of G_k -modules. $H_P^3(\overline{X}, \mu_n^{\otimes 2}) = 0$ by purity ([M1]), and $H_P^5(\overline{X}, \Gamma(2)) = 0$ by Lemma 3.8. Hence there is a chain of commuting squares

$$\begin{array}{ccc} H^{1}(P, \mathbb{Z}/n\mathbb{Z}) & \longrightarrow & H^{1}(G_{k}, H^{0}(\overline{P}, \mathbb{Z}/n\mathbb{Z})) \longrightarrow & H^{1}(G_{k}, H^{4}_{\overline{P}}(\overline{X}, \mu_{n}^{\otimes 2})) \\ & & \downarrow \delta & & \downarrow \delta \\ & & H^{2}(P, \mathbb{Z}) & \longrightarrow & H^{2}(G_{k}, H^{0}(\overline{P}, \mathbb{Z})) & \longrightarrow & H^{2}(G_{k}, H^{4}_{\overline{P}}(\overline{X}, \Gamma(2))) \end{array}$$

and

$$\begin{array}{ccc} H^{1}(G_{k}, H^{4}_{\overline{P}}(\overline{X}, \mu_{n}^{\otimes 2})) & \longrightarrow & H^{1}(G_{k}, H^{4}(\overline{X}, \mu_{n}^{\otimes 2})) & \stackrel{\longrightarrow}{\longrightarrow} & H^{5}(X, \mu_{n}^{\otimes 2}) \\ & & \downarrow & & \downarrow \\ H^{2}(G_{k}, H^{4}_{\overline{P}}(\overline{X}, \Gamma(2))) & \longrightarrow & H^{2}((G_{k}, H^{4}(\overline{X}, \Gamma(2))) & \stackrel{\longrightarrow}{\longrightarrow} & H^{6}(X, \Gamma(2)) \end{array}$$

where ϕ is an isomorphism again by Lemma 3.8.

We now recall the well-known commutative diagram

and apply the functor $H^1(G_k, \cdot)$ to obtain

$$\begin{array}{c} H^{1}(P, \mathbb{Z}/n\mathbb{Z}) \longrightarrow H^{5}(X, \mu_{n}^{\otimes 2}) \\ & \downarrow^{\mathrm{Tr}} \qquad \qquad \downarrow^{\mathrm{Tr}} \\ \mathbb{Z}/n\mathbb{Z} \xrightarrow{1} \mathbb{Z}/n\mathbb{Z}, \end{array}$$

which still commutes. Now define the prime-to-p part of the trace map by using the Kummer sequence, and the prime-to-p part of the proposition follows at once. By referring to [M2] instead of [M1] for the corre-

sponding purity and Gysin results, and using the Milne sequence $\Gamma(2) \xrightarrow{p^n} \Gamma(2) \rightarrow \nu_2(n) \rightarrow \Gamma(2)[1]$ ([M3]) instead of the Kummer sequence, we complete the proof by proving the *p*-power part in exactly the same way.

Corollary 3.9. a) There is a natural duality pairing $H^3(X, G_m^U) \times H^1(U, G_m)$ into $H^6(X, \Gamma(2)) = \mathbf{Q}/\mathbf{Z}$ and hence $\# H^3(X, G_m^U)_{\text{cot}} = \# H^1(U, G_m)_{\text{tor}}$. b) $\# H^4(X, G_m^U)_{\text{cot}} = \# H^0(U, G_m)_{\text{tor}}$.

Proof. We have the two long exact sequences

$$0 \longrightarrow H^{\mathfrak{s}}(X, G_m^{U}) \longrightarrow H^{\mathfrak{s}}(X, G_m) \xrightarrow{\alpha} H^{\mathfrak{s}}(X, i_*G_m)$$
$$\longrightarrow H^4(X, G_m^{U}) \longrightarrow H^4(X, G_m) \longrightarrow 0$$

and

$$0 \longleftarrow H^{1}(U, G_{m}) \longleftarrow H^{1}(X, G_{m}) \xleftarrow{\beta} H^{0}(C, Z')$$
$$\longleftarrow H^{0}(U, G_{m}) \longleftarrow H^{0}(X, G_{m}) \longleftarrow 0.$$

There are perfect pairings compatible with α and β :

$$H^{3}(X, G_{m}) \times H^{1}(X, G_{m}) \longrightarrow Q/Z$$

and

$$H^{3}(X, i_{*}G_{m}) \times H^{0}(C, Z') \longrightarrow Q/Z.$$

Hence $H^{3}(X, G_{m}^{U})$ is the dual of $H^{1}(U, G_{m})$, which proves a).

Also coker α is dual to ker β , and we have the exact sequences

$$0 \longrightarrow \operatorname{Coker} \alpha \longrightarrow H^4(X, G_m^U) \longrightarrow H^4(X, G_m) \longrightarrow 0$$

and

 $0 \longrightarrow H^{0}(X, G_{m}) \longrightarrow H^{1}(U, G_{m}) \longrightarrow \text{ ker } \beta \longrightarrow 0.$

Since $H^4(X, G_m)$ and $H^0(X, G_m)$ are finite, these give rise to the exact sequences:

$$0 \longrightarrow (\text{Coker } \alpha)_{\text{cot}} \longrightarrow H^4(X, G_m^U)_{\text{cot}} \longrightarrow H^4(X, G_m) \longrightarrow 0$$

and

$$0 \longrightarrow H^{0}(X, G_{m}) \longrightarrow H^{0}(U, G_{m})_{tor} \longrightarrow (\text{Ker }\beta)_{tor} \longrightarrow 0.$$

By duality, $\#(\operatorname{Coker} \alpha)_{\operatorname{cot}} = \#(\operatorname{Ker} \beta)_{\operatorname{tor}}$ and $\#H^0(X, G_m) = \#H^4(X, G_m)$ hence $\#H^4(X, G_m)_{\operatorname{cot}} = \#H^0(U, G_m)_{\operatorname{tor}}$.

Remark 3.10. Note that this stops just short of proving that $H^4(X, G_m^U)$ is dual to $H^0(U, G_m)$, which must certainly be true.

§ 4. Zeta-functions of surfaces

Let X, C, and U be as in § 3 but now assume that k is finite. Also assume that the Brauer group $H^2(X, G_m)$ is finite. (That this is true of all such X would follow from the Tate conjecture for divisors). Then ([T], [M2], [Sa]) $H^i(X, G_m)$ is finite for $i \neq 1, 3, H^0(X, G_m)$ and $H^4(X, G_m)$ are dual abelian groups, $H^1(X, G_m)$ is a finitely-generated abelian group of rank r = the order of the pole of the zeta-function of X at s = 1. The map from $G_m \otimes^L G_m \to \Gamma(2)[2]$ induces an isomorphism of $H^3(X, G_m)$ with the Q/Z-dual of $H^1(X, G_m)$ by means of the induced pairing of these two groups into $H^6(X, \Gamma(2))$ which is canonically isomorphic to Q/Z. It also induces a pairing $\mathscr{H}_1^x = \{H^1(X, G_m), H^1(X, G_m), \langle , \rangle_X\}$ where \langle , \rangle_X is given by intersection of divisors.

Definition 4.1. Let

$$\chi(X, G_m) = \frac{\# H^0(X, G_m) \# H^2(X, G_m) \# H^4(X, G_m) R(\mathscr{H}_1^X)}{\# H^1(X, G_m)_{\text{tor}} \# H^3(X, G_m)_{\text{cot}}}$$

Let $\chi(X, G_a) = \# H^0(X, G_a) \# H^2(X, G_a) \# H^1(X, G_a)^{-1}.$

Let \mathscr{H}_0^X be the pairing $\{0, H^0(X, G_m), 0\}$ and \mathscr{H}_2^X be the pairing $\{H^0(X, G_m), H^2(X, G_m), 0\}$.

Proposition 4.2. $\chi(X, G_m) = \chi(\mathscr{H}_0^X) \chi(\mathscr{H}_1^X)^{-1} \chi(\mathscr{H}_2^X)^{-1}$.

Proof. We need only observe that the duality theorems for $H^i(X, G_m)$ imply that $\#H^0(X, G_m) = \#H^4(X, G_m)$ and $\#H^1(X, G_m)_{tor} = \#H^3(X, G_m)_{eot}$, and that $H^2(X, G_m)$ is finite.

Proposition-Definition 4.3. Under the current hypothesis that k is finite, the triples $\{H^1(U, G_m), H^1(X, G_m^U), \langle , \rangle_1\}$ and $\{H^0(U, G_m), H^2(X, G_m^U), \langle , \rangle_2\}$ of Proposition 3.6 are pairings, and we call these pairings \mathcal{H}_1^U and \mathcal{H}_2^U respectively. We denote their regulators by R_1^U and R_2^U . Let \mathcal{H}_0^U be the pairing $\{0, H^0(X, G_m), 0\}$.

Proof. This follows immediately from Proposition 3.5, Proposition 2.1.c and the non-degeneracy of the intersection pairing on X.

Definition 4.4. Let

$$\chi(X, G_m^U) = \frac{\# H^0(X, G_m^U) \# H^2(X, G_m^U)_{\text{tor}} \# H^4(X, G_m^U)_{\text{cot}} R_1^U}{\# H^1(X, G_m^U)_{\text{tor}} \# H^3(X, G_m^U)_{\text{cot}} \cdot R_2^U}$$

Proposition 4.5. $\chi(X, G_m^U) = \chi(\mathscr{H}_0^U) \chi(\mathscr{H}_2^U) \chi(\mathscr{H}_1^U)^{-1}$.

Proof. $\chi(\mathscr{H}_0^U) = \# H^0(X, G_m^U), \chi(\mathscr{H}_1^U) = \frac{\# H^1(X, G_m^U)_{\text{tor}} \# H^1(U, G_m)_{\text{tor}}}{R_1^U},$ but by corollary 3.9, $\# H^1(U, G_m)_{\text{tor}} = \# H^3(X, G_m^U)_{\text{cot}}.$

$$\mathfrak{X}(\mathscr{H}_2^U) = rac{\#H^2(X,\,G_m^U)_{\mathrm{tor}}\,\#\,H^0(X,\,G_m^U)_{\mathrm{tor}}}{R_2^U},$$

but again by Corollary 3.9 $\# H^0(X, G_m^U)_{tor} = \# H^4(X, G_m^U)_{cot}$. The proposition follows immediately.

Theorem 4.6. $\chi(X, G_m) = \chi(X, G_m^U)\chi(C, G_m).$

Proof. This follows immediately from Propositions 4.5, 4.2, and 2.8, Lemma 1.5, and the exact sequence of pairings

$$0 \longrightarrow \mathscr{H}_{2}^{X} \longrightarrow \mathscr{H}_{2}^{U} \longrightarrow \mathscr{H}_{1}^{C} \longrightarrow \mathscr{H}_{1}^{X} \longrightarrow \mathscr{H}_{1}^{U} \longrightarrow \mathscr{H}_{0}^{C} \longrightarrow \mathscr{H}_{0}^{X} \longrightarrow \mathscr{H}_{0}^{U} \longrightarrow 0.$$

Now let G_a^U be the kernel of the map from $G_{a,X}$ to $(i_c)_*G_{a,C}$. Then $H^i(X, G_a^U)$ is zero for $i \ge 3$ and finite for all *i*. Let

$$\chi(X, G_a^U) = \frac{\# H^0(X, G_a^U) \# H^2(X, G_a^U)}{\# H^1(X, G_a^U)}.$$

Proposition 4.7. $\chi(X, G_a) = \chi(X, G_a^U)\chi(C, G_a).$

Proof. This is evident from the exact sequence

 $0 \longrightarrow G_a^{U} \longrightarrow G_{a,X} \longrightarrow i_*G_{a,C} \longrightarrow 0.$

Theorem 4.8. $Z(U, 1) = \pm \chi(X, G_a^U) \chi(X, G_m^U)^{-1}$.

Proof. Since Z(X, t) = Z(U, t)Z(C, t), it follows that Z(X, 1) = Z(U, 1)Z(C, 1). In [T] and [M2] it is shown that (see [L1] for a translation of language) $Z(X, 1) = \pm \chi(X, G_a)\chi(X, G_m)^{-1}$. The theorem now follows from Proposition 4.7, Theorem 4.6, and Corollary 2.7.

References

- [D] Deninger, C., Duality in the étale cohomology of one-dimensional proper schemes and generalizations, Math. Ann., 277 (1987), 529-541.
- [L1] Lichtenbaum, S., Zeta-functions of varieties over finite fields at s=1, in Arithmetic and Geometry, Progress in Math. 35, Birkhauser, 1983, 173– 194.
- [L2] —, The construction of weight-two arithmetic cohomology, Invent. Math., 88 (1987), 183-215.

- [L3] ____, New results on weight-two motivic cohomology, preprint.
- [M1] Milne, J. S., Etale Cohomology, Princeton University Press, Princeton 1980.
- [M2] —, On a conjecture of Artin and Tate, Ann. of Math., **102** (1975), 517–533.
- [M3] —, Values of zeta-functions of varieties over finite fields, Amer. J. Math., 108 (1986), 297-360.
- [M4] ____, Motivic cohomology and values of zeta-functions, preprint.
- [O] Oort, F., Reducible and multiple algebraic curves, Van Gorcum & Comp. N. V., H. J. Prakke and H. M. G. Prakke, Leiden, 1961.
- [Sa] Saito, S., Arithmetic theory of arithmetic surfaces, preprint.
- [Se] Serre, J.-P., Groupes Algériques et Corps de Classes, Hermann, Paris, 1959.
- [T] Tate, J., On the conjecture of Birch and Swinnerton-Dyer and a geometric analog., Seminaire Bourbaki, **306** (1965-66).

Department of Mathematics Cornell University Ithaca, NY 14853 U.S.A.