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Dedicated to Professor Kenkichi lwasawa on the occasion 
of his 70th birthday 

In this paper, we will present a new construction of the p-adic height 
pairings of Mazur-Tate [MT] and Schneider [S], when the Abelian variety 
in question is the Jacobian of a curve. Our aim is to describe the local 
height symbol solely in terms of the curve, using arithmetic intersection 
theory at the places not dividing p and integrals of normalized differentials 
of the third kind (Green's functions) at the places dividing p. 

It is a pleasure to dedicate this note to Kenkichi Iwasawa, in thanks 
for the many inspiring things he has taught us. 

§ 1. The local pairing 

Let p be a rational prime and let QP denote the field of p-adic 
numbers. Let k be a non-archimedean local field of characteristic zero, 
with valuation ring (!), uniformizing parameter rr, and residue field F = 
(!)jrr(!) finite of order q. We fix a continuous homomorphism 

(1.1) 

If the residue characteristic of k is not equal to p, then X is trivial on the 
subgroup (!)* and is determined by the value X(rr). 

Let X be a complete non-singular, geometically connected curve 
defined over k, and assume for simplicity that X has a k-rational point. 
Let J denote the Jacobian of X over k. The following statement, as well 
as its proof, is similar to that of Proposition 2.3 in [G]. 
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Proposition 1.2. Assume that the residue characteristic of k is not 
equal top. Then there is a unique function (a, b), defined on relatively 
prime divisors a and b of degree zero on X defined over k with values in Q11 

which is continuous, symmetric, bi-additive (when all relevant terms are 
defined) and satisfies 

((/), b) =X(f(b)) 

for f e k(X)*. 

Proof The difference of any two such functions gives a continuous 
homomorphism J(k)X J(k)-Qp, which must be trivial for topological 
resaons. This gives the uniqueness, and the existence is proved using 
intersection theory. Let f!C be a regular model for X over 0, and extend 
a and b to divisors (with rational coefficients) A and Bon f!C which have 
zero intersection with each component in the special fiber. Then the 
formula 

(1.3) (a, b)=(A·B)X(it) 

defines a local symbol with all the desired properties. D 

An analogue of Proposition 1.2 also holds when k is archimedean: 
in this case X must be trivial and we define ( a, b) = 0 for all a and b. The 
situation is more complicated when k has residue characteristic p, for in 
this case conditions like those in 1.2 do not determine (a, b) uniquely. 
Indeed, the difference of two such functions would describe a continuous 
pairing J(k)XJ(k)-Qp, and many such pairings exist! In the next four 
sections we will assume k has residue characteristic p and give an analytic 
treatment of the theory of local heights. 

§ 2. Differentials and the logarithm 

We say a differential on X over k is of the first kind if it is regular 
everywhere, and of the second kind if it is locally exact. The differentials 
of the second kind, modulo the exact differentials, form a finite dimen
sional k-vector space of dimension 2g, where g is the genus of X. We 
will denote this quotient space H 1(X/k). It is canonically isomorphic to 
the first hypercohomology group of the de Rham complex 

o~@x~Q~~o 

on X/k (cf. [Kl] p. 72-73). Therefore we obtain a canonical exact 
sequence 



p-adic Heights 75 

We identify H 0(X, !21-;k), the space of differentials of the first kind, with 
its image. It has dimension g and we will denote it H 1• 0(X/k). The 
space H 1(X, 0x 1k) also has dimension g and may be canonically identified 
with the tangent space at the origin of J =Pic 0(X). 

The space H 1(X/k) has a canonical non-degenerate alternating form 
given by the algebraic cup product 

(2.2) 

This may be calculated (using a well-known formula of Serre) as follows: 
Let ).11 and l,lz be differentials of the second kind, with classes [).11] and [).12] 

in H 1(X/k). For each point x of X, choose a formal primitive fx of ).11• 

Then 

In particular, it is apparent from this formula that H 1•0(X/k) is a maximal 
isotropic subspace with respect to { , }. 

A differential on X is said to be of the third kind if it is regular, 
except possibly for simple poles with integral residues. Let T(k) denote 
the subgroup of differentials of the third kind and D0(k) the group of 
divisors of degree zero on X over k. The residual divisor homomor
phism gives rise to an exact sequence 

Res 
O---.+H 1• 0(X/k)---+T(k)---+D 0(k)---+O. 

Let Tz(k) denote the subgroup of T(k) consisting of the logarithmic 
differentials, i.e., those of the form df/f for f e k(X)*. Since 
Tz(k) n H 1•0(X/k)={O} and Res(df!f)=(f), we obtain an exact sequence 

(2.3) O---.+H 1•0(X/k)---+T(k)/Tz(k)---+J(k)---+O. 

It is known that this sequence may be naturally identified with the k
rational points of an exact sequence of commutative algebraic groups 
over k: 

(2.4) O---.+H 0(Q1)---+E---+J ---+0 

Here E is the universal extension of J by a vector group ( cf. [MM]) and 
H 0(Q1);;:;;.Gf The Lie algebra of Eis canonically isomorphic to H1(X), 
so the exact sequence (2.1) is the resulting exact sequence of Lie algebras 
over k. 

All of the above assertions are true for an arbitrary field k, but we 
will now exploit the fact that k is p-adic. In this case, there is a 
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logarithmic homomorphism defined on an open subgroup of the points of 
any commutative p-adic Lie group, G, to the points of its Lie algebra 
Lie(G) (cf. [Se 5.34]). When G=E or J, the open subgroup on which the 
logarithm converges has finite index, so the homomorphism can be 
uniquely extended to the entire group. We denote this extension logE 
or logJ respectively. Since the logarithm is functorial and equal to the 
identity on H 0(Q1)(k) we obtain the following. 

Proposition 2.5. There is a canonical homomorphism 

which is the identity on differentials of the first kind and makes the following 
diagram commute: 

O---),H 1• 0(X/k)~E(k) >l(k)---0 

II l W=logE llogJ 

O---),H 1• 0(X/k)---),H1(X/k)---),H 1(X, (l)x1k)---),0. 

The map logJ is the basis for the study of the group J(k); it has 
kernel J(k),or and its image is an (()-lattice of rank gin H 1(X, (I) x,k). It is 
the same as the map A of § 2 of [C-1]. The map '/fJ' takes a differential 
of the third kind on X to a differential of the second kind modulo exact 
differentials! It can obviously be extended to a linear map from the 
k-vector space of all differentials on X/k to H 1(X) by writing an arbitrary 
differential 7J as a linear combination, 7J = I; aiwt + 1,1, where wi is of the 
third kind, a; e f, and 1,1 is of the second kind on X. We then define 
'lf!(7J)= I; ai'/fJ'(w;)+[1,1]. In keeping with the aim of this paper, we remark 
that this homomorphism can be constructed without reference to the 
Jacobian, using rigid analysis on X(k). The construction is based on the 
following lemma. 

Lemma 2.6. Let w be a differential of the third kind and let Y be an 
affinoid subdomain of X which is conformal to the closed unit ball and 
contains all the poles of w. Then on X- Y, w=n- 1dj/f +1,1+dg, where n 
is positive integer, f e k(X)*, 1,1 is a differential of the second kind on X, 
regular on X - Y, and g is a rigid analytic function on X - Y. 

Given the lemma (which is proven in [C2]) and the isomorphisms 

H 1(X/k)~H~n(X/k)~H~n(X - Y/k), 

which are established in [C2], one can show '/fJ'(w)=[1,1]. See [C3] for 
defails. 
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§ 3. Normalized differentials of the third kind 

Let a be a divisor of degree zero on X/k. We wish to construct a 
"normalized" differential wa of the third kind on X with Res( wa) = a. In 
the complex case this is accomplished using Hodge theory (cf. [G] § 3). 
In the p-adic case, we must first fix a splitting of the exact sequence (2.1 ). 
Equivalently, we fix a direct sum decomposition 

(3.1) 

We then define wa to be the differential of the third kind with residual 
divisor a such that lff(wa) lies in W. Here 7Jf is the map defined in 
Proposition 2.5. The differential wa is uniquely specified by these two 
conditions, as the differentials of the third kind with residual divisor a 
form a principal homogeneous space for H 1•0(X/k), and 7Jf restricted to 
this space is the identity. Since the homomorphism kills logarithmic 
differentials, we have the following. 

Proposition 3.2. The choice of W gives a section, 

D0(k)~T(k), 

of the residual divisor homomorphism. Moreover if a= (f) is principal, 
then wa = df/f 

We note that in certain cases there is a reasonable choice of a com
plement W to H 1•0(X/k) in H 1(X/k). Namely, when X has good ordinary 
reduction, we may take W to be the unit root subspace for the action of 
Frobenius. The resulting normalized differentials then have the following 
property: on each residue disk R disjoint from I a I, 

where n is a positive integer, f is a rigid analytic unit on R and g is a 
bounded rigid analytic function on R. This follows from [K2]. 

§ 4. Integration and the reciprocity law 

Integrals of Abelian differentials were defined in [C-1] and [C-dS]. 
We will sketch here a brief and simplified discussion of integrals of the 
third kind. We will suppose that X has good reduction (modulo n-), and 
denote its reduction by X. 

Let w be a differential of the third kind on X and let a= Res (w ). Let 
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Y be an affinoid obtained from X by removing finitely many residue disks 
whose union contains !a\. Let A(Y)=(lifil0nz)•t•n•)0QP be the ring of 
rigid analytic functions on Y. Finally, let <j> be an analytic lifting to Y of 
the Frobenius endomorphism, ~, off over the finite field 0/rr0, and let 
P(T)= I; anTn be the characteristic polynomial of the endomorphism 
induced by ~ on the first 1-adic cohomology group of f for any prime l 
distinct from p. 

Proposition 4.1. There is a locally analytic function F: Y(Cv)-Cv, 
unique up to an additive constant ink, which satisfies 

( i) dF=m 
(ii) I; an(Fo <j>n) e A(Y) 

(iii) F(y")=F(y)" for y E Y(Cp) and a E AutcontCCv/k). 

The key fact used to prove the existence of F is the result in the 
theory of Washnitzer and Monsky [MW] which asserts that I; an(</>n)*m 
lies in dA(Y). If bis a divisor of degree zero, on Y, we define 

(4.2) L m= I; (ordyb)F(y). 

This integral is independent of the ambiguity in F and lies in k. A simple 
computation on P 1 shows that for fin k(X) n A(Y)*, 

(4.3) L df/f =logf(b). 

Here a=(f) and b have disjoint reductions, so that f(b) is a unit and 
log: (!)*-k is the unique homomorphism extending the convergent series 
for log(l + T) on 1 +rr(!). 

If we wish to define the integral of m over divisors b which are 
relatively prime to a but may not necessarily be supported on any Y as 
above, we must first choose a branch of the p-adic logarithm Log: c;
Cv, i.e., a locally analytic homomorphism which extends log on(!)*. We 
may then proceed in one of two ways to define the integral of m over b. 
We may choose an appropriate semi-stable cover of (X, \a\) and define 
the integrals as in [C-dS] or we may use Theorem 4.1 of [C-2] which 
implies that we may write 

where m' is a differential of third kind whose polar locus has disjoint 
reduction from that of the support of b, n is a positive integer and f e 
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k(X)*. We then define 

t w= ta,' +n- 1 Log(f(b)). 

The first integral on the right hand side is defined as above. This depends 
on the choice of Log but not on the choices of w', n and/. 

As in the classical case, we have a reciprocity law for differentials of 
the third kind. The proof in [C2] is modelled on a combination of the 
classical proof and the algebraic proof of the Weil reciprocity law for 
curves. 

Proposition 4.5. Let a, and w' be two differentials of the third kind 
on X, whose residual divisors are relatively prime. Then 

f a, - J w'={W(w),W(w')} 
Res(o,') Res(o,) 

where Wis the map to H 1(X/k) defined in § 2 and { , } is the cup product. 

§ 5. The local pairing at the p-adic completions 

Recall that X is a non-singular complete curve over the p-adic field 
k, and that we have fixed a continuous character X: k*-+Qv in § 1. To 
apply the results of the previous two sections to construct as local height 
symbol, we shall assume that X has good reduction (modulo ;r) and that 
we have fixed a complement, W, to H 1• 0(X/k) in H 1(X/k) as in § 3. 

Since X takes values in a torsion-free group, its restriction to (9* 

factors through the logarithm 

x: (!)*·---Qz, 

lo~/( 
k . 

The map t is QP-linear, and uniquely determined by X. We fix an 
extension Log: C :-c P of log as in § 4 which satisfies X = t o Log. We 
use this branch of the logarithm to define the integrals below as in § 4. 

Let a and b be relatively prime divisors of degree zero on X and let 
wa be the normalized differentials of the third kind determined by the 
complement W. We define 

(5.1) 
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Proposition 5.2. The symbol (a, b) is continuous, bi-additive and 
satisfies 

((/), b)=X(/(b)) 

for fe k(X)*. It is symmetric iff the subspace W of H 1(X/k) is isotropic 
with respect to the cup product pairing. 

Proof The continuity and bi-additivity are clear, as they hold for 
the normalized differentials and the integrals we have defined. By the 
reciprocity law (4.5), we have 

(a, b)-(b, a)=t(t w .. -J.. wb) 
=t{W(w.,), W(wb)}. 

Since the image of the normalized differentials via W spans the subspace 
W and t :;t=O, the right hand side is identically zero iff Wis isotropic. 
Finally, if/ e k(X)* and a=(/), then m.,=df/fand so by (4.3-4.4) 

(a, b) = t(Log g(b))=X(/(b)). 0 

In particular, if Wis the unit root subspace (in the case when X has 
ordina~ reduction), the resulting local pairing is symrnetric. 

§ 6. Further Remarks 

As• in the classical case, one can combine the local symbols with the 
product formula to obtain a global p-adic height pairing on the Jacobian 
J. The initial data are 

1) a curve X defined over a number field k, with good reduction at 
each place dividing p. . · ·. , · ·. 

2) a continuous idele ciass charac~er X: Af /k*-Qp. 
3) a splitting H 1(Xfkv)=1I 1·'i.Xfkv)(BWv for each place v dividingp. 

One can then define the local symbols as in § 1 and § 5, and the global 
symbol is defined to be their sum (cf. [G] § 4). 

In [C-3], it is shown that splittings of the Hodge filtration of the first 
de Rham cohomology group of an Abelian variety are canonically in 
one-to-one correspondence with formal splittings of the bi-extension of 
this Abelian variety. When the Abelian variety has good ordinary 
reduction the splitting of the Hodge filtration which corresponds to the 
canonical formal splitting of the bi-extension in [MT] is that given by the 
unit root subspace. Using this one can show that when our curve X has 
good ordinary reduction at all places v dividing p, and Wv is the unit 



p-adic Heights 81 

root subspace, our local and global pairings correspond to the canonical 
pairings of Schneider [SCI], [SC2] and Mazur-Tate [MT]. 
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