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Introduction 

Recent development in the theory of prehomogeneous vector spaces 
(in particular the works of Gyoja-Kawanaka [10] on prehomogeneous 
vector spaces defined over finite fields and of Igusa [17] on prehomoge­
neous vector spaces defined over +J-adic number fields) has revealed a 
striking resemblance between .the theories over finite fields, +J-adic number 
fields, real and complex number fields and algebraic number fields, as is 
common in the theory of representations of algebraic groups. 

Now we give a brief sketch of the fundamental theorem in the theory 
of prehomogeneous vector spaces. Let K be one of the fields mentioned 
above and (G, p, V) be a K-regular prehomogeneous vector space 
(satisfying some additional conditions, if necessary). Take K-irreducible 
polynomials P 1, • • ·, P n defining the K-irreducible hypersurfaces contained 
in the singular set S. Let Q(Kx) be the set of quasi-characters of the 
multiplicative group Kx and Y(V(K)) the space of Schwartz-Bruhat 
functions on V(K). For an we Q(Kxt we can define a tempered distri­
bution (zeta distribution) Z(w) on V(K) by analytic continuation of the 
integral 

Z(w)(</>)= f V<KJ-S<K> J1i w;(P;(x))<f>(x)d~(x) (</> e Y(V(K))), 

where d~(x) is a certain relatively G(K)-invariant measure on V(K)-S(K). 
Starting from the prehomogeneous vector space (G, p*, V*) dual to 
(G, p, V), we can obtain a tempered distribution Z*(w) (we Q(Kxt) on 
V*(K). 

Roughly speaking, the fundamental theorem states that the Fourier 
transform of the tempered distribution Z(w) coincides with Z*(w*) for 
certain w* up to a constant multiple r(w) depending meromorphically on 
w: Z(w)=r(w)Z*(w*). 

Received March 3, 1987. 



466 F. Sato 

The aim of this paper, which is expository in part, is to explain in 
detail the analogy between the theories over various fields. However our 
attention will be focused mainly on the cases of J:)-adic number fields and 
the rational number field Q. The case of algebraic number fields can be 
reduced to the case of Q by using Weil's functor Rx,a· 

When the base field K is a J:)-adic number field kp, the fundamental 
theorem has been proved by lgusa [17] under the assumptions that 

1) G is reductive and self-adjoint over kp, 
2) S is absolutely irreducible, 
3) S contains only a finite number of G1-orbits, where G1 is the 

kernel of rational characters corresponding to relative invariants. 
After recalling some basic properties of regular prehomogeneous vector 
spaces and the fundamental theorem for K =R in Section 1, the funda­
mental theorem for kP is proved in Section 2 under certain weaker condi­
tions so as to include the case of several independent relative invariants. 
Namely the assumptions 1) and 2) will be replaced by the assumption that 
(G, p, V) is kp-regular; however some modified form of the assumption 3) 
on the finiteness of singular orbit is inevitable at present. 

Compared with the previous result for R ([37], [40], [35]), the result 
for kP is still unsatisfactory in some respects. Firstly the finiteness 
assumption on singular orbits should be removed in future. Secondly the 
nature of the so-called I'-matrices r(w), in particular a possible relation of 
I'-matrices with b-functions, remains to be clarified. Hence it seems 
profitable at the present stage to compare the I'-matrix over a J:)-adic 
number field with the I'-matrix over R for a prehomogeneous vector 
space defined over Q. In Section 3 we make such a comparison of I'­
matrices for some concrete examples. Our calculation of I'-matrices 
along with the recent results of Muller [25] and lgusa [18] suggests that 
I'-matrices are under the control of b-functions also in the case of J:)-adic 
number fields (see § 3.5). 

For the case K = Q, by introducing an analogue .9'(V(Q)) of the 
Schwartz-Bruhat space and a relatively G(Q)-invariant "measure" on 
V(Q)-S(Q), we reformulate in Section 4 the functional equations of zeta 
functions associated with prehomogeneous vector spaces in order to make 
it easier to see the analogy to the theories over the other fields. Moreover, 
as a result of the introduction of .9'(V(Q)), we are able to discuss £-func­
tions and zeta functions of Hurwitz type associated with prehomogeneous 
vector spaces as well(§ 4.6). The necessity of this kind of generalization 
of zeta functions, which has been recognized independently by Hoffmann 
[16}, results from the fact that certain special values of £-functions and 
zeta functions of Hurwitz type appear in the contribution of parabolic 
conjugacy classes to the Selberg trace formula. This kind of application 
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of prehomogeneous vector spaces will be reviewed in Section 4. 7. Another 
by-product of our formulation is that the arithmetic meaning of zeta func­
tions is clarified by considering the "measure" on V(Q)- S( Q) (§ 4.4). 

The fundamental theorem over finite fields due to Gyoja-Kawanaka 
is explained in Section 4 in connection with L-functions associated with 
prehomogeneous vector spaces. 

In the present paper we do not formulate the fundamental theorems 
in their full generality, namely we do not discuss partial Fourier transforms 
with respect to regular subspaces, since it is easy to extend most of the 
results in this paper to the case of partial Fourier transforms as treated in 
[35]. 

The author would like to express his sincere gratitude to Professors 
Hashimoto, Arakawa, Murase and Sugano for their helpful information. 
The present paper was written during author's stay in Gottingen. He is 
deeply grateful to the Sonderforschungsbereich 170 "Geometrie und 
Analysis", especially to Prof. U. Christian for his warm hospitality. 

§ 1. Preliminaries 

1.1. Let K be a field of characteristic 0. We denote by K the 
algebraic closure of K. Let G be a connected linear algebraic group 
defined over K, V a finite dimensional K-vector space with K-structure 
and p: G-GL(V) a rational representation of G on V defined over K. 
We assume that the triple (G, p, V) is a prehomogeneous vector space 
defined over K. Then by definition there exists a proper algebraic subset 
S of V such that V(K)-S(K) is a single G(K)-orbit. The set Sis called 
the singular set of (G, p, V) and is also defined over K. Denote by K[V] 
(resp. K(V)) the ring of polynomial functions (resp. the field of rational 
functions) defined over K. Let S1, • • ·, Sn be the K-irreducible hypersur­
faces in V contained in S. Take a K-irreducible polynomial function 
Pie K[V] defining St for each i = I, · · ·, n. Then P1, • • ·, P n are relative 
invariants of (G, p, V) and any relative invariant in K(V) can be written 
uniquely as cP? · · · P~" with c e KX, 111, • • ·, lin e Z ([35, Lemma 1.3]). 
Let X1 • • • Xn be the rational characters of G corresponding to P1, • • ·, P n, 
respectively and Xp(G)K the group of K-rational characters of G corre­
sponding to relative invariants. The group Xp(G)x is a free abelian group 
of rank n generated by X1, • • ·, Xn ([35, Lemma 1.41). 

1.2. Let V* be the K-vector space dual to V. The vector space V* 
has a natural K-structure determined by the K-structure of V. Denote by 
p*: G-GL(V*) the rational representation of G on V* contragredient to 
p. Fix a K-basis of V(K) and identify V with J{N (N=dimx V). Then 
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K[V] can be identified with the ring K[x 1, · · ·, x N] of polynomials in N 
variables with coefficients in K. We also identify V* with KN via the 
K-basis of V*(K) dual to the fixed basis of V(K). 

For a relative invariant P(x) e K[V] =K[x 1, · · ·, xN], we define a 
mapping <j,p: V-S---+V* by 

( 1 aP 1 aP ) <j,p(x)= -- --(x), · · ·, -- --(x) . 
P(x) ax1 P(x) axN 

The mapping <pp is independent of the choice of K-basis of V(K) and 
defines a rational mapping defined over K. Moreover it is known that 

<pp(p(g)x) = p*(g)<j,p(x) (x e V -S, g e G). 

Definition. If there exists a relative invariant P(x) e K[V] such that 
the mapping <j,p: V -S---+V* is dominant, then (G, p, V) is called K­
regular and such a P is called nondegenerate. 

Lemma 1.1 ([37, Chap. 1 § l], [39, § 4 Prop. 10, Remark 11], [35, 
Lemmas 2.4, 2.5)). Let (G, p, V) be a K-regular prehomogeneous vector 
space and P( e K[V]) be a nondegenerate relative invariant. Then 

(1) (G, p*, V*) is also a K-regular prehomogeneous vector space. 
(2) Let S* be the singular set of (G, p*, V*). The mapping <pp 

induces a G-equivariant biregular rational mapping defined over K of V - S 
onto V*-S*. 

(3) For an x e V-S, put x*=<j,p(x), Then G,,=G,,., where G,,= 
{g e G; p(g)x=x} and G,,.={g e G; p*(g)x*=x*}. 

(4) Xp(G)x=Xp.(G)x. 

V*. 

( 5) The rational character of G defined by g >-+ det p(g )2 is in Xp( G) x· 
(6) Sis a hypersurface in V if and only if S* is a hypersurface in 

Let St, · · ·, S; be the K-irreducible hypersurfaces contained in S*. 
Note that by Lemma 1.1 (4) the number of K-irreducible hypersurfaces 
contained in S* is equal to the number n of K-irreducible hypersurfaces 
contained in S. Take a K-irreducible relative invariant P; e K[V*] 
defining S; for each i = 1, · · ·, n and denote by X; the rational character 
of G corresponding to P;. Since X1, • • ·, Xn and X[, · · · , X; form two 
systems of generators of the free abelian group Xp(G)x=Xp.(G)x, there 
exists a unimodular matrix U =(ut) e GL(n, Z) satisfying 

n 

Xt= CT Xj"'' 
j-1 

(1 ~i <n). 
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Let A and 1* be the elements of(½ zt defined by 

det p(g )2 = TI X;(g )2•;, 
. n 

det p*(g )2 = CT Xt(g )2•1, 
i=l i=l 

Since detp(g)=detp*(g)-1, we have 1*= -AU. 
Another important fact derived immediately from Lemma 1.1 is the 

one-to-one correspondence between G(K)-orbits in V(K)-S(K) and 
G(K)-orbits in V*(K)-S*(K). In particular, if the number of G(K)­
orbits in V(K)-S(K) is finite, then so is the number of G(K)-orbits in 
V*(K)-S*(K) and they coincide with each other. Note that this is the 
case if K is a local field ([42, III 4.2 Example d), 4.4 Theorem 5]). 

1.3. Now we recall the definition of b-functions (for details, see [37, 
Chap. I] and [38]). In the following we assume that (G, p, V) is K-regular. 

For Xe X/G)x=Xp.(G)x, let o(X) and o*(X) be the elements in zn 
such that 

Then o(X) U = o*(X). 
We put 

n 
px(x)= n P;(x)•(Xl,, 

i=l 

n n 
X- I"T x•<xJ,_ n x*•*(X)1 -11-- i • 

i=l i=l 

P*X(y)= fI Pt(y)°*(X)t 
i=l 

(Xe Xp(G)x). 

Define a partial differential operator px(grady) (resp. P*x(grad.,,)) with 
constant coefficients by 

px(grady)e<x, v> = px(x)e<x, Y> 

(resp. P*x(grad.,,)e<x, v> =P*x(y)e<.,,, v>). 

If o*(X)i~O for all i, then there exists a polynomial bz(s) in s1, ···,Sn of 
degree deg P*x(y) satisfying 

P*x(grady)P'(x) = bz(s)P' +•<Xl(x), 

where P'(x)= D?=1 P;(x)''. By the cocycle property 

hx,i,(s) =hz(s)bq,(s+ o(X)), 

we can define bz(s) for all Xe Xp(G). The polynomial bz(s) is called the 
b-function of (G, p, V). 

In the case of K =C the b-function bz(s) has the following expression 
in terms of the gamma function: 
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bx(s) = c(X)r(s)/r(s+ o(X)) 

r(s)=}Ji CD1 r(tt ali)s1-P;1)} / {Jt r(tt afi>s1-q;1) }, 

where c is a homomorphism of X/G)x into ex and al;> e Z, a?':2:0, p;1, 

qij Ee. 

1.4. In this paragraph we assume that K is a subfield of R and we 
describe briefly the main result in the theory over R. 

Put V = V(R), V* = V*(R), S =S(R) and S* =S*(R). 

Let V - S = V1 U · · · U V. and V* -S* = Vt U · · · U V; be the decom­
positions into connected components. Each connected component is an 
orbit of the identity component G+ of G(R). 

We denote by 5"(V) and 5"(V*) the spaces of rapidly decreasing 
functions on V and V*, respectively. 

Consider the integrals 

Z/s)(f)= t, JJi \P;(x)\ s'- 1'f(x)dx (fe 5"(V), 1 <j~v)), 

Zj(s)(f*)= f v; JJi \P;(y)\••-•1f*(y)dy (f* e 5"(V*), l <j ~v), 

where dx and dy are Euclidean measures on V and V*, respectively. The 
integrals Zis)(f) (resp. Zj(s)(f *)) are absolutely convergent at least for 
Res;> l; (resp. Res,zlt). The analytic continuation of Z/s)(f) 
(resp. Zj(s)(f*)) to a meromorphic function of s in en always exists and 
defines a tempered distribution 

Zis):f~Zis)(f) 

(resp. Zj(s): f* ~ Zj(s)(f*)) 

on V (resp. V*) depending on s meromorphically, which we call the zeta 
distribution associated with (G, p, V) over R. 

The Fourier transform Zis) of the zeta distribution Zis), which is a 
tempered distribution on V*, is defined by 

Zis)(f*)=Zis)(/*), 

f*(x)=f f*(y)e2~t<x,v>dy. 
v• 

Now the fundamental theorem over R can be stated as follows: 
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Theorem R (cf. [37, Chap. 2 § l], [40, § 1), [35, § 5]). Assume that 
(G, p, V) is R-regular and Sis a hypersurface. Then 

Z;(s)= _t I'tis-2)Zj(2*+s*) (l.S:i.S:v) 
j-1 

with 

/\/s)=C(-s)(-2;r,l=-I)Ef-, szdeg Pfr(s) • f1 ci{i)-sz • fr c[(.i)8f. tiis), 
l-1 1-1 

where c1(i) = sgnPi(x) (x E Vi), c[(j) = sgn P t(y) (y E Vj), s* = (si*, · · ·, s;) 
=SU and ti/s) are polynomials in e±Ze J-=1 81 , • • •, e±Ze J-=1 Sn. 

We call the matrix (I'iis)):,j-i the I'-matrix of (G, p, V). 

Remark. If we take K =C and assume that (G, p, V) is (C-) regular, 
then (G, p, V)=RcJR(G, p, V) is R-regular and V(R)-S(R)= V(C)­
S(C). Hence Theorem R for (G, p, V) immediately yields "Theorem C" 
(the fundamental theorem for prehomogeneous vector spaces defined over 
C) for (G, p, V). Note that v=l in this case and hence the I'-matrix is a 
scalar. However more is known for K = C. Namely the I'-matrix is 
explicitly calculated (up to sign) at least when G is reductive ([37, § 3]). 
If we further assume that Sis absolutely irreducible, then the sign left tO' 
be determined was settled by Igusa ([18, Theorem 2]). A remarkable fact 
in the case of K =C is that the I'-matrix is completely determined by the 
b-function. 

§ 2. Fourier transforms of p-adic complex powers 

2.1. Let K be a p-adic number field, namely a finite extension of 
the p-adic number field QP. Denote by o the ring of integers of K and 
by p the unique maximal ideal of o. Let ;r be a (fixed) prime element of 
K and ox the unit group of o. We normalize the absolute value of 
a E Kx by 

q = N(p) = #(o/p). 

Let Q(Kx) be the set of quasi-characters of Kx. For a complex number 
s EC, we define an OJ8 E Q(Kx) by 

w,(a)=lals 

/'-. /'-. 

We denote the dual group of ox by ox. We identify an element <p e ox 
with the character of Kx obtained by extending ¢i to Kx so that <ji(;r)=l. 
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Every we Q(Kx) can be expressed as w=w,<J> with 

s e c/(__l.7:i__)z and ef> e ;;>_ 
log q 

Then we put Re(w)=Res (s=logw(rr)/log q). 
Put 

Since 

Q(KX)= u Q(KX)f and Q(KX)¢~c/(__l.7:i__)z~cx. 
¢E~ log q 

we may regard Q(Kx) as a I-dimensional complex Lie group. We call a 
function F: Q(Kxr-.c a rational function on Q(K xr, if the function 
F/s1, • • ·, Sn)=F(Ws/P1, '' ·, w,n</>n) is a rational function of q-,,, • • ·, q-•n 

/'-. 

for each <p=(<p1, • · ·, <pn) E (oxr. 

2.2. We now consider a prehomogeneous vector space (G, p, V) 
defined over a j)-adic number field Kand assume that 

(A.1) (G, p, V) is K-regular. 

Retain the notation in Section 1.1 and Section 1.2 and put G=G(K), 
V = V(K), S=S(K) and S* =S*(K). As remarked at the end of Section 
1.2, the number of p(G)-orbits in V-S is finite and is equal to the 
number of p*( G)-orbits in V* - S*. Let 

V-S=V 1 U···UV, and V*-S*=VtU···UV; 

be the p(G)-orbit decomposition of V -Sand the p*(G)-orbit decomposi­
tion of V*-S*, respectively. 

Denote by Y(V) and Y(V*) the spaces of Schwartz-Bruhat functions 
on Vand V*, respectively. We fix a nontrivial additive character ,Jr of K 
and define the Fourier transform off* e Y(V) by 

]*(x)= LJ*(y),Jt(<x, y))dy, 

where dy is a (fixed) Haar measure on V*. Denote by dx the Haar 
measure on V dual to dy. 

For w=(w1, •' ·, Wn) E Q(Kxr, put 
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n n 
w(P(x))= D w;(P;(x)) and w(P*(y))= f1 w;(Pf(y)). 

i=l i=l 

Further put 

(for the definitions of land l*, see § 1.2). 
Consider the integrals 

Z;(w)(f)=f (w/w2)(P(x))f(x)dx 
v, 

(f e 5/'(V), 1 ~ i <11) 

and 

Z1(w)(f*)=f (w/wi,)(P*(y))f*(y)dy (f* e 5/'(V*), l 5,,j :S11). 
v• J 

It is clear that Z;(w)(f) (resp. Z1(w) (f*)) are absolutely convergent for 
Rew,>l; (l::;;i<n) (resp. Rew;>lt (I::;;i::=:;;:n)) and represent holomor­
phic functions in {we Q(Kxt; Rew;>A; (1 <i<n)} (resp. {we Q(Kxt; 
Rew,>lt (1 <i::;;n)}). 

Since the theorem of Denef (see [8, Theorems 3.2 and 7.4] and [9, 
Theorem 3.1]) on the rationality of p-adic integrals, which Igusa used in 
his proof of [17, Lemma 2], can be easily generalized to the case of several 
complex variables (cf. [8, Proof of Theorem 5.1], [2, § 2 Theorem A]), we 
can prove the following lemma in the same manner as in the proof of [17, 
Lemma 2]. 

Lemma 2.1. The functions Z;(w)(f) (1 <i<11,fe 5/'(V)) have analytic 
continuations to rational functions in Q(Kxt in the sense of Section 2.1. 

/',.. 

Moreover for each <fa e (ox)n, there exists a collection of integers {afl>, '. · ·, 
a~>,ba>,m1 ; 1::;;l<h, o::;;m1<[K: QP]dimV} independent of fe5f'(V) 
such that 

are holomorphicfunctions and hence polynomials in q±•1, · · ·, q±•n. 

The same statement holds also for Zj(w)(f*). 

The tempered distributions Z;{w) and Z1(w) defined by 

and 
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Z;(w): Y(V*) ?!f*---+Z;(w)(f*) e C 

are called the zeta distributions associated with (G, p, V) and (G, p*, V*), 
respectively. They depend on w meromorphically. 

2.3. In the following we further assume that 

(A.2) S decomposes into a.finite number of G-orbits. Moreover for 
any G-orbit S' in S, there exists a X E Xi G) x (X =;t= l) such that S' is a 
Gcx)_orbit, where G<x) denotes the kernel of X. 

The assumption (A.2) enables us to analyze relatively invariant distribu­
tions on S=S(K) and singularities of zeta distributions. 

The condition is equivalent to the following: 

(A.2)' S decomposes into a finite number of G-orbits. Moreover for 
any x E S, there exists a X E Xp( G)x (X =;t= 1) such that the restriction of X to 
the identity component of Gx={g E G; p(g)x=x} is nontrivial. 

Define a homomorphism J.i: G__,,.zn by 

(g E G). 

Lemma 2.2. For any x ES, J.i(Gx) is a non-zero submodule of zn, 
where Gx=Gxn G. 

Proof Let s<1) be the p(G)-orbit containing x and S1 be the p(G)­
orbit in S such that Si(K)"':::>S<'l. By (A.2) there exists a XE Xp(G)x 
(X =;t= 1) such that S1 is a G <xl-orbit. Put G<x) = G Cx)(K). Then S C'l is 
G<x)_stable and decomposes into a finite number of GCx)_orbits. Since 
G<xl is a normal subgroup of G, every element in G induces a permutation 
of G<xl_orbits in s<'l. Let G' be the subgroup of G consisting of all 
elements in G which stabilize all G<x)_orbits. It is clear that the index 
[G: G'] is finite. Put G~=G'nGx. Then we have G'=G~-G<xl_ Recall 
that X can be written as X= n:-1X? with r,, • • ·, rn E z. For an m= 
(m,, · · ·, mn) E zn, put <r, m)= Ll:-1 r1mi. IfJ.i(G.,,)={0}, then (r, J.i(G'))= 
<r, J.i(G~-G<xl))=(r, J.i(G~))={0}. Since G' is of finite index in G, we 
have <r, J.i( G)) = {0}. On the other hand X,, · · ·, Xn are multiplicatively 
independent K-rational characters of G and hence G contains a K-split 
algebraic torus T of dimension n such that the restictions of X,, · · ·, Xn to 
T generate a subgroup of the character group of T of finite index. This 
implies that J.i(G) is a subgroup of zn of finite index. This contradicts 
(r, J.i(G))={0}, since r=;t=O. Therefore J.i(G)=;t={0}. 
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Let 

be the p(G)-orbit decomposition of S. The number m of p(G)-orbits is 
finite by the assumption (A.2) and [42, III 4.4 Theorem 5]. We fix a 
p(G)-orbit in S, say s<1J. Let .9"(S<1l) be thee-vector space of locally 
constant functions on S''l with compact support and .9"(S<'))* the space of 
distributions on s<'l. By definition we have .9"(S<1l)* =Homc(Y'(S< 1l), e). 
The group G acts on .9"(S<'l) and .9"(S<1l)* as follows: 

fg(x) = f(p(g)x) 

(gT)(f) = T(fg) 

(f E .9"(S tll), g E G), 

(TE .9"(S (I))*' f E .9"(S (ll), g E G). 

For an(/) E Q(Kxr, we define a continuous homomorphism (/) 0 X: G 
-exby 

n 
w o X(g) = CT w;(X;(g)) (g e G). 

i=l 

Put 

and 

Also put 

.,,...._ 
for <p=(<p1, · · ·, </>n) E (oxr. 

We say that a subset E of 

Q(KX)J=il(KX)ef>, X ... X Q(KX)ef>n ~ en I { ( I~=~ )z} n 

a linear subspace, if there exists a finite number of inhomogeneous linear 
functions L1, • • •, Lt on en such that the coefficients of Si, 0 0 0

, Sn in 
L 1, · · ·, Lt are integral and 

E={(w,,<pi, · · ·, w, </>n); L;(s,, · · ·,s,,) e (-2:!!!_)z(l<i<t)}. 
n Iogq 

Lemma 2.3. If Q(s<1l)9 is not empty, then Q(S<'l)9 is a linear subspace 
of Q(Kx);. In fact let m<tJ = (m1il, · · ·, m;/l) (1 < i < r) be a set of 
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generators of the free abelian group v(G.,,) (x e S' 1l). Then for some a= 
(a1, ''·,an) E en, we have 

Proof Assume that Q(SC1l);, is not empty. For w=w,<fa e Q(Kx);, 
w belongs to Q(S' 1');, if and only if (w o X) ·L10 la.,,=L10 .,,, where x e sc1l and 
L10 (resp. L10 .,,) are the modules of G (resp. G .,.). Fix an a e en such that 
wa<fa e Q(S<1l);,, Then w,+a<p belongs to Q(SC1l);, if and only if w, o Xia.,,= 1. 
This is equivalent to the condition that 

n ( 211:i ) I:; mist e -- Z 
i=l log q 

for any (mi, · · ·, mn) e v(G.,,). 

This proves the lemma. 

We define <Cs(w) (we Q(Kxt), Q(S) and Q(S);, in the same way as in 
the definitions of <ff8 ,,,(w), Q(S' 1l);, and Q(SC1l). Then by (A.2) and [17, 
p.1016] we have Q(S)i1=Ur=1Q(S' 0 )i1 and Q(S)=Ur=1Q(S(il), where 
S=S< 1l U ... U scml is the p(G)-orbit decomposition of S. Therefore 
Lemma 2.3 immediately implies the following 

Corollary. Q(S) 91 is a finite union of linear subspaces of Q(Kx);. 

Proposition 2.4. The poles of Zt(w)(f) are contained in Q(S). 

/'-.. 
Proof Fix a <fa e (ox)n. Then by Lemma 2.1 we have 

Zlw,,,.)(f)-~--P_(J,_, w_,<fa_) __ 
'f' " ' CT (1- q-r::t=• a?'•,-bwr, 

1=1 

where P(f, w,<fa) is a polynomial in q±•,, · · ·, q±•n, ay>, b<0 , m1 are integers 
independent off and 1 :-S:::m1 < [k: QP] dim V. Assume that s e en satisfies 
the linear equation 

t aJ1's1+bC!l E (~)z 
J=l log q 

for some I. Then the distribution T on V defined by 

(f e Y'(V)) 

satisfies the identity gT = (w,<fa) o X(g)-1T. We may assume that the 
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integer mi is chosen so that T(/)=/=O for some/ e Y'(V). Since Z;(w,)(f) 
is entire for every f e Y'(V-S), we have T(/)=0 for all/ e Y'(V-S). 
In other words, Tis in tffs(w.<f>). Hence w=w.<f> E Q(S). 

2.4. For w E Q(Kxt, put 

w* = (Jli wf", · · ·, }}1 wf'n) E Q(Kx)n, 

where U =(ui 1) is the unimodular matrix defined in Sectjon l.2. 
The Fourier transform Z;(w) of the zeta distribution Z;(w) is defined 

by Z;(w) (f*)=Z;(w)(!*) (f* e Y'(V*)). Then we have the following 

Theorem kv. If (G, p, V) and (G, p*, V*) satisfy the assumptions 
(A. l) and ( A.2), then the following functional equations hold: 

where I'i/w) (l;;;;i,j~l.i) are rational/unctions in Q(Kxt. 

Proof For f e Y'(V) and/* e Y'(V*), we put 

P(x) = /(p(g)x), 

Then we have 

f*g(y) = f*(p*(g)y) (g E G). 

(/* E Y'(V*)). 

Moreover it is easy to check the following identities: 

Z;(w)((f*gY')=(w 1/w) o X(g)Z;(w)(f*), 

Zj(w*w,.)(fH)=(w 1/w) o X(g)Zj(w*w,.)(f*). 

Therefore by the uniqueness of relatively invariant distributions on 
homogeneous spaces (cf. [17, Lemma 1]), we obtain 

Z;(w )(f*) = I' ,/w )Z j(w*w 1.)(f*) (/* E Y'(Vj)) 

and hence 

(*) Z;(w)(f*)= i; I'iiw)Zj(w*wi.)U*) (f* E Y'(V*-S*)), 
J-1 

where I',iw) is independent off*. It is obvious that I';iw) is a rational 
function on Q(Kx)n. Consider the distribution T,,, on V* defined by 
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(/* e S"(V*)). 

By the identity (*) and Proposition 2.4, T., defines a distribution with 
support in S* for w in U = {w e Q(Kx)n; w $ Q(S), w*m;• $ Q(S*)}. 
Since gT.,=(mJw) o X(g)T, we have T.,=0 unless w*w;• e Q(S*). Therefore 
T.,=0for win U. It follows from the assumption (A.2) and Corollary 
to Lemma 2.3 that U is a dense open subset of Q(Kx)n. Since T., is a 
distribution depending on w meromorphically, we have T.,=0; namely 
the identity(*) holds for all/* e S"(V*). 

Remark 1. As remarked in the introduction, Theorem kP has been 
proved by Igusa ([17]) under the following three conditions: 

1) G is a connected reductive algebraic group defined over a p-adic 
number field and there exists an involution of End (V) defined over the 
base field under which p(G) is stable. 

2) S is an absolutely irreducible hypersurface. 
By the condition 2) there exists a unique (up to a constant factor) irreduc­
ible relative invariant. Let G' be the kernel of its corresponding rational 
character of G. 

3) S decomposes into a finite number of G'-orbits. 
By [39, § 4 Remark 26] the conditions 1) and 2) imply our condition (A.I). 
It is obvious that (A.2) is a natural generalization of the condition 3) 
above. 

Remark 2. One can find many examples of prehomogeneous vector 
spaces satisfying the conditions (A.I) and (A.2) among reductive pre­
homogeneous vector spaces which admit only a finite number of orbits 
classified completely by Kimura, Kasai and Yasukura ([23]). Another 
examples can be obtained in the following manner. Let (G, p, V) be a 
prehomogeneous vector space of commutative parabolic type defined over 
a p-adic number field K. Then the restriction of p to a K-parabolic 
subgroup remains to be prehomogeneous ([26, Prop. 3.21]) and supplies 
us an example with the properties (A.I) and (A.2). In the following 
section we shall examine three examples of this kind. 

Remark 3. It is very likely that the condition (A.2) for a regular 
(G, p, V) implies the same condition for (G, p*, V*). Note that (G, p*, V*) 
inherits the finiteness of G-orbits from (G, p, V) (Pyasetskii [31]). 

§ 3. Calculation of I'-matrices 

3.1. In this section K is a local field of characteristic 0. We denote 
by -t the additive character of K defined by 
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{
exp (21d a), 

,fr(a)= exp(41t'iRea), 

exp (21t'i l 0(tr K/Q (a))), 
p 

if K=R, 

if K=C, 

if K is a finite extension of QP. 

Here 10 stands for the canonical mapping 
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A Haar measure 1 da IK on K is always normalized such that Ida Ix is auto 
dual with respect to ,fr. 

For a quasi-character we Q(Kx), the Tate I'-factor I' x(w) is defined 
by the functional equation 

(3.1) 

where " means the Fourier transformation. The identity (3.1) is nothing 
but the fundamental theorems R, C and kP for the simplest prehomo­
geneous vector space obtained from the standard-one dimensional repre­
sentation of GL(I). 

If K is an archimedean local field, then I' K(w) is given explicitly by 

I'R(l ·lk·sgn(·)6)=i 61t'(l-Zs)/Zr( s-;o )/rc-;+0) (o=O, 1), 

I' c(I · lc · (
1

• j}f2Y) =i 1P 1(21t')1-2•r(s+ l~I) / r( 1-s+ l~I) (p e Z). 

If K is a finite extension of Qv, then 

{(l q-<t-•>)/(1 q-•) 
r K(I • lk·¢( ·))=N(b)·- 112x 

g~-qf• 

/',.. 

where q=N(~), ¢ e ox,fis the conductor of¢, bis the absolute different 
of Kand 

(3.2) I' K(w; .s)=[Kx: (KX)2J-1 I', ¢(.s)I' K(w¢) (we Q(Kx)), 
# 

where ¢ runs through all unitary characters of Kx of order 2. 
Next we recall Weil's result on Fourier transforms of quadratic 

characters. 
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Let Y be a nondegenerate m by m symmetric matrix with entries in 
K. The matrix defines a quadratic character t(luYu) (u e Km) on Km. 
Let \du\J(=\du,\K · · ·\dum\K be the autooual ,Haar measure on Km with 
respect to the pairing (u, v)=t(<u, v)) with (u, v)=u 1v1+ · · · +umvm. 

The following formula for the Fourier transforms of quadratic 
characters was obtained by Weil: 

for some constant r(Y) with absolute value 1 ([50, n° 14, Theorem 2]). 
It is known that 

By considering an element a e Kx as a nondegenerate symmetric 
matrix of size 1, we can define a constant r(a). The constant r(a) depends 
only on sgn(a), the residue class of a in Kx/(Kx)2. As for the explicit 
values of r(a), we quote the following results from [50, n° 26] and [32]: 

and 

(1) if K=C, then r(a)=l for all a E ex, 
(2) if K=R, then r(a)=exp(sgn(a)·rri/4) for a e Rx, 
(3) if K = Qp, then for a e z; 

r(a) = {exp (:i/4) 
exp (-rri/4) 

(p>2) 

(p=2, a= 1 (mod 4Z2)) 

(p = 2, a= -1 (mod 4Z2)) 

l(!:_) exp ((1- p)rd/4) 
r(pa)= p 

,ft(a/8) 

(p>2) 

(p=2). 

3.2. ((Trig(n), Sym(n)): Let G=G<nl=Trig(n) be the group of all 
nondegenerate lower triangular matrices of size n and V = V <nl = Sym (n) 
the vector space of all symmetric matrices of size n. Let p be the rational 
representation of G on V defined by p(g)x=gx 1g (g e G, x e V). With 
respect to the natural K-structure, the triple (G, p, V) is a prehomogeneous 
vector space defined over K with the singular set 

n 

S=USt, 
i=l 

where d;(x) is the determinant of the upper left i by i block of x. For 
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i=n, dn(x)=detx. The character X1 corresponding to dt(x) is given by 

x.(C· · .. :))-(a,·· a.)' (1 <i <n). 

We identify V with its dual vector space via the symmetric bilinear 
form <x, y) =tr xy (x, y e V). Then the contragredient representation p* 
is given by p*(g)y=tg- 1yg- 1 (g e G, x e V). Since dn(x) is a nonde­
generate relative invariant in K[V], (G, p, V) satisfies the condition (A.I). 
Hence the triple (G, p*, V) is also a K-regular prehomogeneous vector 
space and the singular set S* is given by 

n 

S*=U St, St ={Ye V; dt(y)=O}, 
i=l 

where dt(y) is the determinant of lower right i by i block of y. The 
character Xt corresponding to dt(y) is given by 

Therefore we have 

-[~J·. 1 -~ 1ln-1 U - 1 -1 ' 

-1 

( n+l) il.=il.*= 0, ···,0,-2. 

Lemma 3.1. (G, p, V) and (G, p*, V) satisfy the condition (A.2) in 
Section 2. 

Proof We prove the condition (A.2)' by induction on n. For n= l, 
the condition (A.2)' is clearly satisfied. Now assume that the condition 
(A.2)' is satisfied by (G<m>, p, v<m>) (m<n-1). It is easy to see that under 
the action of p(G<n>) every point x in S is equivalent to one of points of 
the following forms: 

(I) 
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(II) 

0 o. · -0 1 0-· -0 
0 0 

0 0 

10---000---0 
0 0 

0 0 

By the inductive assumption we see that S is decomposed into a finite 
number of p(GCnl)-orbits. Therefore it is sufficient to prove the second 
condition in (A.2)' for all points of the form (I), (II) or (III). If x is of 
type (I), then 

0 ~= . . 1 
±110~---0l ! 

· 6 g, }n-l;g,x,'g,-x, 

Hence by the induction hypothesis there exists a character X of the form 
X = n f-2 Xf' (m2, .. •, mn E Z) such that X IG,, is nontrivial. If X is of type 

(II), then G,, includes the group {(a1 In_} a1 e GL(I)}; hence Xi\G,, 

is nontrivial. If x is of type (III), then G x includes the group 

.); t e GL(l)}; hence X1 IG,, is nontrivial. 

In-, 

This proves the lemma for (G, p, V). The proof for (G, p*, V) is quite 
the same; so we omit it. 

Since (G, p*,Y) and (G, p*, V) satisfy the conditions (A.l), (A.2) 
and the singular sets S and S* are hypersurfaces, the fundamental 
theorem holds over an arbitrary local field of characteristic 0. 
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V, ={x e V(K)-S(K); sgn(d;(x))=e 1 ···et (1 ~ i ~n)} 

and 

Vf ={Ye V(K)-S*(K); sgn(dt(y))=en-t+i ···en (1 ~ i ~n)}. 

Then the G(K)-orbit decompositions of V(K)-S(K) and V(K)-S*(K) 
are given by 

V(K)-S(K)= U V., V(K)-S*(K)= U Vt 
sE {KX/(KX)O)n •E {KX/(KX)2)" 

The zeta distributions are defined by analytic continuations of the follow­
ing integrals: 

Z.,(w)(<jJ)=f I1 w<il(d;(x))<jJ(x) Jdxlx ' 
v, t=1 ldetxi~+ 1lt2 

Zt(w)(<jJ)=J f1 w<tl(dt(x))<jJ(x) Jdxlx 
vi t=1 ldetxi~+1lt2 

where ldxlK= n 1:ai:;,J:an Jdxij IK and Jdxij Ix is the Haar measure on K 
normalized as in Section 3.1. 

Theorem 3.2. 

where 
n r ( )-121-n(n-1)/4 n r( ) n r ( (i) (n) . ) q w - x c/1)1 x w · · ·w Wc1-i)/2, ei1Ji 

1:;;i<J:;;n i=l 

and w* =(w<n-1>, · · ·, w<1>, (w<1i • • , w<nl)-1). (For the definitions of r(a) 
and I' x(w; e), see§ 3.1.) 

Proof By Theorem R, Theorem C and the combination of Theorem 
k~ with Lemma 3.1, the functional equation holds for some meromorphic 
functions I'q(w). Therefore it is enough to calculate I',iw) for <jJ e 
Sl'(V(K)) with support in V(K)-S*(K) and for w with sufficiently large 
real part. This restriction on w and <jJ assures the convergence of all 
integrals appearing in the following calculation. First we note that the 
formula for I'q(w) is an immediate consequence of(3.1) and the definition 
(3.2) of I' x(w; e), if n= 1. Let us prove the formula for general n by 
induction on n. 
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Since any x e v. can be decomposed as 

Z,(w )(<fa) =Z,(w )(¢) 

= f If w<il(d;(x1)) · (w<n-l)w<nlw_112)(dn_i(x1)) jdxiJx 
. v~:'- 1 ' t=l jdetx 1!1/2 

xf \dYlx f (w<nlw(l-n)12)(a)¢((~ y )) \da\x, 
xn-1 v~~' ty a+ tYXi"IY jajK 

Applying the theorem for n = 1 to the integral with respect to a, we get 

where 

¢i( (; :*)) = L,n-ll(K)xKn-1 <p( (;: ~=)) 
X f(tr X1xt+2 tyy*)\dxtlKldy*lx• 

The integral with respect to y can be calculated by using (3.3) and the 
formula 

Thus we have 

xf (w1/w<n))(a*) jda*lx f jdy*lx 
yClJ la* I Kn-, 

~n K 

X f v<:,-1J I( w<tl(dt(x1)) ·(w<n-l)w<nl)(dn_i(x1)) 

• 
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where 

Since 

it follows from the induction hypothesis that 

Z,(w)(¢)= I2JKn(n-1)/4 
n-1 

I:: n r(eir;n)I' x(w(n)w(l-n)/2; en1Jn) 
'l)nE.KX/(KX)2 i=l 

n-1 
X I:: n r(eir;j) n I' x(W(i) .. -w<n)w(l-i)/2; eir;i) 

r;'=(1J1,···,1Jn-1) I:::;;.i<j:5:.n-1 i=l 

Remark. Theorem 3.2 for K=R was used previously in proving 
[36, Theorem 8 (3)], where the proof was omitted. Micro-local calculus 
provides us another method to prove Theorem 3.2 for K =R. The 
calculation of I',/w) for K =R based on the method was carried out by 
T. Miwa several years ago (unpublished, see also [48]). 

3.3. (Trig(n)XTrig(n), M(n)): We now consider the group G= 
Trig (n) X Trig (n) and the vector space V = M(n) of n-rowed square 
matrices. We define a rational representation p of G on V by p(g 1, g2)x 
=g 1xtg 2• With respect to the natural K-structure, the triple (G, p, V) is a 
prehomogeneous vector space defined over K with the singular set 

n 

S=U {x EV: d;(x)=O}, 
i=l 
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where d;(x) is the same as in Section 3.2. The character X; corresponding 
to d;(x) is given by 

(1 ~i~n). 

Since dn(x)=det x is a nondegenerate relative invariant, (G, p, V) is K­
regular. 

We identify V with its dual vector space via the symmetric bilinear 
form <x, y) =tr txy (x, ye V). Then the representation p* contragredient 
to p is given by p*(g 1, g2)y=tg 11yg21 and the triple (G, p*, V) is a K­
regular prehomogeneous vector space with the singular Eet 

n 

S*=U {y E V; df(y)=O}. 
i=l 

The character corresponding to df(y) is given by 

xr( r· ... :J r~ ... :J) ~(a. , .... -a.) '·(b,_,,, . . -b.) '. 

From the formulas for X; and X:" we have 

U= 1 

1 -1 

-1 

-1 

A=A*=(O, · · ·, 0, n). 

Lemma 3.3. ( G, p, V) and ( G, p*, V) satisfy the condition (A.2) in 
Section 2. 

Since the proof is quite similar to that of Lemma 3.1, we omit it. 

It is easy to see that V(K)-S(K) (resp. V(K)-S*(K)) is a single 
p(G(K))- (resp. p*(G(K))-) orbit. The zeta distributions are defined by 
the analytic continuations of the integrals 

Z(w)(cp)=f fI w<il(d1(x))cp(x) \dx\x ' 
V(K)-S(K) i-1 \detxl~ 

Z*(w)(cp)=f fI wCil(d!(y))cp(y) \dy\x 
V(K)-S*(K) i-1 \dety\1 
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where \dx\K=Tii:.t,J:.nldx; 1 \K· The normalization of the Haar measure 
\dx;JIK on Kis the same as in Sections 3.1, 3.2. 

Theorem 3.4. 

Theorem 3.4 can be proved by an inductive calculation similar to 
that in the proof of Theorem 3.2. In the present case the functional 
equation (3.1) is sufficient for the calculation and we need not appeal to 
the formula for Fourier transforms of quadratic characters. 

Remark. One can get an explicit formula for the I'-matrix for 
(Trig(2n)), p, Alt(2n)), where Alt(2n)={x e M(2n); x= _tx} and p(g)x 
=gx 1g, by a similar calculation. In[§ 14, § 4], by using the theory of 
spherical functions on Alt (2n, kv), Hironaka and the author gave an 
explicit formula for the zeta function Z(w)(rp) for w=(w, 1 , • • ·, w,,.) and 
for chAJtczn,o), the characteristic function of Alt(2n, o), which gives another 
method to calculate the I'-matrix. The formula for the I'-matrix for 
(Trig (2n), p, Alt (2n)) has an application to calculation of local densities 
of alternating forms ([15]). The spherical functions introduced in [14] are 
closely related to the zeta functions associated with (Sp(n) X Trig (2n - 2), 
A1®A 1, M(2n, 2n-2)); Theorem 6 in [14] combined with Lemma 3.1 in 
[14] can be viewed as an explicit formula for Z(w)(<p) with w=(w, 1 , • • ·, 

w,,._1) and rp=chMczn,zn-z;o> for various o-forms of the prehomogeneous 
vector space. 

3.4. The vector representation of a maximal parabolic subgroup of an 
orthogonal group: Let Q(x) be a nondegenerate isotropic quadratic form 
in m+2 variables with coefficients in K. We assume that Q(x) is of the 
form 

The matrix of Q is given by 

( 1/2) 
1/2 A 
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Let P be the maximal parabolic subgroup of the orthogonal group 
O(Q)={g E GL(m+2); Q(gx)=Q(x)} defined by 

P(K)-W h 

0 

-atuAu) a E KX, l 
U : U E Km, . 

a- 1 h E O(A)(K) 

We put G=GL(l) XP and denote by p the standard m+2-dimen­
sional representation of G. The representation space V is identified with 
the vector space of column vectors with m+2 components. The GL(l)­
part of G acts on Vas scalar multiplication. Then the triple (G, p, V) is 
a prehomogeneous vector space defined over K with the singular set 

2 

U {x EV; P;(x)=O}, Pi(x)=xm+t, Pz(x)=Q(x). 
i=l 

The character Xi corresponding to Pi is given by 

(i = 1), 

(i=2). 

Since Pz(x) = Q(x) is a nondegenerate relative invariant, (G, p, V) is ~K­
regular. 

Now we identify V with its dual vector space via the symmetric 
bilinear form (x, y)=x 0y 0 + · · · +xm+iYm+i· Then the representation p* 
contragredient top is given by p*(t,p)y=t- 1 'p- 1y (t E GL(l), p E P, y eJV). 
The triple (G, p*, V) is a K-regular prehomogeneous vector space with the 
singular set 

2 

S*=U {y EV; Pf(y)=O}, Pf(y)=Yo, P;(y)=Q*(y), 
i=l 

where Q* is the quadratic form defined by 

with A- 1 =(a[j). 

The character Xf corresponding to Pf(y) is given by 

(i= 1) 

(i =2). 
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From the formulas for Xi and Xf we have 

U=(l -1) 
0 -1 ' 

l=2*=(o, m12). 
Lemma 3.5. (G, p, V) and (G, p*, V) satisfies the condition (A.2) in 

Section 2. 

Proof We give a proof only for (G, p, V). It is easy to check that 
V admits the following 6 G-orbits: 

(1) V-S, 
(2) {x EV; Xm+1=;t=0, Pz(x)=0}, 
(3) {x E V; Xm+t ==0, Pz(x)=;t=0}, 
(4) {x EV; Xm+1=0, Pz(x)=0, (x1, • • ·, xm)=;t=0}, 
(5) {x EV; X1 = · · · =Xm+1 =0, X0 *0}, 
(6) {0}. 

The group G<x,i (resp. G<x,l) acts transitively on the orbits (2), (4), (5), (6) 
(resp. (3), (6)). This proves the lemma. 

Fors e Kx/(Kx)2, we put 

V,={x e V(K); sgn(Plx))=s}, v:={y e V(K); sgn(P;(y))=s}. 

Then 

V(K)-S(K)= U V, 
•EKX/(KX)2 

and 

V(K)-S*(K)= U V* • •EKXJ(KX)2 

give the G(K)-orbit decompositions of V(K)-S(K) and V(K)-S*(K), 
respectively. 

The zeta distributions are defined by analytic continuations of the 
following integrals: 

Z,((JJ)(</J)= t. w<tl(Pi(x))a/2l(P2(x))<jJ(x) IP2(~~;+2i;2 ' 

z:(w)(</J)= f v~ w<1l(Pt(x))w<2l(P;(x))<jJ(x) IP;~~~l~+zJ;z, 

(w=(w< 1i, wC2l) E Q(KX)2, <p E 9'(V(K))), where \dxlK= nr=;;/ ldxilK is the 
normalized Haar measure on V(K). 
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Theorem 3.6. 

Z,(w)= I: I'q(w)Z1(w*w,), 
a EKX/(KX)2 

where 

I' q(w)=\2\xm 12\det A \x112 

X I: r( -µA)I' K(w<2lw_m/2; µs)I' K(w(i)W(2); µr;) 
µEKX/(KX)2 

Proof We shall calculate I'.lw) for </> e Sf'(V(K)) with support in 
V(K)-S*(K) and w with sufficiently large real part. Changing the 
variable x to y defined by 

{
Yo=Xo+ty'Ay'/~m+1 (y'=t(Yi, · · ·, Ym)) 

Yi=Xi (1 ~I ~m+ 1), 

we have from Theorem 3.2 for n= I the identity 

where 

Ze(w )(</>) =f ( w<1lw (Z)W_ 1m+2J/2)(Ym+ ,)(w<2lw _ (m+2)/2)(Yo) 
Ym+i=F-0 
sgn(YoYm+1) =e 

X ¢(Yo - ty' Ay'/Ym+1, Y', Ym+1) \ dyo \K \dy'\K \ dym+I [K 

X f.gnyi-,1 (wm12/w<2l)(y;) \ dy; \K 

xf (w<'lw<2lw_ (m+2)/2)(Ym+1) \dYm+I \K 
sgnym+1=e 1e: 

xf ,Jt,(-(Y:!Ym+1) ty'Ay')¢i(y;, y', Ym+1)\dy'\K, 
Km 

From (3.3) it follows that 

Z.(w)(<f>)= \2\xm12\detA\x' 12 

X I: I: r K(w<2lw_m/2; s,r;1)r(-e11J,cA) 
siEKX/(KX)2 ",1EKX/(KX)2 
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xf (w<tlw<2lw_1)(Ym+1)t(Ym+1 ty*'A-1y*') 
sgnym+l~,,, 4yf 

·¢iyf, y*', Ym+1)ldYm+1lx, 

where 

Applying Theorem 3.2 for n= I to the integral with respect to Ym+t, we 
obtain 

X f Km \dy*'lx tgny;';.+1~~2 (w<1J(1)(2))-l(y;,+1) 

·</J(Yf, y*', Y!+1 _ty*' A- 1y'/4yt)[dy!+1 Ix 

= \ 2 \.Km/2 j det A I.Kl/2 

X :z::_; r(-c11J1cA)I' x(w<2lw_m12; c1r;1)I' x(w<1lw<2l; c17J2c) 
El, 1)1, 7)2 

X J.gn P!(y*) ~~, (1) (ll(P ;1'(y*))(w(m+2)/2/w<1)(1) (2l)(P ;(y*))ifJ(y*) 

sgnP;(y*)~~1~2 • Jdy*Jx 
I P;(y*) JJ.r+2)/2 . 

In the right hand side of the identity above, we put µ = c1r;1c and r; = r;1r;2. 
Then it is easy to see that the right hand side is equal to 

l21.Km/2[detAJK112 :Z::: Z;(w*w,)(</J) 
~ 

x:z::_; 7(-µA)I' x(w<2lw_m12; µs)I' x(w<1lw<2l; µr;). 
µ 

This completes the proof. 

Remark. Theorem 3.6 for K =R has been already obtained by 
Muro (private communication). His calculation is based on the method 
of micro-local calculus. 

3.5. Observation. It is remarkable that the entries of the I'-matrices 
calculated in Theorems 3.2, 3.4 and 3.6 have the following form in 
common: 
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where a0 is a completely elementary constant, the coefficients ci involve 
constants of rather delicate nature such as r(Y), the arguments e/w) of 
Tate I'-factors are determined by the b-function of a prehomogeneous 
vector space under consideration and XiJ are unitary characters of K. 
Only ci and XiJ depend on open orbits in V(K)-S(K). It seems to be 
a fairly general phenomenon that the entries of I'-matrices can be written 
in the form above, if independent relative invariants P 1, • • ·, P n are 
suitably normalized. The recent results of Muller [25] and Igusa [18] as 
well as the formula for I'-matrices over R obtained by the method of 
micro-local calculus (cf. [19], [22, Theorem 7.10], [28]) support this expec­
tation. In particular it is expected that the exponential polynomials ti/s) 
in Theorem R are also under the control of b-functions. In the results of 
Muller the coefficients ci are expressed in terms of the coefficients of the 
Fourier transforms of quadratic characters, on the other hand in the 
formula based on the micro-local calculus they are expressed in terms of 
the Maslov indices; it is noteworthy that they are determined by signatures 
of certain quadratic forms in both cases. 

§ 4. Zeta functions as distribution 

4.1. Let V be a finite dimensional Q-vector space. A complex 
valued function <fa on Vis called a Schwartz-Bruhat function, if there exist 
two lattices L 1 and L 2 in V such that the support of <fa is contained in L 1 

and <fa(x)=<fa(x') whenever x-x' E L2• We denote by Y(V) the vector 
space of all Schwartz-Bruhat functions on V. Let V* be the vector space 
dual to V. 

Now we fix a lattice L 0 in V and let Lt be the lattice in V* dual to 
L 0• Define a Fourier transform ¢ of <fa E Y(V) by setting 

' 1 
<fa(y)= [Lo: 

I: <fa(x)e2•i(x, y) 

XE V /L 
(y E V*), 

where Lis a sublattice of L 0 such that y is in the lattice L* dual to Land 
<fa(x)=<fa(x') if x-x' EL. It is easy to see that ¢(y) is independent of the 
choice of L and ¢ defines a Schwartz-Bruhat function on V*. The 
Fourier transformation <fa.-+¢ induces a linear isomorphism of Y(V) onto 
Sf'(V*). 

Let Sf'(V)' be the dual space of Y(V). We call an element in Y(V)' 
a distribution on V. For a distribution TE Sf'(V*)', the Fourier transform 
f ( E Y(V)') is defined by T(<fa)= T(¢) (<fa E Y(V)). 
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Put V(R)= V®aR and denote by Y'(V(R)) the vector space of all 
rapidly decreasing functions. Let dx be the Euclidean measure on V(R) 

normalized by f dx= 1. We define a Fourier transform / off e 
V(R)/Lo 

Y'(V(R)) by 

/(y) =f f(x)e-2,i(x, Yldx. 
V(R) 

The function / is a rapidly decreasing function on V*(R)= V*®aR. 
For an/ E Y'(V(R)) and a¢ E Y'(V), the following variant of the Poisson 
summation formula holds: 

I,; f(m)p(m)= I,; /(m)i,(m*). 
mEV m*EV"' 

Remark. The Poisson summation formula above is essentially an 
interpretation of the Poisson summation formula on the adelized vector 
space V(A). 

4.2. Let (G, p, V) be a prehomogeneous vector space defined over 
the rational number field Q and S its singular set. Let S1, • • ·, Sn be the 
Q-irreducible hypersurfaces contained in S and fix a Q-irreducible poly­
nomial P; defining S; for each i=l, · · ·, n. We assume that 

(4.1) for any x E V(Q)-S(Q), the identity component of Gx= 
{g E G; p(g)x=x} has no nontrivial Q-rational character. 

Under this assumption we shall define a relatively G(Q)-invariant 
"measure" on V(Q)-S(Q). 

Let G+ be the connected component of the identity element of G(R). 
Let V(R)-S(R)= V, U ···UV, be the G+-orbit decomposition. Let dg 
be a right invariant measure on G+ and d~(x) be a relatively G+-invariant 
measure on V(R)-S(R) with multiplier il(h)=d(hg)/dg. The existence 
of such a measure is assured by ( 4.1) and can be normalized as follows: 

n 

d~(x)= f[ \P;(x)\- 0'dx, 
i=l 

where 01, • • ·, on are some rational numbers (see [35, § 4]). 
For any XE V;, we normalize a Haar measure dµx on G;=Gxn a+ 

by the formula 

f f(g)dg=j d~(p(g)x)f f(gh)dµx(h). 
o+ a+;ot at 
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Put x' = p(h)x (h e G+). Then the mapping g~hgh- 1 induces an isomor­
phism of G; onto G;, and the pull back of the measure dµ,,, by the 
isomorphism coincides with dµ,,. 

Let C 00 (V(Q)-S(Q)) be the space of all complex valued functions 
on V(Q)-S(Q) invariant under some arithmetic subgroup of G(Q) and 
9'(V(Q)-S(Q)) the subspace of C 00 (V(Q)-S(Q)) consisting of all 
functions whose supports are contained in a finite union of orbits of some 
arithmetic subgroup of G(Q). 

We fix an arithmetic subgroup I' 0 of G(Q). For anfe 9'(V(Q)­
S(Q)), one can find an arithmetic subgroup I' of G(Q) contained in G+ 
and rational points Xi, • • ·, xm e V(Q)-S(Q) such that 

m 

(4.2) f(x)= I:; cichr,,,c(x) (ct e C), 
i=l 

where chr,x, stands for the characteristic function of p(I')x,. 
Define a linear formµ on 9'(V(Q)-S(Q)) by 

(4.3) µ(/)=[I': I'o] i: Ct f dµ,,,, 
i=l G'Ji/r.,, 

where [I': I' 0] =[I': I' n I' 0]/[I' 0 : I' n I' 0] and I',,,= I' n G;,. Note that 
the right hand side of (4.3) is finite by the assumption (4.1). 

In order to see that µ(f) is independent of the decomposition ( 4.2) 
off, we need the following lemma. 

Lemma 4.1. Let I' 1 and I' 2 be two arithmetic subgroups ofG(Q) n G+ 
with I' 1--:::)I'2• For an x e V(Q)-S(Q), let 

be the I' 2-orbit decomposition. Then 

Proof. Fox a 7teI' 1 such that Xt=p(r,)x for eachli=l, ···,t. 
Then we have the double coset decomposition 

Hence 
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t 

[I'1: [\]= I: #(I'2\I'2f;I'1,:r;) 
i=l 

t 

=I: [r;I'1,,:n-1: I'2nr;I'1,xr; 1] 
i=l 

t 

=~ [I'1,,,,: I'2,xJ 
t=l 

Since x and X; are equivalent under I' 1, we have 

Therefore 

[I'2: I'o1·±f dµ:r;i=[I'2: I'o1·f dµ,,-t[r1,r,: I'2,x,1 
i=l Gi/I'2,:ei Gt /I'1,:c i=l 

=[I'1: I'2][I'2: l'o]·f dµ,, 
at 1r1,:i: 

=[I'1: I'o] f dµr. 
at1r,.,. 

In view of ( 4.3) the identity in Lemma 4.1 implies that 

t 

µ(chr,-x)= I; µ(chr 2 .,,,); 

i=l 

this shows that µ(f) is independent of the decomposition ( 4.2) to f Thus 
µ determines a positive linear functional on .9"(V(Q)-S(Q)). 

For age G(Q) we put 

o(g)=[grg-1: r1 

= [grg- 1 : r n grg- 1J/[r: r n grg- 1J. 

Then it is easy to check that o(g) is independent of the choice of an 
arithmetic subgroup I' of G(Q) and defines a homomorphism of G(Q) 
into Q>;. 

For a g e G(Q) and an f e .9"(V(Q)-S(Q)), put Kf(x)=f(p(g- 1)x). 
Note that Kf is also in .9"(V(Q)-S(Q)). 

Lemma 4.2. For any g e G(Q) and any f e .9"(V(Q)-S(Q)), we have 
µ(Kf)=o(g)µ(f). 

Proof It is sufficient to prove the lemma for f=chr.x· Then, by 
definition, we have · 
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Since the pull back of the measure dµgx coincides with dµx, the right hand 
side of the identity is equal to 

[gI'g- 1 : I'][I': I'o] f dµx=o(g)µ(chr,x). 
GJ'/I':c 

By Lemma 4.2 we may regard µ as a kind of relatively G(Q)-invariant 
measure on V(Q)-S(Q) with multiplier o. In this sense we often write 

µ(f)=f f(x)dµ(x) (f e Y(V(Q)-S(Q))). 
VCQ)-S(Q) 

Moreover for a subset E of V(Q)-S(Q) such that the characteristic func­
tion chE of Eis in C00 (V(Q)-S(Q)), we write 

(f e Y(V(Q)-S(Q))). 

If chE is in Y(V(Q)-S(Q)), then the value µ(chE) is called the volume (or 
density) of E and is simply written as µ(E). 

For an/ E C00 (V(Q)-S(Q)), take a I' such that f is p(I')-invariant 
and write 

f = I; Cx·Chr,x 
xEI'\V(Q)-S(Q) 

(ex EC). 

If the infinite series I:xEr\VCQJ-scQJ \ c, \µ(I'· x) is convergent, then we call 
the function fan integrable function ( with respect to µ) and put 

µ(f) =f f(x)dµ(x) = I; cxµ(I' · x). 
V(Q)-S(Q) xEI'\V(Q)-S(Q) 

The value µ(f) is independent of the choice of I'. 

4.3. For s=(s 1, • • ·, sn) E en and i (I~ i ~v), we define a function 
IP\;-s on V(R)-S(R) by 

Ip( ) 1-s_ (I] \P;(x)\-'J 
X [i - J-1 

0 

(x E V,), 

(x $ Vi). 

Then the restrictions of \P(x)\ 18, • • ·, \P(x)\;;-s to V(Q)-S(Q) define 
functions in C00 (V(Q)-S(Q)), which we denote by the same symbols. 
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The restriction <falv(QJ-S(QJ of <fa E Y'(V(Q)) also defines a function in 
c=(V(Q)-S(Q)). 

We define distributions Zi(s) (1 ~ i ~l.i, s E en) on V(Q), which we 
call the zeta distributions associated with (G, p, V) over Q, by 

Zi(s): Y'(V(Q)) 3 <fai---+Zi(s)(<fa)=J [P(x)[,:-'<fa(x)dµ(x) EC. 
V(Q)-S(Q) 

Here we must assume the following condition, which assures the existence 
of the zeta distributions: 

(4.4) If Re s1, • • ·, Re sn are sufficiently large, then the function 
\P(x)li 8 ·<falv(QJ-S(QJ is integrable for all i=l, · ·, l.i and all <fa E Y'(V(Q)). 

It is a conjecture that the assumption ( 4.1) implies ( 4.4). 

Let I' be an arithmetic subgroup of G(Q) such that [P(x)[,:-' (1 ~i~l.i) 
and <fa(x) are I'-invariant. Then by definition we have 

Zi(s)(<fa)= I; <fa(x)µ(I' ·x)/fl [P/x)[s;_ 
xEI'\V(Q) nv, j-1 

In particular, if <fa is the characteristic function of a I'-invariant lattice L 
in V(Q), then 

(4.5) 

The right hand side of (4.5) is nothing but the zeta functions associated 
with (G, p, V) introduced in [40] and [35, § 4]. Therefore the condition 
(4.4) can be rephrased into the usual assumption on convergence of zeta 
functions (cf. [35, (4.3)]). Notice that, if Zh)(chL) is absolutely con­
vergent for an L and sufficiently large Re s1, • • ·, Re sn, then so is Z;(s)(<fa) 
for all <fa E Y'(V(Q)). 

4.4. The above argument clarifies the meaning of zeta functions. 
Consider the zeta functions ( 4.5) and assume that P 1, • • ·, P n take values 
in Z on L. For an n-tuple m=(m 1, • • ·, mn) of positive integers, let 
A,(m; L) be the set of all solutions in L n Vi of the simultaneous Dio­
phantine equation 

(4.6) {
Pi(x~= ±m1, 

Pn(X)= ±mn. 

In general the set A,(m; L) of solutions of (4.6) may be an infinite set. 
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However we can measure the density of At(m; L) by using µ and the zeta 
function (4.5) can be transformed into the following form: 

00 

Zh)(chL)= ~ µ(Ai(m; L))m:;;,;•. · -m:;;,~"-
m1,···,mn=1 

From this expression one sees immediately that the zeta function has an 
intuitive meaning as a generating function of the densities of solutions of 
the Diophantine equation (4.6). 

Remark 1. The idea of measuring the densities of solutions of 

Diophantine equations by using integrals of the form f dµ,, goes back 
at1r,,, 

to Siegel's work on the arithmetic of indefinite quadratic forms ([45], [461). 

Remark 2. Let G(Q) be the completion of G(Q) with respect to the 
subgroup topology defined by the family of arithmetic subgroups of G(Q). 
Let 

X =lim proj I'\(V(Q)-S(Q)), 
r 

where I' runs through arithmetic subgroups of G(Q). Then Xis a totally 
disconnected locally compact topological space and G(Q) acts topologically 
on X. Moreover Y(V(Q)-S(Q)) can be identified with the space of 
locally constant functions with compact support on X. The linear 
functional µ defined above induces a relatively G(Q)-invariant measure on 
X and o: G(Q)-+Q~ coincides with the restriction of the module of G(Q) 
to G(Q). In this sense µ is really a measure. The space X is closely 
related to the space CT;(V(Qv)-S(Qv)) of finite adeles; however X does 
not coincide with it in general, unless (G, p, V) is universally transitive in 
the sense of [18]. 

and 

4.5. In the following we assume that 

(4.7) (G, p, V) is Q-regular 

(4.8) The singular set Sis a hypersurface in--V, 

as well as the conditions ( 4.1) and ( 4.4). 
We employ the same notation as in Section 1.1 and Section 1.2 for 

K=Q. Then the prehomogeneous vector spaces (G, p*, V*) dual to 
(G, p, V) satisfies automatically the assumptions (4.1), (4.7) and (4.8). 
Recall that the number of Q-irreducible components, (all of which are of 
codimension 1 by (4.8)), of the singular set S* of(G, p*, V*) is equal to 
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n ( = the number of Q-irreducible components of S). Let S* =St U · · -
U S! be the decomposition of S* into Q-irreducible hypersurfaces and take 
a Q-irreducible relative invariant Pt defining St for each i = l, · · ·, n. 
Let V*(R) - S*(R) = Vt U · · · U Vt be the G+-orbit decomposition. 
Here the number of G+ -orbits in V*(R)-S*(R) coincides with Ii ( = the 
number of G+-orbits in V(R)-S(R). 

We are able to define the zeta distributions Zt(s) (1 <i <Ii) on 
V*(Q) associated with (G, p*, V*) in the same way as for (G, p, V): 

Zt(s)(qS*) =f \P*(y) \;•qS*(y)dµ*(y) 
V*(Q) -S*(Q) 

(qS* e 9"(V*(Q))), 

where 

if y e Vt n V*(Q), 

otherwise. 

We assume the condition (4.4) also for (G, p*, V*). 
Let D 0 (resp. Dt) be the set of seen, for which Z;(s)(qS) (resp. 

Zt(s)(qS*)) are absolutely convergent and D (resp. D*) be the convex 
hull of D0 U (Di\" u- 1 + ;l) (resp. Di\" U (D0 - J.) U). 

Now the main result in the theory of zeta functions associated with 
prehomogeneous vector spaces can be stated in the language of distribu­
tions on V(Q) and V*(Q) as follows: 

Theorem Q. (1) The distributions Z;(s) (resp. Zt(s)) have analytic 
continuations to distributions depending meromorphically on s in D (resp. 
D*). 

(2) The following functional equations hold for s e D: 

" 
Zt((s-}.)UY'=I: I'1h-o)Zh), 

J-1 

where (I'tis)) is the I'-matrix appearing in Theorem R in Section 1.3 and o 
is an n-tuple of rational numbers appearing as exponents of \P;(x)\ in the 
definition of d:(x) in Section 4.2. 

In the present formulation, the analogy of Theorem Q with Theorem 
R and Theorem kµ is quite obvious. 

The proof of Theorem Q is the same as in the proof of [35, § 6 
Theorem 2]. The only necessary modification is that the Poisson summa­
tion formula should be applied in the form given in Section 4.1. It is 
known that D and D* coincide with whole of en, if G is reductiYe (see 
[35, § 6 Corollary 1]). 
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Remark. Hoffman [16] independently introduced the space Y(V(Q)) 
and studied the zeta function Z;(s)(<j>). His aim is to establish funda­
mental properties of zeta function of Hurwitz type associated with 
prehomogeneous vector spaces of parabolic type whose special values 
contribute trace formulas for Hecke operators (see also § 4.7). 

4.6. Our zeta functions Z;(s)(</>) (=the value of the zeta distribution) 
are more general than the zeta functions treated in [40] and [35], because 
the consideration in these papers was restricted to characteristic functions 
of lattices in V(Q). As is seen in the following, by specializing <J> E 

Y'(V(Q)) suitably, one can obtain several interesting Dirichlet series. 

(A) Zeta jimctions of Hurwitz type: Fix an a E V(Q) and a lattice 
L. Let <J> be the characteristic function of a+L. Then Z;(s)(</>) can be 
regarded as a generalization of the Hurwitz zeta function ((s, a)= 
I:::'-o(n+a)- 8 (0<a::=;l) to prehomogeneous vector spaces. Since the 
Fourier transform of <J>=cha+L is given by 

the zeta function Zj'(s)(¢) is a generalization of (*(s, a)= I:::'-i e2"inan-s. 

Aside from the original Hurwitz zeta function, several examples of 
zeta functions of this type have appeared in literatures. In [3] Bushnell 
and Reiner proved a functional equation satisfied by "Hurwitz series" 
associated with a semisimple algebra over Q. From our point of view 
their result can be interpreted as follows. 

Let A be a finite dimensional semisimple Q-algebra and Ax the group 
of invertible elements in A. We consider Ax as (a set of Q-rational points 
of) an algebraic group defined over Q. Then the action of Ax on A from 
the left provides us a typical example of prehomogeneous vector spaces 
defined over Q, which we denote by (Ax, p, A). It is easy to see that the 
triple (AX, p, A) satisfies all the assumptions in the present section. 

Let A= A1 X · · · X An where Ai is a simple Q-algebra. Let 

where NrA, is the reduced norm of Ai. Then P 1, ···,Pr are Q-irreducible 
relative invariants of (Ax, p, A) and the singular set S is given by 

S=l) {x EA; P;(x)=0}. 
i=l 

Let Zi(s1, · · ·, sr), · · ·, Z.(s 1, · · ·, sr) (v = the number of connected com­
ponent of Ax(R)=A®R-S(R)) be the zeta distributions associated with 
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(AX, p, A). Taking <jJ=cha+L with a e A and a full Z-lattice L in A, we 
obtain a zeta function Z(si, · · ·, s,)(cha+L)= l:;i=I Zh 1, • • ·, s,)(cha+L) of 
Hurwitz type. Since Ax is reductive as an algebraic group, the zeta 
function can be continued meromorphically to whole of C'. The Hurwitz 
series considered by Bushnell and Reiner is the function Z(s, · · ·, s)(cha+L) 
obtained by restricting the variable (s1, • • ·, s,) to the diagonal 
{(s, · · ·, s); s e C}, In order to make the functional equation explicit, 
we need the explcit formula for the I'-matrix (I';i{s)) entering into the 
functional equation. For the present example the formula for (I';is)) 
is well-known (see e.g. [25, p. 497]). 

In their proof of the functional equation in [3], the authors first 
reduce the things to the case of simple Q-algebra, and then two subcases 
are distinguished according as A satisfies the so-called Eichler condition 
or not. They posed a problem of finding a method applicable equally to 
both cases. The theory of prehomogeneous vector spaces supplies the 
demand. 

One can find another discussion on zeta functions of this type in [6]. 

(B) L-functions associated with prehomogeneous vector spaces: 
Fix a positive integer N and let X,, · · ·, Xn be Dirichlet characters defined 
modulo N. (In the following the characters corresponding to relative 
invariants do not appear; hence the notation will not cause any confusion.) 
As usual we set X;(m)=O, if(m, N)=/=l. 

Let L be a lattice on which P,, · · · , P n take integral values. Consider 
the function <pi =<pz,, ... ,zn E 9'(V(Q)) defined by 

n 

<fai{x)= l:: n X;(P;(y))chy+NL(x). 
yEL/NL i=l 

We define L-functions Li(s; X) (1 <i ~J.J) associated with (G, p, V) by 
the formula 

Li(s; X)=Zh)(<fax)= xer~nvi µ(I' ·x) )Ji XiPlx)) / ft \Plx)\' 1, 

where I' is an arithmetic subgroup of G(Q) satisfying p(I')(y+ NL)= 
y+NL for ally e L/NL. 

To write down the functional equation explicitly, we must calculate 
the Fourier transform rfaz of <fax· It is easy to check the following identity: 

(4.9) rfaz(x*)=[NL: Lo] l:; Gxop(y*)chy*+L•(x*), 
y*EN-lL*/L* 

where 
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n 
Gxop(y*) = I:; Il X,(P;(y))e 2•i(y, y*J. 

yEL/NL i-1 

Thus the calculation of <fax is reduced to the calculation of a kind of 
Gaussian sums GxoP• 

This is the problem solved by Gyoja and Kawanaka ([10], [11]) under 
the conditions 

(4.10) (i) (G, p, V) is a regular irreducible prehomogeneous vector 
space equipped with a natural Z-structure, 

(ii) N=p is a sufficiently large prime number. 

In the rest of this paragraph we assume these two conditions. 
To describe the result of Gyoja and Kawanaka, we need some 

notational preliminaries. By ( 4.10) (i) the singular set S is an absolutely 
irreducible hypersurface defined over Q; hence n = I. Let P(x) (resp. 
P*(y)) an irreducible relative invariant of (G, p, V) (resp. (G, p*, V*)), 
which is unique up to constant multiple, such that P(x) (resp. P*(y)) 
takes integral values on the lattice L (resp. L*) defining the Z-structure of 
(G, p, V) (resp. (G, p*, V*)). 

Let b(s) be the b-function of (G, p, V), namely the polymomial in s 
defined by the formula 

P*(gradx)P(X) 8 +I =b(s)P(x)s 

(cf. § 1.3). It is known that b(s) is a polynomial in s of degree d=deg P 
and all the roots of b(s)=O are rational numbers. 

Let 

d 

bexp(t)= fl (t-exp(-2niaJ)), 
jd 

where a 1, ···,ad are the roots of b(s)=O. Then b0xP(t) can be expressed 
as a product of cyclotomic polynomials. We define non-negative integers 
m(/) (/~I) by 

bexp(t)= n <l>i(t)m<l), 
z-1 

where <1>1 is the /-th cyclotomic polynomial. 

Theorem FP ([1 I]). Let X be a Dirichlet character defined modulo p of 
order ord X. Then the following identity holds: 

GxoP(p-ly*) =e(X)p(dim V -m(Ord x))/2cx-100)(P*(y*)) 

(y* e L*, P*(y*)$0 (modp)), 
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where .s(X) is an algebraic number with absolute value 1 and 

{
trivial character, 

8 = the Legendre symbol (; ) , 

if dim V/d e Z, 

if dim V/d E _!_+ Z. 
2 
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In order to see the analogy of Theorem FP to Theorem R, kP and Q, 
it is enough to note that a Dirichlet character defined modulo p can be 
regarded as a (quasi-)character of the multiplicative group F£ and the 
Gaussian sum Gx,P is the Fourier transform of X o P over V(Fp). 

Corollary to Theorem FP ([11]). lfm(ordx)=O, then Gx,P(p- 1y*)=O 
(y* EL*, P*(y*)=O (modp)). 

Now we denote by Lt(s; x- 1®0) the L-function associated with 
(G, p*, V*). 

Theorem L. Let X be a Dirichlet character de.fined modulo p with 
m(ord X)=O. Then the L-functions Lh; X) and Lj(s; x- 1®0) are continued 
analytically to entire functions of s and satisfy the following functional 
equation: 

L'i'-( dim V 
i d 

s, x-100 )= p(2ds-dimV)/2.s(x)-l[Lo: L] 

..f, I' ( dimd V )LJ(s,· X). x~ 1 ji s 

Proof From Theorem Fp, Corollary to Theorem FP and (4.9), it 
follows that 

shx(x*)=[pL: Lo].s(X)pdlmV/2 l: (x- 1®0)(P*(y*))chy*+pL*(px*) 
y*EL*/pL* 

for any x* E V*(Q). Hence by Theorem Q we get the functional equation 
of the £-functions. The formula for ¢x shows that the points belonging 
to S* make no contribution to the Poisson summation formula at the end 
of Section 4.1. Therefore the £-functions can be continued to entire 
functions. 

Theorem L generalizes Stark's result on £-functions of quadratic 
forms ([47]). His result corresponds to a Z-form of the prehomogeneous 
vector space (GL(l) XSO(n), A1, V(n)) such that the group of real points of 
SO(n) is compact. 
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Remark 1. If m(ord X)=;t:O, ¢x does not vanish on S*(Q). Therefore 
the left hand side of the functional equation in Theorem L does not coin-

cide with Lt ( di~ V -s, x-100 ), but involves some mysterious terms in 

addition. Moreover by the same reason the £-function L;(s; X) may have 
poles, even if X is a nontrivial character. This explains the observation 
of Datskovski and Wright that the £-functions of a nontrivial cubic 
character associated with the vector space of binary cubic forms have a 
simple pole ([7, p. 30]). Another example of £-functions with poles was 
studied by Arakawa [l]. He calculated the residues of £-functions attached 

to the ternary quadratic form x2 -yz and the character (; ) given by the 

Legendre symbol ([l, Theorem 1.ll]). 

Remark 2. In many cases the constant c:(X) can be expressed in 
terms of the classical Gaussian sums. For explicit calculation of c:(X), we 
refer to [4]. In [5], Christian calculated s(X) for (GL(n) X SL(n), A 1®A 1, 

M(n)) by using the fact that s(X) appears as a coefficient of the functional 
equation satisfied by certain twist of Koecher-MaaB series (=zeta function 
associated with (SO(m)XGL(n), A 1®A 1, M(m, n)) (m;;:;;n)). 

Remark 3. There exists another application of Theorem FP due to 

Weissauer ([51]). From Theorem FP for ( GL(n), 2A1, v( n(ni l))) he 

derived that certain twist of Siegel modular forms by Dirichlet characters 
are again Siegel modular forms. 

Remark 4. The original motivation of Gyoja and Kawanaka for 
their study of Gaussian sums of prehomogeneous vector spaces was not 
£-functions but the fact that this kind of Gaussian sums enters into the 
character formula for certain irreducible representations of finite reductive 
groups (see Kawanaka [21]). 

4.7. In [41] Selberg pointed out that the cusp contribution to the 
formula for the dimensions of spaces of automorphic forms (based upon 
his celebrated trace formula) can be evaluated as special values of certain 
Dirichlet series at integer argument. The theory of prehomogeneous 
vector spaces might provide us a convenient tool of formulating Selberg's 
observation in a more concrete form. Roughly speaking one can expect 
that the parabolic contributions to the dimension formula for a space of 
automorphic forms on a real reductive Lie group with respect to a lattice 
can be expressed in terms of special values of zeta functions of Hurwitz 
type associated with prehomogeneous vector spaces of parabolic type (in 
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the sense of Rubenthaler [33]). This expectation has been confirmed by 
several authors mainly in two special cases, namely the case of Siegel cusp 
forms and the case of lattices of rank 1. 

I) Siegel cusp forms: In [43] Shintani calculated the the purely 
unipotent contributions to the dimension of the space of Siegel cusp forms 
of degree n and of weight k (k>2n+3) and showed that the contributions 
coincide with certain special values of zeta functions associated with the 

prehomogeneous vector spaces ( GL(m), 2A1, v( m(m2+ I))) (1 < m ;;:;; n) 

up to elementary factors. Hashimoto [12] made a detailed investigation 
in the case of degree 2 and found that the contributions of (not necessarily 
unipotent) conjugacy classes can also be expressed in terms of special 
values of certain zeta functions (the Riemann zeta function, the Hurwitz 
zeh function). 

Recently Shintani's calculation was extended in two directions. 
Arakawa considered in [I] the representation µk of the finite symplectic 
group Sp(2n, Fp) on the space of Siegel cusp forms of degree n and weight 
k with respect to the principal congruence subgroup I' 2n(P), p being a 
odd prime. For some unipotent elements a in Sp(2n, Fp), he obtained an 
expression of the purely unipotent contribution to tr µia) in terms of 

special values of L-functions associated with ( GL(m), 2A1, v( m(m2+ I))). 
In this Arakawa's work we encounter the L-function we have studied in 
Section 4.6 (B) and some other type of L-functions. 

In [27], Murase and Sugano extended Shintani's calculation in 
another direction, namely to the dimension formula for the space of 
Jacobi cusp forms. This time in the purely unipotent contribution there 
appear special values of zeta functions associated with the following 
prehomogeneous vector space: 

G={g(h, x)=( ~ I-;-) e GL(m+n); he GL(n), x e M(m, n)}, 

V = {v=(~); V1 E M(m, n), V2=tV2 E M(n)}, 

p(g(h, x))v=g(h, x)v th. 

What is remarkable here is that (G, p, V) is not a regular prehomogeneous 
vector space. Murase and Sugano succeeded in proving the existence of 
analytic continuations and functional equations of the associated zeta 
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functions. Since the existing theory of zeta functions can be applied only 
to regular prehomogeneous vector spaces, their result goes beyond the 
general theory and seems to suggest a possibility of further generalization 
of the theory of prehomogeneous vector spaces. 

2) Lattices of rank l : Let G be an admissible reductive Lie group 
and I' a lattice of rank 1. In [30) Osborne and Warner established the 
trace formula for L~o/'j,(a) (a e C0(G)); however in their result it was not 
clear what kind of zeta functions appear in the parabolic contributions to 
the trace formula. Previous result of Warner ([49)) showed that the Epstein 
zeta function is sufficient to describe the parabolic contribution, if G is of 
R-rank 1 (see also Osborne and Warner [29)). Recently Hoffmann [16) 
extended the work of Osborne and Warner [30) to the trace formula for 
Hecke operabrs. Moreover he succeeded in expressing the parabolic 
contributions, which were still mysterious in [30], in terms of orbital 
integrals and special values of zeta functions associated with prehomo­
geneous vector spaces of parabolic type obtained from split parabolic 
subgroups of centralizers of semisimple elements. 

Kato [20) gave an example of explicit determination of the dimensions 
of automorphic forms on a group of R-rank 1, namely on SU(p, 1). 

It is quite desirable to develop a method of calculating special values 
of zeta functions associated with prehomogeneous vector spaces. As for 
the progress made in this direction, we refer the reader to Satake [34), 
Kurihara [24) and Arakawa [1]; these works were stimulated by the 
pathbreaking work of Shintani [44]. 

Finally we note that the appearence of zeta functions associated with 
prehomogeneous vector spaces of parabolic type in trace formulas has a 
strong resemblance to the appearence of Gaussian sums (zeta functions 
over finite fields) associated with prehomogeneous vector spaces of 
parabolic type in the formulas for characters (evaluated at unipotent 
elements) of certain irreducible representations of finite reductive groups 
(cf. Kawanaka [21) and Remark 4 at the end of Section 4.6). 
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