A Formula for the Dimension of Spaces of Cusp Forms of Weight 1

Toyokazu Hiramatsu

Dedicated to Prof. Ichiro Satake on his sixtieth birthday

Introduction

Let Γ be a fuchsian group of the first kind and denote by d_{1} the space of cusp forms of weight 1 on the group Γ. It would be interesting to have a certain formula for d_{1}. But it is not effective to compute the dimension d_{1} by means of the Riemann-Roch theorem. The purpose of this paper is to give some formula of d_{1} by making use of the Selberg trace formula ([4], [6], [7]).

§ 1. The Selberg eigenspace

Let S denote the complex upper half-plane and we put $G=S L(2, R)$. Consider direct products

$$
\tilde{S}=S \times T, \tilde{G}=G \times T
$$

where T denotes the real torus. The operation of an element (g, α) of \widetilde{G} on \tilde{S} is represented as follows:

$$
\tilde{S} \ni(z, \phi) \longrightarrow(g, \alpha)(z, \phi)=\left(\frac{a z+b}{c z+d}, \phi+\arg (c z+d)-\alpha\right) \in \tilde{S},
$$

where $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$. The space \tilde{S} is a weakly symmetric Riemannian space with the \widetilde{G}-invariant metric

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}+\left(d \phi-\frac{d x}{2 y}\right)^{2}
$$

and with the isometry μ defined by $\mu(z, \phi)=(-\bar{z},-\phi)$. The \widetilde{G}-invariant measure $d(z, \phi)$ associated to the \widetilde{G}-invariant metric is given by

$$
d(z, \phi)=d(x, y, \phi)=\frac{d x \wedge d y \wedge d \phi}{y^{2}}
$$

The ring of \tilde{G}-invariant differential operators on \tilde{S} is generated by $\partial / \partial \phi$ and

$$
\widetilde{\triangle}=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\frac{5}{4} \frac{\partial^{2}}{\partial \phi^{2}}+y \frac{\partial}{\partial \phi} \frac{\partial}{\partial x}
$$

which we call the Casimir operator of \tilde{S}. By the correspondence

$$
G \ni g \longleftrightarrow(g, 0) \in \tilde{G},
$$

we identify the group G with a subgroup $G \times\{0\}$ of \widetilde{G}, and so the subgroup Γ of G with a subgroup $\Gamma \times\{0\}$ of \widetilde{G}. For an element $(g, \alpha) \in \widetilde{G}$, we define a mapping $T_{(g, \alpha)}$ of $L^{2}(\tilde{S})$ into itself by $\left(T_{(g, \alpha)} f\right)(z, \phi)=f((g, \alpha)$ $(z, \phi))$. For an element $g \in G$, we put $T_{(g, 0)}=T_{g}$. Then we have

$$
\left(T_{g} f\right)(z, \phi)=f\left(\frac{a z+b}{c z+d}, \phi+\arg (c z+d)\right)
$$

where $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Let Γ be a fuchsian group of the first kind not containing the element $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)(=-I)$. We denote by $\mathfrak{m}_{r}(k, \lambda)=\mathfrak{m}(k, \lambda)$ the set of all functions $f(z, \phi)$ satisfying the following conditions:
(i) $f(z, \phi) \in L^{2}(\Gamma \backslash \widetilde{S})$,
(ii) $\tilde{\triangle} f(z, \phi)=\lambda f(z, \phi), \frac{\partial}{\partial \phi} f(z, \phi)=-\sqrt{-1} k f(z, \phi)$.

We call $\mathfrak{m}(k, \lambda)$ the Selberg eigenspace of Γ.
We denote by $S_{1}(\Gamma)$ the space of cusp forms of weight 1 for the above fuchsian group Γ and put

$$
d_{1}=\operatorname{dim} S_{1}(\Gamma)
$$

Then the following equality holds:
Lemma ([1], [3]). The notation and the assumption being as above, we have

$$
\mathfrak{m}\left(1,-\frac{3}{2}\right)=\left\{e^{-\sqrt{-1} \phi} y^{1 / 2} F(z): F(z) \in S_{1}(\Gamma)\right\}
$$

and hence

$$
\begin{equation*}
d_{1}=\operatorname{dim} \mathfrak{m}\left(1,-\frac{3}{2}\right) \tag{1}
\end{equation*}
$$

§ 2. The compact case

In this section we suppose that the group Γ has a compact fundamental domain in the upper half-plane S.

It is well known that every eigenspace $\mathfrak{m t}(k, \lambda)$ defined in Section 1 is finite dimensional and orthogonal to each other, and also the eigenspaces span together the space $L^{2}(\Gamma \backslash \widetilde{S})$. We put $\lambda=(k, \lambda)$. For every invariant integral operator with a kernel function $k\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)$ on $\mathfrak{m}(k, \lambda)$, we have

$$
\int_{\tilde{S}} k\left(z, \phi ; z^{\prime}, \phi^{\prime}\right) f\left(z^{\prime}, \phi^{\prime}\right) d\left(z^{\prime}, \phi^{\prime}\right)=h(\lambda) f(z, \phi)
$$

for $f \in \mathfrak{m}(k, \lambda)$. Note that $h(\lambda)$ does not depend on f as far as f is in $\mathfrak{m}(k, \lambda)$. We also know that there is a basis $\left\{f^{(n)}\right\}_{n=1}^{\infty}$ of the space $L^{2}(\Gamma \backslash \widetilde{S})$ such that each $f^{(n)}$ satisfies the condition (ii) in Section 1. Then we put $\lambda^{(n)}=(k, \lambda)$ for such spectra. We now obtain the following Selberg trace formula for $L^{2}(\Gamma \backslash \tilde{S})$:

$$
\begin{equation*}
\sum_{n=1}^{\infty} h\left(\lambda^{(n)}\right)=\sum_{M \in \Gamma} \int_{\tilde{D}} k(z, \phi ; M(z, \phi)) d(z, \phi) \tag{2}
\end{equation*}
$$

where \tilde{D} denotes a compact fundamental domain of Γ in \tilde{S} and $k(z, \phi$; $z^{\prime}, \phi^{\prime}$) is a point-pair invariant kernel of (a)-(b) type in the sense of Selberg such that the series on the left-hand side of (2) is absolutely convergent ([6]). Denote by $\Gamma(M)$ the centralizer of M in Γ and put $\widetilde{D}_{M}=\Gamma(M) \backslash \widetilde{S}$. Then

$$
\begin{equation*}
\sum_{M \in \Gamma} \int_{\tilde{D}} k(z, \phi ; M(z, \phi)) d(z, \phi)=\sum_{l} \int_{\tilde{D}_{M_{l}}} k\left(z, \phi ; M_{l}(z, \phi)\right) d(z, \phi), \tag{3}
\end{equation*}
$$

where the sum over $\left\{M_{i}\right\}$ is taken over the distinct conjugacy classes of Γ.
We consider an invariant integral operator on the Selberg eigenspace $\mathfrak{n}(k, \lambda)$ defined by

$$
\omega_{\delta}\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)=\left|\frac{\left(y y^{\prime}\right)^{1 / 2}}{\left(z-\bar{z}^{\prime}\right) / 2 \sqrt{-1}}\right|^{\delta} \frac{\left(y y^{\prime}\right)^{1 / 2}}{\left(z-\bar{z}^{\prime}\right) / 2 \sqrt{-1}} e^{-\sqrt{-1}\left(\phi-\phi^{\prime}\right)},(\delta>1) .
$$

It is easy to see that our kernel $\omega_{\bar{\delta}}$ is a point-pair invariant kernel of (a)(b) type under the condition $\delta>1$ and vanishes on $\mathfrak{n t}(k, \lambda)$ for all $k \neq 1$. Since $\Gamma \backslash \tilde{\boldsymbol{G}}$ is compact, the distribution of spectra (k, λ) is discrete and we put

$$
\mu_{1}=-\frac{3}{2}, \mu_{2}, \mu_{3}, \cdots
$$

$$
d_{\beta}=\operatorname{dim} \mathfrak{m}\left(1, \mu_{\beta}\right),(\beta=1,2,3, \cdots)
$$

Then the left-hand side of the trace formula (2) equals $\sum_{\beta=1}^{\infty} d_{\beta} \Lambda_{\beta}$, where Λ_{β} denotes the eigenvalue of ω_{δ} in $\mathfrak{m}\left(1, \mu_{\beta}\right)$. As for the eigenvalue Λ_{β}, using the special eigenfunction

$$
f(z, \phi)=e^{-\sqrt{-1 \phi}} y^{v^{p}}, \mu_{\beta}=v_{\beta}\left(v_{\beta}-1\right)-\frac{5}{4},
$$

for a spectrum $\left(1, \mu_{\beta}\right)$ in $L^{2}(\tilde{S})$, we obtain

$$
\Lambda_{\beta}=2^{2+\delta} \pi \frac{\Gamma(1 / 2) \Gamma((1+\delta) / 2)}{\Gamma(\delta) / \Gamma(1+(\delta / 2))} \Gamma\left(\frac{\delta-1}{2}+v_{\beta}\right) \Gamma\left(\frac{\delta+1}{2}-v_{\beta}\right) .
$$

If we put $v_{\beta}=1 / 2+\sqrt{-1} r_{\beta}$, then

$$
\begin{equation*}
\Lambda_{\beta}=2^{2+\delta} \pi \frac{\Gamma(1 / 2) \Gamma((1+\delta) / 2)}{\Gamma(\delta) \Gamma(1+(\delta / 2))} \Gamma\left(\frac{\delta}{2}+\sqrt{-1} r_{\beta}\right) \Gamma\left(\frac{\delta}{2}-\sqrt{-1} r_{\beta}\right) . \tag{4}
\end{equation*}
$$

In general, it is known that the series $\sum_{\beta=1}^{\infty} d_{\beta} \Lambda_{\beta}$ is absolutely convergent for $\delta>1$. By the Stirling formula, we see that the above series is also absolutely and uniformly convergent for all bounded δ except $\delta= \pm\left(2 v_{\beta}-1\right)$.

Now we shall calculate the components of trace appearing in the right-hand side of (3) ([2]).

1) Unit class: $M=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

It is clear that $\omega_{o}(z, \phi ; M(z, \phi))=1$, and hence

$$
J(I)=\int_{\tilde{\mathcal{D}}_{\underline{\prime}}} d(z, \phi)=\int_{\tilde{\mathcal{D}}} d(z, \phi)<\infty .
$$

2) Hyperbolic conjugacy classes.

For the primitive hyperbolic element P, we put

$$
g^{-1} P g=\left(\begin{array}{cc}
\lambda_{0} & 0 \\
0 & \lambda_{0}^{-1}
\end{array}\right) \quad(g \in G),\left|\lambda_{0}\right|>1
$$

and $\Gamma^{\prime}=g^{-1} \Gamma g$. Then

$$
\Gamma^{\prime}\left(\left(\begin{array}{cc}
\lambda_{0} & 0 \\
0 & \lambda_{0}^{-1}
\end{array}\right)\right)=g^{-1} \Gamma(P) g .
$$

The hyperbolic component is calculated as follows:

$$
\begin{aligned}
J\left(P^{k}\right) & =\int_{\tilde{D}_{P}} \omega_{\delta}\left(z, \phi ; P^{k}(z, \phi)\right) d(z, \phi) \\
& =\int_{g^{-1 \tilde{D}_{P}}} \omega_{\partial}\left(g(z, \phi) ; P^{k} g(z, \phi)\right) d(z, \phi) \\
& =\int_{g^{-1 \tilde{D}_{P}}} \omega_{\partial}\left(z, \phi ; g^{-1} P^{k} g(z, \phi)\right) d(z, \phi) \\
& =(2 \pi)\left(2^{\delta+1} \sqrt{-1}\right)\left|\lambda_{0}^{k}\right|^{\hat{o}+1}\left(\operatorname{sgn} \lambda_{0}\right)^{k} \int_{g^{-1 D_{P}}} \frac{y^{\delta-1}}{\left(z-\lambda_{0}^{2 k} \bar{z}\right)\left|z-\lambda_{0}^{2 k} \bar{z}\right|^{\delta}} d x d y,
\end{aligned}
$$

where $g^{-1} D_{P}$ is a fundamental domain of $\Gamma^{\prime}\left(\left(\begin{array}{cc}\lambda_{0} & 0 \\ 0 & \lambda_{0}^{-1}\end{array}\right)\right)$ in S. Thus,

$$
J\left(P^{k}\right)=\left(2^{3+\delta} \pi\right) \frac{\Gamma(1 / 2) \Gamma((\delta+1) / 2)}{\Gamma((\delta+2) / 2)} \frac{\left(\operatorname{sgn} \lambda_{0}\right)^{k} \log \left|\lambda_{0}\right|}{\left|\lambda_{0}^{-k}-\lambda_{0}^{k}\right|\left|\lambda_{0}^{-k}+\lambda_{0}^{k}\right|^{\delta}} .
$$

Let $\left\{P_{\alpha}\right\}$ be a complete system of representatives of the primitive hyperbolic conjugacy classes in Γ and let $\lambda_{0, \alpha}$ be the eigenvalue ($\left|\lambda_{0, \alpha}\right|>1$) of representative P_{α}. Then, the hyperbolic component $J(P)$ is expressed by the following

$$
\begin{aligned}
J(P) & =\sum_{\alpha=1}^{\infty} \sum_{k=1}^{\infty} J\left(P_{\alpha}^{k}\right) \\
& =\frac{2^{3+\delta} \pi^{3 / 2} \Gamma((\delta+1) / 2)}{\Gamma((\delta+2) / 2)} \sum_{\alpha=1}^{\infty} \sum_{k=1}^{\infty} \frac{\left(\operatorname{sgn} \lambda_{0, \alpha}\right)^{k} \log \left|\lambda_{0, \alpha}\right|}{\left|\lambda_{0, \alpha}^{k}-\lambda_{0, \alpha}^{-k}\right|}\left|\lambda_{0, \alpha}^{k}+\lambda_{0, \alpha}^{-k}\right|^{-\delta} .
\end{aligned}
$$

3) Elliptic conjugacy classes.

Let $\rho, \bar{\rho}$ be the fixed points of an elliptic element $M(\rho \in S)$ and $\zeta, \bar{\zeta}$ be the eigenvalues of M. We denote by Φ a linear transformation which maps S into a unit disk:

$$
w=\Phi(z)=\frac{z-\rho}{z-\bar{\rho}} .
$$

Then we have $\Phi M \Phi^{-1}=\left(\begin{array}{ll}\zeta & 0 \\ 0 & \bar{\zeta}\end{array}\right)$ and

$$
\frac{M z-\rho}{M z-\bar{\rho}}=\frac{\zeta}{\bar{\zeta}} \frac{z-\rho}{z-\bar{\rho}} .
$$

The elliptic component is calculated as follows:

$$
\begin{aligned}
J(M) & =\int_{\tilde{D}_{z}} \omega_{\bar{\delta}}(z, \phi ; M(z, \phi)) d(z, \phi) \\
& =\frac{2^{\delta+1} \sqrt{-1}}{[\Gamma(M): 1]} \int_{\tilde{S}} \frac{\left(y y^{\prime}\right)^{(\delta+1) / 2}}{\left(z-\bar{z}^{\prime}\right)\left|z-\bar{z}^{\prime}\right|^{\prime}} e^{-\sqrt{-1}\left(\phi-\phi^{\prime}\right)} d(z, \phi) \quad\left(\left(z^{\prime}, \phi^{\prime}\right)=M(z, \phi)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{8 \pi \bar{\zeta}}{[\Gamma(M): 1]} \int_{|w|<1} \frac{(1-w \bar{w})^{\delta-1}}{\left(1-\bar{\zeta}^{2} w \bar{w}\right)\left|1-\bar{\zeta}^{2} w \bar{w}\right|^{\delta}} d u d v \quad(w=u+\sqrt{-1} v) \\
& =\frac{16 \pi^{2} \bar{\zeta}}{[\Gamma(M): 1]} \int_{0}^{1} \frac{\left(1-r^{2}\right)^{\delta-1}}{\left(1-\bar{\zeta}^{2} r^{2}\right)\left|1-\bar{\zeta}^{2} r^{2}\right|^{\delta}} d r .
\end{aligned}
$$

We put

$$
I(\delta)=\int_{0}^{1} \frac{\left(1-r^{2}\right)^{\delta-1} r}{\left(1-\bar{\zeta}^{2} r^{2}\right)\left|1-\bar{\zeta}^{2} r^{2}\right|^{\delta}} d r .
$$

Then, under the condition $\delta>0$, the function $\frac{\delta\left(1-r^{2}\right)^{\delta-1} r}{1-\bar{\zeta}^{2} r^{2}}$ is Lebesgueintegrable on $[0,1]$. Hence

$$
\begin{aligned}
\lim _{\delta \rightarrow 0} \delta I(\delta) & =\lim _{\delta \rightarrow 0} \int_{0}^{1} \frac{\delta\left(1-r^{2}\right)^{\delta-1} r}{1-\bar{\zeta}^{2} r^{2}} d r \\
& =\lim _{\delta \rightarrow 0}\left\{\left[-\frac{(1-t)^{\delta}}{2} \frac{1}{1-\bar{\zeta}^{2} t}\right]_{0}^{1}+\int_{0}^{1}(1-t)^{\delta}\left(\frac{1}{1-\bar{\zeta}^{2} t}\right)^{\prime} \frac{d t}{2}\right\} \\
& =\frac{1}{2\left(1-\bar{\zeta}^{2}\right)} .
\end{aligned}
$$

Therefore we obtain

$$
\lim _{\dot{j} \rightarrow 0} \delta J(M)=\frac{8 \pi^{2}}{[\Gamma(M): 1]} \frac{\bar{\zeta}}{1-\bar{\zeta}^{2}}
$$

Since M and M^{-1} are not conjugate and $\bar{\zeta} /\left(1-\bar{\zeta}^{2}\right)$ is pure imaginary, we have

$$
\lim _{\delta \rightarrow 0} \delta J(M)+\lim _{\delta \rightarrow 0} \delta J\left(M^{-1}\right)=0 .
$$

We conclude that the contribution from elliptic classes to d_{1} vanishes.
Now we put

$$
\begin{equation*}
\zeta_{1}^{*}(\delta)=\sum_{\alpha=1}^{\infty} \sum_{k=1}^{\infty} \frac{\left(\operatorname{sgn} \lambda_{0, \alpha}\right)^{k} \log \left|\lambda_{0, \alpha}\right|}{\left|\lambda_{0, \alpha}^{k}-\lambda_{0, \alpha}^{-k}\right|}\left|\lambda_{0, \alpha}^{k}+\lambda_{0, \alpha}^{-k}\right|^{\delta} . \tag{5}
\end{equation*}
$$

Then, by the trace formula (2), the Dirichlet series (5) extends to a meromorphic function on the whole δ-plane and has a simple pole at $\delta=0$ whose residue will appear in (6) below. Finally, multiply the both sides of (2) by δ and let δ tend to zero, then the limit is expressed, by the above $1), 2$) and 3), as follows:

$$
\operatorname{dim} \mathfrak{m}\left(1,-\frac{3}{2}\right)=\frac{1}{2} \operatorname{Res}_{\delta-0} \zeta_{1}^{*}(\delta)
$$

namely, by (1) we have

$$
\begin{equation*}
d_{1}=\frac{1}{2} \operatorname{Res}_{\delta=0} \zeta_{1}^{*}(\delta) . \tag{6}
\end{equation*}
$$

Remark 1. Let Γ be a fuchsian group of the first kind which contains the element $-I$, and χ a unitary representation of Γ of degree 1 such that $\chi(-I)=-1$. Let $S_{1}(\Gamma, \chi)$ be the linear space of cusp forms of weight 1 on the group Γ with character χ, and denote by d_{1} the dimension of the linear space $S_{1}(\Gamma, \chi)$. When the group Γ has a compact fundamental domain in the upper half-plane S, we have the following dimension formula in the same way as in the case $\Gamma \nexists-I$:

$$
\begin{equation*}
d_{1}=\frac{1}{2} \sum_{\{M\}} \frac{\chi(M)}{[\Gamma(M): \pm I]} \frac{\bar{\zeta}}{1-\bar{\zeta}^{2}}+\frac{1}{2} \operatorname{Res}_{s=0} \zeta_{2}^{*}(s), \tag{7}
\end{equation*}
$$

where the sum over $\{M\}$ is taken over the distinct elliptic conjugacy classes of $\Gamma /\{ \pm I\}, \Gamma(M)$ denotes the centralizer of M in $\Gamma, \bar{\zeta}$ is one of the eigenvalues of M, and $\zeta_{2}^{*}(s)$ denotes the Selberg type zeta-function defined by

$$
\begin{equation*}
\zeta_{2}^{*}(s)=\sum_{\alpha=1}^{\infty} \sum_{k=1}^{\infty} \frac{\chi\left(P_{\alpha}\right)^{k} \log \lambda_{0, \alpha}}{\lambda_{0, \alpha}^{k}-\lambda_{0, \alpha}^{-k}}\left|\lambda_{0, \alpha}^{k}+\lambda_{0, \alpha}^{-k}\right|^{-s} . \tag{8}
\end{equation*}
$$

Here $\lambda_{0, \alpha}$ denotes the eigenvalue ($\lambda_{0, \alpha}>1$) of representative P_{α} of the primitive hyperbolic conjugacy classes $\left\{P_{\alpha}\right\}$ in $\Gamma /\{ \pm I\}$.

§ 3. The finite case $1(: \Gamma \nRightarrow-I)$

Let Γ be a fuchsian group of the first kind not containing the element $-I$, and suppose that Γ has a non-compact fundamental domain \tilde{D} in the space \tilde{S}. Then, we see that the integral

$$
\int_{\tilde{D}} \sum_{M \in \Gamma} \omega_{\delta}(z, \phi ; M(z, \phi)) d(z, \phi)
$$

is uniformly bounded at a neighborhood of each irregular cusp of Γ, and that by the Riemann-Roch theorem, the number of regular cusps of Γ is even. Therefore we assume for simplicity that $\left\{\kappa_{1}, \kappa_{2}\right\}$ is a maximal set of cusps of Γ which are regular cusps and not equivalent with respect to Γ. Let Γ_{i} be the stabilizer in Γ of κ_{i}, and fix an element $\sigma_{i} \in S L(2, R)$ such that $\sigma_{i} \infty=\kappa_{i}$ and such that $\sigma_{i}^{-1} \Gamma_{i} \sigma_{i}$ is equal to the group $\left\{\left(\begin{array}{ll}1 & m \\ 0 & 1\end{array}\right): m \in Z\right\}$. Then the Eisenstein series attached to the regular cusp κ_{i} is defined by
where $s=t+\sqrt{-1} r$ with $t>1$. The series (9) has the Fourier expansion at κ_{j} in the form

$$
E_{i}\left(\sigma_{j}(z, \phi) ; s\right)=\sum_{m=-\infty}^{\infty} a_{i j, m}(y, \phi ; s) e^{2 \pi \sqrt{-1} m x}
$$

The constant term $a_{i j, 0}(y, \phi ; s)$ is given by

$$
\begin{aligned}
e^{\sqrt{-1} \phi} a_{i j, 0}(y, \phi ; s) & =a_{i j, 0}(y ; s) \\
& =\delta_{i j} y^{s}+\psi_{i j}(s) y^{1-s}
\end{aligned}
$$

with Kronecker's δ, and

$$
\psi_{i j}(s)=-\sqrt{-1} \sqrt{\pi} \frac{\Gamma(s)}{\Gamma(s+(1 / 2))} \sum_{c \neq 0} \frac{(\operatorname{sgn} c) \cdot N_{i j}(c)}{|c|^{2 s}}
$$

where $N_{i j}(c)=\sharp\left\{0 \leqq d<|c|:\left(\begin{array}{ll}* & * \\ c & d\end{array}\right) \in \sigma_{i}^{-1} \Gamma \sigma_{j}\right\}$. We put

$$
\Phi(s)=\left(\psi_{i j}(s)\right)
$$

Then it is easy to see that the Eisenstein matrix $\Phi(s)$ is a skew-symmetric matrix.

Since Γ is of finite type, the integral operator defined by $\omega_{\bar{\delta}}$ is not completely continuous on $L^{2}(\Gamma \backslash \widetilde{S})$ in general and the space $L^{2}(\Gamma \backslash \widetilde{S})$ has the following spectral decomposition

$$
L^{2}(\Gamma \backslash \tilde{S})=L_{0}^{2}(\Gamma \backslash \tilde{S}) \oplus L_{S p}^{2}(\Gamma \backslash \tilde{S}) \oplus L_{\mathrm{cont}}^{2}(\Gamma \backslash \tilde{S})
$$

where L_{0}^{2} is the space of cusp forms and is discrete, $L_{S p}^{2}$ is the discrete part of the orthogonal complement of L_{0}^{2} and $L_{\text {cont }}^{2}$ is the continuous part of the spectra. We put

$$
\begin{aligned}
\tilde{H}_{\delta}\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)= & \frac{1}{8 \pi^{2}} \sum_{i=1}^{2} \int_{-\infty}^{\infty} h(r) E_{i}\left(z, \phi ; \frac{1}{2}+\sqrt{-1} r\right) \\
& \times \overline{E_{i}\left(z^{\prime}, \phi^{\prime} ; \frac{1}{2}+\sqrt{-1} r\right)} d r
\end{aligned}
$$

Here $h(r)$ denotes the eigenvalue of $\omega_{\bar{\delta}}$ in $\mathfrak{m}(1, \lambda)$ given by (4):

$$
\begin{equation*}
h(r)=2^{2+\delta} \pi \frac{\Gamma(1 / 2) \Gamma((1+\delta) / 2)}{\Gamma(\delta) \Gamma(1+(\delta / 2))} \Gamma\left(\frac{\delta}{2}+\sqrt{-1} r\right) \Gamma\left(\frac{\delta}{2}-\sqrt{-1} r\right) \tag{10}
\end{equation*}
$$

with $\lambda=s(s-1)-\frac{5}{4}$ and $s=\frac{1}{2}+\sqrt{-1} r$. We put

$$
\kappa_{\bar{\delta}}\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)=\sum_{M \in \Gamma} \omega_{\dot{\partial}}\left(z, \phi ; M\left(z^{\prime}, \phi^{\prime}\right)\right)
$$

and

$$
\tilde{\kappa}_{\delta}=\kappa_{\tilde{\delta}}-\tilde{H}_{\delta} .
$$

Then the integral operator $\tilde{\kappa}_{\tilde{\delta}}$ is now complete continuous on $L^{2}(\Gamma \backslash \tilde{S})$ and has all discrete spectra of $\kappa_{\dot{\delta}}$. Furthermore, an eigenvalue of $f(z, \phi)$ in $L_{0}^{2}(\Gamma \backslash \widetilde{S}) \oplus L_{S p}^{2}(\Gamma \backslash \widetilde{S})$ for $\tilde{\kappa}_{\delta}$ is equal to that for $\kappa_{\tilde{\delta}}$ and the image of $\tilde{\kappa}_{\tilde{\delta}}$ on it is contained in $L_{0}^{2}(\Gamma \backslash \widetilde{S})$. Considering the trace of $\tilde{\kappa}_{\tilde{\delta}}$ on $L_{0}^{2}(\Gamma \backslash \widetilde{S})$, we now obtain the following modified trace formula ([4], [7]):

$$
\begin{aligned}
\sum_{n=1}^{\infty} h\left(\lambda^{(n)}\right) & =\int_{\tilde{D}} \tilde{\kappa}_{\tilde{\delta}}(z, \phi ; z, \phi) d(z, \phi) \\
& =\int_{\tilde{D}}\left\{\sum_{M \in \Gamma} \omega_{\grave{\delta}}(z, \phi ; M(z, \phi))-\tilde{H}_{\tilde{\delta}}(z, \phi ; z, \phi)\right\} d(z, \phi),
\end{aligned}
$$

where each of $\lambda^{(n)}$ denotes an eigenvalue corresponding to an orthogonal basis $\left\{f^{(n)}\right\}$ for $L_{0}^{2}(\Gamma \backslash \widetilde{S})$. We put

$$
\begin{aligned}
& \int_{\tilde{D}}\left\{\sum_{M \in I} \omega_{\partial}(z, \phi ; M(z, \phi))-\widetilde{H}_{\dot{\partial}}(z, \phi ; z, \phi)\right\} d(z, \phi) \\
&=J(I)+J(P)+J(R)+J(\infty)
\end{aligned}
$$

where $J(I), J(P), J(R)$ and $J(\infty)$ denote respectively the identity component, the hyperbolic component, the elliptic component and the parabolic component of the traces. Then the components $J(I), J(P)$ and $J(R)$ are as in Section 2 and in the following we shall calculate the component $J(\infty)$ (cf. [9]).

Let \tilde{D}_{i} be a fundamental domain of the stabilizer Γ_{i} of cusp κ_{i} in Γ. Then we have

$$
\begin{aligned}
J(\infty)= & \lim _{Y \rightarrow \infty}\left\{\sum_{i=1}^{2} \int_{\tilde{D}_{\tilde{z}}^{Y}} \sum_{\substack{M \in \Gamma_{i} \\
M \neq I}} \omega_{\tilde{\delta}}(z, \phi ; M(z, \phi)) d(z, \phi)\right. \\
& \left.-\int_{\tilde{D}_{Y}} \tilde{H}_{\delta}(z, \phi ; z, \phi) d(z, \phi)\right\}
\end{aligned}
$$

where \widetilde{D}_{i}^{Y} denotes the domain consisting of all points (z, ϕ) in \widetilde{D}_{i} such that $\operatorname{Im}\left(\sigma_{i}^{-1} z\right)<Y$, and \tilde{D}_{Y} the domain consisting of all $(z, \phi) \in \tilde{D}$ such that $\operatorname{Im}\left(\sigma_{i}^{-1} z\right)<Y$ for all $i=1,2$. Making use of a summation formula due to Euler-MacLaurin and the Maass-Selberg relation, we have the following (cf. [2], [9]):
$\int_{\tilde{D}_{\tilde{Z}}^{\tilde{Y}} M \neq I} \sum_{\substack{M \in \Gamma_{i} i}} \omega_{\delta}(z, \phi ; M(z, \phi)) d(z, \phi)=2^{2} \pi \frac{\Gamma(1 / 2) \Gamma((\delta+1) / 2)}{\Gamma(1+(\delta / 2))} \log Y+\varepsilon(\delta)+o(1)$
as $Y \rightarrow \infty$, where $\varepsilon(\delta)$ denotes a function of δ such that $\lim _{\delta \rightarrow 0} \delta \varepsilon(\delta)=0$;

$$
\begin{aligned}
& \frac{1}{8 \pi^{2}} \int_{\tilde{D}_{Y}} \int_{-\infty}^{\infty} h(r) E_{i}\left(z, \phi ; \frac{1}{2}+\sqrt{-1} r\right) \overline{E_{i}\left(z, \phi ; \frac{1}{2}+\sqrt{-1} r\right)} d r d(z, \phi) \\
& \quad=2^{2} \pi \frac{\Gamma(1 / 2) \Gamma((\delta+1) / 2)}{\Gamma(1+(\delta / 2))} \log Y \\
& \quad-\frac{1}{4 \pi} \int_{-\infty}^{\infty} h(r) \frac{\psi_{i j}^{\prime}}{\psi_{i j}}\left(\frac{1}{2}+\sqrt{-1} r\right) d r+o(1)
\end{aligned}
$$

as $Y \rightarrow \infty(j \neq i) . \quad$ By the expression (10) of $h(r)$, we have

$$
h(r)=O\left(\frac{|r|^{\delta}}{|r| e^{\pi|r|}}\right)
$$

and the operator $\tilde{\kappa}_{\delta}$ is complete continuous on $L^{2}(\Gamma \backslash \widetilde{S})$. Therefore we have

$$
\lim _{\delta \rightarrow+0} \delta \int_{-\infty}^{\infty} h(r) \frac{\psi_{i j}^{\prime}}{\psi_{i j}}\left(\frac{1}{2}+\sqrt{-1} r\right) d r=0
$$

It is now clear that the above result, combined with the formula (6), proves the following ([9]):

Theorem 1. Let Γ be a fuchsian group of the first kind not containing the element $-I$ and suppose that the number of regular cusps of Γ is two. Let d_{1} be the dimension for the space consisting of all cusp forms of weight 1 with respect to Γ. Then d_{1} is given by

$$
\begin{equation*}
d_{1}=\frac{1}{2} \operatorname{Res}_{s=0} \zeta_{1}^{*}(s), \tag{11}
\end{equation*}
$$

where $\zeta_{1}^{*}(s)$ denotes the Selberg type zeta-function defined by (5) in Section 2.
Remark 2. Let Γ be a general discontinuous group of finite type not containing the element $-I$. Then we can prove that in the same way as in the above case, the contribution from parabolic classes to d_{1} vanishes.

§ 4. The finite case $2(: \Gamma \ni-I)$

Let Γ be a fuchsian group of the first kind and assume that Γ contains the element $-I$ and has a non-compact fundamental domain \tilde{D} in the space \widetilde{S}. Let χ be a unitary representation of Γ of degree 1 such that $\chi(-I)=-1$. We denote by $S_{1}(\Gamma, \chi)$ the linear space of cusp forms of weight 1 on the group Γ with the character χ and by d_{1} the dimension of
the space $S_{1}(\Gamma, \chi)$. In this section we shall give a similar formula of the number d_{1} when the group Γ is of finite type reduced at infinity and $\chi^{2} \neq 1$.

Since Γ is of finite type reduced at ∞, ∞ is a cusp of Γ and the stabilizer Γ_{∞} of ∞ in Γ is equal to $\pm \Gamma_{0}$ with $\Gamma_{0}=\left\{\left(\begin{array}{ll}1 & m \\ 0 & 1\end{array}\right): m \in \boldsymbol{Z}\right\}$. The Eisenstein series $E_{\chi}(z, \phi ; s)$ attached to ∞ and χ is then defined by

$$
E_{\chi}(z, \phi ; s)=\sum_{\substack{M \in \Gamma_{\infty} \backslash \backslash \tag{12}\\
M=\left(\begin{array}{c}
* \\
c \bar{d}\\
)
\end{array}\right.}} \frac{\bar{\chi}(M) y^{s}}{|c z+d|^{2 s}} e^{-\sqrt{-1}(\phi+\arg (c z+d))},
$$

where $s=\sigma+\sqrt{-1} r$ with $\sigma>1$. The constant term in the Fourier expansion of (12) at ∞ is given by

$$
\begin{aligned}
& a_{0}(y, \phi ; s)=e^{-\sqrt{-1} \phi}\left(y^{s}+\psi_{x}(s) y^{1-s}\right), \\
& \psi_{x}(s)=-\sqrt{-1} \sqrt{\pi} \frac{\Gamma(s)}{\Gamma\left(s+\frac{1}{2}\right)} \sum_{\substack{c>0 \\
d \text { mod } c \\
\left(c_{c}^{*}\right) \in \Gamma}} \frac{\bar{\chi}(c, d)}{|c|^{2 s}} .
\end{aligned}
$$

In the following we only consider the case $\chi\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right)=1$. As shown in [3], the parabolic component $J(\infty)$ in the trace formula is given by

$$
\begin{aligned}
J(\infty) & =\lim _{Y \rightarrow \infty}\left\{2 \int_{0}^{Y} \int_{0}^{1} \int_{0}^{\pi} \sum_{\substack{M \in \Gamma \\
M \neq I}} \omega_{\grave{\delta}}(z, \phi ; M(z, \phi)) d(z, \phi)-\int_{\tilde{D}_{Y}} \tilde{H}_{\delta}(z, \phi ; z, \phi) d(z, \phi)\right\} \\
& =-\frac{1}{4 \pi} \int_{-\infty}^{\infty} h(r) \frac{\psi_{x}^{\prime}((1 / 2)+\sqrt{-1} r)}{\psi_{x}((1 / 2)+\sqrt{-1} r)} d r-\frac{1}{4} h(0) \psi_{x}\left(\frac{1}{2}\right)+\varepsilon(\delta)
\end{aligned}
$$

with $\lim _{\dot{\delta} \rightarrow 0} \delta \varepsilon(\delta)=0$. When we combine this with the formula (7), we are led to the following theorem which is our main purpose in this section.

Theorem 2. Let Γ be a fuchsian group of the first kind containing the element $-I$ and suppose that Γ is reduced at infinity. Let χ be a onedimensional unitary representation of Γ such that $\chi(-I)=-1, \chi\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right)=1$ and $\chi^{2} \neq 1$. We denote by d_{1} the dimension of the linear space consisting of cusp forms of weight 1 with respect to Γ with χ. Then the dimension d_{1} is given by

$$
\begin{equation*}
d_{1}=\frac{1}{2} \sum_{\{M\}} \frac{\chi(M)}{[\Gamma(M): \pm I]} \frac{\bar{\zeta}}{1-\bar{\zeta}^{2}}+\frac{1}{2} \operatorname{Res}_{s=0} \zeta_{2}^{*}(s)-\frac{1}{4} \psi_{x}\left(\frac{1}{2}\right), \tag{13}
\end{equation*}
$$

where the sum over $\{M\}$ is taken over the distinct elliptic conjugacy classes of $\Gamma /\{ \pm I\}, \Gamma(M)$ denotes the centralizer of M in $\Gamma, \bar{\zeta}$ is one of the eigenvalues of M, and $\zeta_{2}^{*}(s)$ denotes the Selberg type zeta-function defined by (8) in Section 2.

We may call the formulas (11) and (13) a kind of Riemann-Roch type theorem for automorphic forms of weight 1.

Remark 3. For a general discontinuous group Γ of finite type containing the element $-I$, we obtain the contribution from parabolic classes to d_{1} in the same way as in the case of reduced at ∞.

§ 5. The case of $\boldsymbol{\Gamma}_{0}(\boldsymbol{p})$

Let p be a prime number such that $p \equiv 3 \bmod 4, p \neq 3$ and let $\Phi_{0}(p)$ be the group generated by the group $\Gamma_{0}(p)$ and the element $\kappa=$ $\left(\begin{array}{cc}0 & -\sqrt{p}^{-1} \\ \sqrt{p} & 0\end{array}\right)$, namely, $\Phi_{0}(p)=\Gamma_{0}(p)+\kappa \Gamma_{0}(p)$. Let ε be the Legendre symbol on $\Gamma_{0}(p): \varepsilon(L)=\left(\frac{d}{p}\right)$ for $L=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(p)$. Since $\varepsilon\left(\kappa^{2}\right)=\varepsilon(-I)$ $=-1$, we can define the odd characters $\varepsilon^{ \pm}$on $\Phi_{0}(p)$ such that $\varepsilon^{ \pm}(\kappa)$ $= \pm \sqrt{-1}$. Then we have

$$
S_{1}\left(\Gamma_{0}(p), \varepsilon\right)=S_{1}\left(\Phi_{0}(p), \varepsilon^{+}\right) \oplus S_{1}\left(\Phi_{0}(p), \varepsilon^{-}\right)
$$

We put

$$
\mu_{1}^{ \pm}=\operatorname{dim} S_{1}\left(\Phi_{0}(p), \varepsilon^{ \pm}\right)
$$

Then

$$
\operatorname{dim} S_{1}\left(\Gamma_{0}(p), \varepsilon\right)=d_{1}=\mu_{1}^{+}+\mu_{1}^{-}
$$

We denote by $\bar{\Gamma}_{0}(p), \bar{\Phi}_{0}(p)$ the inhomogeneous linear transformation group attached to $\Gamma(p), \Phi_{0}(p)$ respectively. If $\sigma(p)$ is the parabolic class number of $\bar{\Gamma}_{0}(p)$, then $\sigma(p)=2$; and if $e_{2}(p), e_{3}(p)$ are the number of elliptic classes of order 2,3 respectively of $\bar{\Gamma}_{0}(p)$, then

$$
e_{2}(p)=0, \quad e_{3}(p)=1+\left(\frac{p}{3}\right)
$$

Let $\sigma^{*}(p), e_{2}^{*}(p), e_{3}^{*}(p)$ denote respectively the number of parabolic classes, the number of elliptic classes of order 2, the number of elliptic classes of order 3 for $\bar{\Phi}_{0}(p)$. Then we have

$$
\begin{aligned}
& \sigma^{*}(p)=\frac{1}{2} \sigma(p)=1 \\
& e_{3}^{*}(p)=\frac{1}{2} e_{3}(p)=\frac{1}{2}\left(1+\left(\frac{p}{3}\right)\right) \\
& e_{2}^{*}(p)=\frac{1}{2} e_{2}(p)+e_{2}^{\prime}(p)=e_{2}^{\prime}(p),
\end{aligned}
$$

where $e_{2}^{\prime}(p)$ denotes the number of classes of elliptic elements of order 2 of $\kappa \bar{\Gamma}_{0}(p)$. It is known that

$$
e_{2}^{\prime}(p)=\left(3-\left(\frac{2}{p}\right)\right)= \begin{cases}4 h & \text { if } p \equiv 3 \bmod 8 \\ 2 h & \text { if } p \equiv 7 \bmod 8\end{cases}
$$

where h denotes the class number of $Q(\sqrt{-p})$, which is an odd integer. Let ϑ_{2} denote the number of the elements L in $\bar{\Gamma}_{0}(p)$ such that $\varepsilon^{-}(\kappa L)$ $=+\sqrt{-1}$. Then, by [5], we have the following

$$
\vartheta_{2}= \begin{cases}h & \text { if } p \equiv 3 \bmod 8 \\ 0 & \text { if } p \equiv 7 \bmod 8\end{cases}
$$

In the following, we shall calculate the contribution from elliptic elements to $\mu_{1}^{ \pm}$. Let $\{M\}$ be a complete system of representatives of the elliptic conjugacy classes of order 2 in $\bar{\Phi}_{0}(p)$. Then $\{M\}$ is given by $\left\{\kappa\left(\begin{array}{cc}a & b \\ p b & d\end{array}\right)\right\}$, where $\left\{\left(\begin{array}{cc}a & b \\ p b & d\end{array}\right)\right\}$ denotes the representatives of positive definite integral quadratic forms $\left(\begin{array}{cc}a & p b \\ p b & p d\end{array}\right)$ such that $\operatorname{det}\left(\begin{array}{cc}a & p b \\ p b & p d\end{array}\right)=p$. Then the result of calculation is given in the following table:

p	$\varepsilon(L)$	The number of elliptic classes of order 2	$\bar{\zeta}$	$\frac{1}{[\Gamma(M): \pm I]} \frac{\bar{\zeta}}{1-\bar{\zeta}^{2}} \varepsilon^{ \pm}(\kappa L)$
$p \equiv 3 \bmod 8$	$\varepsilon(L)=1$	$3 h$	$\sqrt{-1}$	$\frac{1}{2} \frac{\sqrt{-1}}{2}(\pm \sqrt{-1})=\mp \frac{1}{4}$
$p \equiv 3 \bmod 8$	$\varepsilon(L)=-1$	h	$\sqrt{-1}$	$\frac{1}{2} \frac{\sqrt{-1}}{2}(\mp \sqrt{-1})= \pm \frac{1}{4}$
$p \equiv 7 \bmod 8$	$\varepsilon(L)=1$	$2 h$	$\sqrt{-1}$	$\frac{1}{2} \frac{\sqrt{-1}}{2}(\pm \sqrt{-1})=\mp \frac{1}{4}$

It is clear that there is no contribution from elliptic classes of order 3 to $\mu_{1}^{ \pm}$. Therefore the contribution from elliptic classes to $\mu_{1}^{ \pm}$is given by

$$
\frac{1}{2} \sum_{\{M\}} \frac{1}{[\Gamma(M): \pm I]} \frac{\bar{\zeta}}{1-\bar{\zeta}^{2}} \varepsilon^{ \pm}(M)=\mp \frac{1}{4} h .
$$

We also have $\psi_{\varepsilon} \pm(1 / 2)=\mp 1$. Let $\left\{P_{\alpha}\right\}$ be a complete system of representatives of the primitive hyperbolic conjugacy classes in $\bar{\Gamma}_{0}(p)$ and let $\lambda_{0, \alpha}$ be the eigenvalue ($\lambda_{0, \alpha}>1$) of representative P_{α}. We put

$$
Z^{*}(\delta)=\sum_{\alpha=1}^{\infty} \sum_{k=1}^{\infty} \frac{\varepsilon\left(P_{\alpha}\right)^{k} \log \lambda_{0, \alpha}}{\left|\lambda_{0, \alpha}^{k}-\lambda_{0, \alpha}^{-k}\right|}\left|\lambda_{0, \alpha}^{k}+\lambda_{0, \alpha}^{-k}\right|^{-\delta} .
$$

Then, we have consequently the following

$$
\begin{equation*}
d_{1}=\mu_{1}^{+}+\mu_{1}^{-}=\frac{1}{2} \operatorname{Res}_{\hat{\delta}=0} Z^{*}(\delta) \tag{14}
\end{equation*}
$$

Remark 4. Combining the above (14) with Serre's result ${ }^{11}$, we have the following remarkable equality

$$
\operatorname{Res}_{\delta=0}^{*}(\delta)=(h-1)+4(s+2 a)
$$

References

[1] Hiramatsu, T., Eichler classes attached to automorphic forms of dimension -1, Osaka J. Math., 3 (1966), 39-48.
[2] -, On some dimension formula for automorphic forms of weight one I, Nagoya Math. J., 85 (1982), 213-221.
[3] -, On some dimension formula for automorphic forms of weight one II, Nagoya Math. J., 105 (1987), 169-186.
[4] Kubota, T., Elementary theory of Eisenstein series, Kodansha and Halsted, Tokyo-New York, 1973.
[5] Petersson, H., Über Eisensteinsche Reihen und automorphe Formen von der Demension -1, Comment. Math. Helv., 31 (1956), 111-144.
[6] Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47-87.
[7] -, Discontinuous groups and harmonic analysis, in Proc. International Math. Congr., Stockholm, 177-189, 1962.
[8] Serre, J.-P., Modular forms of weight one and Galois representations, in Proc. Symposium on Algebraic Number Fields, 193-268, Academic Press, London, 1977.
[9] Hiramatsu, T. and Akiyama, S., On some dimension formula for automorphic forms of weight one III, Nagoya Math. J., 111 (1988). 157-163.

Department of Mathematics
Faculty of Science
Kobe University
Kobe 657
Japan

[^0]
[^0]: ${ }^{1)}$ cf. Serre [8], p. 253.

