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Introduction

0.1. To evaluate special values of various kinds of zeta functions
and L-functions and to interpret the meaning of them have been providing
fruitful problems to number theory.

Siegel [21], as an initiative work, established an ingenious method of
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evaluating the special values at non-positive integers of partial zeta
functions for totally real fields and Klingen-Siegel proved that they are
rational numbers (cf. [8]). Shintani[16] presented a more direct method of
evaluating them, giving remarkable expressions of partial zeta functions
by integrals taken over complex contour paths. Following Shintani’s
method, Satake [14], introducing zeta functions of self-dual homogeneous
cones, studied a general method of obtaining nice expressions of the zeta
functions by integrals over contour paths. In some cases, he succeeded in
representing the special values at non-positive integers of the zeta func-
tions of cones as a finite sum of certain integrals over some compact Lie
group. Kurihara [9], also following Shintani, evaluated the special values
at non-positive integers of Siegel zeta functions of Q-anisotropic quadratic
forms (non-zero forms) with signature (1, n—1) (n==3, 4). However, their
methods are not applicable to the zeta functions of cones such that some
of edge vectors of cones are contained in the boundary of the self-dual
homogeneous cone 2 (see Introduction of [14]).

On the other hand, Hecke [6], [7], more than fifty years before, studied
the decomposition into irreducible components of the representation y of
SL,(F,) in a certain space of elliptic cusp forms and obtained remarkable
relations among multiplicities of irreducible representations in ». Recently,
Yamazaki [24], Tsushima [22], Lee-Weintraub [11], and Hashimoto [5]
studied similar problems in the case of the representation yu, of Sp(4, F,)
in a certain space of Siegel cusp forms of degree two and weight k. The
former four authors employed algebro-geometric methods including the
Hirzebruch-Riemann-Roch theorem, the holomorphic Lefschetz theorem,
and Hashimoto used the Selberg trace formula. To attack the problems,
they calculated the traces of 4, for various elements of Sp(4, F,). From
the viewpoint of the Selberg trace formula, there appear special values of
various kinds of zeta functions and L-functions in calculating the dimen-
sions of the spaces of cusp forms and the traces of u. (@) (a ¢ Sp(4, F,)), as
is observed in [16], [1], [13], [4], [5]. In his lecture at Kyoto in 1985,
Hashimoto introduced an interesting L-function attached to the ternary
zero form x,x, —x}; and expressed the traces of y,(@) for certain unipotent
elements & € Sp(4, F,) using the special value at s=3/2 of that L-function
(see the identity (0.5) in 0.2).

The Main purpose of the present paper is to evaluate special values at
non-positive integers of two kinds of L-functions, one of which is the one
introduced by Hashimoto, associated with the ternary zero form x,x, —x2,.
We shall follow the method of Satake-Kurihara basically. However, since
the quadratic form x,x,—x}, is a zero form (which represents zero non-
trivially), we have to deal with partial zeta functions of cones whose edge
vectors are not necessarily in the interior of &,, &, being the self-dual
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homogeneous cone of positive definite symmetric matrices of size two.
Because of this reason, Satake-Kurihara’s method cannot be applied di-
rectly to our situation. We need some original ideas to obtain useful
integral representations of partial zeta functions (see Chap. IT). The special
values of our L-functions are expressed explicitly by (generalized) Bernoulli
numbers and special values of Bernoulli polynomials.

Moreover, we shall introduce certain zeta functions with a kind of
Gauss sums attached to the space of quadratic forms and express the
values of a certain class of integrals appearing in the Selberg trace formula
for the trace of u(@) (@ € Sp(2n, F,)) by using special values at non-
positive integers of such zeta functions, where g, is the representation of
Sp(2n, F,) in the space of cusp forms of degree n, weight k.

As an application of our results, in the case of n=2, we can obtain
explicit formulae expressing the traces of (@) by the special values at
s=0 of our L-functions, which are explicitly evaluated as we stated above.

0.2. We fix the notation and explain our results more precisely.
Take an odd prime p and fix it. Let L, (resp. L) denote the lattice formed
by integral symmetric (resp. half-integral symmetric) matrices of size n,
and let L, ,, L¥, be the subsets consisting of all positive definite matrices
of L,, L*, respectively. Denote by L¥ ,/SL.(Z) (resp. L,,./SL,(Z)) the
set of SL,(Z)-equivalence classes in L}, (resp. L, ,). For an integral
symmetric matrix S of size v (1 Zv<n) with det (S)==0 mod p, let £ (S)
denote the subset of L, consisting of all xe L, such that x=
U (g 8>zU mod p with some U e GL,(Z/pZ). Define a kind of Gauss sum
on L* by «{(T)=>_,exp(2xitr (Tx/p)) (T e L¥), x running over all
residue classes of elements in % ,(S) mod pL,. Set

EXs,e§)=_ 2. =P(De(T) det (1),

TeLh, +/SLa(Z)
Li(s, Yae)=_ 2, X(det(T)e(T)~" det (T)~",

TELE, +/SLa(Z)
where ¢(7) is the order of the unit group {Ue SL(Z)|UT*U=T}, and
% is a Dirichlet character mod p. These Dirichlet series, which are typical
examples of Hurwitz-type zeta functions and L-functions of prehomogene-
ous vector spaces, are absolutely convergent for Re (s)>(n+1)/2. As for
a general theory of L-functions of prehomogeneous vector spaces, we refer
to Sato [15], in a part of which the functional equations of L-functions (in
a general situation) are derived from the works of Gyoja-Kawanaka [3] on
prehomogeneous vector spaces over finite fields. In the case of n=2,
Hashimoto introduced the following L-functions L}(s, ¥y.,)s Ly(S, Yra,p)-
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Let + be the unique non-trivial quadratic character mod p, and let v,
be a mapping from L¥ to R given as follows; put ¢ (T)=1(?) if T=

U (6 g)‘U mod p with some U e GL,(Z/pZ), te Z, and otherwise, put
“!"H, q(T) = O- Set

LiGs, V)= 2, Au(De(T) " det (1),

TeL3,+/SLa(Z)

Lis, Va)= 5 (De(T) det (7).
T€Lsa,+/SLa(Z)

The L-functions L¥(s, vz,,), Ly(s, Yy ,) are absolutely convergent for
Re (s)>>3/2. The zeta functions and L-functions given above can be con-
tinued analytically to meromorphic functions of s in the whole complex
plane which are holomorphic at non-positive integers (see Prop. 1.10,
Theorem 1.11 in this paper). The L-functions LJ(s, Xs0)s LF(S, Y, p)s
Ly(s, yrg,,) will be regarded as Siegel L-functions associated with the
ternary zero form x,x,—x?%, (cf. [20]). Let B, (resp. B,(x)) be the n-th
Bernoulli number (resp. n-th Bernoulli polynomial). Denote by B, , the
n-th generalized Bernoulli number attached to a Dirichlet character X.
For a real number x, {x) denotes the number satisfying 0<<{x><1 and
x—{x>eZ Set

.0 = —2. B({(e" —2a1)[p))B,({2a¥ [p)) B (1" — ")/P))

ar

+%(3 48,8,

where «, 7 run over all residue classes mod p satisfying o®3z2a? mod p,
ar20 mod p, &’27" mod p, and 4§, , is the Kronecker symbol (5, ,=1if
p=3, and otherwise, §,;=0). Moreover, set

0D F=— 23 B =2 B(0 ~ )

where «, 7 run over all residue classes mod p satisfying o*=27* mod p.

Theorem 1. Let p be an odd prime.

(i) The special values LF(1—m, 4y ,) (m=1, 2, --.) are rational
numbers.

(ii) If p=1mod 4, then LF (0, yry,,)=0.

(iii) If p=3 mod 4, then,

b
24p

1,9

LEO, Yo, =L+ B+ B, ,—
36p
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We present a conjecture on the value L¥(0, ¥ ).
Conjecture I. If p=3 mod 4, L}(0, ‘pH’p)ZEIIBI'W

(Note that A(—p)= —B, ,, for p>3 and p=3 mod 4, where i4(—p) is the
class number of the quadratic field Q(v' —p).)

Conjecture I is true for p<500 by the numerical calculation using a
computer.

Theorem 2. Let X be a primitive character mod p (p>2). Then, for
m= 1, 2, LU

W(—4)-(—1)m .
_L_Zz’)”—”(m_)_Bm'ﬂ. .. U‘xﬁgw,
LE(1—m, Lger)= mot
e WU—=D(—1 3
%g)“—(pm-‘—l)lfm- co i A=

Theorems 1, 2 will be regarded as a kind of generalization of the well-
known formula L(1 —m, )= -— B,, ,/m for Dirichlet L-function L(s, X).

Let I,,(p) be the principal congruence subgroup of I',,=Sp(n, Z)
with level 'p. The quotient group [,,/I",,(p) is isomorphic to the finite
symplectic group Sp(2n, F,) of degree 2n, and the surjection [y, —>
Sp(2n, F,) is denoted by a——>&(x e I';,). Let &, be the Siegel upper
half plane of degree », on which the real symplectic group &,,=Sp(2n, R)

acts in a usual manner; for Z=X4-iY ¢ §, and for 7= (‘é g) e ®,,, 1{Z>

=(AZ 4 B)(CZ+D)™'. Set J(v, Z)=det (CZ+ D), and
H@; Z)=J(r, Z)* det (JKZ_%;_Z)’“ det (7Y,

dZ=det(Y)-"* ] dX,dY,,
1Zisj=n
For any subset I of I',, which is invariant by the conjugation of any ele-
ments in I,,(p), set

1,0 )=tk > H(; 2)dZ,
Tan()\pn 7€
where a(k) is a constant given by (3.1.3) in Chap. III. Denote by
©.(I",.(p)) the space of Siegel cusp forms of degree n, weight k with re-
spect to I',,(p). The representation y, of the group Sp(2n, F,) in the
space ©,(I",,(p)) is given by p@ )f(Z)=J(a, Z) " flalZ ) & I'y,, f &
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Su(l.(p)), and see (3.1.2)). It is known by [2] that tr(u(@"))=
I(I',.(p)a; k) for k>2n. For a symmetric matrix x of size v, denote by
tn,y(x)=<(l)” lx)’ where iz(g 8) (see (3.1.4)). For ac ', let I (x)

(1=<r<n) be the set consisting of all elements in [',,(p)a that are con-
jugate to some elements 7, .(x) with xe L,, det(x)=0 (//,(x) depends
only on #). Following Shintani [16, Chap. 2], we will show that, if k>
2n 3, then, for each a=t, (S) with Se L,, det (S)2=0 mod p,

LT (@); k)=[I"s,,: [s(p)lp=" "= =200, k, 1)Q2.,,,£5(r—n, <§’
=r=n),
where b(n, k, r), 2, , are rational numbers given by (3.2.7), (3.2.8), respec-
tively, and I, ,={¥ € I';, |7 'a¥=a mod p} (a subgroup of I,,), of which
I',,(p) is a normal subgroup with index finite. If ®=1,,, the results above
coincide with those of {16]. In the case of n=2, y=1, pul, for any integer
p prime to p, oo, =1, (p) (e I',). It is essentially known by [13], [1], [4], [5],

and can be proved in a similar manner that, if k=7, tr(u(@.))=
doaa LI (a.,); k). It will be shown that, if k=7,

0.3) tr (@)= —2"37"p(p'— D{Y(—ry By, +(p"— 1)/6}(2k —3)
+27p(p* — D{y(— DPLF(O, Vraed) +¥(— p)zy PLEO, Yrir,)
+273-(p*— 1)},

where 7, is the Gauss sum associated with .

Theorem 3. Let p be an odd prime and let k be a non-quadratic residue

modp. Let k=7. The difference of the two traces tr (u(@,)) (u=1, x) is
given by

=273 pX(p* — W p B, ,(2k—3)
0.4  tr(p@))—tr (@)= .. .p=1mod4,
—p(p*— )W —pL¥(0, Vg - p=3mod4.

We present another conjecture, which is based on Conjecture 1.
Conjecture I.  If p>3, p=3 mod 4, and k= 7, then,

tr ) —tr ()= P — DV = ph(—p).
Tsushima calculated the traces of yu,(@,) in his private notes, which

are based on the results of [22]. Lee-Weintraub [11] announced the ex-
plicit values of the imaginary parts of tr (u(a,)) and presented a conjecture
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analogous to our Conjecture II. Their methods are purely geometric and
the results do not involve special values of L-functions. We are much
concerned how the traces can be expressed by special values of L-functions
and how they can be explicitly evaluated.

In his lecture at Kyoto in 1985, Hashimoto announced that the dif-
erence of the traces of y.(@,) (n=1, ) is given as follows:

0.5 tr (@) —tr (@) ———:”—‘f{i:i@(z/z, Vi) - -p=3mod 4.
T

It follows from (0.4), (0.5) that
(0.6) Ly(3/2, Yru,p)=4r"p~*"L(0, Yrg,,)- - -if p=3mod 4,

which, together with (iii) of Theorem 1, will be regarded as a Kronecker
limit formula for L(s, y4,,). It is guessed that LF(s, yrx,p), La(S, Vs, )
are related with each other by a functional equation under s—3/2—s.
The relation (0.6) will be derived from the functional equation.

The author wishes to express his hearty gratitude to Professor K.
Hashimoto for informing him of his precious unpublished results and to
Professor F. Sato for several valuable comments. He is also very grateful
to Professor A. Kurihara and Professor I. Makino for verifying Conjecture
I numerically by computer. It is a pleasure for the author to mention that
this paper is an answer to the problems presented by Professor Hashimoto
at Kyoto, 1985.

Notation

Let N, Z, Q, R, and C denote the set of natural numbers, the ring
of rational integers, the rational number field, the real number field, and
the complex number field, respectively. For any commutative ring
S, M(m, n; S), M,(S), GL,(S), and SL,(S) denote the module of mxn
matrices with entries in S, the ring of matrices of size n with entries in S,
the group of invertible elements in M,(S), and the group of elements in
M ,(S) whose determinants are one, respectively. For any element 4 of
M,(S), let *A, tr (A), and det (4) denote the transposed matrix of A4, the
trace of A, and the determinant of A, respectively. We denote by 1, the
unit matrix of M,(S). Moreover, we put S*=GL,(S).

For any element Z of M,(C), we denote by Re(Z), Im (Z), and Z,
the real part of Z, the imaginary part of Z, and the complex conjugate of
Z, respectively. For real symmetric matrices 4, B of the same size, 4> B
means that 4 — B is positive definite. For any x e R, {x) denotes the real
number with x— (x> e Z, 0<{x><1. Let I'(s) and {(s) be the gamma
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function and the Riemann zeta function, respectively. Finally, the symbol
e[w] (w e C) is used as an abbreviation for exp Q2riw).

Chapter 1. L-functions of quadratic forms

1.1. Definition of zeta functions and L-functions

Following Shintani [16], we shall define certain zeta functions with
Gauss sums and certain L-functions which are associated with the vector
space of symmetric matrices. We shall not discuss a general theory of
those functions but only some properties that will be needed in later
chapters.

Let G be GL,(R), and let V' be the R-vector sapce of real sym-
metric matrices of size n. Then, the group G’ acts on V{ in a usual
manner; for g e G, x e VP, we put p(g)x=gx’g. Let L, be the lattice
of V& consisting of all integral symmetric matrices of size n, and let L¥
be its dual with respect to the bilinear form (x, y) =tr(xy) (x,y e V&).
Namely, L¥ is the lattice consisting of half-integral symmetric matrices of
size n.

Let p be an odd prime and fix it once and for all. Denote by Z,
the Z-module consisting of all rational numbers of the form 2-"x with
m,xeZ. For a,beZ,, a=bmod p means that (¢—b)/p is a p-adic
integer. Let 1<y<n and let S e L, with det (S)=0 mod p. We set

Z.(S)= {x eL,|x= U(g 8) *U mod p with some Ue GL, (Z/pZ)},

Z|pZ being the ring of residue classes mod p. Then, £,(S) is invariant
under the action of SL,(Z); namely, UZ (S)U=2,S) for any Ue
SL.(Z). Moreover, Z (VS'V)=%,(S) forany Ve GL(Z/pZ). Ifv<n,
this definition of #,(S) amounts to saying that

Z(S)= {x e L,|x= U(S 8) ‘U mod p with some U e SLn(Z)}.

We denote by Z,(S)/pL, all residue classes of elements in .&,(S) mod pL,.
Define a subgroup I's .. of GL.(Z/pZ) by

- {(é g) ¢ GL.(ZIpZ)| AS 'A=S mod p, C=0 mod p}.

A complete set of representatives of .#,(S)/pL, is given by the set

(1.1.1) {U<g 8) UV e GLn(Z/pZ)/fs,m}.
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A kind of Gauss sum ¢{"(T) (T e L¥) is defined as follows:
(1.1.2) @M= 2, etr (Tx)/pl,

z€%n(8)/pLn
which depends only on T'mod p. Then we have ¢{”(UT*U)=¢{(T) for
any Ue GL,(Z/pZ). Denote by L}, the subset of L} consisting of all
positive definite symmetric matrices. For each T'e L} ,, let ¢(7) be the
order of the unit group {Ue SL,(Z)|UT'U=T}. Two matrices T}, T, of
L¥ are called SL,(Z)-equivalent, if there exists some U ¢ SL,(Z) with T,
=UT!U. Denote by L}, /SL,(Z) the set of SL,(Z)-equivalence classes
in L¥,. We define a zeta function &(s, z{”) with the Gauss sum z{
as follows:
X of)=_ > P(De(T) " det (T)°.
TeL}, 75Ln(Z)
For a primitive character X mod p, we also define an L-function L¥(s, X4.,)
by putting
LE(s, Xaed= 25 Xdet(D1)e(T)* det (1),

TeL}, v 7SLn(2)

where X is naturally extended over Z,. Moreover, set

2= 2, e(T)det(T)".
TeL,+/SLn(Z) )

It is well-known that £¥(s) is absolutely convergent for Re (s)>(n-1)/2,
Therefore, £X(s, 78), L¥(s, X4.;) also converge absolutely if Re(s) > (n-1)/2.
The zeta function £X(s) is one of the zeta functions intensively studied by
Shintani in [16].

Denote by + the unique non-trivial quadratic character mod p, which
is characterized by +:(a)=(a/p) for any integer a prime to p, (¢/p) being the
Legendre symbol. Let 4, , be a mapping from L to R given by

(1) - -if T= U(6 8) tU mod p with some U e GL,(Z/pZ) and
YV, T)= t e Z prime to p,
0----- otherwise.

In the case of n=2, Hashimoto introduced the following L-function:

L;k(sn 1!/'H,p)—: Z , '\!’H,p(T)e(T)—l det (‘T’)-s’

TeLy, +/SLa(Z
which is absolutely convergent for Re (s)>>3/2. We have a relation among
*(5, 2), LES, Y, p)> LEES, Yraer)> and £5(s), which is given in Proposition
1.2.
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Lemma 1.1. Let y be any integer prime to p and take pas S'in (1.1.2)
in the case of n=2, y=1. Then, for T ¢ L¥, we have

(i) =P ={p(— (et (T)p—1}/2- - -if det (T)220 mod p,

(i) e =@ Doy —1}/2- - -if det(T)=0 mod p, T=£0
mod p,

(i) <P(TM)=P'—1)/2---if T=0mod p,
where t, is the ordinary Gauss sum associated With \p: 14 =740 moa, ¥(a)
ela/p].

Proof. Writing U= (“ ﬁ) e GL(Z/pZ), we have U(g 8) 1/

T o
o af
”(oﬁ’ T2>' We set

(1.1.3) M(p)={(a, 1) € ZIpZ X Z|pZ | (&, 7)2(0, 0) mod p}.

It is easy to see from (1.1.1) that, for each T'e L,

2
tr( (% aT) T ) ]
2 (a,f)Ze,:up) e[y ((aT 7 /P

(D)=~

If det (7)20 mod p, we may assume that T_::((t)1 ?) mod p with (¢;, p)=1

2
(j=1,7). Then we get

r;,m(r):%{ > )ely(t1a2+t272)/p]}-

(e e (P!

As is well-known, if (g, p)=1, then, >, n.q, elat’/pl=+(a)r,. Thus we
have, with the help of the property 3, =+(—1)p,

(T = % (= D(tt) p—1}

Next let det (7)=0mod p and T=0mod p. We may assume that

T= <6 8) mod p with (¢, p)=1. Then we get

ST = - (Wunpey— 1)

from which the assertion (ii) follows. The assertion (iii) is clear.

Proposition 1.2. Let  be any integer prime to p. Then,
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CA T,‘f))=—;—{\lf(— DpLE(S, Yrae) +9(pry LIS, Vra,p) —(1—p*)EF(S)}

We omit the proof of Proposition 1.2, which is immediate from
Lemma 1.1.

Let « be a non-quadratic residue mod p. Taking I, £ as g in Pro-
position 1.2, we get the following corollary.

Corollary to Proposition 1.2. We have

Py LS, Yru ) =E5(s, o) — &5 (s, =),
V(= DPLE(S, Yrae) = (s, o) +85 (s, )+ (1 =p* )& (9).

1.2. Some properties of &¥(s, t{”), LF(S, Vrqo)> and LF(s, 4ry,,) (analytic
continuations, poles, residues)

We follow Section 2 of Chapter 2 in [16]. Let &, be the symmetric
space formed by positive definite real symmetric matrices of size n. For
each 2 e N, the functions f,(x, 2), fZ(x, 2) (x e V) on VP are defined as
follows:

f (X 2): {det (x)l-(n+1)/2 CXp(—Zrc tr (.X)) Cifxe @m
o 0.--ifxe VP, xe¢e £,
*(x, H=det (1,—ix)"%

An Euclidean measure dx on V@ is normalized by dx= T[] 5;<;<n d%;;
Put X(g)=det(g)*. Moreover, we set

r©= 1 Me+1+i2, =]
and

LB+ (nz=2)

= D=

Let p be an odd prime and fix it.

Lemma 1.3. Let 1<v<n, and let S ¢ L, with det (S)=0 mod p. If
A>nt1, then,

3 DL e(e N TIp) =g 1D 5 [ (ele)x, .

TeL*
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where ge GP, and p,;=@Em)"*-ipr O 2m)= 4y (A—(m+1)/2) (both
sides are absolutely convergent).

Proof. The Fourier transform of f,(o(*g~")x, 2) on V'§ is given by

[ £iotex, Deltr Golax
VR

=& IA2a) A (1 DI2UE) S H @), )
(ge G,y e VP, and the integral converges absolutely).

This identity is nothing but Hilfssatz 37 of [18]. Replacing y with u+4py
(u e V) and changing the variables by x—x/p, we get
[ Solos™)xlp), Deltrxip)leltr ()l
K
=270y, () ¥ (p(g) (), A).

By virtue of the Poisson summation formula (see (iii) of Lemma 19 in [16]),
we  have

é*fn(p(‘g")(X/p), Neltr wx/p)l= prn,(8) " évi FE(p(e)u+py), 1)
ZELy Y€ Ln

(the both sides are absolutely convergent for A >n-1).
If we let u run over .Z,(S)/pL,, we obtain the formula in Lemma 1.3.

Let d,g be a Haar measure on G’ normalized by

d,g=det (g)“"1 i1 g,

=i, 7=

Set;GP, ={g e GP|det(g)>0}. We put
(120 Zxse)=[ | He) 3 e T D
& 1SLu(Z) T'eLy

We denote by Z*(s, z{) the integral obtained by replacing the region of
integration with the set {ge G%,/SL.(Z)|%(g)=1} in the right side of
(1.2.1). Asis shown in Lemma 21, (i) in [16], the integral Z*(s, ¢$”) is
absolutely convergent if Re (s)>(n--1)/2, Re (A4-5)>n, and then,

(1.2.2)  Z*s, =&
:pnsﬂn(n-l)/‘i(zn,)—(z+s—(n+1)/2)n2_n»lcn7zn(2+S__n__l)g;f(s, ngn) .

We keep the conditions: S e L,, det (S)2c0mod p. Set, for re N (r<n),
(1.2.3) LI(S)={x e Z,(S)|rank (x)=r}.
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We see immediately that, if Z(S)2c ¢, then, of necessity, v<r<n.

Lemma 14. Let y<r<n. Each xe L(S) can be written as x=
U (g 8) ‘U with some x, e £7(S), Ue SL(Z).

Proof. 'We assume that r<n, otherwise we have nothing to do. Take
x e Z(S). Then there exist Ue SL,(Z) and x, e L, with det (x,)=£0
such that x=U <g‘ 8)‘U. Since x ¢ .Z,(S), the rank of x, mod p as a

matrix of M (Z/pZ) is v. Thus there exist some W, e GL(Z/pZ) and x,
e L,, det (x,)2c0 mod p with the condition

(1.2.4) X= W1<6‘2 g) ‘W, mod p.

Since x ¢ Z,(S), so is (gl 8) Hence we see easily from (1.2.4) that there

exists some Ve GL,(Z/pZ) such that(xZ 0)5 V(S 0) V' mod p. Writing

00 00
V= (E Izz) with V, e M (Z/pZ), we have x,=V,S*V, mod p, which implies
that V, e GL(Z/pZ). We get, again by (1.24), x,= W<8v 8)‘Wmod p
with some We GL(Z/pZ). Thus, x, e Z"(S). q.e.d.

Let P7 denote the subgroup of G’ formed by all matrices whose left
lower (n—r) X r blocks are zero. Denote by P , the connected compo-
nent of 1, in P}.

Lemma 1.5. The following decompositions hold.
(i) Z.(S)=Ur_, 2S) (disjoint union).
(ii) For each r v <r<n),

s 00 0) Ve 200
UESLn(Z)/SLn(Z)NP,

(disjoint union).

Z0(8)=

The proof is due to Lemma 1.4 and is immediate.
We set

(1.2.5) Z(f¥(x, D, Z.(S), s>=j 1y 3 FH@)x Vd,g.

GR)/SIn(D) 2 2 (S)

By virtue in Lemma 21, (ii) in [16] and Lemma 1.5 above, one has the
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following proposition (or one can prove it in the same manner).
Proposition 1.6. Assume that 2, s satisfy the following inequalities:

1>1, Re(s)<2 for n=1,
(1.2.6) A>Max (13/2, 2 Re(s)+7/2) for n=2,
A>n+17/2, Re(s)<A—m—1)/2  for n=3.

In addition to (1.2.6), if s satisfies Re (s)>(n—1)/2, then the integral
Z(f¥(x, 2), Z.(S), s) is absolutely convergent.

We impose the following assumption on A:
(1.27) 1>1 forn=1, 2>13/2 forn=2, and A1>n-+7/2 forn=3.

For 2 e N satisfying (1.2.7), we put

A—1 for n=1
(1.2.8) a,={(—13/2)/2 for n=2
A—n Jor n=3.

We define the integral Z,(f*(x, 1), Z.(S), s) by restricting the region of
integration to the set {gG e . /SL,(Z)|%(g)=1} in the definition (1.2.5)
of Z(f¥(x, 2), Z.(S),s). We see easily from Proposition 1.6 that
Z(f¥(x, ), Z.(S), (n+1)/2—5) is absolutely convergent if —a, <Re(s)
<1, and hence that Z, (fX(x, 2), £(S), (n+1)/2—s) is absolutely con-
vergent for —a, <<Re (s).

Proposition 1.7. Assume that 2 satisfies the condition (1.2.7). If Re(s)
>(n-+1)/2, then the following identity holds:

(1.2.9)  Z*(s, e8)=Z*(s, T8") + .2 {Z+(f:f(x, D, ZAS), (n+1)/2—5)

n-1 Cnvn—r -
T e i 1—np) I L) n/2)}.

Proposition 1.7 can be proved quite in a similar manner as in the
proof of Lemma 21, (iii) of [16]. For the convenience of the reader, we
give a proof, which is based on Proposition 1.6.

Proof of Proposition 1.7. First we notice that the integral Z(f}(x, 2),
Z.,(8S), n/2) is absolutely convergent by Proposition 1.6. Using Lemma
1.3, we have, if Re (s)>(n+1)/2,
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(1.2.10) Z*(s, c)=Z%(s, o

+ yj K= 3T fHo(g)x, Vg,
G§), I18Lu(2), u() 21 € £n(8)

We need the next lemma. For the proof, see [19] and also Lemma 17 in
[16].

Lemma 1.8. IfRe(s)>0 and t >0, then

i} ts
f xg)*d.g =—v,.
G%‘,’+/Sln(Z),x(g)zllt s

Let dp be the right invariant measure on P7, , normalized by
dp=det (p,)"~" det (p,)""d,p:d,-.p:dq,

where pz(gllfz)((l)’ lq_ ) with p, e G,, p,e GZ7, ge M(r,n—r; R),

1.5, Lemma 18 in [16], and Lemma 1.8, we get, if Re (s) > (rn-1-1)/2,

I ug)ror=r 35 [ e(g)x, Ddng
G4 15 LD, 1) B1 zE2f (9
=2_1I Ag)menr-s 3] f;f(p@)(i)c 8), l)dng
. GRLISLaZINPY, 40 2(0) 21 z€2{T(8)
ol
=__tn x(g)mrnr-s ¥ x, d
C.C,_, Jrr istunry ® xes§<s>f (olpx, Dp
1 (P2 (p2) 21
Cl-r Z(f¥(x, 2), LAS), n/2).

T C.C 5—(r1=n)2)

Thus we see from (1.2.10) that the expression (1.2.9) holds for Re (s)>
(n--1)/2. 'We have completed the proof of Proposition 1.7.

We notice that Z*(s, z§¥) is a holomorphic function of s in the
whole complex plane and that Z (fX(x, 2), Z,(S), (n+41)/2—s) is holo-
morphic for Re(s)> —a,. Taking the identities (1.2.2), (1.2.9) into ac-
count of, we see that &¥(s, z{") can be continued to a meromorphic
function in the region Re (s)> —a,. Since 1 can be taken sufficiently large,
EX(s, ) is extended to a meromorphic function in the whole complex
plane. Moreover, we see that the poles of £¥(s, ) are located only at
s=(m41—r)/2 (v<r<n) and that they are simple poles.

The next Proposition 1.9 corresponds to Corollary to Lemma 21 in
[16].
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Proposition 1.9. Let 1 satisfy the condition (1.2.7). The following
Sfunctional equation holds:
Z(f¥(x, ), £u(S), (n+1)/2—s)
n.n(n+1)/2p'n(s—-(n+1)/2)Cnrn(1+S__n 1) érﬂ:(s (n)
2277 (A—(n41)12)

(the left side is defined at least if —a,<<Re(s)<1).

Proof. We start from the identity (1.2.9). If —a, <<Re((s)<1, then
we can get, similarly as in the proof of Proposition 1.7,

Z*Gs, rgm):,m[ MR S fo(g)x, Vg
G%”’+/SLn(Z),z(g)§l zE2P(S)
— i Caln-r Z(f¥(x, D), ZAS). n]2),

» GG, (s—(n+1-1)/2)
from which we obtain
Z(s, 78)= pn i Z(f3(x, D), L(S), (141)/2—).
Thus, by (1.2.2), we get the functional equation in Proposition 1.9,

Proposition 1.10. The zeta function E¥(s, =) can be continued analy-
tically to a meromorphic function in the whole complex plane which has
simple poles only at s=(n+1—r)/2 (v<r<n—1). The residue of the pole
at s=(n4-1—r)/2 is given by

2(n—r)(n+r+1)/2

¢ Unor g4((r+1—n)[2, ¢ w<r<n—1).

Proof. The former part of Proposition 1.10 has been verified. We
have only to calculate the residues of the poles. We see easily from Pro-
position 1.7, Proposition 1.9 that the residue of the pole at s=(n-4-1—r)/2
(v<r<n) is given by

(Zﬂ)rnlzcnvn—rrr(z - (r+ 1 +n)/2) sk 1 — 2 (r)
21+r(r+1)/‘2pnr/2rr(z_(’.+ 1)/2) M, 1&- ((r+ n)/ Ts7)

Thus, using the identity (1.2.2), we get the explicit residue at s=(n+1-—r)/2
of &¥(s, t{) as in Proposition 1.10.

For a primitive character ¥ mod p, B, , denotes the k-th generalized
Bernoulli number given by
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1.2.11) By, —p*! ZiX(a)Bk(a/p)-

In the case of n=2, one can derive some information of LJ(s, Vrz,,),
L¥(s, vrqe;) from Proposition 1.10.

Theorem 1.11. Let p be an odd prime and let  be the unique non-
trivial quadracic character mod p.  The L-functions L (s, ¥y, ), LF(S, Vraer)
are continued analytically to meromorphic functions in the whole complex
Dplane which are holomorphic except at s=3/2, 1. Then, L¥(s, \ry,,) has the
unique simple poles at s=1 with residue — B, ,[p, and L¥(s, \rq..) has simple
poles at s=3/2, 1. The residue of LF(s, \r¢e,) at s=3/2 (resp. s=1) is given
by y(—1)3-"p~"(p—Dx (resp. —y(—D27'p~(p—1)).

Proof. The former part is clear from Corollary to Proposition 1.2
and Proposition 1.10. Let 4 ¢ Z with (4, p)=1. An elementary compu-
tation shows that, in the case of n=1,

(1.2.12) (s, o) = %{xlf(‘u)rq,L(S, W= (1=},

where L(s, v) is the Dirichlet L-function associated with +. Since L(0, )
=—B,,, {(0)=—1/2. We have

B0, £)= — - bl)ey B+ (1),

We see immediately from Proposition 1.10 that the residue of &f(s, %) at
the pole s=1is given by &¥(0, ¢{°). It is known by [16, Theorem 2 or
Corollary to Lemma 21] that £¥(s) has simple poles only at s=3/2, 1 with
residues z/3, — 1 respectively. Since £5(s, ) is holomorphic at s=3/2,
so is L¥(s, ¥x,,). Thus we get, by Corollary to Proposition 1.2, the asser-
tion of Theorem 1.11.

Chapter II. Evaluation of special values of L-functions
(the cases of degree two)

2.1. L-functions, and partial zeta functions

Let 64, denote the boundary of the domain £, in V'@, that is, 6%,
is the set of positive semi-definite symmetric matrices of size two. Let
{W,, W,, - - -, W,} be an r-tuple of elements in 2, U 92, such that W,, W,
..., W, are linearly independent over R. Then, necessarily, r<3. For
any r-tuple £=(&,, - - -, &) of positive numbers, we define a partial zeta
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function {(s; {W,, - - -, W,}, &) as follows (see (2.2) of [14] and (1.4) of [9]):

QLY Ui (W Wh D= 53 det(5 @ rm)w, )

MiyereyMp=

Let C=C(W, - - -, W,) be a simplicial cone spanned by W,, --., W,:
C=CW, -+ W)={352,W,12,>0 1=/},
7=1

We assume that the cone C(W,, - .-, W,) is contained in &,. Then it is
easily shown that the zeta functions {(s; {W,, -+ -, W,}, &) is absolutely
convergent for Re (s)>r/2. For any subset M of V{, the zeta function
L(s; C, M), if it converges absolutely, is defined by )

2.12) s CM)= 3 det(T)

It is well-known that, as a fundamental domain of £, under the usual
action of the group GL,(Z), one can take the so-called Minkowski domain
X, of reduced matrices (see, for instance, § 9 of [12]). In the case of n=2,
the domain %, has a simple form:

= {(y y12)10<2yu<ylsh, 0<y1}
Yo Ve

We fix three special elements V,, V,, V, in &,U 87, throughout Chapter

1II; put
/10 (112 (00
V1_<0 1), V2_<1/2 1), and Vg_(o 1).

We set, for simplicity,

Clza—'—_c(Vn Vz, V:«:): Cijzc(Vis Vj) (1§Z<J§3)’

2.1.3
( ) Cj= C(Vj) (]: L 2)>

which are simplicial cones contained in &,. Then the domain %, has the
decomposition

.14 Ry=Cp UC UC,, UG, UC, UG, (disjoint union).

For each cone Cin (2.1.3) and any Y e C, the order ¢*(Y) of the group
{Ue GL(Z)| UY*U=7Y} takes the same Value independent of Y belonging
to C, and one can put

e¥(C)=e*(Y) (YeO).
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It is easily verified that
2.1.5) X(Cpy=2, eXC,)=4 (1Ki<j<L3), eXC)=8, X C)=I12.

For a real number x, we denote by (x> the unique real number which
satisfies 0<<{x><1 and x—{x)> e Z. Let p be an odd prime.

The aim of this section is to represent the L-functions L(s, yrx,,)s
L¥(s, X4,) and the zeta function &f(s) as a finite linear combination of

partial zeta functions (2.1.1).
First we shall discuss the L-function LF(s, Jx,,). Let .#(p) be the

set given by (1.1.3). For each integer » prime to p, let L*(y) be the set
consisting of all elements T'e L¥ satisfying v, (T)=+(x). Then it im-
mediately follows that

2
L¥(y)= {Te Ly T_:_p<g7, ?Z) mod p for some («, 7) € J/(p)}

and that L¥(ul*)=L*(p) for any integer / prime to p. For each (a, 4) €
#(p) and for each integer y prime to p, we put

Q1.6 &, .= uld®—2a1)[p), 2pat[p), {u(*—a®)/pD).

Let 5, be the set of all triples &,,,: & ,={&.r,.|(a, 7) &€ A(p)}. Then,
A(p)/{+ 1} corresponds to 5, bijectively by =& (a, 1) —E&,.;,.(=& 4, -1,.)-
For any integers 7, j with 1 <i<{j<3, we set

E}}:ﬁ)z{f:(él, &, &) e EH,;JISICZI})

where k is the unique integer of 1, 2, 3 satisfying {7, j, k}={1, 2, 3}. We
notice that

EG) ={8ur,nl(a, 7) € M(p), *=7" mod p},
.1.7) EGD={&,r. (e, 1) € M(p), a¥y =0 mod p},
B ={8arul(a, 1) € A(p), a’=2a7 mod p}.

For each cone C of the form (2.1.3), the zeta function {(s; C, L*(y)) given
by (2.1.2) is absolutely convergent at least for Re (s) >3/2.

Proposition 2.1. The following expressions for the zeta functions
L(s; C, L¥(y)) hold:

&(s; Cuaay L*(p))=P’ZZEEZ‘__’. 8s; (Vs> Vas Vi, ©),
&s; Gy L*(y))=17“28( 2 s {Ve Vi Esg)) (15053,

51,62,53)68%’{"
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C(Sa CD L*(p))=0,

0 <oeif p>3
265 G ()= Rt
2T et (), Culp)- i =3
Proof. Take T e Cyp,(\ L¥(p) and write T=735_, m,V, with all m, ¢
N. If we take a pair (a, 7) € #(p) such that

_ {da* ar
2.1.8) T= y(ar r2> mod p,

then, m,’s satisfy the congruences:

{mlz o —2ar) mod p, m,=2pet mod p,
my= p(r* — o) mod p.

Therefore, there exists a triple /=(/,, L, /,), [, being nonnegative integers,
such that (m,, my, m)=p(&,, ,+1). Each T'e Cy,; N L*(y) determines a
triple / uniquely and also («, 7) € #(p) uniquely up to (- 1)-multiplication.
Thus the first identity of Proposition 2.1 follows. Next, for instance,
let Te C,,N L¥(p) and write T=3_%_,m,;V, (m;e N). A pair (&, 7) can
be so taken as in (2.1.8). Then the congruences m,= pu(a’—2a7) mod p, m,
=2pay mod p follow, and necessarily, the relation =7 modp has to
hold. Therefore, the identity for {(s; C,, L*(p)) immediately follows.
Other identities left are quite similarly verified. So the proof is omitted.
q.e.d.

Let £ be a non-quadratic residue mod p as in Chapter I.

Proposition 2.2. Let + be the unigue non-trivial quadratic character
mod p. Then we have

Li (s )= W){C(s; Cuaer L) +% 463 Cop L¥)
+-é 3,053 C., L*(#)},

where y is taken over | and &, and the summation 3, , indicates that i, j
run over all integers with 1<i<j<3. Moreover, 5,;=0if p=£3, and §,,,
=1ifp=3.

Proof. Only in this proof, we introduce the L-function M¥(s, ¥y, ,)
which is quite similar to L¥(s, 5, ,). We set

ME@s, V)= 25 V(D) det(T)°

TEL} . /GLa(Z)
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where T is taken over GL,(Z)-equivalence classes of positive definite half-
integral symmetric matrices of size two, and ¢*(T") is the order of the unit
group {Ue GL,(Z)|UT*U=T} of T. Then an elementary observation
shows that LF(s, Vu,,) =2MZ¥(s, ¥z,,). In view of the decomposition
(2.1.4) of #,, we may take a disjoint union U, (CNL¥), C varying all
simplicial cones in (2.1.3), as a complete set of GL,(Z)-equivalence classes
of all elements in L, . Thus we get, with the help of the decomposition
L¥=L*(1) U L*(x) (disjoint union),

L@ A ) =22,eM(C) ; V()C(s; C, L¥(p)),

which, together with (2.1.5) and Proposition 2.1, completes the proof of
Proposition 2.2.

Let X be a primitive character mod p. Secondly, we treat the L-
function L¥(s, X4.). For each integer § prime to p, we set

M*@)={T e L§|det (T')=6 mod p}.

L Iy

For each T'= ( p > e L¥, a triple &, is defined by

Er=((t,—21)/p), Ctulp), L(t—1)[P)),

which depends only on 7T mod p. Let 5; be the set of all triples &,, T

varying all elements of Lj/pL¥ with det(T)=dmod p: &, ={&,|T e

L¥ mod pL¥, det (T')=¢ mod p}. For integers i, j (1=i<j<3), we set
Et(ti’j):{‘fz(fu &a 53) € E&]‘Skzl}’

k being the the unique integer of 1, 2, 3 with {j, j, k}={l1, 2, 3}.

For any cone C of the form (2.1.3), the zeta function £ (s; C, M *(3)),
which is absolutely convergent for Re (s)>>3/2, has the following expres-
sion.

Proposition 2.3. Let § be any integer prime to p. Then,
(s; Crosy M *(5))=P‘”£€ZEI Cs; {Vi, Vas Vi) 8),
3
&s; Cipy M¥(0)=p~™ 2o L Vs ik (6 6))

(§1,62,83) € 8§00

AZi<iL3).
For the cone C; (j=1, 2), we have

2, MAN(s; C MH@)= ZMX(I?)C(S;{VJ, <t/py),

d%0mod p 150 mo!
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21 XO(s; Co, M¥@))= >, px(3t?z)C(S; {72}, <2t./p))

d%0mod p t12#%0mod

(note that, if p=3, then, the right side of the last equality coincides identically
with zero).

Proposition 2.4. Let X be a primitive character mod p. Then,

LiG tud=, 5 x@{as: Cuawr M¥(3)+ —;—zj &s; Cyp M¥(0)

0 mod

+—41—C(S; C. M*(a))+% s G M*(&))}.

We omit the proofs of Proposition 2.3 and Proposition 2.4, which are
quite similar to those of Proposition 2.1 and Proposition 2.2.

Finally, we obtain Proposition 2.5, which asserts that the zeta func-
tion £#(s) can be represented as a finite linear combination of partial zeta

functions.

Proposition 2.5. We have
EHO=C: (Vi Vi Vi (L 1 D)+ S 63 (Vi V) (1, D)
1., 1.
+ZC(S’{V1}’ 1)+€C(S, "1 D.
The proof of Proposition 2.5 is omitted as well.

2.2. Integral representations of partial zeta functions I

The aim of subsequent two sections is to obtain convenient expres-
sions of partial zeta functions as integrals over contour paths, and then to
evaluate special values of them at non-positive integers.

Let {(s; {W, - - -, W,}, &) be a partial zeta function as is defined in
(2.1.1). We assume that the cone C(W,, - - -, W,) is contained in &#,. The
following formula is well-known (see for instance [12] and also Lemma 1
of [14]):

(2.2.1) det(T) "= rl(s) det (Y)'e-=T0dy(Y) (T e Py Re (s)>1)2),

where we put

T)=r"T((s—1/2) and du(Y)=det(Y)"*2 T[] d¥,,.

1sisj=2
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We set, forte C, xe R,

. e
ot )=—"—,

which is the generating function of Bernoulli polynomials B,(x). Namely,
the Laurent expansion at r=0 of ¢(¢; x) is given by

2.2.2) (03 %)= kz Bk(x) 1 (1] <20).

By a usual argument which uses the formula (2.2.1), we get an expression
of &(s; {W,, - - -, W,}, &) for Re (s)>r/2 by the integral taken over &,:

C(S;{Wl’ M)

1, 6ttr (7, ); 1= )do(Y).

_( cosf sinf
We set, for 4 € R, k"“(—sin 0 cos 0).
Following Satake [14, 2.2], we make a change of variables Y—(z, u, 6)
with Y=tk, (g (1)) tky (0<t,0<u<1,0<L60<7). We thus obtain, using

the relation dv(Y)=1¢""u~**(1 —u)dtduds,

223 Ls;{Wy - WL 9=

2( )
% r dtrdura’ﬁ =52 — ) D((t, 1, 0); (Wi - - -, W, &),
0 0 0

where we put

D0, (W -+ W), &)= ] §(1(ws 0), W)); 1-8)
and

A((u, ), W)_tr<Wk ( ) ‘k ) for any We #,U0%,.
The following condition (2.2.4) on vectors W,;
(2.2.4) all W, (1< j<r) are contained in Z,,

being imposed, then, the integral (2.2.3) has been studied in a full generality
by Satake [14] and by Kurihra [9] in a special but significant case.
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However, for our aim to evaluate special values of L-functions discussed
in 2.1, it is indispensable to get rid of the condition (2.2.4). In view of
Proposition 2.1, Proposition 2.3, and Proposition 2.5, we have only to
consider the cases in which, with respect to an r-tuple {W,, - - ., W,}, the
vectors W, ..., W,_, are all in &,, and W, coincides with the special
vector V, in 9%,.

Now we set

Ylt; x)=¢(2; x)—%,

which is a holomorphic function of ¢ in the region |[¢| <2z. Let {W,, ---,
W, .1, Vi) (r=2 or 3) be an r-tuple of vectors in &, Ud<#, such that W,
<., W,_,are all in &,. We set, for an r-tuple £=(&,, - - -, &,) of positive
numbers,

@P((t’ u, 0)) {Wla R} Wr~1a V3}a E)
=TT 82, 6), W): 1= e s ), V)5 1-8),

and, for an (r— )-tuple &'=(&,, - - -, &,_)),
djs((tr u, 0)a {VVD D) Wr—la V3}3 EI)

__—]4-— r—1 N
=BT J1,6(02(w, 0), )5 1-¢).

Moreover, we set

(2'2'5) CP(S; {I/I/l, ] Wr-—l, VS}; S)

1 Jw J‘l i 2s-1,,5-38/2
= dt| du) df-t /2(1 —
Ty Jo ) ”fo 6w (-
X@P((t: u, 0); {I/I/l’ St Wr—la Va}: S)a

(2'2'6) CS(S; {I/I/l: Tt Wr—l: V3}, El)

v Tl Ko R e
dt| du| do-t* w1 —u

I'y(s) Jo o Jo ( )

X@S((t! u, 0): {WD ] Wr—l, Va}: 5/)
(the letter P (resp. S) is used to intend that the function given in (2.2.5)
(resp. in (2.2.6)) is a principal (resp. singular) part of {(s; {W,, - -+, W,_4,
Vi}s ©).
The integrals in (2.2.5), (2.2.6) are absolutely convergent at least for Re (s)
>3/2. Obviously,
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C(S; {Wl, R} V3}7 E)=CP(Sa {I/Vl: tt V3}= $)+CS(S, {VVl, R V3}, S,)

For our later use, we prepare some symbols. For a positive number e, let
I,(o0) (resp. I.(1)) be the contour path consisting of the oriented half line
(400, ¢) (resp. (1, €)), a counterclockwise circle of radius ¢ around the
origin, and the oriented half line (e, + o0) (resp. (e, 1)). We would like to
modify the integral in (2.2.3) directly into the integral taken over contour
paths I,(o0) and I,(1) (for a small ¢) with respect to ¢ and u, respectively.
However, the function ¢(2((4, 6), V;); 1—&,) has serious singularities as
a function of ¢ and u on the paths /,(o0), I,(1), because of the form of
(@, 6), Vy)=usin*§+-cos’d, and therefore such a modification cannot
be done easily. To avoid the difficulties derived from such singularities,
we divide zeta function {(s; W, - - -, W,_,, V3}, &) into two parts as above.
In the rest of this section, we shall mainly discuss the function
Co(s: {W,, - - -, W,_,, V3}, &) and its expression by an integral over contour
paths. The singular part C(s; {W), - - -, W, 1, V3}, &) will be dealed with
in the next section.

For a positive number §, we denote by D,(c0) and D,(1) the regions
given as follows:

Dy(o0)={ze C||z|<d}U{ze C|Re(2)>0 and |Im (2)| <45},
D1)=Dy)N{ze Cl|z|<1}.

If Wis in &,, we can take a positive constant a, b satisfying
.27 al, <W<bl,.

We may write (4, §), W)=au-+-a, with a<a;, ¢;<<b. It then follows
that

14w, 0), W)| <b(1+[ul),

(2.2.8)
Re (A((u, @), W) >a—bd if Re()>—5 (6>0).

We need some analytic properties of the functions ¢(t2((u, 6), W); 1—§)
and (¢ A((u, 0), V3); 1—=8) (6>0).

Lemma 2.6. Suppose that W e P, satisfies the condition (2.2.7). Let
E>0 and 0<5<a/b.

(1) If|t|<z/2b, and u € Dy(1), then, t§(t2((u, 6), W); 1—&), which is
a holomorphic function of (t, w) for each 0 in that region of (t, u), has the
power series expansion with respect to t:

td(22((u, 6, W); I—E)zm_}_gllgk(;{?@{x((u, 9), W)y-¥,
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(i) Ift>0and 0<u<l, then,

tet¢

_e-te

tg(ta((w, 6), W3 1= <4

Proof. 1If |t|<z/2b, u € Dy(1), then, we get, by (2.2.8),
|12, 0), W)|<z(l+ |u])/2<2x.

Therefore, the Laurent expansion (2.2.2) implies the assertion (i). The
assertion (ii) is immediately derived from the inequality A((u, 6), W)>a
0uLl).

Lemma 2.7. Let £>0 and 0<g<1. Then ¥(t2((u, 6), V3); 1—§) is
a holomorphic function of t, u for each 0 in the region {(t, u)||t| <2z, u e
D,(1)}, and has a Taylor expansion with respect to t:

Bk(l

w12, 0), V)3 1-8= 31509 usint 4-cost oy -5

Proof. Recalling that A((u, §), V;) = u sin* §4cos’, and moreover
that |£2((u, 6), V)| <2z if |#|<2zx, u € Dy(1), we immediately get the as-
sertion of Lemma 2.7.

The function (¢; 1 — &) has a preferable property which will be used
in the proof of Proposition 2.9.

Lemma 2.8. Let £>0. There exist positive constants M, (k=1, 2,
. +) independent of t such that, if 0<t< 4 oo,

|t 1=8) | <M,

where | ®)(t; 1 —&) denotes the k-th derivative of \(t; 1—&) as a function
of t.

We omit the proof of Lemma 2.8, which is an easy exercise of differ-
ential calculus.

It is easy to see from (2.2.8) and Lemma 2.6 that, if § is taken
sufficiently small, then, 1¢(12((u, 6), W); 1—&) (W e 2, £>0) is holo-
morphic as a function of ¢, u for each § € R in the region Dj(o0) X Dy(1).
Moreover, taking (2.2.8), Lemma 2.6, and Lemma 2.7 into account, we
see without difficulty that the integral

tgf:@P((t, u, 0)’ {I/Vh DR} Wr—v I/s}s ‘S)dﬁ
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indicates a holomorphic function of #, # in the region Dy(1)x Dy1) for a
sufficiently small 6. We notice here that the range of ¢ is the region D,(1)
(not Dy(c0)).

To define the function #°=e**¢¢, we take the branch of log¢ with

0<argt<2r.

Proposition 2.9.  The function {x(s; {W,, - - -, W,_, V3}, &) is analyt-
ically continued to a meromorphic function in the whole complex plane which
is holomorphic at s=1—m (m=1,2, ...). Moreover, the special value at
s=1—m is given by

CP(I—m; {Wl, Sty Wr—la Vs}; 5)
— C(m) dzf durd(it““‘u“m“/z(l —4)
I'e I¢() 0
X¢P((ta u: 0), {Wv ] Wr—la V3}, ‘S);

where C(m)=2m—1)!/2"**z*[ and I", denotes a circle of radius ¢ around
the origin oriented counterclockwise, ¢ being taken sufficiently small.

Proof. 'We set, only in the proof of this proposition,
f(ta u, 0)=@P((t’ u, 0), {I/Vh M) W'r——u V;}, 5)

We divide the integral in (2.2.5) into two parts by the range of the variable
t. We set

CP(S; {VI/D DY Wr-v I/s}a é)—_—

1
I70) () +1(s)s

where
1 T
Il(s)=fdt j du f 40 151wt~ (1 —u) £ (1, u, ),
0 0 0
I(s)= j wdtrdurdﬁ- 1250321 — u) f (2, u, 0).
1 0 0

It is easy to see from the remark just before the statement of Proposition
2.9 that I,(s) has the following expression by an integral over contour paths:

_ 1 .
@29 = e =31 f @ dtj £ d"f 40

Xt (1 —u) f(t, u, 6),

where ¢ is taken sufficiently small. Since the integral in (2.2.9) indicates
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an entire function of s, the function 7,(s) can be continued analytically to
a meromorphic function in the whole complex plane. Thus we easily

obtain

2.2.10) tm 2O _ cm) dtj duf”da.ﬂ—zmu—m-wa—u)f(z, u, 6)
s-t1-m [o(8) re FRN 0

(m=1,2,---).

On the one hand, we see easily from Lemma 2.8 and so on that the func-
tion f(¢, u, 6) is a C=-function of (¢, u, ) in the region (0, +o0)x [0, 11X
[0, ], and especially that the partial derivatives (3°f/ou*)(t, u, 8) (k=0, 1,
2, -.)are bounded in the region [1, 4 o0]X [0, 11X [0, z] of (¢, u, §). We
set, for Re (s)>0,

1
FGsi (4 )= w1, , )
Q
Then we have

@.2.11) Jz(s)zfdtjo"da.ﬁs—*{p(s_1/2; (t,0)— F(s+1/2; (¢, O))).

Using the integration by parts recurrently, we obtain

2.2.12) Fis; (1, 0) ZES(H 1()—-_-1-)23—1—]) 33: 1,6

. (__l)m I1u8+m_1
Cs(s1D)- - (s+m—1) Jo
(Re (s)> —m).

orf (¢, u, O)du
ou™

Since any m € N can be taken, it follows from (2.2.11), (2.2.12) that L(s)
can be continued to an entire function of s. Thus we get

(2.2.13) [ 1(s) ] —0.

Iy(s)ds=1-m
The analytic continuation of {.(s; {W,, ---, W,_,, V3}, &) immediately
follows from those of I,(s), I,(s). The last assertion of Proposition 2.9 is
derived from (2.2.10), (2.2.13). g.e.d.

The following proposition which deals with partial zeta functions
whose edge vectors are all in &, is only a small part of the results obtained

by Satake in {14].
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Proposition 2.10. Let all vectors W, (1< j<r), which are linearly
independent over R, be in &,. Then the zeta function {(s; {W,, - - -, W,}, &)
has the analytic continuation to a meromorphic function of s in the whole
complex plane, which is holomorphic at s=1—m (m—l 2,.-.). The
special value at s=1—m is then given by

A —m; (Wi -, W), E):C(m)J dtj durdﬁ- f-tmy (] _y)
re I(1) 0
XQ((t: u, 0); {Wl, ] WT}7 E)'

Proof. For the completeness, we give a proof. Lemma 2.6 implies
that the integral

IZI:@((t’ u, 0)7 {Wn ) Wr}a f)de

indicates a holomorphic function of (¢, u) in some region D;(c0)X D,(1).
Thus one obtains, for a sufficiently small e,

. PR —— 1 i
Gss W - W1 ) I'y(s)(e[2s]— D) (e[s—3/2]— 1) Is(w)dtfl;(l)du od0

X th—lus—s/z(l —u)@((ty u, 0)7 {WD M) Wr}5 S)
Since the integral in the right side of the equality is absolutely convergent,
this identity gives the analytic continuation of {(s; {W,, ---, W,}, &) toa

meromorphic function of s in the whole complex plane. Substituting s=
1—m, we get the identity in Proposition 2.10.

In view of Proposition 2.1, Proposition 2.3, and Proposition 2.5, we
need only partial zeta functions of the form
Cs; {7 Vo Vi (61, €, &), E(s5 {Ve, VL (6, €)  (1=i<j<3)
Us; V18 (=12, and £>0).

Now we discuss the evaluation of (p(1—m;{V,, V;, Vi), (51, & &)
(m e N) and so on as a continuation of Proposition 2.9, Proposition 2.10.
For each triple (k,, k,, k;) of integers such that k,, k,=>—1, k,=0, and
ky+k,+k;=2(m—1), we define a number A, , :, DY putting

T 3
Q2.14) Ay enre =j du f d9-u==2(1—w) 1] 2, 0), V)",
Ie(D) 0 j=1

where the integral in the right side is independent of the choice of a small
positive number e.
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Remark. The numbers A, ;, 1, €ssentially coincide with N(1—m;
k.41, k,+1, k,+1; v, v, vy) in Kurihara [9], though his definition is dif-
ferent from ours.

Proposition 2.11. Let £=(&,, &,, &) be a triple of positive numbers,
and me N. Then we have

. . _— . I4 8 Bkj+1($')}
Gl (VYo Vi 9= —25iCm) 32 {11, S0 e
where ki, ky, k, run over all integers satisfying the conditions k,, k,=> —1,
k,=0, and k, -+ ky+ky;=2(m—1).

Proof. We take ¢ sufficiently small so that Lemma 2.6 for V,
(j=1,2) and Lemma 2.7 hold. Then we get the following power series
expansion, if [¢| <3, u e Dy(1),

S (B, (1—&)
O (8, 1, 0); Vs, Viy Vi, €)= {wL__z u,a,V.kf}.zwws,
A0 7 7 VR 9= T 1 (Pl T8 0. 7)
where ki, k,, k; run over all integers satisfying &, kK, —1 and k,>0.
Applying Proposition 2.9, we obtain the expression for (1 —m; {V3, V,,
v}, &) in Proposition 2.11.

Quite in the same manner as in the proof of Proposition 2.11, one
can evaluate special values at s=1—m of the functions {.(s; {V,, V3},

(¢5 &) (U=1,2), Ls; {Vs, Va}, (61, &) and L(s; {V )}, §) (j=1,2, §>0). So

we omit the proof of the following proposition.

Proposition 2.12. Let &, &, (j=1, 2, 3) be positive numbers and m e
N. Then the following expressions hold.

—_m: — 1 ’ Bky!—l(El)Bka-t-l(gﬁ)
( a) CP(I m; {I/la V3}’ (El) Es)) 27”(:’(’7/1) ;ka (kl_l—l)'(kg'l— 1)’ A(k1,0,k3)y

where ki, ks run over all integers with k, > —1, k,>>0, k, +k,=2(m—1).

—_m — /i /Bkz+1(EZ)Bk3+1(ES)
(B Loll=m; {Fo Vi), (G £0)=201Cm) 2, (ky+ D)1 (kg +1)! Ao tavar

where ky, k, run over all integers with k,= —1, k, >0, k, +k,=2(m—1).

—_m: =i r By 1(§1) By, 11(62)
(C) C(l m; {Vla VZ}a (SU 82)) 27r1C(m)k§2 (k1+1)'(k2+1)' A(klykzyo)a

where k., k, run over all integers with k,, k,=z —1, k, +k,=2(m—1).
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(d) C1—m {Vl} E)—“’zmc(m)(BAI%{‘:))-' (2m —2,0,0)
(e) C(l—m {Vo} S)——2mC(m)( 2m = l(lé))'/l(o 2m—~2,0)*

To complete the evaluation of special values of zeta functions above,
we have to study some properties of the numbers A, 1, -

Proposition 2.13. Let ki, k,, k; be integers with k,, k,= —1, k,=0,
and k, L ky+k,=2(m—1) (m e N). If k, k,, k, satisfy one of the following
three conditions, then, (1/m) A, 5,15 IS @ rational number.

(i) ki, ky, k, are non-negative integers,

(ii) k,=—1 and k, is a positive odd integer,

(iii) k,= —1 and k,, k, are non-negative integers.

Proof. A straightforward computation shows that

A, 8), V)=13u, A(u,8), Vy)=14u+(1—u)singcosé,

2.2.15 {
( ) W(u, ), V) =u sin® §+cos?.

Changing the variable by cot §=x in (2.2.14), we obtain

1

(2.2.16) oo =L T Py, (1)

where ¢ is a sufficiently small number and
(22.17) Py, raisltt)

1 x \®fx*+u\* dx
S o
271-( +4) R Fut(l—u 1+4+x2 14x*/ 14X

The computation of the integral in (2.2.17) easily shows that, if k,, k,, %,
satisfy either of the conditions (i), (ii), then, P,, ,, ;,(#) is a polynomial of
u with rational coefficients. On the one hand,

4
2k+1

(2.2.18) f Wy = — for any k € Z.
Is(1)

Therefore, according to (2.2.16), the value (1/2z) A, x,. %, 1S @ rational
number, if each triple (k,, k,, k,) satisfies either of the conditions (i), (ii).
Suppose that k,= —1 and &, k,=0. Set

Ow)=3u+10u+3,
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and

_—(—w+ivOuw
o)= () o0Zul).

Then, w(u), o(u) (the complex conjugate of w(u)) are the distinct roots of
the quadratic equation: (1+u)x*4+(1—w)x+14u=0. We write simply
o for w(u). Applying the residue theorem in computing the integral in
(2.2.17), we obtain

(R _1—u)\
(2.219) Py, i w)=i T30 =5 (1 1+w2) + Ry, e, (W),

where we put

Ry, @) =i(1 +u)** Res {(1 +uw)r®+(1—u)x+(1 +u)}“<l — i;u)ka
r=1 x°

Since the residue at x=1 of the function

{(1+u)x2+(1—u)x+1+u}-1< };;)L (leZ 1>0),

is a polynomial of u with coefficients in the Gaussian field Q(i), so is
Ry, (). Therefore, the real part of R, ., (1) is a polynomial of u with
rational coefficients. An elementary calculation shows that

1+ -0)=VQW, 1+oi=—1"

u _
- o, owo=1, and
u

_d=u _14u—iv Q@)
14+0® 2

Then, we get, by (2.2.19),
(22200 Py, 1) =2""(1 +u){1 +u—iy Q@) Q)"+ Ry, 1. ().
The function u~™**(1 +u)*™-?-*Q(u)’ (0< j<m—1) is invariant under the

transformation u—1/u, and consequently, is a polynomial of (u+ 1/u) with
degree m—1. Thus one can write

(Q221) w4 QMW =3 by ) (O jEm—1)

with some b, ., . € Q. We set, for a sufficiently small ¢>0,
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g@)= wrowrdu
Ie()

where the branch of Q(u)"”* is so taken that Q(u)*>0, if ue R. The
integral in the right side is independent of the choice of ¢ and converges
for arbitrary s e C. Accordingly, g(s) stands for an entire function of s.
We define a sequence {«,} by putting

o, =gm)—g(—n) n=0,1,2,-..).
Lemma 2.14. The sequence {«.} satisfies the recursive formula
3(n—1/2)a,+10(n— D, +3(n—3/2)a, .= —16 n=2)
with a,=0, a,= —16/3. Consequently, all a, are rational numbers.

Proof. 'We begin with, if Re (s)> —1/2.
3g(s+1)+5g(s) =f ut =V (3u+5)Q(u)~*du
Ie(1)
1
=(els—1/2—D) [ w 40wy du.
0 du
The integration by parts then implies that, if Re (s)>1/2,

3g(s+1)+5g(s5)= —4(1 +e[sh—(s—1 /2)I u*=32Q(u) 2 du.
Te(1)
Writing Q(u)"/*=Q(u) - Q(u)~'"*, we get the following functional equation:

(2222) 3(s+1/2)g(s+1)+105g(s)+3(s— 1/2)g(s— 1) = —4(1 4-els],

which is valid for arbitrary s e C by the analytic continuation. Putting
s=0, one gets a;=g(1)—g(—1)=—16/3. Moreover, if we substitute s=
m-—1 and s=1—m, respectively in (2.2.22), and add the both equalities
so obtained, then we have the recursive formula in Lemma 2.14.

We continue the proof of Proposition 2.13. We see from (2.2.17)
that P, _, ., () is real valued, if 0<u<1, and hence from (2.2.20) that
P, _1:,(u) is a polynomial of u with rational coefficients plus a Q-linear
sum of the functions (1 +u)*"-*-¥Q(u)’-** (0L j<m—1). Moreover, we
find from (2.2.21) that

[ w1 i t-iQGuy -
I:(1)

m=1
:"ij,m,ooh'l'kz__;bj,m,k(ak—i‘—“k+1) 0=j<m—1),



132 T. Arakawa

which is a rational number owing to Lemma 2.14. Thus, taking (2.2.16),
(2.2.18) into account of, we can conclude that (1/27)Ay,, - 1,p (ks k:==0) is
a rational number. g.e.d.

Remark For triples (k,, k,, k,) not satisfying the conditions of Pro-
position 2.13, it will be hard to compute A, 4.z, in an elementary
manner. However we do not need the explicit values of them (see 2.4, 2.5
of this paper).

To evaluate the special values at s=0 of L-functions, we need the
following explicit values of A, . xs-

Proposition 2.15. We have
A(O,O,O)zA(—1,1,0)=87t’ A(l,_1’0)=327f/3, a}’ld A(O,—l,l)z 167!'/3.

Proof. The first two identities are straightforward. Then, the
identity (2.2.20) implies that P, _, ((u)=2P, _, ()= (1+u)Q(u)-*/*. There-
fore, we get

A(1,~1,o)=2/1(0,—1,1) =2n(g(—1)—g(1))= — 2z, =32x/3.

2.3. Integral representations of partial zeta functions II

We keep the notation used in 2.2. We shall study the analytic con-
tinuations of the functions (s, {Vy, Vi, Vi), (€1 &), Cs(5: {V Vi), €)
(j=1, 2), and determine the first and, if possible, the second term of the
Laurent expansions at s=1—m (m e N) of them.

For simplicity we write 2, for 2((4, ), V) (j=1, 2, 3), if there is no
fear of confusion. We see easily from (2.2.6) that, for positive numbers
&, &, &, and for Re (s)>3/2,

1
I'y(s)(ef2s]—1)

I(s;89) (=12,

CS(S; {Vla VZ’ Vs}’ (&19 52))': I(S; (Ela 52))
2.3.1D) 1
CS(S; {Vj’ Vs}a E)-—‘W

where we put
1 T
163 o = atf auf dg--e-n—n) L gag-g),
Ie() 0 0 Ay i=t

1 i 1 .
I(s: &)= L 428-218-3/2(1 _ 1)) & 1 —
(5 8) “L“L”’ W) 2 gled 1-8) (=12),

Te()
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e being taken sufficiently small. The absolutely convergence for Re (s)>
3/2 of the integrals above is easily verified by Lemma 2.6. We shall first
integrate with respect to 4. Changing the variable by cot §=x (— o0 <
x< 4 o0), we get, by (2.2.15),

x :u—1~x2
1+x2 77 14

(2.3.2) =14, A=1+ut(l—u)

As is easily seen, for each positive number <1, there exists a small
positive number d=4§(8) such that ¢(z(1+2z); 1—¢&) (6>>0), as a function
of t, z, is holomorphic in the region {(¢, z) € C*|{t € Dj(c0), 120, |z|<8}).
Then, ¢(z(1+2); 1 —£), as a function of z, has the power series expansion

> ¢t 1—8%
2 ? Xl z
(t € Do0), 150, |2|< ).

(2.3.3) $(t(142); 1-8)=

It follows from (2.3.3) that, if # € Dy(o0), 10, and 0<u<1,

_ (1 +u); 1-O*(1—w)* ([ x \*
1-9= Z k! (l—}-xz)’

(34) ¢t

where § is taken sufficiently small. We then define a function s#,(u) for
each non-negative integer k:

(2.3.5) yfk(u)_—.(l_u)kIR x21u<1+x ) dx  @>0).

Obviously, we have #,(u)=0 for any odd k. Applying the residue
theorem in calculating the integral in (2.3.5), one can divide #2,,(u)
(k € Z, k=0) into two parts as follows:

(2.3.6) Ao =mu~H(—w)* + m.od y(w),

where

Ay =2i(1— )”Res( 1 ( x )“)

Xdu\l+x°

An elementary computation shows that &/ (u)=0, o) = (1 -+ u)/2.
Moreover, we observe that each o7, () is a polynomial of # with rational
coefficients. 'We set, for £>0,

(1 4u); 1—8) "
F(t,u;1—8&)= Z¢ ( (2k;" (= u),



134 T. Arakawa

uy 1— PEO(t(L+u); 1—8) 5
F(t,u;1—£)= zo Y 1% o, (1),

We shall discuss the convergence and the regularity of F, (¢, u; 1—§)
(j=1, 2) as functions of ¢, u. For that purpose, some preparations will
be needed. We put, forae R, andje N,

é,(t; )= (t ).

Lemma 2.16. Letne N and a<l. If we write, in a unique way,
237 ™t a):i 2;,(@)¢;.(t; a) with some 1, ,(a) € R,
j=0

then, we have (—1)"2, .(a)>>0 for each j (0= j<n).

Proof. Differentiating the both sides of (2.3.7) with respect to ¢, and
using the identity ¢/, ,(t; @)=(a—j—1Dé,,(t; @) —(j+ D¢, ..(t; @), we get
recursive relations:
10,n+1(a) =(a"_ l)lo,n(a)ﬂ

238  pa@=(a—j—D2;, ) —jA;1,.(0)  (A=Zj=n),
Z7L+1,n+1(a)': - (n + l)zn,n(a)

In the case of n=1, we have, trivially, (—1)2; (a)>0 (j=0, 1). Thus the

assertion follows by induction on » from (2.3.8).

Taking the k-th derivative of (2.2.2), one gets, if |¢#{<{2z,

¢(k)(t;a) =(—1)*-1yp = (a) n—1\_,_i_ k
@39 UG _(ppery 3 B (k )z

For x ¢ R, [x] denotes the largest integer less than or equal to x.

Lemma 2.17. Let 0<g<landae R. If|t|<x/2, |w|<B, then,

g a1 2 B e (n—1) ) .
@30 e M Ty A \kz=o( 2% )w )t’

where we put k,=[(n—1)/2], and the infinite series of both sides are
absolutely convergent. Moreover, the function defined by the infinite series
(2.3.10) indicates a holomorphic function of t, w in the region {(t, w)| {t|<
/2, |w|< B}
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Proof. By virtue of the fact that 1¢(¢; a)= > 7, (Bi(a)/k )" is abso-
lutely convergent for |¢]< 2z, there exists a positive constant C, independent
of k which satisfies

|Bu@)/k!|<Ci(Bx/2)™*  (k=1,2,-.).

Using (2.3.9), we get

Bl | sg e 5 (5 e ()
=t en @05
<1—|w| i( - )

where the last infinite series is convergent for |¢#|{<z/2. Thus the infinite
series in the both sides of (2.3.10) are absolutely and uniformly convergent
for |t|<x/2, lw|<B. In a similar manner, the identity (2.3.10) is easily
shown to hold.

Proposition 2.18. If we take § sufficiently small, then, the infinite
series tF(t, u; 1—&) (§>0, j=1, 2) are absolutely and uniformly convergent
in the region Dy(oo)X Di1). Consequently, tF(t,u;1—¢&) (j=1,2) are
holomorphic in the same region. Moreover, tF(t, u; 1 —§), as functions of
t, have the following power series expansions; if |t|< 8, u € Dy(1), then, we
have

2.3.11 tF(tu; 1—-§&)= - p W,
@31 iR 1—H= 5 BT )

— - M?n(u) o Bn(l_s) . n
@3.12) tF(u1-=3] e + 2 =,

where we put
‘un(u)=i (n— 1>(1 )t (),

@313 4 3 (")t (s=|"5 Y nz1),

Proof. First we consider the infinite series ¢F,(f, u; 1—§). We put
t'=t(14+u), w=—u/(14u). Obviously,
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tl o ¢(2k)(tl; l_s)tlzk 'wk
14u =0 (2k)!

tF(t,u; 1-§)=

By the inequality | —u/(14+u)*|<1/4 for 0<u<]1, there exists a small
positive constant §, such that | —u/(1+u)*|<1/2 for u e D, (1). If [¢t|<x/4,
u € D, (1), then we get |¢/|<z/2,|w|<1/2. It follows easily from Lemma
2.17 that tF,(t,u; 1—¢) converges absolutely and is holomorphic in the
region {(¢t, u)| |t]| <n/4, u e D;(1)}, and moreover that the power series
expansion (2.3.11) holds in the same region. We take § sufficiently small,
comparing with 8,: Let |[¢|==/4, t € D,(c0), and moreover, u € Dy(1). Set
/=Re(#)). Then we may have />|¢’|/s/ 2, & being taken sufficiently
small. . An elementary observation shows that

16,(t"; A <o,(z"; a) (@aeR,j=0,1,2,...),
from which, in addition to Lemma 2.16, we get
690, 1-8) | <, 1—8)  (k=0,1,2, -- ).
Hence we see from Lemma 2.16 and the expansion (2.3.4) that

o ¢(2k)(tl; 1—§)t,2k ) wk

@ =5, $ LNy

k=0 (2k)!
o ¢(k)(1_l; 1—&)® . —|t/] \*
& (ﬁ)

IA

|

¢<‘:’——J/%. ; 1——5).

Thus, F(t, u; 1—¢&) is absolutely convergent in the region {(¢, u)| |t|==/4,
te Dy(oo),u e Dy(1)}. Moreover, we see from the observation above that
F(t,u; 1—¢&) is uniformly convergent in some small neighbourhood of
(, u) contained in the region above. Consequently, Fy(¢, u; 1 —¢) is holo-
morphic in that region.

Next we consider the series tF,(t,u; 1—&). We have to estimate
(1) from the above. The definition of .o7,,(u) implies that

meluli)=(1 —u)ZkfR xZ:-u {( 1 —:x2>2k_ ((_IE%)E)Ic }dx

Putting s(x)=(x/1 +x%)? for simplicity, we get the expression

Q3.14)  nl,(u) =L% % {51 — == (s,
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which holds for any ue C. We take a positive number §, in such a
manner that, if |u|<(4,, then, }|-—u/(1—u)*|<1/16. Accordingly, §,<9—
445 =0.0557. ... Using the inequalities s(x)§1/4, we see easily from
(2.3.14) that, if |u|<d,, ;

o 1, (11) <(1/dyi- |1—uf®-D &=l gy
‘( uy 14 1+u ‘z;; = (l—u)zl
worf 148, \2*-D i

<oy (ER)

Since we have the inequality (14-4,)/2(1—6,)<{3/5, there exists a positive
constant C, independent of k such that

(2.3.15) (_@ﬂ <G@5 i |u)<s, (k=0,1,2, --.).

(T4

We put §,=4§,/2. On the other hand, if |#|=4,, and u e D,,(1), then,

[14+ujz1+Re(@>143,, |1—u|<l, and |u|<1.

Thus the inequalities just above and (2.3.14) imply that, for any non-
negative integer k,

A o(1)
(U uy™

Putting 7(1 +u)=1’, we get, formally,

(2.3.16)

401N =5, and ue Dy(1)
—'—(l'i"ag) if |u|=d, and u € D, (1).

. RN GO T U A ()
2.3.17 1-8)= ' '
@341 R w1 == ) —— (TS

With the help of (2.3.15), (2.3.16), we can prove that the right side of
(2.3.17) is absolutely convergent if |¢|<zx/4, u e D, (1), and we obtain,
similarly as in the proof of (2.3.11), the identity (2.3.12). Since .o7,, (1) is
a polynomial of u, we see easily from the expression (2.3.12) that ¢F,(z, u;
1—&) is holomorphic in the region {t € C| || <z/4} X D;,(1). The rest of
assertions for tFy(¢, u; 1 —¢&) can be verified in the same manner as in the
case of tF,(¢, u; 1 — &) by using the inequlities (2.3.15), (2.3.16). g.e.d.

We take 6 sufficiently small so that the identity (2.3.4) and Proposi-
tion 2.18 simultaneously hold. Then, taking the identities (2.3.4), (2.3.5),
(2.3.6) and the inequality |x/(1-+x%)|<1/2 into account of, we obtain



138 T. Arakawa

(2.3.18) f ”-Zl—qﬁ(tlz; 1 — 8)dO—=nu~F,(t, u; 1 — &)+ nFy(t, u; 1 —£)
0 As
(t e Dy(o0), 0<u<l).
We set, for positive numbers &, &, &,

Q(o)(ta u; &1’ §2)=¢(t(1 +U), 1 —El)Fl(tsu; 1 _52),
(2.3.19) ON(t, u; E)=¢(t(1+u); 1-9),
ON(t, u; §)=F\(t, u; 1-9),

w‘w)(ta u; 519 EZ)=¢(t(1 +u): I—EI)FZ(ta u; 1_52)9
(2.3.20) T, u; £)=0,
TO(t, u; ©)=Fy(t, u; 1-8).

Let @(¢, u) (resp. ¥'(¢, u)) be one of the three functions given in (2.3.19)
(resp. in (2.3.20)). We set

L R IR R SO
(2.3.21) Te(o0) Ie(1)

K(s; ¥)= dtj du- 12591 — )W (1, ),
Ie(o) Ie(1)

where ¢ is taken sufficiently small with ¢<{d, § being the same as in
(2.3.18). 'Then, by virtue of Proposition 2.18 and its proof, the integrals
J(s; D), K(s; ¥) are independent of the choice of ¢ and absolutely conver-
gent for arbitrary s e C. Moreover, they indicate entire functions of s.
We write, for convenience,

J(S, (Els EZ))=J(S9 @(0)(t> u; Ela Ez)),
J(s;8)=J(s; 09(t,u;8))  (j=12),
lK(s; (€ EN=K(s; T, u; &, &),
Ky(s;©)=K(s; ¥, u;8)) (j=1,2).
Trivially, K,(s; £)=0. Thus, using (2.3.18), we obtain convenient expres-

sions for I(s; (&, &)), I(s; &) (=1, 2) by the integrals (2.3.22) over contour
paths I,(o0), 1.(1).

(2.3.22)

Proposition 2.19. Let &, &,, & be positive numbers. We have

. _ T . T .
I(S> (El’ 52))—‘ (e[s]—- 1) J(Sa (Ela EZ))+—(6[S—3/2]— 1) K(S, (519 52))9
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I(s; €)= T+ —— K38 (=12,

! (es]—1) [] 1) (els—3/21—1)
which give the analytic continuation to meromorphic functions of s in the
whole complex plane.

Corollary to Proposition 2.19.  The functions {(s; {V}, Vs, Vi), (&1, &),
Cs(s; {V,, Vi), &) (j=1,2) can be continued analytically to meromorphic
functions of s in the whole complex plane.

The corollary is an immediate consequence of Proposition 2.19 and

2.3.1).
Proposition 2.19 shows us that the Laurent expansions at s=1—m

(me N) of I(s; (&, &)), I,(s; &) (j=1, 2) are given as follows:
J(1—m; (&, &) ’

(2.3.23)  I(s; (&, &)= Lm_1) +3 {J(l m; (&1, &)
—rxiJ(1—m; (&, Ez))—mK(l —m; (&, &)}
+higher terms of (s4-m—1),

. J(1—m;§) ’ . . .

2.3.24) I, = AT S) 1— T (1 —

( ) I(s;8) S Gtm_D) —I— {J (1—m; &) —niJ (1—m; &)
—aiK(1—m; 5)}+h1gher terms of (s +m—1)
(j=1,2).

Let C(m) (m e N) be the constant given in Proposition 2.9. Then, as a
Taylor expansion at s=1—m (m e N), we have

1

W —2C(mM)+ B (s+m—1)4-higher terms of (s+m—1)

with some constant 3,, e C. Thus, by (2.3.1), (2,3.23), we get the Laurent
expansion at s=1—m of {s(s; {V3, Vs, Vi), (&, &)):

(2325 Cs(s; {Vi, V2, Vih(61 £2))

=TI G &) | (4 20ICENI (L= (8. &)
(s-+m—1)
—2Cm)J'(1—m; (&, Ez))+27rlC(m)K(1 —m; (61, §2))}
+ higher terms of (s++m—1).

At this stage we have to evaluate J(1—m; (£, &), J'(1—m; (&, &),
K(1—m; (&, &)) and so on.
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We consider the integral J(s, @) in (2.3.21). Putting s=1—m, we get
(2.3.26) J(1_m;q>)=J dt[ du-t-mu-m1(1 —uyd(e, w)
- Ie re

(for the path I',, see Proposition 2.9).

Furthermore, derivating the integrand of J(s; @) with respect to s, we
obtain ' '

(23.27) J(1—m; O)
= dt du-t~"™u~m"Y(1—u)2 log t+log w)@(t, u),

Te(o0) Is(1)

where the integral is absolutely convergent again by Proposition 2.18.
For non-negative integers n, the functions @,(¢), according to the choice of
@(t, u), are defined as follows; We set

d)n(t)‘: ¢(t; 1—$l)¢(2n)(t; 1-—52)(_ 1)” lf@(t, u)=@(0)(ta u; &, 52)’
(2n)!

Dy()=¢(t; 1-8), P,()=0 (n=1) i O, =0, u; §),

(2n) ; 1— — 1) .
o =2 (2n)§z)( ) if B2, u)= DO, u; ),

Moreover, we see from Proposition 2.18 that @(¢, u) has a Laurent expan-
sion with respect to #:

(2.3.28) O(t, )= > b(u; O)»  if |£]<5, ue D).

n=-2

Proposition 2.20. Letme N. We have, for a sufficiently small e,

G) J(—m; q)):mjp ,(t)dr,

(ii) J'(1_m;q))=4m'f logt-@m(t)dt—%igw
Ie(e0) j=0 {(m—j)!}z
XJ tz(f‘“>@j(t)dt+2nij u ™1 —u) log u- by, _y(u; @)du.
Ie Te(l)

Proof. The function @(t, u), which is holomorphic if # ¢ D,(c0), £=50,
and |u|<J, can be expanded in a power series of u as follows:

(2.3.29) o= L TP oy,
n=0 n! ou"™
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On the other hand, it is easy to see from the definition of @,(¢) that

2330) 1006 w=1"3 0, (t(1+u)™u  (te Dy(wo), u e D).

Since the infinite series in the right side of (2.3.30) is uniformly convergent
in Dy(00) X Dy(1) by Proposition 2.18, and each term #*®,(¢(1-+u))z*u™ is
a holomorphic function of ¢, #, we can differentiate it termwise. Thus,
taking the k-th derivative of (2.3.30) with respect to u, we get

z’;u@ i i; < )n(n- Do (n—j 4 DO E-D(t(1 4 u))te-9+2myn=1,
Therefore,
(2331 P2 (0= 3 ( “ )j! OLE-D(H)E I,
ou* =0\ j

It follows from (2.3.29), (2.3.31) that
(2.3.32) j w1 — u)D(t, w)du
Te(1)

1 1
”2’"{m! am(’) (m D! au’"‘( O)}

gm-1+d
)v om0 (m—1—j)! i _j)(t)})'.

With the use of the integration by parts, the identity

=2m( (z)z2m+z {

_ s-1hH (m-1=7) — s (m—j)
(2.3.33) sL(w)t O -1-D(f)dt = j 110 = 9(t)dt

Ie(=)
holds for each j (0< j<m—1). Putting s=j—m, we get
Q.334) (m— ])j 1-m=3 gm-1- f>(z)dt—j £3-m m=9(t)dk.

Tg() .

Differentiating the both sides of (2.3.33) with respect to s and then, putting
s=j—m, we have

(2.3.35) (m—)) L ( )log totd-mtQ m=t=D () dt — metQ m=t-D(t)dt

Ig(w)

= togrerror-n@a  0<j<m—1).

Te(o0)
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Therefore, the identities (2.3.26), (2.3.32), and (2.3.34) imply the assertion
(i). The recurrent use of the integration by parts yields

~2i-1N!
(2.3.36) Mw)zf—m—l@;m-l-f>(t)dt=(2'”(m—_2§)lli 1m0 (0

It is easy to see from (2.3.32), (2.3.35), and (2.3.36) that
(2337 2 dtf du -1 — ) log £ D(t, 1)
Tg(o0) Ie(1)

i f log -0, ()dt—4zi 5 ZM—2— D! J £0-mp (1)dt.
Te() = {m—pY Jr.

Moreover, we get, using the expansion (2.3.28),

J dtJ‘ du-t-*™yu~m(1—u)logu-O(t, u)
Ig(o0) Ie(1)
=2m'j w1 — i) log u- by, _(u; O)du,
Ig(1)

which, in addition to (2.3.27), (2.3.37), completes the proof.
Let me N. For integers k, n with k, n>0, k4+n=2m-+1, we define
the numbers .4 _,,,_,, by putting

(2338) Myoynn= L log u-u== (1 — u)(1 )~ 1, (u)dlu,

e(l)

where p,(u) (n=1) is a polynomial of u given by (2.3.13), and

1+u

W= 1
119 14+ 3u+u?
The numbers #;_,,,_,, are independent of the choice of small e.

Lemma 2.21. If k, n>1 with k+n=2m~+1, then (1/2xi)M y_; o
are rational numbers.

Proof. 1t follows from (2.3.13) that

(=40 = 3 ("5 Ja ==

By the conditions k=1 and k+n=2m-+1, we have m>j for each j
0= jZk,=[(n—1)/2]). As is easily shown, the coefficient of the term u™
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of the polynomial (1—u)(14u)*™-»-'(—u)’ vanishes. Therefore, the
assertion of Lemma 2.21 is reduced to the formula

2xi

forpe Z, px—1,
p+1

(2.3.39) f log u- uPdu =
Ig(1)

In the case of (¢, u)=0 (¢, u; &,, &,), Proposition 2.20 yields
Proposition 2.22. Let &, &, be positive numbers and me N. Then,

4z(— D"

(1) J(1—m; (&, 52))—_—W{Bzm+1(§1)+Bzm+1@2)},
. 172 DN . 47'”(‘—' l)m . I 2m)(¢e 1
(i) J'(—m; (&, 52))——(2”1)! Ie(w)lc’gt B(t; 1 El)¢( (t; 1—¢,)dt
= 2m—2j—-DI(—1)
—38
R e T

BZm+1(EI) RS B2m+1—n(§1)Bn(§2). n—1
><{(Zm—}-l)! +n=21+1 @Cm+1—n)ln! ( 2j >}

.2m+1 B m+ —n(E )Bn(fz)
) 2m +1 1 .
N =yl

2m-n,n-1)*

Proof. In the proof we have @(t, u)=@O(t, u; &, &,), and

— ¢(t; 1—51)¢(2n)(t; 1'—52)(“‘1)" . .
0,()= ! (n=0,1,2, ---).

The expansions (2.2.2), (2.3.9) show that the coefficient of the term ¢~ in
the Laurent expansion at =0 of @,,(¢) is given by

-(—2(_’% {B2m+1(1 —51)+B2m+1(1 _52)}.

Thus, by (i) of Proposition 2.18, the assertion (i) follows. In view of the
expansions (2.2.2), (2.3.11) of Proposition 2.18, the coefficient b,,,_,(u; @)
in (2.3.28) is given as follows:

b2 (u . @)___ B2m+1(1 —gl)(l +u)2m+1 et B2m+1-n(1 _el)Bn(l —'52)
mon Cm+1D)I(1+3ut+ud) = = @Cm+1—n)'n!
X (1 +u)27’"”yn(u).

Therefore, we see from (2.3.38) that
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J‘ u"m’_l(l—-—u) Iog u'me—l(u; @)du
I(1)
_—2m+1 B2m+1—n(§1)B’lL($2) . ‘/%

= (2m=-n,n-1)°

i=0  (2m+4-1-—n)!n!

Computing the coefficient of the term 7*™--' (0<j<m—1) in the
Laurent expansion at =0 of @ (¢), we have

J‘Ps t7-mQ (t)dt

. By, . (1—&) T By-o1—8)B,(1—§&) (u—1
=2ni(—1){ Bm el =) - .
i ){ Cm+1)! wfa Qmtl—n)lnl ( 2j )}

Summing up the results above, we obtain the assertion (ii).
In another two cases of @(z, 1), we obtain the following
Proposition 2.23. Let me N and £>0. Then,

() J(-m =0 (=12,

i) J(1—m; §=2FBul® Lo Bnl® 4

m(m!) Qm)!
11 e oy AT (= D"By(8) | 4n”By,(8) " (—-1y
Sl —m; &) = m(2m!) T & {(m—7)1P)!
H BZm(E)
+2m—(*2mT-///(o,2m—1)-

(iii) In particular, J)(1—m; &) € 2°Q (j=1, 2).

Proof. If O(t, u)=g(t(1+u); 1—§), then, we have @y (t)=¢(t; 1 — &),
0,()=0m=1), and b,,,_,(u; @)= B,,,(1—&(A+w)’™*/(2m)!. Hence, we
see immediately from Proposition 2.20 that J,(1 —m; &)=0, and that

(1 —m; s)=—i’5"—((2~n’f,);9—!f“t-2m¢(t; 1—g)de

+ 27iBy,(1—§) log u-u="*(1—u)(1 -+ u)*du,
(2m)! Io()

from which we get the expression for Jj(1 —m; &) in the assertion (ii) (note
that y,(w)=1). In the case of O(t, u)=F(t, u; 1—-§), we have

— 80 1—)(=1)" . ¢ Ben(1—8) |
D,(1)= o and - bun- i3 )= S5 ).
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Since the integration by parts implies that

_sj ts-‘¢‘2’"‘”(t;1—s)dz=f £'gem(t; 1—-8)dt,
Te(oo) Te(o)

we get
(2.3.40) f 10gt-¢(2"‘>(t;1-—5)dt=—J £-1gEmD(s; 1 — £)d
Ig(c) Te(0)
— _FiB(1—8)
L9,
Thus,

; . _ A'(—=1D)"B,.(9)
- Ls(w)logt Du(iyit= S )

Moreover, we have, by a usual argument,

2(j-m _ 2mi(—1)B,,(1—-§) (2m—1
Iht U-m@ (¢)dt = ! < > )

Hence, the assertion (ii) of Proposition 2.20 implies the expression for
Ji(1—m; &) in (ii). The equality Jy(1—m; §)=0 is clear. :

Finally, we evaluate the special values at s=1-—m of K(s; (£,, £&))
K(s; &) (for the definition, see (2.3.22)).

Let v, () (n=1) be the polynomials of u defined by (2.3.13). For
instance, v,(u)=1v,()=0, v,(u)=(1+u)/2. We put, for convenience,

l)o(u) = J;i:; (liz;(;]) +1

For any pairs (k, n) of non-negative integers with k+n=2m-1 (me N),
we define the numbers A" _y,,-;, by putting

for |u]| sufficiently small.

Q34D WNapan=] a0, G
Ie(1)

where ¢ is taken sufficiently small. The integral in the right side of (2.3.41)
is independent of the choice of small ¢&. Then the identity (2.2.18) implies
that

(2.3.42) Nsnn €@  fork n=1.
Proposition 2.2.4. Let &, &, £>0and me N. Then,

1 —m- —_ .2m+1 BZm+1—n(€1)Bn($2) .
(l) K(l m; (519 ‘52)) 27” nZJO (2m+l-—-n)'n! /V(2m—n,n—1)a
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11 2 B2m
(i) K(1—m; &)= 7?2 )’(5) N o2m-1-

Proof. Let ¥ (¢, u) be one of the functions given in (2.3.20). Recall-
ing the definition (2.3.21) of K(s; ¥"), we have by the Fubini theorem,

K(—m; W)=| = r(1—idu| di-1="F (.

If (2, W)= O(2, u; &, &), then, observing the expansions (2.2.2), (2.3.13),
we get

J‘ =28, u)dt = ZmZ_O Bim.. 1(2’;1(11_:1 L)f) ‘(1 '— §) (1w ,W).

Thus we obtain the assertion (i). The assertion (ii) is similarly verified.

As is observed in (2.3.25), the function {(s; {V}, Vo, Vi), (61, &) has
a possible simple pole at s=1—m (m e N). On the other hand, it is easy
to see from (2.3.1), Proposition 2.19, and (i) of Proposition 2.23 that the
functions y(s; {V;, Vi}, & (=1, 2) are holomorphic at s=1—m. The
special values at s=1—m of them can be given explicitly by applying
Proposition 2.23, Proposition 2.24.

Proposition 2.25. Let me N and £>>0. Then,

(ii) In particular,

£5(0; {V,, Vi, s)=%32(5),

2605 (Vi Vib, s)=%32(5).

Proof. Proposition 2.19 and (i) of Proposition 2.23 show that
1., .
L1—m; Q=2 Jj(l—m;)—ZK(1-m;&) (=12

We observe from (2.3.1) that
L(l—m; {V,, Vi}, )=—2C(m)I(1—-m; &)  (j=1,2).

Thus the assertion (i) follows from Proposition 2.23, Lemma 2.21, Pro-
position 2.24, and (2.3.42) (for the explicit value of C(m), see Proposition
2.9). Letm=1. We have, by (2.3.39),



Special Values of L-functions 147

(2.3.43) J//(_,,o)=,//w,l)=f log ur-u=(1—1)du= — 4zi.
Te(1)

Therefore, we find from (ii) of Proposition 2.23 that J.(0; &)= 8z>B,(&) and
Ji(0; £)=6x"B,(§). Since A ,;,=0 and accordingly, K,(0; £)=0, we get
the assertion (ii) (notice that K,(s; &) is identically zero).

2.4. Evaluation of special values of L}(s, v ,)

The aim of the subsequent two sections is to prove the rationality of
special values of L-functions at non-positive integers and in particular to
obtain the explicit special values at s=0 of them. We keep the notation
used in the previous sections.

Suppose that p is an odd prime. For any integers p, § prime to p,
let L*(y), M*(9) be the same as in 2.1. Corresponding to M=L*(y),
M*(6), we shall define the principal part £.(s; C, M) and the singular part
L(s; C, M) of the zeta function {(s; C, M), C being the simplicial cones
Cys Cps (j=1, 2). In view of Proposition 2.1, Proposition 2.3, we set, for
M=L*(y) or M* (9),

(24.1) Co(s; Cuas M)=P_235eZE: Cols; (Vi Vas Vi), 6)s
Cs(s5 Ciaas M)=p—2seez.s: Cs(s; (Vo Vo Vi) (& &),
Calss C_137 M)'——p—zs Z Ca(s; {Vj V:s}’ (gjﬂ &),

4,8)
eegM

CS(S; st’ M):p—Zs Z CS(S; {Vj’ I/3}’ E]) (]: 1 2),

gegii®
(¢ being denoted by (£, &, &),

where we set By=58y, B§¥=8%D (tesp. Ey==5, EFV=E¢"), if

M=L*(y) (resp. if M=M*(5)). Proposition 2.2 then makes it possible
to define the principal and singular parts of the L-function L¥(s, ¥z, ,)-
We set

(242) L5, )= T {00065 s L¥(@) 45 35,53 Con L)
+§c<s; Ca L*(y)>+fg—3 ¢s; G L*(m)},
Lis(s v, )= ¥(e) {cs(s; Cute L*(/l))—’r%— z £6(s3 Can L*(ﬁ))}-

where 4 runs over 1 and r, (& being a non-quadratic residue mod p). Let
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X be a primitive character mod p. Viewing: Proposition 2.4, Proposition
2.5, we define P- nad S-parts of L¥(s, X4.), £5(s) as follows; we set

(2.4.3)  LE (s, Xae) :
= 3 x(a){cp<s Cuae M*(a)>+ ch(s Co M¥(3))

%0 mod p

+—2—C(S; Cy, M*(a))+'2C(S, G, M*(a))+—6—C(S, G, M*(B))},

LéjS(S» xdet)
- 5 X(a){cs(s Cuae M*(a))+ zcs(s Cpo M* (a))}

§z%0 mod p

E220) =L (53 Vi Vi Vi (1, 1, D)+ 2338553V, Vil (1, 1)
o €063 (Vi Vb (L D)4 865 (V) D+ Lo (V) D,

2
EEO=Cls: (Vi Var Vi (1 D)+ 256065 1V Wik 1)
The following obvious identities hold:

L¥(s, ‘I’H,p)=L§k,P(sa ‘VH,p)'f‘L;fs(S; ‘Pﬂ,p)
(244) L;k(s’ Xdet)=L‘:>‘fP(S’ Xdet)+L;§s(S> Xdet)
FO=EE()+ 559,

It is easy to see from Proposition 2.9, Proposition 2.10 and Corollary to
Proposition 2.19 that LFs(s, Vra,p)s Li¥s(s Va,p)s L p(S, Xaer)s Ls(Ss Xaer)s
&F p(5), and £¥(s) can be continued analytically to meromorph1c functions
of s in the whole complex plane.

In the rest of this section we shall discuss the evaluation of special

values at s=1—m (me N) of L¥(s,\ry,,). First of all, we need two
lemmas related to the Bernoulli polynomials.

Lemma 2.26. Letme N. Then,
Z B2m+1(‘§j)=0 (]=1,23 3)9

tefm,,

where &, is the j-component of £ € 5y, .

Proof. The proof is based on the distribution property of B,(x):

e X-+r :
(245) B(x)=p* > B, (see for instance [10, p. 35]).
7=0 p
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Moreover, if we note that B,,,,,(0)=B,, ,(1)=0, then, the assertion im-
mediately follows.

Lemma 2.27. Let me N and let ky, k, be non-negative integers with
ky+k,=2m—1.
(i) If k, is an even positive integer, then,

Z Bkz+1(§2)Bk3+l(§3) =0.

€,
(ii) If k,=0, then,
Z B1(§2)B2m(53) =0

¢EEH, pbaxl ;
where E=(§&,, &, &) runs over all triples of 5, with &+1.
Proof. Let k, be an even positive integer. We note that
(2.4.6) {xy+{—x>=1 ifxeR—Z.
The identity B,,,({(x}>)= — By, ..({(—x)>) (x ¢ R—Z) shows that

2 Bkg+1(<2ﬂar/p>)Bks+1(</l(72—‘ 052)/P>)

(a,7) € 4(D)

=— 20 By.({—=2pa¥[p))By, «(pli”—a®)p)).

(a,7) €4(D)

Then, (a, 7) being replaced with (—a, 7), the assertion (i) follows. ‘The
proof of the assertion (ii) is quite similar to that of (i).

Let m e N. In the below, let k,, k,, k, be integers satisfying k,, k,=>
—1,k,=0 and k,+k,+k,=2(m—1). For any triple £=(§,, &, &) of
positive numbers, we write, for convenience,

> Bkj+1(§)
24.7) B(k,, ks, ks E) ]F_I UerDl

Let y be any integer prime to p. Viewing Proposition 2.11, Proposition
2.12, we define the numbers o, 1,1, (1) as follows;
(1) If kkk, 20, we set

Jj(khkz,ks)(ﬂ): “Zﬁic(m)/l(kl,kg,k@ee; Bk, ks, kg £).
Hop

(ii) Let r be an integer with 1<r<3. If k,=0 and other k,’s
(j2sr) are non-zero, we set

ﬂ(kl,kz,m([vt): “Zﬂic(m)/l(kl,kg,ks)e Z B(ky, ky, ky; ).

€EEm,prér¥l
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© (iii) Let r, n be integers with 1<r<n<3. Ifk,=k,=0, and the
rest of k;’s is non-zero (then, necessarily, m>>1), we set

M(kl,kg,ka)(,u)= _Zﬂic(m)/l(kl,kg,ka){ee Z B(ku ky, ky3 &)

EH,psér,én¥1

—s(ky, ko, ky; ﬂ)},
where
'18‘g2m—1(ﬂ) (kb k2’ k8)=(0’ 0, 2m—‘2),
stky, ky, kg )=
ol 320 L i) (b k)=(0,21-2,0)

0 (kl’ kZ’ k3)=(2m_23 05 0)9

gd(ﬂ) (de Z, d=0) being Za;ﬂmodp Bd(<[~laz/P>)/d!-
(iv) In the case of (k,, k., k,)=(0, 0, 0), we set

J?/(o,o,())(/l)': —2ﬂiC(1)A(o,o,0){e Z B(0,0,0; &)

€Em,préjl (7=1,2,3)

1 1 }
— =g ——35,, .
g8 (v 24 v )

Note that, if d is prime to p, then, o, «,u(pd") = & 4y 10,40 (1).  The
special values at s=1—m (m e N) of L¥.(s, ¥y, ,) can be evaluated with
the use of the numbers defined above.

Proposition 2.28. Letme N. Then,

(1) L¥(1—m, 1lfzf,p)-——l’g(m—l) Zk ;’k w(ﬂ)’%(khkmks)(ﬂ)’
¢ k1,k2, ks

where p is over 1 and , and (k,, k,, k;) runs over all triples of integers with
ky, ky=—1, k, =0, and k,+k,+k,=2(m—1).
(ii) Accordingly, Lf z(1—m, \rg,,) € Q.
Gii) Ifp=1mod 4, then, L} p(1—m, 4ry,,)=0,
If p=3 mod 4, then, in particular,

L;!TP(O’ 1kflyp)=v‘j'+'g?:
where o/, & are the constants given by (0.1), (0.2) in the introduction.

Proof. Let§,, , be the triple of 54, , given by (2.1.6). We notice
that B,(1)=1/2, and moreover that
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EgYNEG) ={8.r,.|@a=0mod p, 720 mod p},

248) {Egonzgy={’ (p>3),
(248) A Su N Ene =\ | 7= —amodp, axOmod p}  (p=3),

= (1,3) (1,2
hdH:# ﬂdﬂ:ﬂ _¢

Taking very carefully (2.4.1), (2.4.2), Proposition 2.11, Proposition 2.12,
and (2.4.8) into account of, we obtain the expression (i) for L¥.(1—m,
ar.p)
pr a triple (k, k,, k;) satisfies any of the conditions (i), (ii), (iii) in
Proposition 2.13, then, (1/7)A, 1,1, 1S @ rational number. Therefore,
A (1,10 00)(¢0) 18 also a rational number. If ky=k,=—1 (resp. If k;=—1
and %, is even), then, Lemma 2.26 (resp. Lemma 2.27) shows that
A (g, -1,0m ) =0 (resp. &y 1,4()=0). Therefore, the assertion (ii)
follows from (i).
For convenience, we write &, ,=(¢{" ,, &2 & .- Exchanging 4

asrsu2 02 dasrs L

for — u, we observe from (2.1.6), (2.4.6) that

(2.4.9) {5‘5{3,—;::1— D iLED ]
h-a=1 if&,=1 (j=1,2,3)

Further, we note that B,(1)=(—1)*B,(1) for k1. Then we see easily
from (2.4.9) that, for any triple (k,, k;, k),

(2‘4-10) ‘d(kl,kg,ka)(_[u): —J?{(kl,kg,ka)(/l)-

If p=1 mod 4, then, —1 is a quadratic residue mod p. Hence,
(i, 10,569 (— )= (3,10, 15)(0)> Which implies that &7, i, 6, ()=0. Thus
the first assertion of (iii) follows.

Suppose that p=3 mod 4. Then we may take —1 as x. The asser-
tion (i), together with (2.4.10) and the property y»(—1)=—1, show, that

L;’fp((), 1If11,p)=2{e52{(—1,1,0)(1)+=52{(1, —1,0)(1)‘!'%(0,—1,1)(1)'*' %(o,o,o)(l)}-
We have, by Proposition 2.15,

@41 SeamoD="30 5  BAQaTIpBLG —)p)),

(a,r) €E4(D),
a?%72mod p

4, -1,0(1)=2%,
—1 2
A o, —1,1)(1) = 6 < )eZ: - Bl(<(a2—2aT)/p>)Bz(<7'— 052)/P>)a
a,7) €A (D),
a2%2ar mod p

JZ¢(o,o,o)(1)=~5f/2,

where, to show the last equality, we used the fact that B, ,=g,(1). In the
first equality of (2.4.11), if we replace (a, ¥) with (¥, «), then, we get, with
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the help of (2.4.6), &/(_y,1,,(1)=0." In the third equality of (2.4.11),
replacing (e, 7) with (¢ —7, —7), we have

—1

o, -1,0(1)= < 2. B({Qar —aM)p))B({(a* = 1")/p))= — B/2.
(a,7) €4(D)
) a2z72 mod p
Thus the second. assertion of (iii) follows. : g.e.d.

Now we study the singular part L¥(s, ¥z, ,).

Proposition 2.29. Let m e N and let i be an integer prime to p. The
Junction §y(s; Ciys, L¥(p)) is holomorphic at s=1—m, and the special value
at s=1—m is given by

Cs(1—m; Cy, L*(/l))
=1'C(m)p2(’"“’€€§ . {Jl(l —m; (51: 52))_71'1[((1 —-—f)’l; (513 82))}

Proof. Proposition 2.22 and Lemma 2.26 show that

Z J(l—m; (51, 52))=0-

E€sSmy,p

Thus we see immediately from (2.4.1) and the expansion (2.3.25) that
Cs(s; Ciass L¥(p)) is holomorphic at s=1—m, and that the special value at
s=1-—m is expressed as in the proposition.

If follows from Proposition 2.25, Proposition 2.29, and (2.4.2) that
L¥(s, Vry,,) is holomorphic at s=1—m (m e N). The following proposi-
tion plays a key role to evaluate its special value at s=1—m

Proposition 2.30. Letme N. Then,

4gi(—1)" (e 1 — my(se 1
ST, B[ logrg( 1- 0505 1— e

— 81{2(—— l)m et B2m+1—jB]ﬂlf
Pt jlem =)

where y runs over 1 and k, and ¢ is taken sufficiently small.

Proof. As in the proof of Proposition 2.28, let £}, (j=1, 2, 3) be
the j-component of &,, ,e Jy,, (see (2.1.6)). We set pa’=x, 2uar =u.
If (a, 7) Tuns over all elements of .#(p) with «20 mod p, and y is over 1
and «, then, (x, u)=(ua’, 2uar) just doubly covers all elements of .#(p)
with x220 mod p. If «=0 mod p, then, &%, ,=£&& ,=1. Thus,
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412 SS9 3 [ logt gl 188, )0 188, )
. (a;7) €4(P) J Ie(0)

153

3 D PO [ om0t 1—(Cr—lp s 1 — Yy
zZ0mod p u mod p
We need the following lemma.

Lemma 2.31. Let x be any integer prime to p. Then,
(i) :

I 9 1=l T ulp)) = 55 T anp (13 1—lp))
with

(—em!
Jl@m4-1—j)1p-i Binsi-y (=j=2m+ 1),
® I Te() logt- ,,,Zodpsb(t; L—=L(x—w)py) ™ (t; 1—ulp))dt

= =20 3} Tyam (—_l%ﬂlﬁ,

Tj,Zm:

Proof. We may take x so that 1<x<p-—1. We get, with the help
of Lemma 2.16,

m%:;psﬁ(t; 1—{(x—w)[pH)®™(t; 1—(ulp))

_¥ _ exp 12— (ulpy —{(x—u)/p))
=2 .2 A1 —=Culp)) 1y

~Hem @ 1)] {2 R —ulpe 4 37 2,0, (1= ufp) o)
=0 u= U=z

= 35 Rpan = lp)g (11— 510) + 35 2, =l 13 1= 3P

Then, using the formula ¢, (¢; a)= -—(1/i)¢;(z; )+ ((a—))pLt; a)
(j =1) recurrently, we obtain the expression

(2.4.13) un%:ip éo(t; 1 —L{(x— u)/p})g&“’”(t; 1— {ulp))
:"‘z 7 om0t 1—x/p),

where 7,,,(x) (0<j<2m-+1) are certain rational numbers (they may
depend on x). Recalling the Laurent expansion (2.3.9) of ¢® (z; @), and
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comparing the coefficients of the term ¢#-7-* in the Laurent expansions at
t=0 of the both sides of (2.4.13), we get the explicit values of 7, ,,(x):

(__ I)J.ilyj’zm (x)= Z (zm)!BZmn—j(l —<(x—u)/p>) (l§j§2m+ 1),

% mod p 2m+1—j)!
Toan)= 5 L 5 B 1= (= 0lPY) 4+ B (1= )

Then, the property (2.4.5) of B,(x) shows that

— — ('_ l)j(zm)!Bﬁ'rrH -7 H
To,2m(¥)=0, 75,0m(X) _‘j!(2m+1—j)!p2:""' (I=j=2m+1).

Thus the assertion (i) follows. Similarly as in (2.3.40), we have
I logt-¢9(t; 1 —x/p)dt= — ZmB_f(l_f/ﬁ)
Ie() J

which, together with (i), completes the proof of the assertion (ii).

Thus, (2.4.6) and Lemma 2.31 with the definition (1.2.11) of the
generalized Bernoulli numbers imply Proposition 2.30.

Proposition 2.32. Letme N. Then,

(i) Zp ‘P(#)Cs(l'—m; Cizss L*(#)) eQ.
(ii) In particular, if m=1,

11 7 1
TA0; Con L) = {36 By By = Bl

Proof. Taking (ii) of Proposition 2.22, Lemma 2.21, Lemma 2.26,
and Proposition 2.30 into account of, we observe that

2 2 J(A=m;E, 8) en’Q
B E€E8H,p
We get, immediately by (i) of Proposition 2.24, (2.3.42), and Lemma 2.26,
2. K(l—m; (&, &) e ©iQ.

§€EEHp

Thus the assertion (i) follows from Proposition 2.29. Next suppose that
m=1. Since obviously, A ,=A"4,,=0, we see easily again from Pro-
position 2.24, Lemma 2.26 that

Z K(O; (Sv Ez))=0.
¢€8H,p,
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Therefore we find from Proposition 2.29, Proposition 2.22, (2.3.43), Lemma
2.26, and Proposition 2.30 that

Z_]'«!f(p)ﬁs(o; Cosy L¥(p))= 1 6 : ZTP(,U) EZ,“, J'(A—m; (&, £))

1{ 1 1 1 }
=-{—-—B ,+—B, ,——B
p 24 ¥ 16 2, ¥ 36 3%

—3 T, T {BEIBE)+BEIBE).

Hence the following lemma completes the proof of Proposition 2.32,

Lemma 2.33. We have

2
3p

ZF: ‘!’(#)e Z {31(51)32(52)+B2(5 )B (52)}——— Bz v B 3,90
Proof. We notice that
—2 (s, . _ [l 12

[ o 1—ep 1—eddi= —2mi {2 31 BAE )+ 33 BUE B ).

Then it follows from Lemma 2.26 that the left side of the equality in the
lemma is equal to

:Lj 1) X0 gl 1—E)g(t; 1 —&,)dt
Tl Ie P §€EEH,,

== B ) T 86 1= (el 1 (el

i z0mod p
= L[ et 3 0 1o+ (e 1 el
=2 5 B~ CxIp)2+ pBA— CxipYI3)

which, in addition to (1.2.11), completes the proof of Lemma 2.33.

Finally, we evaluate the special values at s=0 of the zeta functions
attached to the cones Cj; (j=1, 2).

Proposition 2.34. The following identities hold;

Z ‘P(#)Cs(o Czs: L*(#)) 7 Bz ¥
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1

20505 Cyy L ()= >

B,

Proof. Only the first identity will be proved. Proposition 2.25 and
(2.4.1) show that '

T H0: Con LA =2 T4 5 BUC2pallp)

a?=2ay mod p

~3 B, .. . q.e.d.

8p
Gathering (2.4.2), Proposition 2.25, Proposition 2.32, and Proposition
2.34 together, we obtain the following proposition.

Proposition 2.35. We have
(i) LE(1—m, yu,) € @ (me N).
(it) L¥s0, yra,,)=(11/36 p)B; , —(1/24p)B, ,.

Now Theorem 1 (the main theorem) in the introduction follows im-
mediately from Proposition 2.28, Proposition 2.35, (2.4.4), and the fact
that if p=1 mod 4, B, ,=0 for any odd k.

2.5. Evaluation of special values of L} .(s, X4..), £5(5).

Let X be a primitive character mod p, p being an odd prime. We
have defined the functions L p(s, X4er)s L5 5(S, Xaen)> EF p(8), £F5(s) in (2.4.3).
As we see from Proposition 2.9, Proposition 2.10, the principal parts
L £(S, Xge1)> €¥ p(s) are holomorphic at s=1—m (m e N).

We need a lemma concerning the Bernoulli polynomials.

Lemma 2.36. Letme N. Then,

( 1 ) Za$0 mod p x(az)Bzm—l(<a/p>)=o'
(ii) Let k be any integer with 0<k<2m--1. Then,

25 1(@)Buyi-1({—alp))Bi({alp))=0.

a%0mod p

- Proof. Replacing a with —a, and then, using the property B;(1—x)
=(—1)*B,(x) and (2.4.6), we have the assertions (i), (ii).

Then, Proposition 2.3, (d), (e) of Proposition 2.12, and Lemma 2.36
show that

2.5.1) 2. XMO(l—m; C;, M¥@)=0  (j=1,2).
60 mod p
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For each triple (k,, k,, k;) of integers satisfying k,, k,> —1, k,=>0, and
k,+k,+k,=2(m—1) (m e N), we define the numbers 95’(,“ ko kg 8 fOllows;
(1) If k kK, 20, we set

Bissavo=—20CO) A 35 1) 33 Blkr s K ©)

od p
(ii) Let r be an integer with 1<<r<3. If k,=0 and other k,’s

(j 2¢r) are non-zero, we set

B (1 kark) = —27Tic(m)A(k1,kz,ks>5§0§m:od ) X0) > Blky kg kys 6).

EEEsEr¥l

(iii) Let r, n be integers with 1 <r<n<3. Ifk,=k,=0 and the
rest of k,’s is non-zero (m>>1), we set

B (hr, 2k = —2n'lc(m)‘/1(k1 o) Z X(5) Z B(k,, ky, ks, &).
d p

57,5n3€1
- (v), If (k,, ko, k5)=(0, 0, 0), we set
Boon=—201CW w0 3 20) 3 B0,0,0;8).

#0mod p £€8, .5
g5%1 (j=1,2,3)

As the following Lemma 2.37 shows, all the numbers %4, , x,, are proved
to be zero. However, these numbers are useful to evaluate the spemal
values L¥ o(1 —m, Xgop)-

Lemma 2.37. For any triple (k, k;, k;) as above, & ., 1,15 =0

Proof. Foreach T= (t‘ e

>,e_L;*<, we write
by 4

&r=((t,—2tp)Ip), (2tulp), {(t—1)p))=(EP, &7, £P).

Replacing T with — T, we observe that, if £’ 2¢1, then, £9) =1-—£%, and
that, if £’ =1, then, £¥,=1(1<;j<3). Thus it follows from the defini-
tion of # 4, 1,1, and some properties of B,(x).that &, 1. 50 = — B i1, e 55"

g.e.d.

The special values at s=1—m (m e N) of L} »(s, X4,,) are obtained in
a similar manner as in the proof of Proposition 2.28. The result is very
simple.

Proposition 2.38. We have L p(1—m, X4))=0 (m=1,2, .. .).

Proof. 'We notice that, for each integer § prime to p,
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&N EE —_-{ET | T= (8 2), t,e ZIpZ, ti=¢ modp},

E¢INEPo =g,

EPONEND = {'ST | T= (?tﬂ g; ), tn € Z/pZ, 3th =6 mod p}.
12 12

Then we have, by (i) of Lemma 2.36,

Z X(&) Z B?.m—l(&l):O’
2.5.2) s=iT0a »

(1,2 {1,3)
§es{n 5

x(&) Z BZm—l(‘SZ) =0.

0 modp 555‘(’2.3)05'(31.2)

Thus, making use of the definition (2.4.3) of L¥ (s, X4.), Proposition 2.11,
Proposition 2.12, and the identities (2.5.1), (2.5.2), we obtain

L;:P(l —m, xdet)’—_pum—l) Z/ g(kl.kz,ks):
(k1,k2,k3)
where (k,, k,, k,) is taken over all triples of integers satisfying &k, k,= —1,
k,=0, and k,+k,+k,=2(m—1). Therefore, Lemma 2.37 completes the
proof of Proposition 2.38.

Now we consider the function L (s, X,.). We have

(2.53) 2. U0Ns(s; Ciasr M*(0))

80 mod

zp—Zs Z X(&) Z QS(S; {Vls I/b I/$$}9 (Eé})’ Eg)))

{0 mod p TeL;/pLﬁ
det (Ty=é mod p

Dividing the summation into two parts according to #,2¢0 mod p or not in

T= (l;l ?2>, we see that the left side of (2.5.3) is equal to
12 %2

pr X pX(5)CS(S; Vi Vo Va}s (& —2t)[p), (2t,/p)))

8,410 mod
t1gmod p

+p7 0 M—1)Cs(s; {5 Vi, Vibs ({—28/p), (21:3/D))).

t120 mod p
t2 mod p

Using the well-known fact that 3 ;. mea, X(0)=0, we get

(2.5.4) , oZ: . X(0)s(s; Cioay M*(0))

z0mod

=l)“2“7€(—4)"a$02d ) W@ )s(s; (Vi Vas Vi), (—alp)y, {a[p)))-

moH

Since Proposition 2.22, Lemma 2.36 show that
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LZ M@ —m; (—alp), (alpp)=0  (meN),
it is not difficult to see from (2.5.4), (2.3.25), Proposition 2.22, Proposition
2.24, and Lemma 2.36 that the function in the left side of the equality
(2.5.4) is holomorphic at s=1—m, and moreover that its special value at
s=1—m is given by

(2.5.5) Z X(0),s(s; Cigsy M *(5)) _ X(—4)_147L‘(— 1)m+lp2m-1c(m)
30 mod p s=1-m (zm)!
X et log t- ai(gn:mj ) X(a2)¢(t, <a/p>)¢(2m)(t; 1— <Cl/p>)dl‘,

where ¢ is taken sufficiently small. In a similar manner as in Lemma
2.31, we can write

(2:5.6) g , Ka@)p(t; {alpy)p“m(t; 1—{alpy)= 2;2 1690,

a¥
where ¢(1)=¢(t; 0)=1/(e'—1), and 2; (1< j<2m+-1) are given by

(2m)!

257 (=1)jla—=_ @Mt
@30 = T e bmens

xz(a)BZ'm. +1= ](<a/p>)'

We notice that 2,=0 if jis even. By a similar argument as in the proof
of Lemma 2.31, we have

2m+1 i .2m+1 2 B .
(2.5.8) I logt- S A, P()dt= —2xi 37 24Bi iz,
Is(o0) Jj=1 Jj=1 J

(note that 2,B,=0 if j3z1). Computing the number 2, from (2.5.7), we
get, by (1.2.11), (2.4.5),

—p-™B, ., if 2% is non-trivial,
(2.5.9) L= (1__ 21 1>Bm if 1 is quadratic.
P

Moreover, we find that

2 X(3)s(s; Ciyy M*(5))

8% 0mod p

=p" 2. px(t1tz)c.s(s§ Vi, V3}, <t/p))

t1,t2F0 mod

=0.

The case of the cone C,, is similar. Thus we have, identically,
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@510) 3 AE(s; Cp MAO)=0  (j=1,2)

In view of the identities from (2.5.4) to (2.5.10), we obtain the following
proposition.

Proposition 2.39. The sepcial values at s=1—m (m=1,2, --.) of
L (S, Xqer) are given as follows:

— &) (=1 .
%BZ'M,X? lfx#ql"a

L;ljs(l—ma Xdet)= - __1ym-1
X( 2122"'(“}:!) (pzm-l—l)BZm l‘fx=11b‘

< being the unique non-trivial quadratic character mod p.

By virtue of Proposition 2.38 and Proposition 2.39, we can evaluate
the special values L¥(1—m, Xg4,) explicitly. The result is given in Theorem
2 in the introduction.

Finally, we shall evaluate the value £§(0). Using (2.4.3), Proposition
2.11, Proposition 2.12, and Proposition 2.15, we get

£5,(0)=1/24.

Further, we see from Proposition 2.22 that J(1—m; (1, 1))=0 (m e N)
and that

J(0; (1, 1) = _2ﬂij log 1:(0p ()it + 165°B, B,

Te(

Since we can write ¢()¢ P ()= ¢’ () + pop®(t) + psp®(t) With p, = —1/6,
po=—1/2, py=—1/3, we have

= ——7c»l'/12,

' . B
[ togr-gpent=—2a1 35 14
Te(eo) =g

which shows that J/(0; (1, 1))= —3#%/2. We see from Proposition 2.24
that K(0; (1, 1))=0 (note that A" ;,=.A4",,,=0). Therefore, the function
&s(s3 {V» Voo ¥}, (1, 1)) is holomorphic at s=1—m (m e N), and its special
value at s=0 is given by

2.511) 05 {V, Vo, W3}, (1, 1)=iC(1)J'(0; (1, 1))= —3/32.
Moreover, we have by Proposition 2.25,

cs(O; {Vl’ Vs}a 1)=1/12, CS(O; {Vza V:«z}’ 1)"——1/16:
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which, in addition to (2.5.11), imply that &£ (0)= —1/48. Accordingly,

EF0)=£22(0)+£55(0)=1/48.

Thus we are successful in giving another proof of the following theorem
due to Siegel [20, Satz 3], Shintani [16, Theorem 2].

Theorem 2.40 (Siegel-Shintani). The special value at s=0 of the zeta
Jfunction EF(s) is given by

£¥(0)=1/48.

Chapter ITI. Some applications to the representation of Sp(2n, F,)
in the space of Siegel cusp forms

3.1. The representatinn 1, of Sp(2n, F,) in the space of cusp forms

Let §, be the Siegel upper half plane of degree n: ,={Z ¢ M, (C)|
Z="'ZIm(Z)>0}. The real symplectic group &,,=Sp(2n, R) of degree
2n acts on §, in a usual manner:

Z— >(Z>=(AZ+ B)(CZ+D)"* (z €D g:(‘é g) ¢ @2,,).

By this action, &,,/{+1} gives the group of biholomorphic automorphisms
of $,. We put

J(g, Z)=det (CZ+D)  for g-_—_(é g) e G,

Denote by I',,(/) the principal congruence subgroup with level /(/ ¢ N) of
the Siegel modular group Sp(2n, Z):

Iy (D={r e Sp(2n, Z)|r=1,, mod /}.

For a positive integer k, let ©,(I',,(/)) be the space of Siegel cusp forms
of degree n, weight k with respect to I',,(/); namely, it consists of all holo-
morphic functions f(Z) on , which satisfy the following two conditions:

{(i) JWZH)=J@, Z2)°f(2)  forany7 eI,
(i) det(Im (Z2))**|f(Z)] is bounded on §,.

We write, simply, Iy, =1",,(1) (=Sp(2n, Z)). The group I',,(/)is a normal
subgroup of I',,. For e e Iy, and f e S,(I",.(])), we put
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@.1.D) (NNl Z)=J (e, Z) " [(a(Z}).

Obviously, f|[al; € ©(I:,(1)). In the following we suppose that p is an
odd prime. It is well-known that the quotient group I',,/[,.(p) is
isomorphic to the finite symplectic group Sp(2n, F,) of degree 2n over the
finite field F, of p-elements. For a e I',,, @=a mod p is regarded as an
element of Sp(2n, F,) via the isomorphism I',/I',,(p)=Sp(2n, F,). By
means of (3.1.1), one can construct a representation s, of Sp(2n, F,) in
the space &,(I,,(p)); for @ e Sp(2n, F,) (a € [',,) and f e S (I":.(p)), we
set

(3.1.2) @ f=fla ]

It is easily checked that (3.1.2) is well-defined. We put, for7 e ®,,, Ze
@n’

7\ -k
H(r; Z)=det (Im (Z))* det (KZ;_—Z) I, Z)".
i
We have H(7; g{Z>)=H(g '7g; Z) for g,7e€ &,,. Denote by dZ the
invariant measure on §, given by

dZ=det(Y)-"' [] dX,dY, for Z=X4iY.
1sisjsn

The following theorem is due to Godement [2] (see also Lemma 1 of [5]).

Theorem 3.1 (Godement). Let k>2n. The trace of y(@") (e e I'y,)
is given by the following formula:

tr (pu(@") =a(k) j > H(; Z)dZ,
I2n(P)\Pn 1E€T2n (D)
where we put

G.13)  ak)= 2,,(2,:;({2 :)S’Z’T‘:(}C)f")’_l) (for 7.(s), see Chap. T).

For a symmetric matirx x of size v (1 <v<n), we write

X 0
(3.1.9) tw(x)z( "0 O).
0o 1,

Suppose that @ (« € I',,) is Sp(2n, F,)-conjugate to some element 7, ,(S)
with Se L,, det (S)=0 mod p. For each integer r (1<r<n), let I1.(a)
be the set consisting of all elements 7 € I',,(p)x that are I',,-conjugate to



Special Values of L-functions 163

some elements ¢, .(x) with x e L, det(x)2c0. Set, following [16, §3 of
Chap. 2},

(3.1.5) LT (@); k) =a(k) j > H(r; Z)dZ.

T2n(P)\$n 7€ M r(a)
Put U, = 1 @=*/T(K)).
k=1

We denote by d,g the invariant measure on &,, which satisfies

[, faise=2rv, [ fzaz
for any integrable function fon §,. Then we have

G.16)  LUT(a); k):a'(k)f S H(gg; il

Ton(P)\G2n 1€ Ir(a)

where a’(k)=2"a(k)/U,.

3.2. On the integrals I,(I],(x); k)

In the case of «=1,,, Shintani [16] proved the absolutely convergence
of the integrals I,(1,(«); k) under a certain condition for k& and expressed
the values of them as elementary constant multiples of the special values
at non-positive integers of the zeta function &#(s). In the following, as
quite an analogy of Shintani’s results, we evaluate the values of the inte-
grals I(IT .(a); k) for a general « by using the special values of &¥(s; ).
We keep the notation used in Chap. 1.

Let 1<y<mandlet Se L, with det(S)=0 mod p. We may assume
that ¢=t¢,,(S). Then we observe that I («)2c¢ only if y<r=<n. Set

I, ,={oerlsy|o 'ac=a mod p}.

Then, I', , is a subgroup of I',,, and I',,(p) is a normal subgroup of I, .
In a formal manner, we get, by (3.1.6),

3.2.1) LT (e); K)=a' (KT, ,: T:.(p)]

f H(g 'rg; i1,)0,8;

Ton\@2pn 0 €, p\2n Y€~ 1Hs(a)o

where [I", ,: I',,(p)] denotes the group index of I',, to I, (p). Let
FO(S) be the same as in (1.2.3). Denote by &,,,, the subgroup of &,,
consisting of all matrices whose left lower (2n—r)X r blocks are zero.
Every element g of &,, . has the following block decomposition:
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1 ty1 382 (1)1' Ixxz a
(3.2.2) g= Y1z l n-r L 0 o gt B ,
* —lez 1n—r T 5

where a ¢ GL,(R), h= [70,‘ ‘g] € ®ynpys X1z Vo€ M(r,n—r; R), 1€ M,(R)
(*y,;=y,). Let§, ,q be the left invariant measure of &,, . given by

5n,rq= | det (a) i_ @ - T+1)dra5n—rhdx12dyldy12'
Lemma 3.2. Let a=t,,(S) with S e L,, det (S)2c0 mod p. For each

integer r with y<r<n, we have

o Ul (o= UJ 77t ()| x € (S

6€lq,p\2n 1€2nN82p,r\"2n

(the both sides are disjoint unions).

Proof. 1In the proof we use, implicitly, the fact that p is an odd
prime. The disjointness of the unions is clear. First, let x e Z(S),

vel,, Thereexists Ue GL(Z/pZ) with x=U <S .

0 0)‘U mod p. Since
the map g—8 of I';, to Sp(2n, F,) is surjective, there exists g, € Iy, such
that ¢, (X)=o7ag, mod p. Thus, 77, (X)r=(0,7)'z,0(0,) with some
7€ [y (p). Write g,f=pc with pel,, and ¢e I, I3, Then,
77, (X =0 'p 'r,apa. Since p~'ap=amodp, we have p~lap=rt,x
with some r, € [',,(p). Hence, p~'r,ap ¢ II ().

Conversely, let ge ', \[4,, and let ¢e ', (p) with za e Il (a).
Then we have ¢ 'caec=7""¢,,,(x)r with some 7 € I',,N&,, I, and x e
L,, rank (x)=r. The task we have to do is to prove that x e Z"(S). If

we put 7¢~'=7,, then, 17%af,=¢, (x) mod p. Writing 7’1::(2{. g) el,,

we have

S0 S0 0
(0 O)CEO mod p, (O O)DEA(g 0) mod p,

C<g 8)50 mod p.

(3.2.3)

Since ‘DA-—'BC=1,, we get, by (3.2.3),

(3.2.4) ‘D(é 8>DE‘DA (6‘ 8>E(ln+”BC)<g 8);(3 8) mod p.

‘We decompose A, C, D as follows:
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_{a; a e o _{d, 4, .
A._<a3 a4>, = (C3 04), D_( yi d4> with a,, ¢, d, € M(Z).
Since det(S)==0 mod p, we have, again by (3.2.3), ¢,=0 mod p, ¢,=0
mod p. Thus we see easily from the relation 4A°D— B'C=1, that aid,+
atdy=1, mod p. Accordingly, there exists some Ve GL,(Z/pZ) of the

d, d, S O,_(x0
form V= <*1 *2>. We have, by (3.2.4), ”V(O O)V: (0 0) mod p.
Thus, (g 8) e Z(S). In the same manner as in the proof of Lemma
1.4, we can conclude that x e Z(S). g.e.d.
We set

@, =C(2){#)- - -L(2n).

Let y<r<n. Using the decomposition in Lemma 3.2, we get, by the
equality (3.2.1),

(3.2.5) L(Il.(x); k)
(BT, an(p)]f S H(got,,(0g; i1,)5.g.

Pznngzn,r\@’znmef;m(s)

Making use of Lemma 22 of [16] and the decomposition (3.2.2) of
qe®,, ., wehave

U,
U,-.C,

(32.6) Ll (a); )=a' ()., I'sa(P)]

xf 2. H(, (a'x'a™*);il,)8,,.q9

T2nN®2n,r\G2n,r ;e 2{(8)

r(én—-r+ U’nwn—r
=a’(k)[[’a,p: ()2 @ mzm

Ay -omor 55 det(l,—igx'g) *d,g

L[G(é:_l_/SLT(Z) zE2{M(S)
U,o
—_ 7, k Z" :I" N 2r(2n—r+1)/2 nWy—r
a( )[ ayp 2 (p)] Un_TCT
X Z(f¥(x, k), ZLA(S), n—(r—1)/2).
By virtue of Proposition 1.6, the integral Z(f*(x, k), &£,(S), n—(r—1)/2)
is absolutely convergent for k>2n-3, and hence the equalities (3.1.6),

(3.2.1), (3.2.5), (3.2.6) can be justified definitely. Thus the absolutely con-
vergence of the integral I, (Il (\a); k) follows for k=>2n-+3. We obtain
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Proposition 3.3.

Proposition 3.3. Let 1<y<n and take S e L, with det (S)=0mod p.
Put a=t, (S). For each r (v<r<n), the integral I(II (a); k) given by
(3.1.5) is absolutely convergent for k= 2n--3 and is equal to

[t Do DIp= 7= DPb(n, k, 1), &5 —n, <),
where we put
(27 b, k, r):"_ﬁz Qk—n—)k—n—j+2)- - -k —n-+j—2).
! ,

® Tzr(n—'r)—l
e

Un_7(4n_)(‘n—r)(n—r+l)/2
(we understand b(n, k, ry=1, 2, ,=1 for r=n).

(3.2.8) 0,,=

Proof. The absolutely convergence of the integral I,(I7,(«); k) has
already been verified. The functional equation in Proposition 1.9 shows
that

3.2.9) Z(f¥(x, k), Z,(S), n—(r—1)2)

N nr(rqri)/zp—r(n—(r—l)/Z)CTTT(k___n_

D s
2Qzy "1 (k—(r+1)/2) SFr—n, 7).

The latter half of the assertion is a direct consequence of (3.2.6), (3.2.9).

3.3. Traces of ;,(@) in the case of degree 4 (n=2)

We consider the case of n=2, v=1. Take a non-quadratic residue
£ mod p and fix it. For any integer p prime to p, we put

3,7 9
a, =t (= 00|ell,
0 1,

It is easy to see that
[, I'{(PI=2p"p"—1).
Since L(—1, 4 }= —B, ,/2, {(— 1)= —1/12, the identity (1.2.12) shows that

1

54 (1-p.

(-1, )= ——}w(;z)rwz,w
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It follows from Proposition 3.3 that, if r=1.
IZ(Hl(a#); k)= —2"3""p(p"— 1){‘!’(#)711'32,4» +(p*— 1)/6}(2k—“ 3) (k=7).

It is immediate to see from Proposition 1.2, Proposition 3.3 that, if r=2,

L) k)=ﬂ;ﬂl{pw(— DLFO, vroe) +P¥(@ey LEO, ¥ra)

+(P'—DEO} k=T

Thus, by virtue of Theorem 2 in the introduction and Theorem 2.40, we
obtain
2 — 1)

(I (e,); K)=PZ =1

2 {pY (W LFEQO, Yy, )+ 27371 2p* —p— 1)}

It is essentially known by [1], [13], [14], [5] and verified in a similar manner
that, if n=2, in the trace formula for tr (y,(@;")) in Theorem 3.1, the con-
tributions from any other conjugacy classes except from I7,(,) (r=1, 2)
vanish identically. Thus one obtains, if k=7,

tr )= 35 10 e ); .

Summing up the results above, we obtain the following theorem (and also
(0.3) in the introduction).

Theorem 3.4. Let y be any integer prime to p. If k=7, then,

tr (@)= —2737p(p" — IW(— )z 4 By, + (P — 1)/6}(2k — 3)
+27'p(p* — D{py(— ey LFO, i, ) +27*37'2p" —p— D}

It is well-known that

. :{Jf p=1mod 4,
"“liyp  p=3mod4

Substituting 1, & for p and subtracting tr (u(@.)) from tr(u(a,)) in
Theorem 3.4, we obtain Theorem 3 in the introduction. As a direct
corollary of Theorem 3.4, the imaginary part of tr (u(a,)) is given as
follows:

0 p=1mod 4,

tim or G, ) = {2—lp5ﬂ(p2— D= DLFQ, ¥r,)  p=3mod 4.
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