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Introduction 

Zeta Functions Associated to Cones 
and their Special Values 

I. Satake and S. Ogata 

The purpose of this paper is to give a survey on zeta functions associ
ated to (self-dual homogeneous) cones and their spedal values, including 
some recent results of ours on this subject. 

In § 1 we summarize basic facts on self-dual homogeneous cones and 
the associated I'-functions. § 2 is concerned with the zeta functions. Let 
V be a real vector space, C(i' a self-dual homogeneous cone in V, and let G 
be the automorphism group Aut(V, C(?)0 • We fix a Q-simple Q-structure 
on (V, C(?). As is well-known, the pair (G, V) is a "prehomogeneous vector 
space" in the sense of Sato-Shintani [SS]. Following the general idea in 
[SS], we define a set of zeta functions {~r}, each one of which is assodated 
to a connected component Vz o: vx = V - S, S denoting the singular set; 
in particular, ~(O)=Z"' is the zeta function associated to the cone VioJ=C(i'. 
Then we give an explicit expression for the system of functional equations 
(Theorems 2.2.2, 2.3.3). Under the assumption that d is even, taking 
suitable linear combinations of these zeta functions, we define a new kind 
of L-functions Lr, which are shown to satisfy individually (or two in a 
pair, according to the cases) a functional equation of ordinary type (see 
(2.3.5)). We give some (new) results (Theorems 2.3.9, 2.4.1) on the residues 
and special values of these zeta and L-functions, where two extreme L
functions L<o) and L<r,i play an essential role. These extreme L-functions, 
which generalize the (partial) Dedekind zeta function and the Shimizu L
function in the Hilbert modular case, seem to be of particular importance 
from the number-theoretic view point. 

In § 3, we consider the corresponding (rational) symmetric tube do
main I»= V +-1=-f C(? and, under an additional assumption that the Q-rank 
of G is one, study the geometric invariants (X00 , r 00 , etc.) associated to the 
cusp singularities appearing in the (standard) compactification of the 
arithmetic quotient space I'\:» ([S3, 4]). A typical example is the Hilbert 
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modular singularities, which were studied extensively by Hirzebruch and 
others ([H2J, [HGJ). In [H2J Hirzebruch gave a conjecture relating the 
"signature defects" of the cusps with the zero-values of the corresponding 
Shimizu L-functions, which was later proved by Atiyah-Donnelly-Singer 
and Muller ([ADS 1, 2J, [M 4, 51). In view of our results on these invariants 
and special values, we state in 3.3 some conjectures ((Cl), (C2), (C3)) which 
may be regarded as a natural generalization of the Hirzebruch conjecture. 

In § 4, we define a more general zeta function Zw associated to a 
"Tsuchihashi singularity" and give a formula for the zero-value Zw(O) 
(Theorem 4.2.5) by modifying a method due to Zagier [ZJ. Recently, using 
this formula, Ishida [131 proved the rationality of Zw(O) in general. It is 
hoped that our approach might suggest a new possibility of attacking the 
generalized Hirzebruch conjecture. 

Our study on this subject has been largely inspired by the funda
mental works of Professor F. Hirzebruch, to whom this paper is respect
fully dedicated. The paper was prepared during a stay at the MSRI, 
Berkeley in 1986-87, of the first-named author, who would like to thank 
the staffs of the Institute for superb service and hospitalities. 

Notations. The symbols Z, Q, R, Care used in the usual sense, e.g. 
Q is the field of rational numbers. H is the Hamilton quaternion algebra. 
We use the symbol like R.,0 ={2 e RJ).>O}, and write R+ for R>o· For 
~EC, e(~) stands for exp(2n-,/=t~). Let Vbe a real vector space, v,, ... , 
v, EV and let S be a subset of R. Then we write {v1, • • ·, vr}s for 
{I:T=1 Aivi J).i E S}; e.g. { V1, • • ·, v, k,,o is a cbsed polyhedral cone gener
ated by v1, • • ·, Vr. For a cone crl and a lattice M in V, Cft* and M* 
denote, respectively, the dual cone and the dual lattice in the dual space 
V*. For a topological group G, G0 denotes the identity connected 
component of G. For a finite set S, ISi denotes the cardinality of S. 

Let F be a subfield of R, '!l a (connected) algebraic group defined 
over F, and G = '!l (R) 0 • By an abuse of notations, we write G F for q; (F) 
n G and F-rk G for F-rk '!l (i.e. the dimension of maximal F-split tori in 
'!/). If a is an imbedding, F~R, then Ga stands for '!l"(R) 0 and, if F0 

is a subfield of Fwith [F: F0J<oo, then RF1F0(G) stands for RF!Fo('!l)(R) 0 • 

When '!/ is reductive, G= '!l(R) 0 is called "reductive", and we write G• for 
'!l'(R) 0 , q;• denoting the semisimple part of'§. 

§ 1. Self-dual homogeneous cones ([BKJ, [SlJ, [VJ) 

1.1. Let V be a real vector space of dimension n > 0. By a convex 
cone in V, we mean a subset crt of V with the following property: 

x, ye crt, A, µ>O===}Ax+µy e crt. 
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The dual of <fl is defined by 

<fl*={x* e V* I <x, x*)>O for all x e <l-{O}}. 

Then <fl* is an open convex cone in the dual space V*. It is clear that 
for a (non-empty) convex cone <fl the following three conditions are equi
valent: 

( i) <fl does not contain a line in V; 
(ii) <ln(-<l)={O}; 
(iii) <fl* is non-empty. 

When these conditions are satisfied, <fl is called non-degenerate. In what 
follows, a non-degenerate open convex cone will simply be called a "cone". 
For a cone <fl, one has <fl**=<fl. 

A cone <fl is called self-dual if there exists a linear isomorphism 
S: (V, <fl)=;(V*, <fl*), which is symmetric and positive definite. A cone <fl 
is called homogeneous if the automorphism group 

G=Aut(V, <fl)0 ={g E GL(V) I g<fl=<fl} 0 • 

( 0 denoting the identity connected component) is transitive on <fl. 
In §§ 1-3, unless otherwise specified, we always assume that <fl is self

dual and homogeneous, and fix a positive definite inner product < ) on 
V defining an isomorphism S mentioned above. Then (V, <fl) is identi
fied with its dual ( V*, <fl*). In this case, the automorphism group G is 
the identity connected component of a reductive algebraic group and for 
any c0 e <fl the isotropy subgroup 

is a maximal compact subgroup of G. Thus <fl:=::;:;G/K has a structure of 
Riemannian symmetric space (with a flat part). 

1.2. In 1957-58, M. Koecher made an observation that the category 
of self-dual homogeneous cones (V, <fl) with a base point c0 e <fl is equi
valent to that of "formally real" Jordan algebras by the correspondence 
given as follows ([BK], [Sl]). Let <fl be a self-dual homogeneous cone in 
Vwith a base point c0 and let G, Kbe as above. Let g=Lie G, f=Lie K 
and let g = f + +J be the corresponding Cartan decomposition. Then by the 
homogeneity assumption there exists a unique linear isomorphism 

V 3 X ~ TX E +J 

such that X= Txc0• The Jordan product in Vis then defined by 

Xo y=TxY (x, y E V). 
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In particular, one has Tc0 =idv, i.e. c0 is the unit element of the Jordan 
algebra. 

By virtue of this equivalence, the classification of self-dual homo
geneous cones is reduced to that of formally real Jordan algebras, which 
was given (by a collaboration of phisicists) as early as in 1934 ([JNW]). 
A self-dual homogeneous cone <ef is decomposed uniquely into the direct 
product of the "irreducible" ones, for which one has G = R + X G• with G• 
R-simple ( or = { 1 }). The irreducible self-dual homogeneous cones are 
classified into the following five types: 

{

{!J1(R)=R+, {!Jr(F) (r>2, F=R, C, H), 

{!Ja(O) (O denotes the Cayley octonion algebra), 

{!J(l, n-l)={(~i) E Rn I ~1>0, ~~-~1- 2~~>0} (n>3), 

where {!J,(F) denotes the cone of positive definite hermitian matrices of 
size r with entries in F. {!Jz(R), {!Jz(C), {!Jz(H) are isomorphic to the 
"quadratic cones" {!J(l, n-1) with n=3, 4, 6, respectively. For <ef= 
{!Ja(O), G• is an excetional group of type (E6). 

A more general study on "homogeneous cones" was done by Vinberg 
[VJ in the early 60's. In the study of general cones, the characteristic 
function plays an essential role. For any (non-degenerate, open convex) 
cone <ef, the characteristic function <j>(x)=<j>,ix) is defined by 

<j>,ix)=f e-<x,x*>dx* . 
.r• 

Clearly one has 

for x e <ef, g e G, 

and log <j>.(x) is a convex function, which tends to infinity when x e <ef 
converges to a boundary point of <ef. The characteristic function will be 
used later in § 4. 

1.3. Quasi-irreducible cones. Let <ef be a self-dual homogeneous 
cone in V. <ef is called quasi-irreducible if in its irreducible decomposition 
all irreducible components are isomorphic. 

Lemma 1.3.1. Suppose ( V, <ef) has a Q-simple Q-structure; this means 
that there is a Q-vector space VQ such that V= VQ®QR,for which G is (the 
identity connected component of) an algebraic group defined over Q and 
that, if ( V, <ef) = IT ;-_1 ( VP, <ef p) is the irreducible decomposition, no partial 
product of V,,'s is defined over Q, or equivalently, that the center of G is 
of Q-rank one. Then <ef is quasi-irreducible. 
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In fact, under this assumption, there exists a totally real number field 
F, of degree m such that 

where G1 =R+ X Gf with Gf R-simple (which may reduce to {l}), defined 
over F;_, and {a,. (I<µ<m)} is the totality of the imbeddings F1~R. 
Then the G~'s are all C-isomorphic and hence, by the classification theory, 
are also R-isomorphic except for the case when there exists an even integer 
r1 such that every G~ is isogeneous either to SL(r 1, R) or to SL(r 1/2, H) 
and when both types SL(r 1, R) and SL(r 1/2, H) occur in the G~'s. But 
actually such a "mixed type" can not occur for the following reason. 
Since the Q-rational points are dense in rt', one may take c0 to be Q
rational; then the maximal compact subgroup K is also defined over Q. 
One then has the corresponding decomposition 

m 

K=RF,,iK,)= n Kµ, Kµ=Kr µ 
µ=1 

and hence all K,.'s are also C-isomorphic. But the dimension of the 
maximal compact subgroups of SL(r 1, R) and SL(r 1/2, H) is equal to 
fri(r, - 1), fri(r, + 1), respectively. Therefore no mixture of these two 
types can occur, which proves our assertion. 

1.4. The norm and trace. The rank of a self-dual homogeneous 
cone rt' is by definition the R-rank of the Lie algebra g, which also coin
cides with the (absolute) rank of the formally real Jordan algebra (V, c0). 

Let n=dim Vand r=rank rt'. If rt' is irreducible, one has (from the Peirce 
decomposition of (V, c0)) 

(1.4.1) d n=r+-r(r-l), 
2 

where dis a non-negative integer. For <'&'=R+, one puts d=O. For rt'= 
fJJ,(F) (r>2), one has actually rank <'&'=rand d=dimRF=l, 2, 4, 8 ac
cording as F=R, C, H, O. For a quadratic cone rt', one has rank <'&'=2 
and d=n-2. Thus the pair (r, d) is a complete invariant for an 
isomorphism class of irreducible self-dual homogeneous cones. 

In the Jordan algebra (V, c0), one can define the (reduced) norm N: V 
-+Ras the (unique) homogeneous polynomial function of degree r on V 
such that, for a "general element" x in V, N(tc 0 -x)( E R[t]) is the minimal 
polynomial for x in the usual sense. When rt' is irreducible, the norm is 
uniquely characterized by the property 
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N(c0)=1, N(gx)=det(g)'fnN(x) 

for g e G, x e V. 

(Note that X(g)=det(g)'tn is a rational character on G.) Hence one has 
the relation 

(1.4.3) 

The (reduced) trace tr(x) is defined by 

N(tc 0 -x)=t' -tr(x)t•- 1 + · · · +(-I)'N(x). 

The trace is K-invariant. It follows that, when 't&' is irreducible, one has 

r (1.4.4) tr x=-tr(T.,,), 
n 

where T.,, : y>--+xy is the multiplication in the Jordan algebra (V, c0). (Note 
also, putting P(x)=2T;-T.,,., one has the relations P(gx)=gP(x)Cg, 
det(P(x))=N(x) 2ntr.) 

In what follows, we assume that 't&' is quasi-irreducible. Let (V, 't&') 
= Il::"=1 (Vµ, 't&'µ) be the irreducible decomposition, 

m 

G= Il Gµ, Gµ=Aut(Vµ, '1&'µ)0 , 

µ=l 

and put n1=dim V1, r1=rank't&'1=R-rkG 1• Then one has n=mn 1, r= 
mr1 and 

Hence the formulae (1.4.2-4) remain valid. We normalize the inner 
product on Vin such a way that (co,µ, c0,µ)=r 1 (l<µ<m), where c0 =(c 0,µ). 
Then one has 

(1.4.5) (x, y)=tr(xy). 

The Euclidean (i.e. self-dual) measure on V for this ( ) will be denoted as 
dx. A G-invariant measure on 't&' is then given by N(x)-nfrdx. 

1.5. The I'-function. Let 't&' be a quasi-irreducible self-dual homo
geneous cone in V. The "I'-function" of 't&' (introduced by Koecher) is 
defined by the integral 

(1.5.1) r w(s)= L e-tr(x)N(x)•-(n/r)dx (s e C), 
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which converges absolutely for Res> n/r -1. By a change of variable, 
one gets 

(1.5.2) N(x)-s I' ,is)= L e-<x,y) N(y)'-n/rdy (x E ~). 

On V one can define a (unique) differential operator of degree r, de
noted as N(P .,,), with the property 

N(l7 .,,)e<x,y> = N(y) e<x,y> 

( cf. [R], [SS]). Then N(l7 .,,) is relatively invariant in the sense that one has 

L;1N(l7 .,,)Lg= det(g)-r/n N(J1,") (g e G, x e V), 

where (Lg/)(x)=f(g- 1x) for any function f on V. The associated "b
function" is defined by 

N(V,,)N(x)'=b(s)N(x)'- 1 (x e ~, s e C) 

(cf. [SS]). *l Then, applying N(f7 ,,) on the both sides of (1.5.2), one gets 

b(s)=(- l)' I' .,(l -s). 
I'.,(-s) 

By a direct computation from (1.5.1) (see e.g. [S2]), one obtains 

(1.5.3) 

(1.5.4) 

I'.,(s)=(2,r)<n-r)/2Cttr(s-i (i-l))r, 

b(s)=O1 (s+ i (i-l))r-
(For the I'-function of a more general cone, see [G].) 

§ 2. Zeta functions associated to a self-dual homogeneous cone 

2.1. We assume in this section that (V, ~) is endowed with a Q
simple Q-structure in the sense stated in Lemma 1.3.1. Then G• is Q
simple ( or reduces to {1 }), the center of G is of Q-rank one and~ is quasi
irreducible. The Q-rank of G, which we denote by r0, is a divisor of r1 = 
R-rk G1 : hence we set o=r1/r0• We fix a base point c0 in ~n VQ; then the 
norm, trace and the (normalized) inner product < ) are all defined over Q. 
We choose a lattice Min VQ and an arithmetic subgroup I' of G such 

*i Note that in some recent literature (e.g. [11]) it has become more customary 
to denote our b(s) by b(s-l). 
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that I'M=M. We define a zeta function by 

(2.1.1) 

where I',,={r e I' 1rx ex} (which is finite) and the summation is taken 
over a complete set of representatives of the I'-orbits in ~ n M. When c0 

is kept fixed, we write Z'lf for Z'lf,co It is known that the series on the 
right hand side of (2.1.1) is absolutely convergent for Res>nfr and has 
an analytic continuation to a meromorphic function on the whole plane C. 
It is clear that, if I'' is a subgroup of I' of finite index, then one has 

ZiI'', M; s)=[I' : I'']ZiI', M; s). 

Hence it suffices to consider the zeta function for the full stabilizer I'M= 
{re GlrM=M}. In that case, we write ZiM; s) for ZiI'M, M; s). 

In the simplest case where G• reduces to {1 }, one obtains essentially 
the (partial) Dedekind zeta function of the totally real number field F1 (see 
the Example 2.1.2 below). The case where ~ is a quadratic cone was 
studied by Siegel [S9]. Our zeta function is a special case of the zeta 
function associated to a (real) "prehomogeneous vector space" in the sense 
of Sato-Shintani [SS], who treated as examples the cases of 9,(R), 9,(C) 
and the quadratic cones (see [S7], [SS], pp. 160-168, pp. 155-157). For 
other cases, see [M3] (cf. also [SF]). 

Example 2.1.2. Let F1 be a totally real number field of degree m and 
let V=F.®aR~R"". Then the "angular domain" ~=R':: is a self-dual 
homogeneous cone with respect to the standard inner product in Rm. G is 
identified with the multiplicative group R':: and G• and K reduce to the 
identity. If one takes c0 to be 1 (the unit element of F.), then the norm 
and the trace are given by 

N(x)= CT ~µ, tr(x)= I;~µ for x=(~µ) e V, 

and the standard inner product in R"' is normalized. V has a natural 
Q-structure for which Va=F 1, G is defined over Q, of Q-rank 1, and Ga 
={a e F{ I aqP>O(l <µ<m)}. Hence the above assumptions are all satis
fied and one has n1 = r1 = r0 = 1, n = r = m. Let 0 Fi be the ring of integers 
in F. and choose M to be an ideal a1 in 0 Fc Then I'M is the group of 
totally positive units of 0F, and one has 

ZiM; s)= I; N(x)-•=N(a 1)-• I; N(a)-•, 
x:I'M\WnM 

where the summation in the last expression is taken over all integral ideals 
a "equivalent" to a11 in the narrow sense. Thus essentially ZiM; s) is 
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nothing but a "parital" Dedekind zeta function of F1 corresponding to the 
"ray class' of a11• 

2.2. Functional equations. According to the general theory of Sato
Shintani, the functional equations for Z,(M; s) are obtained as follows. 
Let 

m 

vx={x e VIN(x):;t:0}= I1 V; 
µ=l 

and let 

,., 
VJ;= LJ Vµ,t 

i=O 

be the decomposition of V; into the disjoint union of the connected com
ponents, or what amounts to the same thing, into that of the GP-orbits. 
(If c0=(c 0,µ) and if c0,µ= I;[!.1 eiPl is primitive decomposition, then Vµ,i is 
defined to be the G µ-orbit of - I;t= 1 e;tl + I:r~i+1 e;tl .) Thus one has 

where .Jf~ denotes the set of all m-tuples l=(ii, · · ·, im) with O<iµ<r 1 

(l<µ<m) and for l=(iµ), one sets VI= IT::'=1 Vµ,iµ· Hence vx consists 
of (r1 + l)m connected components. We write (k) for (k, · · ·, k) e .Jf~; 
then V(O) = '?f and Vc,,i = - '?f. 

For each/ e .Jf~, we define a zeta function 

(2.2.1) ~r(M; s)= I; µ(x) , 
:c:I'x\VznM \N(x)I' 

where the summation is taken over a complete set of representatives of 
I'M-orbits in VI n Mand µ(x) is a "density" defined as follows. For x e 
Vr, let U:r be a relatively compact neighbourhood of x in VI and let 

Then one has 

W:r={g e G\gx EU,,}, 

G.,,={ge Glgx=x}, I'.,,=G,,nr. 

µ(x)=f dg/f \N(x)\-n 1'dx, 
I',,\W,, U,, 

where dg is a Haar measure on G normalized in such a way that for any 
non-negative continuous function f on '?f one has 
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L/(gc 0)dg= f.J(x)N(x)-nfr dx. 

Then, except for the case r, =r 0 =2, d= 1 (treated in [S7], [S9]), µ(x) is 
finite and coincides with the volume of I' x \ G x with respect to a suitably 
normalized Haar measure on G x ([SS], Lemma 2.4) and hence depends only 
on the I'-equivalence class of x. In what follows, we omit the above
mentioned exceptional case. Then the series (2.2.1) is absolutely con
vergent for Res>n/r and has an analytic continuation to a meromorphic 
function on C ([SS], [S7]). Clearly one has ~co)=~cr,)=Z'<'. For l=(iµ) E 

.f~, we set l*=(r, -iµ). Then it is clear that 

Thus essentially we get [(r1 + l)m/2] zeta functions. 

Theorem 2.2.2. The functions ~z(M; s) satisfy the functional equations 
of the following form: 

~J(M*; !!_ -s) =v(M)(2rr)-rs I' is)e(_!!_) I:; ~lM; s)uIJ(s), 
Y 4 IEJm r, 

where M* is the dual lattice of M, v(M)=vol(V/M) and, for l=(i,,), 
J=(j,,), u1;(s)=I1::'-iui,,,j,,(s), uiJ (O<i,j<r 1) being integral polynomials 
in e(-s/2) of degree <rl' 

For an explicit expression of uiJ• see [SF]*>. 

2.3. To obtain more precise results, we assume in the rest of this 
section that r> 2 and dis even. (Note that, if r= 1, Z'<' is essentially the 
Riemann zeta function. If d is odd, then one has either r 1 = 2 ( quadratic 
cones) or d= 1 (.?l\1(Rr(r 1>2)).) 

Under this assumption, n/r is an integer and there are two cases: 
(a) d-=O (mod 4), or d-=2 (mod 4) and r1 is odd. In this case, n/r 

is odd. 
( a') d-= 2 (mod 4) and r, is even. In this case, n/r is even. 
Applying the methods in [SS] and [SF], one obtains 

Theorem 2.3.1. Under the above assumption, the function ~z(M; s) has 
at most r0 simple poles at s=n/r-(d/2)p for O<p:'.:::;:r1-l, alp (o=r 1/r0) 

and one has 

,:<> Note that Uij(s) in [SS] is in our notation (and in [SF]) given by c(2ir)<n-ri12 

Ur-i,r-j(s), if the measure on V in [SS] is equal to cdx with dx self-dual. For 
instance, in the case V=Herr(C) ([SS], pp. 160-168), one has c=2-<n-rJ/ 2, 
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Res ~ (M· s)-v(M*)((2rr)-(d/Z)(p(p+l)/Z) ITP r( d k))m S=n/r-(d/2)P I ' - k=l 2 

where M* is the dual lattic(of M and,for J=(jµ) e ./';, we set 

1J 1=tJµ, en= Jt (t), 
K',/l(M*)= ~ f dv.,,. 

_,,,tI'\S'j'nM* Gx/<I':, 

SJl is the G-orbit in S = V - vx containing ~;:'=1 ( - ~fr.1 e/!" + ~L 1 µ+i eftl) 
and,for x e S:fl, dv.,, is a suitably normalized Haar measure on G.,,. 

In the special cases, this result is due to [S9], [SS], [S7] and [M3]. It 
is possible to give a unified proof along the line of [SF] (see [S5a]). 

Corollary 2.3.2. Put v=n/r-(d/2)p with O<p<r,-I, ojp. For 
a fixed v, the (r1 + I)m-tuple (Res•=•~r(M; s))1 e.,f is proportional to 
((- l)'d/Z)plll)IE.,m. For l-1= 1 (mod 2), one has I ,, 

Also,for v=n/r, one has 

Ress=n/r~r(M; s)=v(M*) f dx1 >0, 
I'\'<'' 

where <i&'1 ={x e <i&' j N(x)= I} and dx' is the invariant measure on <i&'1 induced 
from N(x)-nfrdx. 

Let Pr, denote the symmetric tensor representation of GL(2, C) de
fined by 

(1, y, · · ·, yr1)Pr,( e !) )=((a+cy)"', (a+cyY,-'(b+dy), 

... '(b+dyY,). 

For C=(ci 1)o,;;i,Jsr, e GL(r, + I, C), we write 

In these notations, we have 

m 

C1J= ITC-.. tµ,Jµ 
µ=l 
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Theorem 2.3.3. The polynomials u1is) in Theorem 2.2.2 are given as 
follows: 

in Case (a), 

in Case (a'), 

where x=e(-s/2). 
This follows from [SF], Theorem 2. We put 

((1 -1 l))QS)m• uc,,,m>(x)=(ulJ(s)), Ac,,,m>=(alJ)=P,, l 

Then the matrix ucr.,m>(x) can be diagonalized as follows: 

in Case (a), A(r,,m)-lu<r,,ml(x)A<r,,m)= - - IJ 
{((1 1-x)r-lil(l x)lllo ) 

((1 +xy-1 1*1(1-x) 11*1o1,,J in Case (a'). 

Hence, putting 

(2.3.4) 

one has 

LiM; s)= I;· ~1(M; s)au, 
IEJ'~ 

L 1 (M*;; -s)=v(M)(2n-)-"I',is) 

(2.3.5) 

according to the case (a) and (a').*' 
It is easy to see that the matrix A<r,,m>=(aIJ) has the following pro

perties: 

(2.3.6) 

al,(O) = (z'), 

ar,J•= (- l)IIlaIJ, 

I:re.,:;(- l)IIlaIJ=oc,,J,J2'. 

*> This corresponds to the formula (30) in [SF], which was printed errone
ously. It should read 

<N(J, s-n/r) (resp. (J)',-i(J, s-n/r)) 
=(2ir)-"I' n0(s)(e(s/4)+e(-s/4))H(e(s/4)-e(-s/4))'(J)/(f. -s) 

in Case (a) (resp. (a')). 
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We use the last relations in the following form. 

Lemma 2.3.7. For (xr) e c<r,+l)m and be C, one has 

~ XraIJ=O(o),Jb (resp. O(r,),Jb) 
IEJ?J_ 

if and only if 

for I e ./~. 

As another consequence of (2.3.6), one has 

13 

Corollary 2.3.8. QVI is odd, one has Lr(M; s)=0. In particular, if 
r is odd, one has L<,,l(M; s)==::0. 

In fact, if Ill is odd, one has by (2.3.4), (2.3.6) 

Lis)=~ ~z(s)aIJ= ~ ~r.(s)ar•,J 
I I 

=(- l)IJI ~ ~z(s)aIJ= -Lis), 
I 

whence follows that Lis)=O. 

Theorem 2.3.9. Let J.J=n/r-(d/2)p with O~p<r 1 -1, o Ip. Then 

1
2' Res,=,Zw(M; s) if J.J= : (2) and I= (0), 

Res,=,Lr(M; s)= or if J.J= ~ -1(2) and I=(r 1), 

r 

0 otherwise. 

In particular, Lr(M; s) with I=/= (0), (r1) is entire. If (d/2)o is even, 
L<,,i(M; s) is also entire. 

This follows from Corollary 2.3.2 and Lemma 2.3.7. 

Corollary 2.3.10. If r is odd, one has 

n for J.J= _ -1(2). 
r 

This follows from Theorem 2.3.9 and Corollary 2.3.8. In view of the 
formula in Theorem 2.3.1, this implies that the residue of the zeta func
tions ~r(M; s) is always real. 



14 I. Satake and S. Ogata 

2.4. Special values of zeta and £-functions. We are interested in the 
special values of the functions ~i(M; s) and Li(M; s) at S=JJ e Z, JJ<O. 
For simplicity, we write Z,.,(s), ~r(s), Lr(s), ~t(s) and Lf(s) for Z,.,(M; s), 
~i(M; s), Li(M; s), ~i(M*, s) and Li(M*, s), respectively. Putting s= 
n/r-JJ and replacing M by M* in (2.3.5), one has for JJ=.n/r-1 (2) and 
<O 

{
ord,=n/r-,Lt (Case (a)), 

ord,=,L 1 =r-\I\+ * 
ord,=n/r-,LI. (Case (a')), 

whence follows (noting r> 2) that 

Similarly, for JJ=n/r (2) and <O, one has 

for I-=!=-(0). 

By Lemma 2.3.7, this implies the following 

Theorem 2.4.1. For JJ=n/r-1 (2) and <O, one has 

In particular, ifr is odd, one has Z,.,(M; JJ)=Ofor all JJ=O (2) and <O. 
For JJ=n/r (2) and <O, one has 

~z(M; JJ)=Z.iM; JJ), 

Lz(M;JJ)= {
2'Z,.,(M; JJ) for l=(O), 

0 for I-=!=-(0). 

It has been conjectured in general (including the cased odd) that the 
special values Z,..(M; JJ)=~<0i(M; JJ) (JJ e Z, JJ<O) are rational. There are 
a few evidences supporting this conjecture. 

(2.4.2) In the case explained in Example 2.1.2, where one has r0=r 1 

= 1, r=m and d=O, the zeta function Z,.,(M; s) and the £-function L<o>= 
~!.;1 are essentially the (partial) Dedekind zeta functions of the totally real 
number field F1, and the £-function L(I) = ~ (-1) 111,; 1 coincides with the 
"Shimizu £-function" (which is a special case of Hecke's zeta function 
with "Grossencharaktere"). The value L(!i(M; 1), which is related to 
L(li(M* ; 0) by the functional equation, appears in the dimension formula 
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for the space of Hilbert modular forms ( cf. [S6]). The relation in Theorem 
2.4.1 for l.1=0, L{l,(M; 0)=2'ZiM; 0), has been known*'· In this case, 
the rationality of the special values ZiM; l.l) (l.l e Z, l.1<0) is well-known 
(see e.g. [S8]). 

(2.4.3) In the case where rt'=f!J',(R) (Y>2), M=Sym,(Z) and I' is 
a congruence subgroup of Sp,(Z), the special value Z,,(M*; l.l) appears in 
the cusp contribution in the dimension formula for the space of Siegel 
cusp forms for the corresponding congruence subgroup of Sp,_.(Z) (cf. 
[Ml], [S7]). In this case, one has F1=Q, Y0=Y1=Y and d=l. (So this is 
a case excluded here.) For the case Y1=Y=2, Y0 =1 and d=l with a Q
structure defined by an indefinite quaternion algebra over Q, a similar 
observation was made by Arakawa [A]. 

(2.4.4) In the case of quadratic cones with Y0 = 1, Y1 =Y=2, Kurihara 
[K] showed that the values Zil.l) (l.l e Z, l.l<O) are rational for n<3 and 
gave an example with n=4 for which the rationality holds. 

(2.4.5) For the case Y0= 1, m= 1, one of the authors ([S2]) has made 
the following observation, generalizing Shintani's method in [S8]. Suppose 
I' is torsion-free and let 

be a I'-invariant non-singular "r.p.p. decomposition" in the sense to be 
explained in 4.2. Here aa={vt', · · ·, vl:'}R~o is a simplicial cone generated 
by via) (1 < i ~ la) such that Ma' (1 < i< /J} can be extended to a Z-basis 
ofM. 

Following Ishida [I], we put 

la } 

f(u)= I; fl <v,<a> u> 1 (u E rt'), 
aEAj=l e ' -

where c0 = I:r=1 e, is a primitive decomposition of the unit element. Then, 
it was shown in [S2] that the special values Zil.l) (l.l e Z, l.l<O) are a Q
linear combination of the Laurent coefficients of fK(ti, · · ·, t,) after a 
suitable change of variables and hence are a Q-linear combination of the 
integrals of the form 

*' We are grateful to R. Sczech for informing us of this relation along with a 
sketch of proof. 
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where a e A and, for a given v, (vlj') ranges over a certain finite set of 
TX la integral matrices. 

(2.4.6) In the case of T0 = 1, the zero-value Z.,(O), which coincides 
with 2-rL<o>{O) or 2-rLcr1i(O) according as n/r=O or 1 (mod2), seems to 
have a close connection with some geometric invariants of the correspond
ing cusp singularity, as we shall explain in the next section. The rationality 
of Z.,(O) in a more general context of "Tsuchihashi singularities" was 
proved by Ishida [BJ (see 4.2), 

§ 3. Geometric invariants of cusp singularities 

3.1. Rational symmetric tube domains. Let V, <(f, G, · · . be as 
before. We consider the tube domain P)= V +,1=-I<(f in Vc~Cn and let 
G=(HolP)) 0 denote the identity connected component of the group of 
holomorphic automorphisms of P). As is well-known, P) is a symmetric 
domain (hermitian symmetric space of non-compact type) and G is a semi
simple Lie group of hermitian type with center reduced to the identity, of 
R-rank equal to r=R-rk G. The group of affine automorphisms of P), 

P=(Aff P))0 , which may naturally be identified with the semi-direct 
product G · V, is a parabolic subgroup of G corresponding to a point 
boundary component of P), which we denote symbolically by ,f=-1 oo. 

The given Q-structure on V determines uniquely a Q-structure on G such 
that P and G{ cP) are subgroups defined over (2; then the Q-rank of G is 
equal to To= Q-rk G. rn = Lie G is the so-called "superstructure algebra" 
of the Jordan algebra (V, c0), see [Sl].) A symmetric tube domain P) with 
a Q-structure on G determined in this manner is called a "rational sym
metric tube domain". 

Let f' be a neat arithmetic subgroup of G. Here f' being "neat" 
means that for r e f' if r is unipotent for some positive integer v then r 
itself is unipotent; in particular, f' is torsion-free. Then M =I' n Vis a 
lattice in V and I'= (f' n P)/(f' n V) may be regarded as a (torsion-free) 
arithmetic subgroup of G. We assume that our Mand I' (in § 2) are ob
tained in this manner. Thus one has an exact sequence 

I~M~tnP~r~I. 

In general, this group extension may not split, but f' n P is a subgroup of 
finite index in the semi-direct product I'M· M. 

In what follows, we restrict ourselves to the case r0= I. Then it is 
well-known that the quotient space Y = I'\P) can be compactified to a 
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normal projective variety Y* by adding a finitely many points p, (1 < 11< h), 
called "cusps": 

Y* = (I'\!72) U {Pt, · · ·, p,.}. 

This is so-to-speak the minimal compactification. Each cusp corresponds 
to a f-equivalence class of (point) rational boundary components of !72, 
or equivalently to a f-conjugacy class of (proper) Q-parabolic subgroups 
of G. We assume that p, corresponds to the class of a Q-parabolic sub
group P, and, in particular, Pi=P, i.e. Pi is the class of ./=100. 

By the classification theory, it can be seen that the rational symmetric 
tube domain with r0 = 1 occurs only in the following cases 

(Case 1) 
(Case 2) 
(Case 3) 

(IIIi)m 
(III 2)m 

(I •.• )m 

SL/Fi)/{±1} 
SU/D 1/Fi)/{± l} 

SU/DiJFi/Fi)/{±1} 

(Case 1) is usually referred to as the "Hilbert modular case". In this 
list, Fi is a totally real number field of degree m, D1 is a totally indefinite 
quaternion algebra over Fi, Fi is a totally imaginary quadratic extension 
of Fi, Di is a central division algebra over Fi with involution of the second 
kind relative to Fi/Fi, and SU2 denotes the special unitary group for an 
"isotropic" hermitian form of 2 variables (i.e. the hermitian form with 

matrix (~ 6)) in D1 or Di, 

3.2. Geometric invariants of cusps. In general, the cusp p, is a 
singular point on Y*. A neighborhood of p, in Y* is analytically iso
morphic to a neighbourhood of p, in the local compactification 

(I' n P,\!72) U {p.}. 

(Note that the P, are all G Q-conjugate to Pi= G · V.) Resolving these cusp 
singularities by the method of toroidal embeddings [AMRT], one obtains 
a smooth compactification: 

X~Y*, 

X = (I'\!72) U D, D= L.~=1D<•>, 

where Dis a divisor with simple normal crossings and DM=1r- 1(p.) is a 
connected component of D. Let D= L.ieI Di be the irreducible decompo
sition of D and put 
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then DM= I:;iEICVl Di. From the construction, DM is a "toric '.divisor" 
(see [E], [S4, 5]); in particular, each Di is a toric variety. 

We denote by rt, ii (I<i<n) the Chern roots of X and the "logari
thmic Chern roots" of X relative to D, respectively (see [Hl], [S5]). Let 
oi (i E J) denotes the 2-cohomology class on X defined by Di. Then in the 
cohomology ring H*(X, Z) one has the relation 

n n 
(3.2.1) TI (l+ri)=TI (l+it) TI O+oi) 

i=l i=l iE/ 

and, since D is toric, 

(3.2.2) 

([S4], Lemma 2). The arithmetic genus of X and the "logarithmic arithme
tic genus" of X relative to D are defined, respectively, by 

X(X)= (1'1 (1 _r;-r,) )}XJ, 

i(X, D)= (fr ii ) [X], 
i=l (1-e-i'') n 

(3.2.3) 

where ( · · · )n denotes the homogeneous part of degree 2n in H*(X, Z) and 
( · · · )n[X] is its evaluation on the fundamental 2n-cycle [X]. One defines 
the "cusp contribution" to X at p, by 

(3.2.4) X=(pJ= ( ff ot - . ) [X]. 
iEI<•> 1-e 0• n 

Then from (3.2.1)-(3.2.4) one obtains the relation 

h 

(3.2.5) X(X)=X(X, D)+ I:; X=(p,). 
1,1=1 

Note that, in our case, X(X, D) can easily be computed by the "proportion
ality theorem" of Hirzebruch-Mumford ([M2]); in particular, it is inde
pendent of the toroidal compactification. 

Let .JV"(DM) denote the nerve ( or "dual graph") of D<•l: 

(3.2.6) 

Then JV"(DM) is a simplicial complex of dimension n-1, which, for a toric 
divisor DM, is an "Euler complex" ([S4], Lemma 3). It follows that, if 
one puts 
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q<->(t)= I: 1n-lJI, 
JE.K'(D<•>) 

then q<->(t) is a polynomial of degree n-1 in Zlt] satisfying the functional 
equation 

(3.2.7) 

in particular, one has 

(3.2.8) 

It is easy to see that q<1>(- l) coincides with the Euler number e(I'\<t'), 
which vanishes for a self-dual homogeneous cone <t except for (Cases 1, 2) 
with m=l, 

Theorem 3.2.9. When n is odd, one has 

Xoo(Pt)= ~ q<1>(-1)( = ~ e(I'W 1)), 

where <t1 ={x e <t / N(x)= l}=<t/R+. 

(This is essentially due to Ehlers [E], who proved it in the Hilbert 
modular case. The general case is given in [S4].) 

When n is even, the signature !'(X), the logarithmic signature t(X, D) 
and the cusp contribution to the signature -r00 (p.) are defined similarly to 
the above; for instance, 

(3.2.10) 

Then from (3.2.1), (3.2.2) and from the fact that Dis toric one has 

(3.2.11) 

(3.2.12) 

( cf. [S4, 5]). 

h 

-r(X)=t(X, D)+ I: -roo(P.), 
11=1 

3.3. Generalized Hirzebruch conjecture. Here we assume that n is 
even. In the Hilbert modular case, the cusp Pt is "rationally pararelizable" 
in the sense that Pt has a compact neighbourhood U in Y* such that 
U -{Pt} does not contain any other singularities and is retractable to a U, 
and that all Chern classes of the tangent bundle T( U -{Pt}) /au (restricted 
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to oU) in H*(oU, Q) vanish. In that case, the "signature defect" o(Pi) 
was defined by Hirzebruch [H2], which in our notation is equal to r: 00 (Pi) 
-r:(-0), where -0-u is a desingularization of (U,Pi) and the signature 
r:(-0) is computed in H*(U, a-0, Q). In the general case, we define the 
signature defect by o(Pi)=r: 00 (Pi)-r:(U). (For a direct generalization of 
the definition, see Looijenga [L]). Then it seems likely that one has 

(Cl) 

or equivalently in view of (3.2.12), 

(Cl') r:(U)=qCll(-2). 

In the Hilbert modular case, Hirzebruch ([H2], p. 230) conjectured 
that 

which was proved by Atiyah-Donnelly-Singer [ADSI, 2] and Muller [M4, 
5]. (In the case n=2, this relation and (Cl) were already proved in [H2].) 
In general (at least for (Case 1, 3)), in view of Theorem 2.4.1 and (Cl), it 
seems natural to conjecture 

(C2) 

where / 1 = (0) or (r1) according as n/r= 0 or I (mod 2), and 

(C3) 

or equivalently 

(C3') 

The relation similar to (C3) or (C3') for n odd, where X00 (p 1) should be 
replaced by - X00 (Pi), was proved by Ogata [O], as we shall see in the 
next section (Theorem 4.2.3, note that, in (Cases 1, 3) with n odd> 1, one 
has Z.,(O)=X 00 (Pi)=O by Theorems 2.4.1 and 3.2.9). In the Hilbert 
modular case, the conjecture (C3'),,-i was mentioned in [E] and [HG] 
(p. 95). In this case, comparing the cusp contribution in the dimension 
formulae for the space of Hilbert cusp forms obtained by Selberg trace 
formula and by Riemann-Roch-Hirzebruch Theorem ([HI]), one obtains 
a "weaker form" of (C3'),,-i: 

h h 

I; Xoo(p.)=2-n I; L(ll(lI',, M;; 0) 
l.'=1 1,1=1 
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([S6], [F], [S3]; cf. also [A] for (Case 2)). 
The relation between these conjectures is shown in the following dia

gram: 

(C3) 
Xoo(A) = Z,c(II', M*; 0) 

(Cl)II ~) ll(Th.2.4.1) 

2-na(p)=2-'L (1I' M*·O) 
I (C2) I1 ' ' . 

Since the proofs of (C2),,=1 given in [ADSl, 2] and [M4, 5] are both rather 
complicated, depending on differential geometry and hard analysis, it 
seems desirable to give more direct proofs for (Cl) and (C3) or (C3')*'· 

§ 4. Zeta functions associated to Tsuchihashi singularities 

4.1. Tsuchihashi singularities. We consider a normal isolated singu
larity called "Tsuchihashi cusp" and define the cusp contribution X00 for 
this kind of singularities. 

As before, let V be a real vector space of dimension n and M a lattice 
(of rank n) in V. Consider a pair(~, I') consisting of a (non-degenerate, 
open convex) cone ~ in V, which may not be self-dual nor homogeneous, 
and a subgroup I' of GL(V) satisfying the following conditions: 

( i) I' leaves M invariant and is torsion-free; 
(ii) I' leaves ~ invariant; 
(iii) the quotient space I'\~ JR+ is compact. 
Let fl)= V +-1=1 ~ be the corresponding (not necessarily symmetric) 

tube domain. Tsuchihashi [T] constructed a normal isolated singularity 
associated to the pair (~, I'), which is the singularity at "infinity" p1 of 
(I'M\!?)) U {A}· Let Ube a suitable ( open) neighbourhood of A and tr: 
u-u a toroidal desingularization. Let rr- 1(A)=D' 1'= z=ter11> Di be the 
decomposition of the exceptional set into the union of irreducible compo
nents, and let ot be the cohomology class determined by Di in H~(U, Z) 
(the integral 2-cohomology group with compact support) and [U] the 
fundamental class of U. We define X00 (A) by 

Xoo(Pt)= ( 0 1 °i J ) [U]. 
iEIW -e- < n 

*' Some statements in [S4] and [0] on Hirzebruch conjecture were incorrect 
or misleading. In [S4], p. 366, l. 18, "xoo" should read "4xoo" and the "Hirze
bruch conjecture" there should be understood in a weaker sense that the sums 
of each side of (C2) over all cusps are equal. The "conjecture" on [0], p. 370, 
l. 14 is correct for n=2 but should be rectified by (C3) for n~4. Note also that 
our invariants iJ and Xoo are written in [E] as zn<J, and ,Jr. 
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Then, Theorem 3.2.9 and (3.2.12) remain true, -r00 (Pt) being defined simi
larly to (3.2.10). We want to relate this cusp contribution to a special 
value of a zeta function associated to(~. I'). 

4.2. Zeta function associated to(~, I'). Let(~, I') be a pair satis
fying (i)-(iii). Let ~* be the dual cone of ~ and M* the dual lattice of M 
inthe dual space V*. cf>,,{x) denotes the characteristic function of the cone 
~ defined in 1.2. We define the zeta function associated to(~, I') by 

(4.2.1) z,,<r, M;s)=I::u:I'WnMcf>,,{u)' (Res>l). 

Note that, when ~ is self-dual and homogeneous, we have by (1.4.3) 

Theorem 4.2.2. The function Z,,(I', M; s) admits a meromorphic con
tinuation to the whole plane and is holomorphic at s=0. 

Theorem 4.2.3. When n is odd, one has 

1 
Z,,(I', M; 0)= --e(I'\~/RJ= -Xoo(Pt)-

2 

A sketch of proofs of these theorems will be given in 4.3. 
First, in order to describe the zero-value of Z,,,, we need the notion 

of "rational partial polyhedral decomposition" (r.p.p. decomposition, for 
short) of ~ U {O}. 

Definition 4.2.4. A (non-empty) collection 2 of closed rational poly
hedral cones in Vis called an r.p.p. decomposition of~ U {O} if it satisfies 
the following conditions: 

( 1) If a e 2 and -r---<a (i.e. -r is a face of a), then -re 2. In par-
ticular, one has {O} e 2. We set 2x =2-{0}. 

( 2) If <J, -r E 2, then an -r---<a. 
( 3) One has~= U,exx Int(a). 
( 4) For any compact subset K contained in ~. the set {a e 2 [an 

K=t-0} is finite. 
In what follows, we further assume that 2 is "I'-invariant" and 

"non-singular", i.e. the following additional conditions are satisfied: 
( 5 ) I' leaves 2 invariant, and acts freely on 2x. 
( 6) For every a in 2, there exists a Z-basis {u1, • • • , un} of Mand r 

with 0<r~n such that a={u 1, • • ·, u,}R;;,o· 
We now assume that the toroidal desingularization re: 0--u is de-
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fined by a I'-invariant and non-singular r.p.p. decomposition J; of <{f U {0}. 
As before, let .,,V(D<1l) be the nerve of D<1l. Then there exists an injective 
map 

such that {aJ I J E .,,V(D<1l)} is a complete set of representatives of I'\J:x, 
dim aJ=lll, and that for any J, J' E f(D(!J) one has JcJ' if and only if 
r(aJ)CaJ, for some r Er. For a E J;X, we put 

a(l)={-r E J; I dim -r= 1 and -r-<a}. 

We denote by dx, the Lebesgue measure on the linear subspace a+(-a) 
of V normalized so that for a Z-basis {u1, • • ·, un} of M with a={u 1, • • ·, 

Ur} R>o the volume of the parallelotope spanned by { u1, • • ·, ur} is one. 
For p e J; with dim p= l, the symbol i\ denotes the derivation 

(apF)(x) = lim _!__ {F(x + tu)-F(x)} 
t-o t 

for any differentiable function F(x) on V, where u is the unique primitive 
element in p n M. 

In these notations, we have 

Theorem 4.2.5. For any integer v> 2, one has 

Z.,(I', M; 0)= l: f [ 0 ap ] G,(x)dx, 
,:I'\J:X , pE,(1) l-e- 0P dim, 

=(-lt2-nq< 1)(-2)+ l: (-2)-(n-lJl)z-(XJ) 
JE.J((DC1') 

where G,(x)=exp(-p.,(x)-•) and, for any rational function (f)(t) E Q(t), 
rn pE•(l) (f)(ap)]k is the differential operator of degree k on V obtained as the 
homogeneous part of total degree k in the formal power series expansion of 
n p E•(l) (f}(ap). 

Ishida's proof ([13]) of the rationality of Z.,(I', M; 0) is based on the 
above formula. We note a remarkable similarity of it to (3.2.4) and 
(3.2.12). 

4.3. Outline of proofs ([OJ). For a E 5:x let 

Z(a, M; s)= l: p.,(u)', Res> I. 
uEMnint(a) 
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We prove that Z(a, M; s) can be continued to a meromorphic function on 
C and calculate the value Z(a, M; 0). 

Let dim a=r> 1 and u1, • • ·, u, a part of a Z-basis of M with a= 
{ u1, • • ·, ur h;eo· Then we may write as 

Z(a, M; s)= I: cf>'ll(l1u1 + · · · +t,urY-
<li,···,lr) E (Z>o)' 

We employ the method of Zagier [Z] who calculated the values of the zeta 
functions of real quadratic fields. For simplicity we consider the case 
r=2. The following proposition is well-known. 

Proposition 4.3.1. Let t(s)= I:;:-0 akJ."i' with J.k>O be a Dirichlet 
series absolutely convergent for Re s > 1. Assume that the function h ( t) = 
I:;:-oakexp(-J.kt) has an asymptotic expansion of the form 

Then t(s) admits a meromorphic continuation to C and is holomorphic at 
s=O with the value "'1'(O)=b0• 

In order to apply this proposition we need an asymptotic expansion 
of h(t). It is easy to derive the following proposition from the Euler
Maclaurin summation formula. 

Proposition 4.3.2. Let f(t) be a real-valued c=-function on [O, oo). 

Assume that [ f(t)dt is finite. Then g(t)= I:'f"-if(tl) has an asymptotic 

expansion of the form 

where (3i's are the coefficients in the expansion t/(I-e-t)=I:'f"-of3it 1• 

Applying this to a function to a function F(x, y) of two variables, we 
have under a certain condition 

I: F(mt, nt)-_!_(f=f= F(x, y)dxdy) 
m,nEZ>0 t 2 0 0 

+ t piti-1 [ p<i,o)(O, y)dy+ ti Pi'-1 .[ p<o,J)(x, O)dx 

+ I:i,jEZ>o (3i(3JF<i,Jl(O, O)ti+J (t-+O), 

where p<i,J)(x, y)= (ai+J /axiay 1)F(x, y). Unfortunately this can not be 
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applied directly to F(x, y)=exp(-¢.,(x- u1 + y-u 2)- 1), because the deriva
tives of exp(-¢.,(x)- 1) behave badly near x=O. In order to surmount 
this difficulty, we need the following 

Lemma 4.3.3. For a positive integer II and an r-dimensional cone a= 
{u1, · · ·, ur}R20 contained in'??, the function 

and its partial derivatives of total order up to nv- l have limits at the origin 
and the partial derivatives of total order nv are bounded. 

Modifying Zagier's method and using this lemma, we can prove that 
the function Z(a, M; vs) can be continued to the half plane Res> -1 + 
l/11. Thus Z(a, M; s) can be continued to Res> -11+ I, and hence to 
the whole complex plane. And we get the value of Z(a, M; s) at s=O: 

Proposition 4.3.4. For any integer 11~2 we have 

Z(a, M; 0)= ~ f f3k(__?_)k G.,Jx)dx, 
!kl ~r (R;,,oJT ax 

where k=(k1, 0 0 0
, kr) (: (Z;,,oY, /3k=/3k, 0 0 

• /3kr' and (a/ax)k=(a/ax1)k 1 • • • 

(a/axr)kr_ 

We rewrite this as 

Z(a, M; O)=f [ f1 ap ] G,(x)dx., 
u pEu(l) l -e-op dim u 

where G.(x)=exp(-¢.,(x)-•). By summing this equality side by side over 
a e 1:x mod I' we get the first equality in Theorem 4.2.5. By a calculation 
similar to that leading to (3.2.12) we get the second expression in Theorem 
4.2.5, whence follows Theorem 4.2.3. 
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