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II. Examples: Surfaces with P g = d = I and surfaces with P g = 1, 
d=2 and 1t'1 =Z/2Z 

1. Motivation for VGPMHS 
(1.1) Definition of Todorov surfaces and surfaces with Pg = 1 

and 1 <c~<8 
(1.2) Description of the canonical rings 
(1.3) Hodge numbers and moduli numbers 
(1.4) Generic infinitesimal Torelli theorem 
(1.5) Counterexample to the generic Torelli theorem 
(1.6) Positive dimensional fibres "of the period map 
(1.7) Infinitesimal mixed Torelli theorem 
(1.8) Explanation for relations among (1.6.1), (1.7.1) and (1.7.2) 

2. Generic mixed Torelli theorem for Kunev surfaces and Todorov 
surfaces with c~=2 and 1t'1 =Z/2Z 

3. Characterization of smoothness of canonical surfaces by GPMHS 
4. Toward mixed Torelli theorem for surfaces withpg=d= I 

(4.1) First approach; by Kunev surfaces 
(4.2) Second approach; by boundary 
(4.3) Third approach; by IVMHS 

Conventions 

We use the following abbreviations: 
HS: Hodge Structure, 
VHS: Variation of Hodge Structure, 
PHS: Polarized Hodge Structure, 
VPHS: Variation of Polarized Hodge Structure, 
IVHS: Infinitesimal Variation of Hodge Structure, 
MHS: Mixed Hodge Structure, 
VMHS: Variation of Mixed Hodge Structure, 
GPMHS: Gradedly Polarized Mixed Hodge Structure, 
VGPMHS: Variation of Gradedly Polarized Mixed Hodge Structure, 
SNC: Simple Normal Crossing, 
SNCD: Simple Normal Crossing Divisor:. 

We add the adjective "mixed" to the variants in the VMHS theory 
for the usual concepts in the VHS theory. For instance, 
mixed period map, 
mixed lattice, 
mixed Torelli theorem, 
infinitesimal mixed Torelli theorem, 
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generic mixed Torelli theorem, 
"mixed Clemens-Schmid sequence". 
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The varieties concerned in this article are always those defined over C. 

Introduction 

This article is a survey including some new results, on the Torelli 
problem in the frame of VGPMHS (Variation of gradedly polarized 
mixed Hodge structure). 

Let (X, y) be a pair consisting of a smooth projective variety X of 
dimension n and a smooth divisor Y on X. Then we can consider the 
mixed period map as well as the period maps: 

{iSOmOrphiSm} 
Jt = classes [X, Y] 

.1]) 

--------------~) r\D 

1 . 1 
{iSOmOrphiSm} {iSOmOrPhiSm} I])n X I])n+l 

JtnxJtn+l= classes [X] X classes [1'] )rn\D'IIXrn+l\Dn +l 

where 

q)([X, Y])=(GPMHS on H1I(X - Y» mod r, 

q)n([X])=:=(pHS on Gr~H1I(X-Y» mod rn> and 

q)n+l([y])=(PHS on Gr~+lHn(X - Y» mod r n+l. 

We hope to investigate these maps and the relationship among them. 
In Part II, Section 1, we explain the motivation for the notion of 

VGPMHS in conformity with examples of certain canonical surfaces with 
Pg= 1, which were extensively studied by Kunev, Catanese, Todorov and 
Usui. 

The infinitesimal mixed Torelli theorem for (X, Y) with sufficiently 
ample Y, proved by Green and Griffiths (cf. Theorem (7.1», is an encour
aging result for the enlarged frame of VGPMHS. 

In order to show the generic (mixed) Torelli theorem, there are two 
approaches: 

One is to make use of general points of Jt or Jt k' In this direction, 
IVHS (Infinitesimal VHS) theory developed by Griffiths, Donagi and 
others obtained good results. Especially the generic Torelli theorem for 
sufficiently ample hypersurfaces Y on a fixed X, proved recently by Green, 
fits nicely in our context and has a possibility to be completed further. 

The other is to make use of special points of Jt or Jt k' Kummer 
surfaces were used as these points in the proof of the Torelli theorem for 
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K3 surfaces by Piateckii-Shapiro and Shafarevich and others. In this 
case the density property played an essential role. If we cannot hope 
for a density property, the compactification of the (mixed) period map 
becomes an inevitable problem. Inverting this point, Friedman made 
positive use of the boundary points in his proof of the Torelli theorem for 
K3 surfaces. This method seems to have a possibility of generalization. 

As a survey, this article includes resumes of known results, discus
sions and a lot of problems as well as some new results. We give proofs 
only for new results and the corrections of published ones. For the 
known results we only indicate references. 

Part I, Sections 1,2,3 and 5 are resumes of [U. 4], Carlson [Car. 2] and 
[S.S.U]. 

Section 4 is a resume of Kawamata [Kaw. 1]. 
Section 6 is a systematic treatment of the deformation theory of a pair 

of a variety and a line bundle. An observation of Griffiths in [Gri. 5] is 
included. Welters [W] contains some related results. 

Sections 7 and 8 are resumes of Green [Gre] and Griffiths [Gri. 5]. 
Section 9 is a rewriting of the result of Mumford in [K.K.M.S-D] in 

our context. 
Section 10 is a slight generalization of Steenbrink and Zucker [S.Z] 

(see also Elzein's [E)). 
Section 11 includes generalizations of some results of Friedman [F.l]. 
Section 12 consists of problems and discussions. 
Part II, Section 1, (1.2), (1.4) and (1.5) are resumes of Catanese 

[Cat. 1], [Cat. 2], [Cat. 3] and Oliverio [0]. We give a correction for [0] 
in (1.4.2). 

(1.6) is a resume of Todorov [To. 1], [To. 2] and [U. 1], [U. 2]. 
(1.7) is a resume of [U. 4], [U. 5]. 
(1.8) is devoted to some discussion. 
Section 2 includes a correction of Letizia's result in [L] and a new 

result for Todorov surfaces with ci=2 and It'l =Zj2Z. 
Section 3 is devoted to a new result. Friedman [F. 3] is related. 
Section 4 includes some new results, discussions and problems. 
The contributions of the three authors to the new results are as 

follows: 
Saito: Part I, Section 9; Part II, Sections 2 and 4. 
Shimizu: Part I, Sections 10 and 11. 
Usui: Part I, Section 6 and (12.6); Part II, (1.4.2), (1.8), Sections 2, 3 

and 4. 
The problems included here have various range of difficulties. 
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I. General theory 

1. Variation of gradedly polarized mixed Hodge structure 

(Ll) Definition. A variation of gradedly polarized mixed Hodge 
structure (VGPMHS for short) is a quintuplet (S, Hz, W, F, Q) consisting 
of 

S: a connected complex manifold, 
Hz: a local system of Z-free modules of finite rank on S, 
W: an increasing filtration of Hz by primitive local subsystems, 
F: a decreasing filtration of H.:=Hz 0@s by holomorphic sub

bundles, and 
Q: a collection of locally constant (-l)k-symmetric bilinear forms 

Qk on GrfHQ:= Wk,QIWk_I,Q with values in Q, 
which satisfy the following conditions: 

(E.H) The Gauss-Manin connection f7 for H. corresponding to the 
local system Hz satisfies f7FPH.cQ10FP- 1H. for allp. 

(M.H) For every point s E S, the fibre (Hz, W, F)(s) is a mixed 
Hodge structure (MHS for short), i.e., Gr~Grj.GrfHe(s)=O unless p+q 
=k. 

(G.P) Qk is a polarization of the variation of Hodge structure (VHS 
for short) (S, Grf Hz, FGrf H@) for all k, i.e., at every point s E S, 

Qi(PGrf H@)(s), (P-P+IGrf H@)(s))=O for all p and 

Qk(CU, a»O for all nonzero u E (GrrH@)(s), 

where C is the Weil operator determined by (FGrr H@)(s). 

2. Classifying spaces 

Let (Hz, W, F(O), Q) be a reference GPMHS. Set 
p = dim F(O)P He 

!'fc=dim F(O)pGrfHe 
~={FE Flag (He; .. . ,p," ')ldimPGrrHe=n, for Yp and Yk} 
GLw(He) = {g E GL(He) I g Wk = W k for Yk} 
1':k: ~---+~k:=Flag(GrfHe;" ·,n,·· .), FHe~FGrrHe 
Dk={F E ~k I Qk(P, p-p+I)=O for Yp} 
Dk={F E Dk I Qk(CU, a»O for O*Yu E GrrHc}. 

Define 

D=nk 7r;I(i\)c F 
D=nk 7r;I(Dk)cD 
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if: D-'J. IT k Dk by if(F): = ( .. " rrk(F), ... ) 
rr: D-'J. IT k Dk as the restriction of if to D 
Gc={g E GLw(Hc) I Grfg preserves Qk for Vk} Gk,c=GrfGc 
GR={g E GclgHR=HR} Gk,R=GrfGR 
Gz={g E GRlgHz=Hz} Gk,z=GrfGz 
G=G~·(GR n G~) where Gc=G~· G~ is a Levi decomposition with 

the unipotent radical G~ and a semi-simple part G~. 

The following theorem can be found in [U.4, II], [Car. 2] and [S.S. U]: 

(2.1) Theorem (Usui, Carlson). 
(2.1.1) if: D-'J. IT k Dk is an algebraic homogeneous vector bundle with 

respect to G c' 

(2.1.2) G acts transitively on D, while GR does not. 
(2.1.3) Gz acts on D properly discontinuously. 
(2.1.4) There is an extended horizontal subbundle Te.J' of Tv, which is 

D D 

compatible with the horizontal subbundle EBk Tt on IT k Dk via if. 
D. 

(2.1.5) The mixed period map W: S-'J.r\D, where r:=lm (rrtCS, 0) 
-'J.Gz) , associated to the VGPMHS (S, Hz, W, F\ Q) has extended hori
zontal local liftings with respect to Tf; and is compatible via rr with the 
period maps Wk: S-'J.rk\Dk , where rk:=Grfr, associated to the VPHS 
(S, Grf Hz, FGrf H., Qk) for all k. 

3. Some results from hyperbolicity 

We use the notation S, D and Gz in Section 1 and Section 2. We 
can derive easily from the hyperbolicity of the horizontal subbundle 
([G.S.I]) the following (see [U.4, II)): 

(3.1) Let r be a subgroup of Gz and W: S-'J.r\D a holomorphic 
map with extended horizontal localliftings. If the universal cover of S is 
compact (resp. a Euclidian space), then W(S) is one point (resp. contained 
in one fibre of r\D-'J. IT (rk \Dk». 

(3.2) Let S' be a subvariety of S of co dimension >2 and W: (S-S') 
-'J.r\D a map as in (3.1) above. Then W extends to the whole S. 

(3.3) Let L1* be the punctured open unit disc and W: L1*-'J.r\D with 
r: = 1m (rrtCL1*, so)-'J.Gz). Then every r E r is quasi-unipotent. 

4. Deformation theory of smooth pairs 

This section is a summary of the results of Kawamata [Kaw. 1]. 

(4.1) Definition. (4.1.1) A pair (X, Y) is called a smooth pair if 
X is a compact complex manifold and Y is a simple normal crossing 
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divisor on X. 
(4.1.2) A smooth family of pairs is a quadruplet (fIC, dJI, J, S) con

sisting of a connected complex manifold S, a connected, proper, smooth 
morphismf: fIC ~S of a complex manifold fIC, and a simple normal cross
ing divisor dJI = U dJl t on fIC s.t. dJlt1 n ... n dJl t • for all iI, ... , ik with k> 1 
are smooth over S. 

Known Results (e.g. [Kaw. 1]) 
(4.2) For a smooth pair (X, Y) define 

where f y is the sheaf of ideals for Y in X. Then we have: 
(4.2.1) Tx( -log Y) is the sheaf of infinitesimal automorphisms of 

(X, Y). 
H1(Tx( -log Y» is the set of the infinitesimal deformations of (X, Y). 
H2(Tx{ -log Y» is the set of obstructions. 
(4.2.2) There exist exact sequences: 

O--+Tx( - Y)--+Tx( -log Y)--+Ty--+O 

0--+ Tx( -log Y)--+ Tx--+ Ny IX--+O, 

where Ty:=Der({1ly) and NYlx:=Coker(Ty~TA~{1ly). 
(4.2.3) There exists a semi-universal family of deformations of (X, Y). 
(4.3) For a smooth family of pairs (fIC, dJI,J, S), we can define the 

Kodaira-Spencer map P.: TsCs)~HI(Tx.( -log Y.» at s e S in the usual 
way. 

5. VGPMHS arising from geometry 

The following theorem can be found in [U. 4] and [S.S.U]: 

(5.1) Theorem. Let (fIC, dJI, J, S) be a smooth family of pairs. 
pr 

Assume that f factors as fIC=----+pN X S --+S. Then we have: 
(5.1.1) The spectral sequences for the hypercohomology of the relative 

logarithmic de Rham complex Qj(log dJI) with respect to the weight filtration 
Wand the Hodge filtration F degenerate in wE2 = wE"" and FE! = FE"". 
Thus we get a VGPMHS (S, R'Z(/). W[n], F, Q), where R'Z(/) is RY*Zs_'Y 
modulo torsion and (W[n]k)Z is the primitive span (W[n]k)a n R'Z(f). 

(5.1.2) Let f/J: S~r\D be the mixed period map associated to the 
VGPMHS in (5.1.1) and <P a local lifting oj.f/J at s e S. Then we have a 
diagram which is commutative up to EB( -l)P: 
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6. Deformation theory of polarized varieties 

In [Gri. 5] and [Gre] cited in the next two sections, the sheaf DI(L, L) 
of first order differential operators on sections of a line bundle L plays 
the key role in computation. We would like to point out that DI(L, L) is 
not merely an assistant but a substantial object in our context (see also 
(12.6». 

Let L be a line bundle on a compact complex manifold X. First we 
recall a geometric construction of DI(L, L) and its dual P(L)®L -\ where 
P(L) is the sheaf of I-jets of sections of L. Denote by 7l": L -1----+ X the 
projection of the dual line bundle and by X the O-section by abuse of 
notation. For the natural Gm-action on L -\ we have: 

(6.1) Lemma. 
(6.1.1) (7l"*TL -,( -log X»Gm = DI(L, L) and (7l"*Ql-,(log X»Gm = 

P(L)®L- I. 
(6.1.2) Taking the direct image and then the Gm-invariant part, the 

exact sequences 

O--+T~( -log X)--+TL -,( -log X)--+7l"*Tx--+O and 

O--+7l"* Q~--+Ql-,(log X)--+Q~(log X)--+O 

yield the exact sequences 

O--+@x--+DI(L,L)--+Tx--+O and 

O--+Q~--+P(L)®L -I--+@X--+O 

with extension classes -27l"ic l (L) and 2nicl (L), respectively. 
The connecting homomorphisms of the cohomology sequences 

are given by the contraction with these extension classes. 

The proof is easy. We only mention here that if (XI' .. " xn) are 
local coordinates on X and; a fibre coordinate of L -I, then (;aja;, ajaxl , 

.. " ajaxn) and (d;j;, dx l , •• " dxn) give local frames of DI(L, L) and 
P(L)®L -\ respectively. 
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(6.2) Proposition. Let (X, L) be as above. Then: 
(6.2.1) D1(L, L) is the sheaf of infinitesimal automorphisms of (X, L). 
HI(DI(L, L» is the set of infinitesimal deformations of (X, L). 
H2(DI(L, L» is the set of obstructions. 
(6.2.2) For a smoothfamity (.%', !l',f, S) of deformations of (X, L)= 

= (Xo, Lo) (0 e S), the Kodaira-Spencer map Po: TsCO)-+HI(DI(L, L» at 0 e 
S is defined in the usual way, and the involution 

t:S~S, 

gives a commutative diagram 

where the right vertical map is induced by D1(L., L.)=:;D1(L;-1, L;-l) send
ing ea/ae to -e*a/ae* and a/axt to a/axtfor all i. 

(6.2.3) Assume that X is a Kahler manifold. Then there exists a 
semi-universal family of deformations of (X, L). 

(6.2.4) Assume that there exists s e HO(L) such that Y={s=O} is 
smooth. Then the contraction with j(s) e HO(JI(L» yields exact sequences 

·j(s) 
O~Tx( -log Y)~DI(L, L)~L~O (Griffiths [Gri. 5]) 

as well as 

Proof The assertion on the sheaf D1(L, L) in (6.2.1) follows from 
the following observation which is easy to check: For an automorphism iJ 
of L -I as a complex manifold, iJ induces an automorphism of the line 
bundle L -I-+X if and only if iJ is Gm-equivariant. The other assertions 
in (6.2.1) and (6.2.2) are standard and easy to verify. 

In order to see (6.2.3), let (.%',f, S) be the Kuranishi family for the 
deformations of X =Xo (0 e S) and r the section of R'l'*Zs determined by 
r(O)=cl(L) in H2(X, Z). Set 

ST = {s e S I roes) u res) = 0 for any section ro of R'l'*(!} z}, 

where U means the cup product on the cohomology of the fibres of f 
Denote by (pr, !l'T) the pair of the variety pT over ST and the universal 
family !l'T which represents the relative Picard functor PicT(.%'/S) for the 
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Chern class r (cf; [Bi, (6.2)]). Then it is easy to see that (fl"Xspr,.fet, 
I', pr), where f' is the induced morphism fl" X spr --+ pr, is a semi-universal 
family of the deformations of (X, L) = (Xo, Lo) for 0 e pr; 

As for the first sequence in (6.2.4), it can be checked easily, by using 
the local frames mentioned just after Lemma (6.1), that 

Ker(.j(s); DI(L,L)--+L)-'::::""Tx(-log Y) 

via the symbol map DI(L, L)--+Tx. Tx( -log Y)--+DI(LJy, LJy) in the 
second sequence sends sa/as to -~a/a~JY and a/ax, to a/ax,Jy for i;;:::2, 
where we take XI =s, x2, ••• , Xn as local coordinates on X, and it is easily 
seen to be exact. Q.E.D. 

(6.3) Remark. After writing up the manuscript, we found that 
Welters had already recognized and used the infinitesimal versions in this 
section «6.2.1) and the latter half of (6.1.2» in his article [W] (see also 
[K.S]). 

7. Infinitesimal mixed Torelli, theorem for smooth pairs with sufficiently 
ample divisor 

The result in this section is due to Griffiths ([Gri. 5],cf. also Green 
[Gre]). 

Let (X, Y) be a smooth pair with dim X=n;;:::2. Set lVx(1)=lVx(Y). 
Denote by .l'=DI(lVx(1), lVx(1» the sheaf of first order differential opera
tors of sections of lV x(1). Let J be the diagonal J x c X X X and let PI : J--+ 
X be the i-th projection for i = 1, 2. Then we have the following by 
essentially the same argument as in [Gre]: 

(7.1) Theorem (Green, Griffiths). Assume: 
(7.1.1) Y is smooth. 
(7.1.2) Hq«/\ q+I.l')( -q»=Olor 1 <q~n-1. 
(7.1.3) HI(fii9pfwx(1)®p;wx(n-I»=O. 

Then the map 

induced by contraction and the Poincare residue is injective. 

(7.2) Remark. Letf: fl" --+S be a connected, proper, smooth mor
phism of quasi-projective varieties with a factorization f: fl"~pN X S 

~s. Set L=(pflVp N(l)®p;lVsCl)Jfl". Then there exists an integer 
mo such that the conditions (7.1.2) and (7.1.3) are satisfied for (X., lVx.(m)) 
for all s e S and all m>mo. 
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8. Generic Torelli theorem for sufficiently ample divisors for a fixed (X, L) 

Green developed the technique of IVHS, symmetrizer and polynomial 
structure ([Gri. 3], [C.G], [C.G.G.H], [Do]) and obtained in [Gre] the 
following: 

(8.1) Theorem (Green). Let X be a smooth projective variety of 
dimension n > 2 and L a sufficiently ample line bundle on X. Assume, 
furthermore, that the canonical line bundle Kx is very ample. Then the 
period map 

has degree lover its image, where ILlreg is the set of smooth members of 
the linear system 1 L I. 

(8.2) Remark. Besides Green's theorem, several generic Torelli 
theorems were recently proved in this direction: 

(8.2.1) Certain hypersurfaces in weighted projective space (Saito [Sa], 
Donagi and Tu [D.T]). 

(8.2.2) Most hypersurfaces in Kahler C-spaces with the second Betti 
number = 1 (K. Konno, to appear, see also M.-H. Saito, to appear). 

9. Semi-stable reduction theorem for pairs 

The same proof as in Mumford [K.K.M.S-D, Chap. II] works in our 
context and we get: 

(9.1) Theorem. Let LI be the open unit disc in C and set LI* =LI-{O}. 
Let f: fI -+LI X LIT be a proper holomorphic map of a complex manifold fI 
and let Qjf be an f-flat divisor on fI. Assume that (fI,Qjf, LlXLlT)IA*XAT 
is a smooth family of pairs (see (4.1.2». We assume further that fIo:= 
f- 1(0 X LIT) is flat over 0 X LIT and Qjf U fIo is an SNCD onfI (not necessarily 
reduced). 

Then there exist a base extension 

and a diagram 
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such that 
(9.1.1) p is proper and is an isomorphism over Llj X Llr, 
(9.1.2) p is obtained by blowing-up a sheaf of ideals oF with 

(9.1.3) fl" is smooth and fl'~: = 1'-1(0 X LIT) is a reduced SNCD, and 
(9.1.4) 'Y'Ufl'~ is also an SNCD, where 'Y':=(qop)-I('Y) is the 

proper transform. 

We call the resulting family (fl", 'Y',!', LId X LIT) a semi-stable degen
eration of pairs. 

10. Degeneration of the GPMHS associated to semi-stable degeneration of 
pairs 

The results in this section are only slight generalizations of those in 
Steenbrink and Zucker [S.Z] (see also Elzein [E]). 

Let (fl', 'Y,/, LI X LIT) be a semi-stable degeneration of pairs (see Sec
tion 9). We use the notation: 

i'=fl' -'Y, fl'o=f-l(OXLlT), i'o=fl'o-('Y n fl'o), 

i" =i' -fio, 10= fl$o' /o=fl;.o' /' = fl;.,· 

The following lemma can be proved in the same way as (5.3) in [S.Z]; 

(10.1) Lemma. The locally free @A*xAr-module f:=Rnhc®@A*XAr 
has i': = Rnf*Qj(log('Y +fl'o)) as its canonical extension over LI X Llr. 

Proof We have to check: 
(10.1.1) i' is locally free. 
(10.1.2) The Gauss-Manin connection J7 on f extends to a connec

tion V on i' with logarithmic poles along 0 X Llr. 
(10.1.3) ResoxAV) is nilpotent. 
Recall that V is the connecting homomorphism of the hypercohomo

logy of the exact sequence 

O~ f* Q~xAlog (0 X LlT))®Qj(log ('Y +fl'o))[ -1] 

~Q~(log ('Y +fl'o))~Qj(log ('Y +fl'0))~0. 

(10.1.2) follows from this. The formation of i' and V commutes 
with restriction of the base LlXt~LlXLlr, so that (10.1.1) and (10.1.3) 
are reduced to the I-dimensional case [S.Z]. Q.E.D. 
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(10.2) Corollary. -f'IOXJr:::::R"f*(Qj(log(<??/ + Eto»)0(9 .... ) holds and it 
is a locally free (9oxvmodule. 

Consider the double complex (A", d', d") defined by 

where d' =d is the exterior differentiation, while 

d" = . /\f*(ds/s). 

The filtrations W(<??/), W(<??/ +Eto) and F on Q~(log (<??/ + Eto» induce 

WkAp,q = the image of W(<??/)kQ~+q+l(log (<??/ + Eto» in AM, 

MmAp,q=the image of W(<??/ +Eto)2q+m+IQ~+Q+I(log(<??/ + Eto» in AM, 

FPA"= EB AP','. 
p';';p 

Define A' to be the simple complex associated to A". 
By the argument in [St, (4.15)], we can generalize [S.Z, (5.5)] as 

follows: 

(10.3) Lemma. The morphism 

(): (Qj(log(<??/ + Eto) 0 (9 .... , W(<??/), F)---+(A', W, F) 

induced by the exterior product with f*(ds/s) is a quasi-isomorphism of 
bifiltered complexes. 

[S.Z, (5.6)] can be rewritten as follows: 

(lOA) Theorem. (A', W, M, F) is a jiltered mixed Hodge complex 
(for the dejinition, see [E] or [S,Z, § 6]). Therefore -f'IOXJr=Rnfo*A' carries 
aVGPMHS. 

For the proof of this theorem, we can construct a complex, which 
gives a Q-structure of A' in a way similar to that in [S.Z, § 5], and prove 
that Gr!A' is a cohomological pure Hodge complex of weight m. (The 
formula in [S.Z, (5.22)] can be generalized to fit our context.) 

Let (JJ: L1* X L1T --+<T) \D be the mixed period map associated to the 
VGPMHS (L1* X L1r, Rz(/'), W[n], F, Q), where T is the local monodromy. 
Since Et 0 is reduced, T is unipotent. Set N = log T and 

7Jr(s, t) =exp (-(log s)N/2rci)(JJ(s, t) for (s, t) E L1*xL1r. 

Then in the notation in Section 2, we have the following in the same way 
as in [S.Z, (5.7)]: 
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(10.5) Corollary (cf. [S.Z, (3.13)]). 
(10.5.1) NMmCMm_dor all m. 

for all k and .e. 
(10.5.2) 7Jf: .1* X .1r -+D extends to a holomorphic map fir: .1 X .1r-+ 

D. 
(10.5.3) fir(O, t)=: F=(t) E D satisfies: 
(10.5.3.1) ((W[n]k)Z, M, F=(t) is a MRS for each k and N gives a 

morphism of type ( -1, -1). 

(10.5.3.2) ((Grl;[nl)z, M, F=(t), Qk)=firio, t)for each k, where firk is 
the extension of the 7Jf k associated to the period map Wk' 

11. Abstract log complex for d-semi-stable pairs 

In this section we will introduce an analogue in our context of the 
abstract log complex for a d-semi-stable variety in Friedman [F. 1]. 

(11.1) Definition. A pair (X, Y) with simple normal crossing (SNC 
pair for short) consists of a compact connected reduced variety X = U Xi 
with SNC of pure dimension n and a reduced Cartier divisor Y on X 
satisfying the following conditions: 

(11.1.1) At every point of Y, there exist an open neighborhood U in 
the classical topology of an ambient space of X and a reduced subvariety 
qJJ of U with SNC of pure dimension n such that (Xn U) U qJJ is also a 
variety with SNC and Y n U = qJJ n X n u. 

(11.1.2) Every component of Y is smooth. 

For a variety Z = Ul:;;i:;;r Zi with SNC of pure dimension, we use the 
notation: 

Z(P)= U (Zion··· nzip)CZ 
l~io<···<ip~r 

a: z[pl= U (Zio n ... n Zip)--)-Z(P)cZ the normalization. 

Denote, in paricular, Z = Z[Ol. 

(11.2) Definition. (11.2.1) (Friedman [F.1, (1.9) and (1.13)]. Let 
Z = U Zi be an SNC variety of pure dimension. The infinitesimal normal 
bundle (!) D(Z) of the double locus D: = Sing (Z) in Z is defined as the dual 
to (!) D( - Z): = 0i (J Z i 0 (!) D), where J Z i is the sheaf of ideals of Zi in Z. 
Z is d-semi-stable if (!) D(Z) = (!) D' 

(11.2.2) An SNC pair (X, Y) is called d-semi-stable if X and yep) 
for all pare d-semi-stable. 
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For an SNC pair (X, Y), set Y'= ynXt , which is an SNC divisor 
on a component Xi' and set Y = U yi, which is an SNC divisor on X. 
Denote also D' = X, n (U Nt Xj), which is an SNC divisor on Xi' and 15 = 
U D i , which is an SNC divisor on X. 

We will define a sUbcomplex A;'(log Y) of a*D;(log(Y +15» which 
coincides with Dj(log (t?V +x)lx (cf. (10.3) when (X, Y) is the central 
fibre of a semi-stable degeneration of pairs (02", t?V,J, Ll) (cf. § 9). As in 
[F. 1], we consider first the model case; (X, Y) is the central fibre. By 
definition, the partial weight ffitration W(Y) on a*D1> (log (Y +15) satisfies 

(11.3) W(Y)o=a*D~(log 15) and res y : Grr'(Y)::;a*(1ly. 

(11.4) Lemma. (11.4.1) The partial weight filtration W( Y) on 
D}(log(t?V + X» Ix satisfies 

W(Y)o=D}(logX)lx and res y : Grr'(Y)~Ker(a*(1ly-+a*(1ly[lJ). 

(11.4.2) There is a natural injection 

r: D}(log(t?V +X»lx=-»a*DHlog(Y +.0» 

and the isomorphisms (11.3) and (11.4.1) fit in the commutative exact 
diagram 

O-+D}(log X) Ix ~D}(log(t?V +X»lx~Ker(a*(1ly~a*(1ly[lJ)-+O 

1 1 1 
O-+a*D~(log 15)~a*DHlog (Y + 15»~a*(1ly-+O. 

Proof The first equality in (11.4.1) is trivial. The second is also 
easy: If ('I/r,) E a*(1ly belongs to Ker (a*(1ly-+a*(1ly[lJ), then a prolongation 
over a neighborhood of X in 02" of a suitable lifting (<pt) E a*D1>(log (Y+ 15) 
can be defined, i.e., <Pi E Dh(log(Yi+Di» has a prolongation (fit over a 
neighborhood of Xi in 02" and (fiilxtnxJ=(fijlxJnx" so that «(fit) can be glued 
together to induce a section of D}(log (t?V + X»Ix. (11.4.2) can be proved 
in a way similar to [F.1, Lemma (3.1)]. 

(11.5) Description of 1m r in (11.4.2) in terms of local coordinates: 
Let (Xl> .. " xn +1) be local coordinates on X such thatf: X-+Ll is given by 
f(x) =XI ' •• X,, X, is defined by Xi =0 on X, Di is defined by Xl' .. Xt' .. X, 
=0 on Xi' and y t is defined by X8+1' • 'X8+m=O on Xi' 

Then (<pt) E a*DHlog (Y + 15» can be written as 

<Pt = L: bt"dx"/x,, + L: bt"dx"/x,, + L: bi"dx", 
"*£,";;01 e<k;:;;e+m Ic>t+m 

and we can verify similarly as in [F. 1, § 3] that 
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(rpt) e r(Q}(log (19' +X)!x)Ca*Qi-(log (Y + X) if and only if the fol~ 
lowing three conditions are satisfied: 

(11.5.1) biJ+bjt=O on xinxj 
btj+bjk+bkt=O on Xi n Xj n Xk (1 :::;;;i,j, k~t) 

(11.5.2) bjs-bit=bjs-bjt on Xi nXj 
bi.-btt = -b.t on Xi nx. (1:::;;;i,j, s, t:::;;;t and s, t=l=i, j) 

btk=bjk on Xi nXj (k>t+m) 
(11.5.3) bik=bjk on yin yJ if yin yj=l=rp. 

(11.5.4) Remark. (11.5.3) corresponds to the satisfied isomorphism 
in (11.4.1). 

(11.6) Definition. Let (X, Y) be a d~semi-stable pair (11.2.2). 
Define A1-(log Y)={(¢t) e a*QHlog(Y+D»!(rpi) satisfies (11.5.1), (11;5.2) 
and (11.5.3)} and 

A:r(log Y)=A'A1-(log Y)ca*Qs(log(Y +15». 

We call the latter the abstract log complex for a d-semi-stable pair (X, Y). 
We denote by Wand M the weight filtrations on A:r(log Y) induced by 
W(Y) and W(Y +15), respectively. 

We can prove in the same way as in [F. 1, § 3] that: 

(11. 7) Proposition 
(11.7.1) A1-(log Y) is a locally free (!}x-module. 
(11.7.2) WoA~(log Y)=A~ and res y : Grr A~(log Y):::;A~(i,':." for 

k>l. 
(11. 7.3) MoA~(log Y) = Ker (a*Q1~a*Q~[1]). 

12. Problems and discussion 

(12.1) Problem. Compactify the mixed period map by extending it 
over points with finite local monodromy. 

This would be a generalization of (9.5), (9.6), and (9.11) in [Gri. 1, 
III]. In the case of the mixed period map arising from geometry, the 
extension over the points with finite local monodromy is already obtained 
by the results in Sections 9 and 10 and (3.2). 

(12.2) Problem. Generalize the Schmid theory ([Sc], see also [C.K.S], 
[Kas]) into the context ofVGPMHS. 
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(12.3) The mixed Clemens-Schmid sequence: 
Let (.%", 11JI,f,.:1) be a semi-stable degeneration of pairs with dim .%"= 

n + 1 (cf. § 9). Set 

i"=.%" -11JI~Xo=Xo- Yo, 

i"*=i" -XO~Xt=Xt- Yt for some t e J*. 

T: the local monodromy on H'(Xt ), and N = log T. 

Note that i" ~ Xo has a retraction. The local cohomology sequence 
and the Wang sequence give rise to the diagram: 

N 
Hq(Xo)- - - - -* Hq(Xt) ---+ Hq(Xt) - - - - -*H~+2(i")---+Hq+2(XO) 

~ .'/ ~.,/ Xo 

Hq(.%"*) Hq+l(.%"*) 

.'/ ~. .'/ ~ . N . 
Hq-1(Xt)- - - - -* Hl:1(.%") -*HQ+l(XO) - - - - -*HQ+l(Xt)---+HQ+l(Xt) 

./1. /1. 
HQ+l(.%", .%"*) HQ+l(.%") 

/1 . 
H2n +2-Q-l(XO) 

(12.3.1) Problem. Show the exactness of the horizontal sequences in 
the above diagram. 

(12.4) Problem. Study the deformation theory for d-semi-stable pairs 
(cf. (11.2.2) and [F. 1], [Pl). 

(12.5) Problem. Prove the infinitesimal mixed Torelli theorem for 
d-semi-stable pairs. 

(12.6) Comparison between the mixed period map and the period 
maps: 

Let P(x) e Q[x] be a polynomial of degree n with integral values. 
Let vIIP be the set of isomorphism classes [X, M] of pairs (X, M) consist
ing of a smooth projective variety X and an ample line bundle M on X 
satisfying P(a)=X(M0a) for all integers a. Assume that vIIP is nonempty. 
Fix a positive integer m and denote by vii the set of isomorphism classes 
[X, Y] of pairs (X, Y) consisting of a smooth projective variety X and a 
smooth divisor Y for which there exists [X, M] e vIIP such that @x(Y)= 
M0".. We denote also by vII~Ol (resp. vIIm vII~~ll' vIIn +1) the set of is om or
phism classes [X, @x(Y)] (resp. [X], [Y, @y(Y)], [Yl) for [X, Y] e vii. 



666 M.-H. Saito, Y. Shimizu and S. Usui 

Then we have natural surjections 

" " " 
(12.6.1) ff Pn ffpol Pn ff Pn+1 ffpol Pn+1 ff 

vnn~vnn ~vn~vnn+l~vnn+I' 

The infinitesimal versions are given by the cohomology diagrams of 
the commutative exact diagrams as in Diagram 1 (cf. §§ 4 and 6). 

Diagram 1 

(12.6.2) Lemma. For the maps in (12.6.1), thefol/owing hold: 
(12.6.2.1) p~-l([X, L]) = ILlreg/Aut (X, L) (cf. (8.1». 
(12.6.2.2) P:: is injective ifM of [X, M] E vl(P is the canonical bundle 

ofX. 
(12.6.2.3) P~+I is injective if the integer m is sufficiently large (see 

(12.6.2.5) below), HI(X, Z)=O and ifn=dim X>3. 
(12.6.2.4) P::+l is injective if M of[X, M] E vl(P is the canonical bundle 

of x, HI(X, Z)=O and ifn=dim X~3. 
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Proof (12.6.2.1) and (12.6.2.2) are trivial. 
In order to prove (12.6.2.3), take positive integers k, £ and m satisfy

ing: 
(12.6.2.5) .f.,M0kl: X -+p=pN (N =hO(M0k)-I) is an embedding for 

all [X, M] e vl{p. HO(.fi xQ5XfJp(£»0HD((fJp (a»-+HO(.fi x(£ + a» is surjective 
for all a:?:O and all [X, M] e vl{P, where .fix is the sheaf of ideals of X in 
P. m>£N-n+llkn- 1d, where din! is the leading coefficient of the Hilbert 
polynomial P(x). 

The existence of the integer k above is the assertion of Matsusaka's 
Big Theorem ([Ma. 2], see also [L.M]). The existence of the integer £ 
above can be seen as follows. Let H be the Hilbert scheme of the 

embedded xcP and f'l'CPXH~H the universal family ([Gro.2]). 
Take a positive integer £1 so that Rip*(.fiia» =0, p*p*(.fi,,(a»~.fi,,(a) 
is surjective and Rip*«(!),,(a»=O for all i>O and all a:?:£1 (cf. [Gro.l]). 
Then we have an exact sequence 

Since (!)PXH(a) and (!),,(a) are p-flat, we see by the Continuity Theorem 
([Gro. 1]) that these sheaves are cohomologically flat in dimension O. In 
particular, P*«(!)PXH(a» and p*«(!),,(a» are locally free, therefore so is 
p*(.fi ,,(a» for all a:?: £1' Hence.fi" is p-flat by a corollary to the Base 
Change Theorem ([Gro. 1], see also [Mu, p. 52, Cor. 3]). Since 

by another corollary to the Base Change Theorem ([Gro. 1], see also [Mu, 
p. 52, Corollary 2tD, the function 

is locally constant for all a> £1' Again by the Continuity Theorem, .fi ,,(a) 
is cohomologically flat in dimension 0 for all a:?: £1' Denote by ::I(' the 
kernel of the canonical homomorphism p*p*(.fi"(£I»-+.fi"(£I)' Take a 
positive integer £2 such that RIp * (::I('(a» =0 for all a>£2' Then we have 
a surjection 

This yields, by the projection formula and the cohomological flatness, a 
surjection 
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This fits in the commutative diagram: 

HO(f x,(tl»®HO({!}p(a» »HO(f x,(tl + a» 

i i 
HO(f x,(tl»)®HO({!}p(I»®a~HO(fx.(tl+t2»®HO({!}p(a-t2» 

for· all a '?: t2 and all t E H. 

Thu!> we can take tl + t2 as the integer t in (12.6.2.5). 
Now we will prove (12.6.2.3) for the integer m in (12.6.2.5). Let 

[X, Y], [X', Y'] E vIt and suppose there exists an isomorphism g: Y::;Y' 
such that g*({!}y'(Y'» = (!}y(Y). Then g*({!}y.(m»=g*({!}y.(kY'» = (!}y(kY) 
= (1}y(m). Hence g*({!}y.(1»®{!}y(-I) is a torsion sheaf. But the as
sumption in (12.6.2.3) implies that Pic Y has no torsion by the Lefschetz 
Hyperplane Theorem and the Universal Coefficient Theorem. Hence 
g*((1}y.(I»={!}y(1) and g comes from a projective transformation of P. 
Now suppose that there exist X and X' containing Yin P. Choose a 
maximal regular sequence It, .. ·,fN-n+1 in HO(fx®{!)p(t»+Ho(fx.® 
(!}p(t» and set Z={!t= ... =fN-n+I=O}. Since Z:::>Y, we have t N- n +1 

=deg Z>deg Y =mkn-Id which contradicts the choice of min (12.6.2.5). 
We can prove (12.6.2.4) in a similar way. Q.E.D. 

(12.6.3) Problem. Improve Lemma (12.6.2) by using [Sh] and [Kaw. 
3]. 

(12.6.4)Casen=dim X=2: Consider the set vltP={[X, cox]) of 
isomorphism classes of pairs of minimal surfaces of general type and their 
canonical bundles with a fixed Hilbert polynomial P(x). In this case, 
(12.6.1) can be regarded as a diagram in the category of quasi-projective 
schemes (cf. [Gil) and for the integer k in (12.6.2.5) we can take k=5, i.e., 
fi .. ~51: X ~P is now a birational embedding (cf. [Bol). Take positive 
integers t and m as in (12.6.2.5). Then, as in the proof of (12.6.2), 
(Y, {!}y(1»=(Y', (!}y.(1» implies (X, Y)=(X', Y'). 

(12.6.4.1) Problem. In the above situation, compute the degree of 
Pa: = p~' 0 p~ in (12.6.1). Is it true that the mixed period map W: vIt ~Gz \D 
is injective? I 

(12.6.5) Problem. Investigate the relationship between the mixed 
period map W: vIt~Gz\D and the period maps Wk : vltk~Gk,Z\Dk' 

(12.6.6) Problem. Develop a "Hodge theory" which corresponds to 
vIt~Ol in (12.6.1). 
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II. Examples: Surfaces with p g = ~ = 1 and surfaces with p g = I, 
c~=2 and 1t'] =Z/2Z 

1. Motivation for VGPMHS 

669 

Kunev first constructed a certain surface with pg=d= 1 ([Ku]), and 
Todorov then constructed some surfaces with pg = 1 and 2~c~~8 ([To. 2]). 
These surfaces give counterexamples to both the infinitesimal and the 
global Torelli theorems for surfaces of general type in the sense of Griffiths 
([Gri, 2]). The following names are being fixed (cf. [Morr]): 

(1.1) Definition. (1.1.1) A canonical surface X is a surface which 
has at most canonical singularities (i.e.; rational double points in the 
2-dimensional case) and whose canonical sheaf Wx is ample. 

(1.1.2) A Todorov surface is it canonical surface X with X(@s-)=2 
which has an involution q such thatthe quotient X/q is a K3 surface with 
rational double points whose bi-canonical map.t; .. ~21 factors through X/q. 

(1.1.3) A KUnev surface is a Todorov surface with d= 1. 

Morrison showed that Todorov surfaces form an irreducible sub
variety of the coarse moduli space of surfaces w:ith P g = 1 in case c~ = 1, 5, 
6, 7, 8 and are divided into two irreducible components in case c~=2, 3, 4 
([Morr], see also [C.D]). We are concerned here mainly with the surfaces 
with Pg=c~= 1 and surfaces with pg= 1, c~=2 and 11'1 =Z/2Z from the 
Hodge-theoretic view-point. 

(1.1.4) We denote by vIt(i) the coarse moduli space of canonical 
surfaces with P g = 1, q = 0 and c~ = i for i = 1, 2, ... , 8 (cf. [Gi]). Through
out this chapter we fix this notation as well as the following: 

vltii ) ={X E vIt(i) I X is smooth}. 

vIt(i) ={X E vIt(i) I the canonical divisor of X is smooth}. 

vltit) = viti.) n vIt'i). 

!T(i) ={X E vIt(i) I X is a Todorov surface}. 

!Tii)=!T(i) nvltii )· 
vIt~2) = {X E vIt (2) I X is simply cennected}. 

vIt~~)={XE vIt(2)11t'](X)=Z/2Z}. 

!T~2)=!T(2) nvlt~2). 

!T~~)=!T(2) n vIt~~). 
Notice that the canonical divisor of a surface in !Tii ) is a component of 
the fixed point locus of the involution, hence is automatically smooth. 
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Known Results 

(1.2) Description of the canonical rings. 

(1.2.1) Case X E .,/1(1) (Catanese [Cat. 1]). Every X E .,/1(1) can be 
represented as a weighted complete intersection of type (6, 6) in P=P(I, 2, 
2, 3, 3) with partially normalized equations: 

(1.2.1.1) 

where (xo, Yl> Yz, zs, z,) are weighted homogeneous coordinates of P(I, 2, 2, 
3,3), andp i ) and g(i) are homogeneous polynomials of degree i in Yo:= 
ro, YI and Yz, i.e., there existh, gi,hjk' gijk E C such that 

Conversely, if X is a weighted complete intersection of type (6,6) in P 
with at most rational double points, then X E .,/1(1). Moreover, two pairs 
(J, g) and (f', g') as in (1.2.1.1) give rise to isomorphic surfaces ifand only 
ifthere exists a projective transformation u: P~P such that 

(1.2.1.2) u(Xo, Yl> Yz, zs, z,) 

= (doxo, dloro + dllYI +d12yz, dzoro+ dZIYI +dzzYz, dszs, d,z,) 

with/'=u/fd: and g'=ug/d!, or 

u(Xo, Yl> Yz, zs, z,) 

=(doXo, dlox~+d!1YI +dlzYz, dzoX~+dzIYI +d2ZYz, dsz" d,zs) 

with g' =C1f/d: and/' = ug/d!. 

(1.2.2) Case X E .,/I~~) (Catanese and Debarre [CD]). Every X E 

.,/I~~) can be represented as the quotient 2/f of a weighted complete inter
section 2 of type (4,4) in P=P(1, 1, 1,2,2) with partially normalized 
equations: 

(1.2.2.1) {
/ =z:+ pl)WZ,+ pO)w'+ f'Z)wz+ 1") 
g=z: + g(I)WZS + g(O)w' + g(Z)WZ + g(') 

where (w, Xl> X Z, zs, z,) are weighted homogeneous coordinates of P(1, 1, 1, 
2,2) and 

Pi) and g(i) are homogeneous polynomials of degree i in Xl and XZ, 

1") and g(') are mutually prime, 
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1'0) and g(O) are not both zero, and 

t is the involution t(w, Xl> Xz, Za, Z4)=(W, -Xl, -Xz, -Za, -Z4)' 

Conversely, if X is a weighted complete intersection of type (4, 4) in P 
which has at most rational double points and does not meet the fixed 
point locus of t, then the quotient Xlt e .A~~). Moreover, two pairs of 
(J, g) and (f', g') as in (1.2.2.1) give rise to isomorphic surfaces if and 
only if there exists a projective transformation ii: P-"4P such that 

withf' =iifld~ and g' =iigld!, or 

with g' =iifld~ andf' =iigld!. 

(1.3) Hodge numbers and moduli numbers. For X e .A'ti), we have: 

(1.3.1) hZ,O(X)=ho,Z(X) = 1, h~~\m(X)= I9-i. 

HO(Tx)=O, X(Tx) = -(20-2i). 

(1.3.2) H2(Tx)=O for X e .A'tt) U .A'tZ)' 
(1.3.3) In case X e fT'to with the involution q, we see as for the q

invariant part that: 

hZ,O(XY =hO,2(XY = 1, h~~\m(XY = II-i. 
h1(TxY=12, h2(TxY=O. 

Indication. (1.3.1) follows from the Riemann-Roch formula. For 
(1.3.2), see, e.g., [U.1], [U.2] and [C.D]. As for (1.3.3), we can calculate 
the desired numbers in a way similar to [U.S] with the aid of the double 
cover X-"4Xlq. 

(1.3.4) Remark-Problem. For X e fT'ti), construct the diagram: 

X( p X 

(1.3.4.1) 1 lq 
p' A A 

X':=X/q~X':=X/(j 

where p' is the minimal resolution, p is the blowing-up of the isolated 
fixed points of q, and (j is the induced involution. Denote by R the 
ramification divisor of the double cover q in (1.3.4.1) and by L the line 
bundle on X' such that q*L={!}j:,(R). Dualizing the exact sequence 
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we get 

0~T2~q*T2,~Extl(NR/2' l!J2)::::Qk~0. 

This yields the cohomology sequence 

Hence 

h2(Tx) =h2(T2) = h2(q* T2 ,) = h2(T2,) +h2(T2,®L -I) =hO(Q'},®L). 

On the other hand, (1.3.1) and (1.3.3) yield h2(Tx)':Z.X(Tx)+hl(TxY=2i 
-8. The problem is to calculate hO(Q'},®L). 

(1.4) Generic infinitesimal Torelli theorem. 

(1.4.1) Case vIi'l) (Catanese [Cat. 1]). Let X E vIi'l)' The Kuranishi 
space S of the deformations of X=Xo (0 E S) is smooth by (1.3.2). Let 

(1.4.1.1) 

be the period map of the second cohomology. By using the representa
tion (1.2.1), the defining equation of the ramification locus of 112 can be 
calculated as 

It 3hll h12 
h .1',. 2h12 2h22 

h h22 3h22 
(1.4.1.2) LI:=det 

gl 3glll g1l2 
g2 gl 2g1l2 2g122 

g2 gl22 3g222 

for suitable local coordinates of Sand D2 (see also [U.l]). It is easy to see 
that LI =1= 0 for general X = {f = g = O} but LI = 0 for special X. 

(1.4.2) Case vIi~~) (cf. Oliverio [0]). Let X E vIi~~). We claim: 

(1.4.2.1) The infinitesimal period map 
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is injective for general X but not injective for special X. 

Since there seems to be a gap in [0], we will give here an outline of 
the proof of the correction (1.4.2.1). We use the notation P, X,J, g etc. 
in (1.2.2). Notice that Q~:::::::(!).1'(1). The exact sequences 

0-----+ T 2-----+ T p 12-----+ N 21 p-----+o and 

o-----+(!) 2-----+EB (!).1'( et)-----+ T p 12-----+0, 
i 

where (eo, e!> e2, ea, e4)=(I, 1, 1,2,2), give the commutative exact diagram: 

Here the vertical maps are induced by the pairing with a basis of HO(Q!r) 
= HO(Q'}}f. Writing the zero-th cohomology in terms of the weighted 
homogeneous coordinate ring C[w, XI' X2, Za, Z41/(J, g)=: RI/ (see also 
[U.ID and taking the t-invariant part, we get the commutative exact 
diagram: 

(Rt)$2-----+HI(Tx)------+0 

r1 p1 
0-----+ Ri ~ H ~(Rt)$2-----+ H~rlm(Q~)-----+O 

(1.4.2.2) 

where R± stands for the (± 1 )-eigensubspaces of R with respect to i', 

a(w)=w( -4,0,0, -4, W, XI' X2, 2zg, 2z4) 

e H: = (Ri}$4ffiR;-ffi(R;)$2ffi(R;)$2, 

( ad +blg+ L:: Ctod ) + $2 f3(a!> a2, bl, b2, co, Cl> c2, Cg, c4) = e (R6) , 
ad +bzg+ L:: CtOtg 

r is the multiplication by w, and p.(O)=O·{J) for (J) e HO(Q!r) corresponding 
to w. Set 

u= u= E (Rt)$Z • { ( J<I)WZ4 + J<°)w4 + J<Z)WZ + 1'4») I Xu is a smooth} 
g(I)WZa+g(O)w4+g(Z)wz+g(l) surface in P. 

Then U is a Zariski open set in C Zz• Take a point u e U such that Xult 
=::.X and identify Tu(u)C(RtY~z. Set EI = EflffiEgl = wTu(u)C(Rt)$Z and 
let Ef2 (resp. Egz) be the subspace of Rt spanned by the monomials in Rt 
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which do not appear in Efl (resp. Egl). Further, let Ez=Eflf)Eg2C(Rt)ffJz, 
and 

for i=l, 2. 

Substituting the above in (1.4.2;2), we have 
J 

Tu(u)~Hl(Tx)~O 

(1.4.2.3) r 1 .u 1 
+ a /3=(/31> /32) 1 1 

O~Rl ~H )E/BEz~Hprlm([)x)~O. 

Since 1m r = El by definition, we have an isomorphism 

r: Ker (p 0 O)~El n 1m ~= ~1 (Ker ~2). 

Hence, using dim Tu(u) = dim El =22, h1(Tx) = 16 ((1.3.1)+(1.3.2», dim H 
= 32 and dim E2 = 26, we have 

dim Ker p. + (22 -16) = dim Ker (p 0 0) = dim Ker ~2 - dim Ker ~ 

= corank ~2 + (32 - 26) - corank ~. 

Therefore 

(1.4.2.4) dim Ker d¢(O)=dim Ker p=corank ~2-corank~, 

where corank means (the maximal rank)-(rank). 
As in [0], by matrix representation of ~2' we have corank ~2> 1, and 

the equality holds for general X. On the other hand, from (1.4.2.3), we 
have corank ~2 > corank ~ = 1. 
(The gap in [0, p. 568] is the assertion corank ~=O for general X.) Thus 
we get our claim (1.4.2.1). 

(1.4.3) Case vIt~~) (Catanese [Cat. 3]). Also in this case, the infini
tesimal Torelli theorem holds for general X E vIt~~) but does not hold for 
special X. The proof in [Cat. 3] is based on the description of the 
canonical model in P(1, 2, 2, 2, 3, 3, 3, 3) and the geometry developed in 
[C.D]. 

(1.5) Counterexample to the generic Torelli theorem (Catanese [Cat. 
2]). 

[Cat. 2] pointed out: 

(1.5.1) For any choice of monodromy group r 2, the period map of the 
second cohomology (jj2: vIt(l)~r2\D2 has degree >2. 
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The assertion follows from the existence of X e vIt'(l) satisfying the 
conditions: 

(1.5.2) The differential of a local lifting (Pz of tPz at X has I-dimen
sional kernel which is not tangent to the ramification locus {L1 = O} in 
(1.4.1.2). 

(1.5.3) Aut (X) = {id}. 
Indeed, (Pz is a morphism of the manifolds of the same dimension 18 

by (1.5.3), (1.3.1) and (1.3.2). Therefore (1.5.2) yields deg tP2:2:: deg (P2 > 2. 
The surface X e vIt'(l) satisfying the conditions (1.5.2) and (1.5.3) is 

given by, e.g., 

(for the verification, see also [U. 1]). 

(1.6) Positive dimensional fibres of the period map. 

(1.6.1) Case 5''(i) (Todorov [To. 1], [To. 2], and Usui [U. 1], [U. 2]). 
The period map of the second cohomology 

(1.6.1.1) 

has fibres of dimension i + 1 at every point X E 5''(i) (i = c~ = 1, 2, "', 8). 

(1.6.2) Geometric reasoning ([To. 1], [To. 2]): We observe from the 
diagram (1.3.4.1) that the periods of the holomorphic 2-forms on X and on 
X' are equivalent data. Therefore tP2 in (1.6.1.1) distinguishes only the K3 
surface X', and the moduli of the branch locus B of q for a fixed X' appears 
as the fibre oftP2, which has dimension hO(NB1x,)=g(C)=i+1. 

(1.6.3) Reasoning by the effect of automorphism on VHS ([U.2]): 
Aut (X) has the induced actions on the Kuranishi space S, by its universality 
(1.3.1), and on the classifying space D2. The local period map rp2: S-+D2 
is Aut (X)-equivariant. In particular, the fixed point loci sa and D; by 
C1 E Aut (X) must be rp2(sa) CD;. Thereforefrom (1.3.3) 

dimxtPil(tPz(X» =dimorpi1(rpz(O»=dim sa -dim D; =hl(TxY -h~~\m(XY 

=g(C)=i+1. 

(1.6.2) Case vIt'(l) ([U. 1], [U. 2]). [U. 2] contains a table of the clas
sification of the automorphisms together with their actions on H1(Tx ) and 
on HM(X) for X e vIt'(l)' By the observation (1.6.1.3), we can conclude 
from this table the following in the notation of (1.2.1) and (1.6.1). 

(1.6.2.1) If there exists a C1 e Aut (X) conjugate in (1.2.1.2) to the 
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projective transformation 

on P(I, 2, 2, 3, 3), 

then the period map <Pz in (1.6.1.1) has a 2-dimensional fibre through X. 
These X form a 12-dimensional subvariety of .4'(1). This is the case of Ki'mev 
surfaces already mentioned in (1.6.1.1). 

(1.6.2.2) If there exists a (J E Aut (X) conjugate in (1.2.1.2) to the 
projective transformation 

(Jl(XO, Yt> Y2' Zg, Z4) = (xo, Yl' Y2' Zg, - Z4) 

(resp. (J8(XO' Yt> Y2' Zg, Z4) = (xo, Yl, WY2' Zg, Z4), where w = exp (27Ci/3)) 

on P(I, 2, 2, 3, 3), then <P2 has a positive dimensional fibre through X. These 
X form a 15 (resp. 9)-dimensional subvariety of .4'(1)-

[U. 1] gives a characterization of Kunev surfaces by the period map 
<P2 in (1.6.1.1) for i= 1: 

(1.6.2.3) For X E .4'(1)' we have X E .r'(I) if and only if dimx<p21(<p2(X)) 
=2. 

The idea of the proof of (1.6.2.3) is as follows in the notation of 
(1.4.1): We already know the defining equation L1 of the ramification 
locus of ifJ2' and can calculate Ker difJz explicitly. Let 

Sl={S E S[dim Ker difJis)*O}, 

o E Ker difJzCHO(Ts[sl): nowhere vanishing, 

Sz = {s E SI[ (OL1)(s) =O}, 

S3={S E SZ[ (O(OL1))(s)=O}, etc. 

Then 0 induces a nowhere vanishing vector field on S': = ni Si. There
fore, if dim S'>O, the integral curve of 0 through ° E S' is in the fibre of 
ifJz through 0. Actually since the Si have singularities, we should be more 
careful (for detail, see [U. 1]). 

(1.6.3) Case .4~~) ([U. 5]). [U. 5] contains a table of the classifica
tion of the automorphisms together with their actions on Hl(Tx) and on 
Hp,q(X) for X E .4~~). By the observation (1.6.1.3), we can conclude 
from this table the following in the notation of (1.2.2) and (1.6.1): 

(1.6.3.1) If there eixsts a (J E Aut (X) which has a lifting fj E Aut (X) 
conjugate in (1.2.2.2) to the projective transformation 

on P(1, 1, 1,2,2), 
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then the period map @2 in (1.6.1.1) for i = 2 has a 3-dimensional fibre through 
X. These X form a 12-dimensional subvariety of v1t~~f. This is the case of 
Todorov surfaces already mentioned in (1.6.1). 

(1.6.3.2) If there exists a (J E Aut (X) which has a lifting jj E Aut (X) 
conjugate in (1.2.2.2) to the projective transformation 

the period map @2 has positive dimensional fibre through X. These X form 
a 14 (resp. 6)-dimensional subvariety of v1t~~). 

(1.6.3.3) Problem. Characterize 5"~~f in v1t~~f in terms of the period 
map @2 as in (1.6.2.3). 

(1.7) Infinitesimal mixed Torelli theorem ([U. 4], [U. 5]). 

The failure of the infinitesimal Torelli theorems (1.4) and (1.5) and 
especially the existence of positive dimensional fibres of the period map 
forced us to enlarge the frame of VHS into VMHS, and we get: 

(1.7.1) The infinitesimal mixed Torelli theorem holds for smooth pairs 
(X, C) E v1t'(i) Uvlt~~)8 where C E IKxl, i.e., 

is injective. 

In both cases we used the commutative exact diagram 

and proved the injectivity of f.12 and f.13 with the aid of (1.2). 

(1.7.2) Example ([U. 4]). Let X E 5"'(1) (resp. the universal cover X 
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In contrast to (1.7.1), the infinitesimal Torelli theorem for «([J2' ([Js) = 1C 0 ([J 
(see (I. 1.2» does not hold if 

where Yo=x~ 

( resp. ~«(f(O)ro+ J<2)yO+ J<4)(g(O)y~+g(2)Yo+g(4))=O mod (Yo), 
oYo 

where Yo=w2). 

For instance take 1'3) and g(S) (resp.J<°)ro+ J<2>yO+ 1'4) and g(O)y~+g(2)yo 
+ g(4) to be Fermat type polynomials. 

(1.7.3) Problem. Verify the infinitesimal mixed Torelli theorem for 
other vltil). 

(1.8) Explanation for the relation among (1.6.1), (1.7.1) and (1.7.2). 
Let X e .rio. We use the diagram (1.3.4.1). Let C be the unique 

canonical curve of X, C be the proper transform of C by p, and let C' = 
q(C). We denote by E the union of the exceptional curves for p. Set 
A, A A A A d A, A, A, 

.l!. =q(E), D=C+E an D =C +E. 

give 

Then the exact sequences 

O~p*Qi-(log C)~Q~(lOgC)~NE/~~O and 

O~Q~(log C)~q*Q~,(log D')~Q~~O 

(1.8.1) HO(Qi-(log C» = HO(Qi-(log C»" =;HO(p* Qi-(log C»8 

=;HO(q*Q~,(log D,»a+::Ho(Q~,(log D'». 

The exact sequences 

give 

O~ p*Q1:-(log C)~Ql(log C)~Q~~O and 

O~Ql(log C)~q*Ql,(log D')~(!JE~O 

(1.8.2) Hl(Q1:-(log C)Y =;H1(p*Q1:-(log C»)8 =;HI(q*Ql,(log D'W 

+::HI(Ql,(log D'», 
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since the composite HO«(1)E)~Hl(Q}(log C»~Hl(Q~) is an isomorphism. 
The exact sequences 

yield 

O~T.t( -log C)~p*Tx( -log C)~NEI.t~O and 

O~q*T.t,( -log fJ')-----?T.t( -log C)~NEI.t~O 

(1.8.3) H1(Tx( -log C)Y:::;.H1(p*Tx( -log C»H+::-H1(T.t( -log C»H 

+::-H1(q*T.t,( -log D'»+::-H1(T.t,( -log D'». 

Thus, from (1.8.1), (1.8.2) and (1.8.3), we get the commutative 
diagram: 

Hl(Tx( -log c»a ~Hom(w.Q)(HO(Q~(log C», Hl(Q1.-(log C)Y) 

11 A p' 11 A A 

H1(T.t,( -log D'»~Hom(w.Q,(HO(Q~,(log D'», Hl(Q},(log D'») 

where p is the restriction to the Todorov part of the infinitesimal mixed 
period map for a smooth pair (X, C) and p' is the infinitesimal mixed 
period map for a smooth pair (X', C'). 

By using the exact sequence in (I. 4.2.2), the exact sequence of normal 
bundle and the residue exact sequences for Q~,((log D') (p = 1, 2), p' is 
divided into the commutative exact Diagram 2. 

Diagram :2 

In Diagram 2, T stands for 1m {Hl(T.t,( -log D'»~Hl(T.t,) X Hl(TiJ,)} 
and Hl(Q},)l.{iJ'l is the subspace of Hl(Q},) perpendicular to all the 
cohomology classes of components of D' with respect to the cup product. 
p~ is well-defined because, in Hl(Q},), (}{J) U ~ = - (J) U (}~ = - (J) U 0 = 0 for 
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() e HI(T~,( -log in), ill e HO(Q},) and the cohomology class ~ of a com
ponent of iJ', where U is the cup product. a is the composed map 

and fl.~ is defined as the factorization of p' 0 a. 
Diagram 2 is very illustrative: 

(1.6.1) says the map 1t"2 0 fl.', which is essentially the infinitesimal 
period map for X, has (i + I)-dimensional kernel for X e !Tei)' 

(1.7.2) says even the map fl.~' which is essentially the product of the 
infinitesimal period maps for (X, C), is not injective for some X e !Tei)' 

(1.7.1) says the map p', which is essentially the infinitesimal mixed 
period map for (X, C), is injective for X e !Tel) U !T~~j. 

(1.8.4) Remark-Problem. fl.~ in Diagram 2 is the infinitesimal version 
of the map from (the displacements of D' in a fixed X' without changing the 
moduli) to (the extension data of GPMHS on H 2(X' - D') with fixed Gr~ F"). 
This has the meaning in the general set-up. Can fl.~ be defined directly? 
Can one prove the injectivity of fl.~ ? 

2. Generic mixed Torelli theorem for KUnev surfaces and Todorov surfaces 
with c~=2 and 7t'1 =Zj2Z 

Just after we had obtained Theorem (2.2) below, we found Letizia [L] 
in November, 1984. Nevertheless we would like to include here the 
results partly because there seems to be a gap on the monodromy in [L] 
and partly because we can prove the generic mixed Torelli theorem for 
!T~~) (see (1.1.4)) as well. 

(2.1) Recall that, by Definition (1.1.2), the bicanonical map of X e 
!T(l) (resp. !T~~») with involution q yields a Galois cover over p2 (resp. a 
quadric cone QCP3) which factors through a K3 surface X':=Xjq with 
rational double points (cf. [Cat. 1], [C.D]): 

(2.1.1) 

We consider 
(2.1.2) Q: the complete weighted projective space Q(2, ], 1). 

Here the branch locus of J;2KI consists of two cubics (resp. two curves 
of degree 4) F and G and of a line (resp. a curve of degree 2) L in p2 
(resp. Q). Then r is the double cover branched over F + G and q' is the 
double cover branched over r -1(L+Fn G) (cf. (1.2)). Therefore X (resp. 
X') can be determined by (F, G, L) (resp. (F, G)), and we denote by 
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X(F,G,L) (resp. X~F,G») the corresponding Todorov surface (resp. K3 sur
face). 

Set 

(2.1.3) 
T(l)={(F, G, L) E S2PHO(I!J p2(3))XPHD((2 p 2(1))IX(F,G,L) is smooth}, 

and T(2) = {(F, G, L) E S2PHO(I!JQ(4)) XPHO(I!JQ(2)) I X(F,G,L) is smooth}, 

where PA means the set of lines through 0 in a vector space A and S2PA 
the second symmetric product of PA. 

Using the geometric monodromy (cf. lV. 3)), we have for both T(1) 
and T(2) (T= T(l) or T(2»): 

(2.2) Theorem. Let ti E T (i= 1,2). Denote Xti by Xi and let Ci be 
the canonical curve on Xi' Assume that tl is generic and that there exists a 
path r in T joining tl and t2 which induces an isomorphism r* of the PHS on 
Gr~ H2(Xi - CiY (i = 1, 2). Then there exists an isomorphism 1: of Xl to X2 
inducing r*; and such 1: is uniquely determined up to composition with an 
element of <a). 

Proof We use the diagram (1.3.4.1) for Xi (i= 1,2) or more pre
cisely the relative version of (1.3.4.1) over T. We also use the notations 
C, C', E, E', 15, 15' etc. in (l.8). 

Claim 1. There exists a unique isomorphism f' of the K3 surfaces Xi 
and X~ which yields the isometry on H2(X~, Z) (i= 1,2) induced from r. 

Indeed, by assumption; r induces an isomorphism of the commutative 
exact diagrams of GPMHS (i= 1,2): 

O~(H2(Xi' C)-L{CilY~H2(Xi-Ci' CY~HI(Ci' C)~O 

p*l p*l p*l 
(2.2.1) O~(H2(Xi' C)-L{fJil)a~H2cii-Di' C)a~Hl(Di' C)~O 

q*j2 i q*j2 i (q IDi)* i 
O~H2(X~, C)-L{fJ;I----')-H2(X~_D;, C)~Hl(D;, C)~O 

In particular, r induces an isomorphism of the PHS on H2(X;) (i = 1,2) 
preserving ample classes, e.g., l4C;-E;]. Therefore we obtain Claim 1 
by the strong Torelli theorem for K3 surfaces (cf. [P-S, S], [B.P.V)). 

Claim 2. The isomorphism i': Xi.::;X~ in Claim 1 sends Di to D~ 
and yields the isometry on Hl(Di, Z) induced from r. 

Indeed since f' preserves the cohomology classes of E; (i= 1,2) and 
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the homological equivalence and the linear equivalence coincide on X~, 
we see f'(ED=E~. In order to see f'(eD=e~, set 

A = {SZPHO«(!}po(3» 
SZPHO«(!}Q(4» 

B = {PHO«(!}p.(I» 
PHO«(!}Q(2» 

in case T = T(I)' 

in case T = T(z) , 

in case T = T(l)' 

in case T=T(z). 

Let C(F,G,L) be the canonical curve of X(F,G,L) of genus 2 (resp. 3), and 
denote by vii the coarse moduli space of curves of genus 2 (resp. 3) in 
case T = T(1) (resp. T = T(z')' 

Define a rational map 

(2.2.2) 

for each fixed (F, G) eA. From (2.2.1), r induces an isomorphism of the 
PHS on Hl(e~) (i= 1,2). Therefore by the strong Torelli theorem for 
curves (cf. [Ma. 1]), there exists a unique isomorphism of e~ and e~ which 
yields the same isometry between Hl(e~, Z) induced from r. Thus, 
replacing e~ by f'-le~, Claim 2 is reduced to: 

Claim 3. For generic (F, G) e A, the degree of -r(F ,G) is lover its 
image. 

Since this claim in case T= T(l) is covered by Proposition 1 in [L], 
which is correct, we will give a proof only for the case T=T(2). Notice 
that the following argument works also for the case T = T(I) and this 
gives another proof of Proposition 1 in [L]. 

where LI is the diagonal. The projections give rise to the· diagram 

(2.2.3) 

Set 

A' = {(F, G) e A I degree of -r(F,G) is 22 over its image}. 

It is easy to see: 

(2.2.4) 

(2.2.5) 

dim A=2·8= 16. 

reI. dim (ptiA,»dim B=3. 

We will show in Claim 4 below that: 
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(2.2.6) dim 1=17. 

From (2.2.4), (2.2.5) and (2.2.6), we have the codimension estimate 
for A'cA: 

dim A' +3<dim pi"l(A') < dim 1=17. 

Hence 
dim A'<17-3=14<dim A=16. 

Therefore, for (F, G) e A\A', the degree of V(F,G) is lover its image. 

Claim 4. dim 1=17. 
Let (Yo, XI> xz) be a weighted homogeneous coordinate system of Q= 

Q(2, 1, 1) and let 

(2.2.7) {
F=foYo+ :E f'tjYOXiXj+ :E f'tjk8XiXjX/<Xe, 

1:;;£:;;j:;;2 1:;;i:a;j:;;II::a;I:;;2 . 

G=goY~+ :E gijYOXiXj+:E gijkIXiXjXkX,. 

Notice that H:=Aut Q induces an action on the diagram (2.2.3) and that 
with respect to this action the Pi are H-equivariant and B': = H· (Yo, Yo
x1Xz) is a Zariski open orbit in BXB-Ll. Hence 

(2.2.8) 

Therefore in order to get dim I it is enough to compute the right-hand
side of (2.2.8). Substituting Yo=O and YO=XIX2 in (2.2.7), we have: 

(2.2.9) 

F' :=F(O, XI> x2)= :Ef'tjkIXiXjX/<X" 

G':= G(O, Xl' x2)=:E gijklXiXjX/oX1, 

F": = F(xlxZ' Xl' x 2) = };1I1X~ + (};112 + };1)xix2 

+ (};122 + 112+ fo)X~X~+(};222+ h2)XI~+ h222X~, 

G":=G(XIX2, X2, X2)=gI1l1X~+(gll12+gll)xix2 

+ (g1l22 + g12+ go)X~X~ + (g1222 + gZ2)XI~ + g2222~' 

Assuming h222 = g2222 = 1 and decomposing the above into linear factors, 
we get: 

(2.2.10) f
F' = :E (x2 -aixl ). 

1:;;,:;;4 

G' = n (X2 - f3~XI)' 

F" =(X2-a~'XI)' 

,G"= n (X2-f3~'XI)' 
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Notice that C(F,G,Yol and C(F,G,YO-XI X,l are hyperelliptic curves expressed 
respectively as 

{u2-F'·G'=O} and {u2 -F"·G"=O} in pel, 1,4), 

where u is a variable with deg u = 4, and that the roots in (2.2.10) give the 
branch points. Hence 

(F, G) E p;:'(Yo, YO-XIX2) if and only if C(F,G,Yol ~ C(F,G,YO-XI X,l' 

This is the case if and only if there exists a !.I E Aut pi such that 

(2.2.11) 
!.I(2:: (1: a<)+ 2:: (1: ~m = 2:: (1: a<') + 2:: (1: ~i') 

as O-cycles on pl. 

Now consider the finite cover jJ: A--+Ao, where 

= 2:: ai', 2:: ~i= 2:: ~n 
and AO:={.h222=g2222=I} Zariski open CA={(F, G)} (see (2.2.9»). Then 

p-'p;:l(yo, YO-X1X2) = {ii E AI ii satisfies the condition (2.2. 11)}. 

Therefore, from (2.2.11), (2.2.3) and (2.2.8), we have 

dim p;:l(yo, Yo-x,x2)=dim jJ-Ip;:'(yo, yo-x,x2)=(8+2)+3-2= 11. 

dim 1=2·3 + 11 = 17 and we conclude the proof of Claim 4. 
Now Theorem follows easily from Claims 1 and 2. Q.E.D. 

(2.3) Remark. In the notation of (1.3.4.1), [L, p. 1145] claims the 
following: 

(2.3.1) The given isomorphism of GPMHS a: H2(X; - CI ) ~ 

H2(X2 - C2) for generic XI induces an isomorphism of PHS a2: H2(XI)" ~ 
H 2(X2)", and a2 has a lifting &2: H2(XI)8:::::;H2(X2Y' 

(2.3.2) A suitable lifting &2 descends via q*/2 to an isomorphism 
of PHS preserving ample classes &~: H2(X~):::::;H2(X~). 

But (2.3.2) is not clear. In the situation (2.3.1), we have the diagram: 

Ira 
H2(XI)q_-~) H2(X2)q 

(2.3.3) J(Q*/2)oP* J(Q*/2)oP* 

H 2(XD1-{Ell H2(X~)1-{E2) 

It is easy to see that the maps (q*/2) ° p* in (2.3.3) are embeddings of 
lattices but these embeddings are not primitive, i.e., not surjective in the 
present case. So in general a2 does not descend to an isometry of the 



Variation of Mixed Hodge Structure 685 

bottoms in (2.3.3). Moreover, even if a 2 would descend to an isomorphism of 
PHS preserving positive structure a~ of the bottoms in (2.3.3), a~ does not 
come from an isomorphism of Xi to X~. Such a phenomenon is precisely 
studied in [M.S], from which we derive the following: 

Put X=X1. We denote by r 2 (resp. r~) the subgroup of Aut (H2(X, 
zy) (resp. Aut (H2(X', Z)HE-l» consisting of those elements which pre
serve the bilinear form and the positive structure. Let rg be the subgroup 
of r 2 consisting of those elements which descend to isometries of 
H2(X', Z)l.{E'l. Then rg can be considered to be a subgroup of r~ as 
well. Set b=[r2: rg] and c=[r~: rn Let 1>2: .r(I)-7r2\D2 be the 
period map and consider its Stein factorization 

(2.3.4) 

Then Y(l) can be naturally identified with the coarse moduli space of the 
K3 surfaces X' with ordinary double points, and the degree of i!J2 over its 
image is 960b/c. However we cannot yet calculate these indices band c. 

(2.4) Problem. Prove the generic mixed Torelli theorem for other 
Todorov surfaces. 

(2.5) Example. The following example shows that, even if the period 
map (1)2,1>3): .r(l)-7r2\D2Xr3\D3 has degree lover its image, it is not 
necessarily injective, where r k (k=2, 3) are the geometric monodromies 
coming from 7r1(T(I)' 0) in (2.1.3). 

Let (Yo, Yl' Y2) be homogeneous coordinates of P2. Take 

(2.5.1) 

Then 

Hence 

(2.5.2) 

{
F=YOY1-C(YO, Yl' Y2)+ Yop(Yo, Y2)+YIQ(Yl, Y2) + a,rl 

G= YOYlm(yO, Yl' Y2)+ Yoq(yo, Y2)+ YIP(Yl> Y2)+a,rl. 

{
F(O, Yl' Y2)' G(O, Yl' Y2)=(YIQ(Yl, Y2) + ayD(YIP(Yl, Y2)+ayD 

F(yo, 0, Y2) . G(yo, 0, Y2) = (Yo p(Yo, Y2) + a,rl)(Yoq(yo, Y2) + ayi)· 

On the other hand, it is easy to see that curve {F. G=0}cP2 has no non
trivial projective automorphisms for general choice of -C, m, p, Q and ain 
(2.5.1). From this follows 

(2.5.3) ,y(F,G) in (2.2.2) has degree lover its image. 

(2.6) Problem. Does the phenomenon as in (2.5) not occur for the 
mixed period map 1>: .r(l)-7r\D? 
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3. Characterization of smoothness of canonical surfaces by GPMHS 

(3.1) Dualone-motif. 
Let H=(Hz , W, F, Q) be a GPMHS with 

0=:W1 C WzC Ws=H and H=F°-:::;F1-:::;Fz-:::;Fs=0. 

Denote by 

(3.1.1) 

the exact sequence of GPMHS 0-+ Wz-+ H -+ HI Wz-+O, and take its dual 

(3.1.2) 
V' v tr .... 

O~B~H~A~O. 

Then on H we have 

H= W_ z-:::; W_ s -:::; W_ 4=0 and 0=F1cFocF-1CF-z=H. 

Consider the weak one-motif associated to the separated extension of 
MHS (3.1.2) (cf. [Car. 1, Proposition 3]): 

(3.1.3) 

where L-IA=Acl.-lnAz and J-1B=Bcl(F-1B+Bz). The map u is 
defined by u(r}=SZ(r}-SF(r} modulo F-1B+Bz for r E L-1A, where Sz 
(resp. SF) is a section of 7r in (3.1.2) preserving the Z-structure (resp. the 
Hodge filtration). 

When H comes from geometry, i.e., H is the GPMHS on HZ(X - C) 
for a smooth pair (X, C) consisting of a surface X and a smooth divisor 
C, the graded polarization Q yields 

L-1AAH1(X,Z)nH1.1(X).l[O] and J-IB~J2B:=Bcl(PZB+Bz). 

These fit in the commutative Diagram 3. 

Diagram 3 
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(3.1.4) Remark. After we used Diagram 3 to get Proposition (3.2) 
below, we received a preprint [F.3] from Friedman where he obtained the 
same notion as Diagram 3 (cf. [F.3, (3.8»)). We also found the same 
notion in the recent paper of Carlson [Car. 3, § 15] during the proof. 

(3.2) Proposition. Let X be the minimal resolution of a canonical 
surface. Assume: 

(3.2.1) HI(X, Z)=O. 
(3.2.2) There exists a smooth member C E 1 Kx I. 

Then ct', f3 and a in Diagram 3 are isomorphic, and the following are equi
valent: 

(3.2.3) Kx is not ample. 
(3.2.4) There exists r E H2(X, Z) n HI,I(X)l.[O] such that Q2(r, r)= 

- 2 and r goes to zero by the associated dual one-motif it in Diagram 3. 

Proof The assertion on ct', f3 and a follows from (3.2.1) and the 
fact that Bz=HI(C, Z), which is a unimodular lattice. 

It is well-known that (3.2.3) is equivalent to the existence of (-2)
curves on X. This, in turn, implies that there exists a line bundle L on X 
such that V= -2 and Llo=@o, which is equivalent to (3.2.4) by Diagram 
3. 

Now suppose that there exists an L E Pic (X) such that V= -2 and 
LIe=@o' We claim HO(L):f=:O or HO(L-I):f=:O. Indeed, by the Riemann
Roch theorem, we have 

X(L)=L·(L0OJxl)/2+X(@x)= -1 + 1 +pg(X) = piX). 

Hence, if hO(L) =0, then 

(3.2.5) 

Tensoring OJx0L -I (resp. OJx) to 

we get 
0-------)-L -1-------)- OJ X 0 L -1-------)-( OJ x0 L -I) 10-------)-0 

(resp. O-------)-@x-------)-OJx-------)-OJx 10-------)-0). 

By using (OJx0L -1)lo=OJxlo and (3.2.1), we have 

(3.2.6) 
0-------)-HO(L -1)-------)-HO(OJ x0L -1)-------)-HO(OJ x Ie) and 

0-------)-H O(@x)-------)-HO(OJx)-------)-HO(OJx 10)-------)-0. 

(3.2.5) and (3.2.6) imply hO(L-I)+hO(OJxI0)~hO(OJx0L-I»piX) and 
hO(OJxlo) = piX)-l, hence hO(L -I)"::?: 1. Q.E.D. 
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4. Toward mixed Torelli theorem for surfaces with P g = ~ = 1 

(4.1) First approach: By the KUnev locus. 
Let S=C[xo, YI> Y2' zs, Z4] be the weighted homogeneous coordinate 

ring of P=P(1, 2, 2, 3, 3). Set S6={fe Sifis weighted homogeneous of 
degree 6}. Let U (resp. V) be the set of 2-dimensional subspaces U of the 
C-yector space S6 satisfying that Xu:={x e Plf(x)=O for all fe u} is a 
canonical surface (resp. a canonical Kuney surface) with a smooth canon
ical curve Cu' Denote by ua (resp. va) the subset of U (resp. V) consist
ing of those points u for which Xu is smooth. 

In the notation (1.1.4), since mx,,~l:!Jx,,(1) (u e U), we see .4(1)= U/H 
by (1.2.1), .4ft) = ua/H, Y(I)= V/H and Yfl) = va/H, where H=Aut P. 
Take a base point 0 e Va and set Gz : = Aut (H2(XO-CO, Z), W, Q) and 
Gk,z:=GrfGz for k=2, 3 (see I. Section 2). We denote 

r u,,:=Im{n't(Ua, O)~Gz}, ry,,:=Im {"l(va, O)~Gz}, 
(4.1.1) 

rk.u,,:=Im{ru,,~Gk.z}, and rk,y,,:=Im{ry,,~Gk,z}' 

The next lemma follows easily from the discreteness of H2(Xu
Cu , Z) and the path-connectedness of H: 

(4.1.2) Lemma. In the above notation, let Ul> U2 e ua and "I:" e H 
such that "I:"Ul =u2. Take any path "I:"(t) in H with "I:"(O)=id and "1:"(1)="1:", and 
denote by r the path "I:"(t)ul in ua. Then we have 

Hence we can define the mixed period map 

tJ): .4f:)~ru,,\D. 

By the existence of a local simultaneous resolution of rational double 
points (e.g. [Ty]) and the connectedness of H, tJ) can be extended to 

(4.1.3) 

(4.1.4) Lemma. In the above notation, there exists a Zariski open 
subset T of Yfl) satisfying tJ)-l(tJ)(T» = T. 

Proof. First notice that, by Proposition (3.2), we see tJ)-l(tJ)(.4ft») 
=.4ft). Set 

We use the characterization (1.6.2.3) of the KuneY locus Y'(l) in .4'(t) by 
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the period map f/J2' Let f/J-!(f/J(§"(!»)=§"(l) U Tl U ... U rr be the 
decomposition into irreducible components. 

Claim. dim Ti < 11 for all i. 
Indeed, if dim Ti> 12, then dim f/JzCTi) > 12-1 = 11 because of Ti rt 

§"(l) and (1.6.2.3). On the other hand, dim f/JzCTi) = dim f/J2(§"(1» = 12-
2= 10 by (1.6.2.3), a contradiction. 

Now by the infinitesimal mixed Torelli theorem (1.7.1), we have 
dim f/J(§"(l»= 12. Therefore T=f/J-!(f/J(§"(l»-Ui f/J(Ti» is the desired 
Zariski open subset. Q.E.D. 

(4.1.5) Problem. Extend the mixed period map (4.1.3) to f/J: f C vII(l) 
~r ua \D through extension over the points with finite local monodromy. 
This is possible by the comment just after Problem (I.12.1). Show that 
f/J(icvII(I)-vII(!»t;f/J(T), where Tis in (4.1.4). 

(4.1.6) Problem. Do the monodromies r ua and r va in (4.1.1) coin
cide? 

After solving Problems (4.15) and (4.16), we shall be able to arrive at 
the generic mixed Torelli theorem for vII(!) by Theorem (2.2) and Lemma 
(4.1.4). Indeed by Lemma (4.1.2) and the argument in the proof of Theo
rem (2.2), we see that the mixed period map f/J: §" (1) ~ r va \ D has degree 1 
over its image. 

(4.1.7) Remark. For Problem (4.1.5), the degenerate curves Co 
which we should be concerned with are of types [la-a-a] and [let-a-a] in 
[N.V], and the following should be carried out: 

(4.1.7.1) Explicit description of semi-stable reduction of pairs. 
(4.1.7.2) Computation of the limit of the MHS by "the mixed 

Clemens-Schmid sequence" (Problem (I.12.3» or by the abstract log com
plex for d-semi-stable pairs (1.11). 

(4.2) Second approach: By boundary. 
In [F. 2], Friedman gave a proof of the Torelli theorem for K3 

surfaces by using a general point of type II degeneration. We hope that 
his argument will go through in our context, but we have not yet gone far 
in this approach. I. Section 10, Problems (I.12.3), (I.12.4), (I.12.5) etc. 
are related. 

(4.3) Third approach: By"IVMHS" 
This is only a program at the moment. 

(4.3.1) Problem. Rewrite IVHS theory ([e.G], [C.G.G.H], [G.H], 
[Gri. 4], [Do], [Gre] etc.) in the context of "IVMHS". 
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Added in Proof The following article is closely related to our 
Prblem (II. 1.8.4): 

Hain, R. M. and Zncker. S., Unipotent variation of mixed Hodge 
structure, Invent. Math., 88--1 (1987), 83-124. 
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