Advanced Studies in Pure Mathematics 10, 1987 Algebraic Geometry, Sendai, 1985 pp. 179–183

Coverings of Algebraic Varieties

Rajendra Vasant Gurjar*

Introduction

In this article we survey and prove some of the results about (unramified) coverings of algebraic varieties. Recently Madhav Nori has asked the following question.

Conjecture A. Let S be a projective, non-singular surface over the field of complex numbers C. Suppose D is an effective divisor on S with $D^2 > 0$. Let N be the normal subgroup of $\pi_1(S)$ generated by the images of the fundamental groups of the non-singular models of all the irreducible components of D. Then the index $[\pi_1(S) : N]$ is finite.

If the conjecture is true, then any surface (smooth, projective) possessing a (possibly singular) rational curve of positive self-intersection would have a finite fundamental group! In [7] Nori verifies the conjecture in a special case. Surprisingly, this conjecture is related to the following old question:

Conjecture B. Let X be a smooth, projective variety over C. Then the universal covering space of X is holomorphically convex.

Recall that a complex manifold M is said to be holomorphically convex if given a sequence of distinct points x_1, x_2, \cdots in M without a limit point in M, there exists a holomorphic function f on M such that the set $\{f(x_n)\}_{n=1,2,\dots}$ is unbounded.

A compact, complex manifold is vacuously holomorphically convex. We will prove the following results in this paper.

(1) (See § 1, Proposition 1). Suppose every covering space $\tilde{S} \rightarrow S$ is holomorphically convex. Then Conjecture A is valid for S, if D is an irreducible curve. If the universal covering space is holomorphically convex, then Conjecture A is true, if D is a rational curve (possibly singular).

(2) (See §1, Theorem). Let $\pi: S \rightarrow \Delta$ be an elliptic surface. If

Received October 28, 1985.

^{*)} The author was supported by a fellowship from the Japan Society for the Promotion of Science.

 $\chi(S, \mathcal{O}_s) = \sum_j (-1)^j \dim_{\mathbb{C}} H^j(S, \mathcal{O}_s) > 0$, then any covering space of S is holomorphically convex. If $\chi(S, \mathcal{O}_s) = 0$, then the universal covering space of S is holomorphically convex.

First we discuss related results and then turn to the sketch of the proofs.

(i) If C is a rational curve on S with $C^2 > 0$, then we shall show that $H^1(S, \mathcal{O}) = 0$ and hence $\chi(S, \mathcal{O}) > 0$. In particular, if S is an elliptic surface then Nori's conjecture is valid for S in the case C is a rational curve on S with $C^2 > 0$. Hence $\pi_1(S)$ is finite.

(ii) There exists an elliptic surface $S \simeq C_1 \times C_2$, where C_i are elliptic curves, such that S has a covering space which is not holomorphically convex. See [3] for details.

(iii) Using the Enriques classification of surfaces it follows that Conjecture B is verified for all algebraic surfaces which are not of general type.

(iv) The universal covering \tilde{S} of a projective, non-singular surface S may not be embeddable as an analytic subset (open or closed) in any \mathbb{C}^n . For, if $C \subset S$ is a rational curve, then there exists a lift $\overline{C} \to \widetilde{S}$ where \overline{C} is the non-singular model of C. Since $\overline{C} \simeq \mathbb{P}^1$, the map $\overline{C} \to \widetilde{S}$ must be constant (if $\widetilde{S} \subset \mathbb{C}^n$).

Conjecture B has been verified in some cases. In [9] Siegel proved that if \tilde{S} is a bounded open subset of C^n , then \tilde{S} is a Stein manifold. Recently Mok and Wong have generalized this to coverings of quasi-projective varieties. See [6].

Using results of Kajiwara-Sakai, James Carlson and Reese Harvey have verified Conjecture B for a compact Moishezon manifold whose universal covering space is a domain spread over an open subset of a Stein manifold. See [2].

In [8] Shabat has proved that if $\pi: S \to \Delta$ is a holomorphic map with Δ a compact Riemann surface of genus ≥ 2 and all fibres of π are compact Riemann surfaces of genus ≥ 2 , then the universal covering space of S is holomorphically convex.

A result of Griffiths asserts that any smooth projective variety has a Zariski open subset whose universal covering space is a bounded domain in C^n (and holomorphically convex). The results of Griffiths and Shabat are easy consequences of Bers' simultaneous uniformization theorem. See [1].

§1.

We sketch the proofs of some of the results.

Proposition 1. Suppose every regular covering space \tilde{S} of S is holomorphically convex. If $C \subset S$ is an irreducible curve with $C^2 > 0$, then the

normal subgroup generated by the image of $\pi_1(\overline{C})$ in $\pi_1(S)$ has finite index. (Here \overline{C} is the non-singular model of C).

Proof. Let $H = \text{image } \{\pi_i(\overline{C}) \to \pi_i(S)\}$ and consider the covering $\varphi: \widetilde{S} \to S$ such that $\varphi_*\pi_i(\widetilde{S})$ is the normal subgroup generated by H. By assumption, \widetilde{S} is holomorphically convex.

By generalization of the Lefschetz hyperplane section theorem proved in [7], it follows that $\pi_1(C) \to \pi_1(S)$ is surjective (since $C^2 > 0$). Hence $\varphi^{-1}(C)$ is a connected curve on \tilde{S} . By construction, there exists a lift $\overline{C} \to \tilde{S}$. Let $\varphi^{-1}(C) = \bigcup_{i=1}^r C_i$, where C_i are irreducible components of $\varphi^{-1}(C)$. Corresponding to any C_i , there exists a lift $\overline{C} \to \tilde{S}$ with image C_i , because φ is a regular covering. Thus each C_i is compact. Choose points $x_i \in C_i$. If the set $\{x_i\}$ is infinite, it has no limit point in \tilde{S} . There exists a holomorphic function f on \tilde{S} which is unbounded on $\{x_1, x_2, \cdots\}$. But $f | C_i$ is constant for every i and $\bigcup_{i=1}^r C_i$ is connected, a contradiction.

The main result in this paper is the following.

Theorem. Let $\pi: S \rightarrow \Delta$ be an elliptic surface (which is projective). If $\chi(S, \mathcal{O}) > 0$, then any covering space of S is holomorphically convex. If $\chi(S, \mathcal{O})=0$, then the universal covering space of S is holomorphically convex.

It is easy to see that, for proving the above result, we can assume that no fibre of π contains an exceptional curve of the first kind. The proof depends on the following:

Proposition 2. Let $\pi: S \rightarrow \Delta$ be a minimal elliptic fibration with Δ a compact Riemann surface of genus g. For a general fibre F of π , let I denote the image of $\pi_1(F)$ in $\pi_1(S)$. Then we have an exact sequence

$$(1) \longrightarrow I \longrightarrow \pi_1(S) \longrightarrow \Gamma \longrightarrow (1);$$

where $\Gamma = \langle x_i, y_i, \alpha_j; 1 \le i \le g, 1 \le j \le r | \prod_{i=1}^{g} [x_i, y_i] \prod_{j=1}^{r} \alpha_j = 1, \alpha_j^{m_j} = 1 \rangle$. Here γ is the number of singular fibres of π , with multiplicities m_1, \dots, m_r (≥ 1). If π has at least one singular fibre not of the type mI_0 , then I is a cyclic group of odd order. If further g=0, then $I = \{1\}$.

We will refer the reader to the paper [3] for the proof of this proposition. The proof involves detailed description of the singular fibres and the monodromy around singular fibres described in the fundamental papers of Kodaira [4], [5]. To deduce the Theorem from Proposition 2, we use:

Lemma 1. Suppose $\Delta \simeq \mathbf{P}^1$ and π has at most two singular fibres, both of type ${}_mI_0$. Then S is birationally a ruled surface and hence any convering of S is holomorphically convex.

R. V. Gurjar

Proof. The fact that $|nK_s| = \phi$ for all $n \ge 1$ follows easily from the canonical bundle formula for S. For a ruled surface $X \rightarrow C$, any covering \tilde{X} of X arises from a covering of C and base change. Finally, one knows that any Riemann surface is holomorphically convex, from which it follows trivially that \tilde{X} is holomorphically convex.

Proof of Theorem. It is easy to see that for a minimal elliptic fibration $\pi: S \to \Delta$, $\chi(S, \mathcal{O}) > 0$ if and only if π has at least one singular fibre not of type ${}_{m}I_{0}$. Suppose first g=0. If $\chi(S, \mathcal{O}) > 0$ and π has at most two multiple fibres, then we can show that $\pi_{1}(S)$ is finite. For a proof, see [3]. In this case the universal covering space \tilde{S} of S is compact and we are done. If $\chi(S, \mathcal{O})=0$ and π has at most two singular fibers (necessarily of type ${}_{m}I_{0}$), then by Lemma 1 we are done. So we can assume that either g>0 or g=0 and π has more than two multiple fibres. In the exact sequence

$$(1) \longrightarrow I \longrightarrow \pi_1(S) \xrightarrow{\phi} \Gamma \longrightarrow (1),$$

the significance of the group Γ is as follows.

There exists a ramified (possibly infinite) covering $\psi: \tilde{\Delta} \to \Delta$ such that Γ acts as a properly discontinuous group of analytic automorphisms of Δ and ψ is the quotient map $\tilde{\Delta} \to \tilde{\Delta}/\Gamma \simeq \Delta$. Further, letting $a_i \in \Delta$ be the point for which the singular fibre $\pi^*(a_i)$ has multiplicity m_i , for every point $p \in \tilde{\Delta}$ with $\psi(P) = a_i$, the local ramification index of ψ at P is m_i .

Suppose first that $\chi(S, \mathcal{O}) > 0$. Then *I* is finite. For any subgroup *H* of $\pi_1(S)$, let $\Gamma_1 = \phi(H)$ and $H_1 = \phi^{-1}(\Gamma_1) = I \cdot H$. Then *H* is a subgroup of finite index in H_1 . Letting \tilde{S} be the universal covering of S, $\tilde{S}/H \rightarrow \tilde{S}/H_1$ is a finite, unramified map. To show that \tilde{S}/H is holomorphically convex, it suffices to show that S/H_1 is holomorphically convex. But we obtain \tilde{S}/H_1 by pulling back the elliptic fibration via base change $\Delta_1 \rightarrow \Delta$ where $\Delta_1 = \Delta/\Gamma_1$. The fibration $\tilde{S} = \Delta_1 \times_A S$, after normalization, gives an unramified covering of *S* which is nothing but \tilde{S}/H_1 .

Since Δ_1 is holomorphically convex and the fibres of $\tilde{S}/H_1 \rightarrow \Delta_1$ are compact, \tilde{S}/H_1 is also holomorphically convex.

Now consider the case $\chi(S, \mathcal{O})=0$. In this case, we consider $\tilde{\Delta} \rightarrow \Delta$ and the pulled-back elliptic fibration $\lambda: \tilde{S}' \rightarrow \tilde{\Delta}$. Then \tilde{S}' is an unramified covering of S, λ has no singular fibres, all the fibres of λ are complexanalytically the same and $\tilde{\Delta}$ is contractible. Then by a theorem of Grauert, \tilde{S}' is biholomorphic with $\tilde{\Delta} \times E$, E being isomorphic to a fibre of λ . Clearly, \tilde{S} is biholomorphic with $\tilde{\Delta} \times C$ as the universal covering of E is C. Then \tilde{S} is trivially holomorphically convex.

To complete the arguments, we prove:

Lemma 2. Let S be a smooth, projective surface over C. If $C \subset S$ is a rational curve with $C^2 > 0$, then $H'(S, \mathcal{O}) = \{0\}$.

Proof (by M. P. Murthy). Consider the Albanese morphism $f: S \rightarrow Proof$ (by M. P. Murthy). Alb(S). Then, on the one hand f(C) generates Alb(S) as $C^2 > 0$, on the other hand f(C) is a point since C is a rational curve. Hence Alb(S)= $\{0\}$ and $H^{1}(S, \mathcal{O}) = \{0\}.$

Note: Added in proof. In the situation of Proposition 2, I is actually trivial if $\chi(S, \mathcal{O}_s) > 0$. For a proof, see D. A. Cox and S. Zucker's paper, "Intersection Numbers of Sections of Elliptic Surfaces", Invent. Math., Vol. 53, Fasc. 1, 1979.

References

- [1] L. Bers, Simultaneous uniformization, Bull. Amer. Math. Soc., 66 (1960), p. 94-97.
- [2] J. Carlson and R. Harvey, A remark on the universal cover of a Moishezon space, Duke Math. J., 43 (1976), 497-500.
- [3] R. V. Gurjar and A. R. Shastri, Covering spaces of elliptic surfaces. Compositio Math. 54 (1985), 95-104.
- [4] K. Kodaira, On compact analytic surfaces II, III. Ann. of Math., 77 (1963), 563-626; 78 (1963), 1-40.
- -, On homotopy K-3 surfaces. Essays in topology and related topics. [5] -Papers dedicated to George de Rham, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
- [6] N. Mok and Bun Wong, Characterization of bounded domains covering Zariski dense subsets of compact complex spaces, Amer J. Math., 105 (1983), 1481–1487
 [7] M. Nori, Zariski conjecture and related results, Ann. Scient. Ec. Norm.
- Sup. 4^e serie. t. 16 (1983), 305-344.
- [8] G. B. Shabat, The complex structure of domains that cover algebraic surfaces, Funct. Anal. Appl., 11 (1977), 135-142.
- [9] C. L. Siegel, Analytic functions of several complex variables, Institute for Advanced Study, Princeton, 1949.

School of Mathematics Tata Institute of Fundamental Research Hami-Bhabha Road Bombay 400005, India