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Uniqueness of Einstein Kihler Metrics
Modulo Connected Group Actions
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§.0. Introduction

Throughout this paper, we fix an arbitrary n-dimensional compact
complex manifold X with positive first Chern class ¢(X)p>0. We then
put

A : the set of all Kahler forms on X representing 2z¢,(X)g,

A+ :={w e A | v has positive definite Ricci tensor},

é:={we A |w is an Einstein form},

C>(X)g: the space of real-valued C>-functions on X,

Aut (X): the group of holomorphic automorphisms of X,

G:=Aut’(X): the identity component of Aut (X).

Furthermore, Aut(X) is always assumed to act from the right on X% by
(0,8) e X XAut(X)—>g*w e X .

The main purpose of this paper is to prove the uniqueness of Einstein
Kihler metrics, if any, on X up to G-action. Such uniqueness was
known only for i) Kahler C-spaces (cf. Matsushima [12]) and ii) some non-
homogeneous Einstein manifolds recently discovered by Sakane [I13].
Now, the correct statement we obtain has the following stronger form as
announced earlier in [9}:

Theorem A. Fix an element w, of A ". Let u*: 4 *—R be the restric-
tion to A+ of the A -energy map o e X —M(w;, v) € R of the Kihler
manifold (X, w,) (see Section 1, also [9]). Assume that §+¢. Then

(i) p* is bounded from below and takes its absolute minimum exactly
on é&.
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(ii) & consists of a single G-orbit.

We now suppose that &+¢, and let K be a maximal compact sub-
group of G. By the well-known theorem of Matsushima [11], there exists
an element @ of & such that the isotropy subgroup of G at f coincides with
K. Hence & is G-equivariantly diffeomorphic to G/K. Note that G/K
has a structure of a Riemannian symmetric space, though the choice of its
metric is not unique (even up to constant multiple) if the symmetric space
G/K is reducible. We now endow & with the natural Riemannian metric
defined in [10] (see also Section 9 of the present paper). Then Theorem A
allows us to sharpen a result in [10] and one can determine the structure
of & as follows:

Theorem B. If &=¢, then & is G-equivariantly isometric to the
Riemannian symmetric space G|/K endowed with a suitable metric, and
Sfurthermore, Aut (X) acts isometrically on &.

As a straightforward consequence of Theorem B, we obtain:

Theorem C. Let H be an arbitrary (possibly non-connected) compact
subgroup of Aut(X). If in addition &=¢, then there always exists an H-
invariant Einstein Kdhler metric on X.

We now briefly explain how the proof of Theorem A is carried out.
Let w, be an arbitrary element of #° and R(w,) be the corresponding
Ricci form (cf. (1.1)). (Later in this introduction, we set w,:=R(®) for
some element @ of X * and vary o, together with &.) Since R(w,) is
cohomologous to w,, there exists a unique function f'e C*(X)g such that

Re)=ao+v=10f and | exp(Nos'=[ s
X X
We then consider the following one-parameter families of equations:
0.1) log ((wo'l"\’ -1 ag‘h)”/won)-: —ty+f, 0=<r<l,
02 log((@++ —130p,)" /0= —tp,—L(O, )+ f,  0Zt<],

(see Section 1 for the definition of L), where in both cases, the solutions
Y, and ¢, are required to belong to

H:={p e C*(X)g|wy++ —10dd¢p is positive definite on X}.
Note that (0.1) above is introduced by Aubin [2] in his study of Einstein

Kéhler metrics on compact Kihler manifolds with ¢,>0. One can easily
pass from the solutions of one of (0.1) and (0.2) to those of the other
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because for each ¢, the difference between +», and ¢, is just a constant
(which may depend on t) on X. Now a crucial step of the proof of
Theorem A is to show the following fact:

(0.3) Given an orbit O in &, we can connect Q with every sufficiently
general point & of A" by a smooth one-parameter family of solutions
{10t Z13 (resp. {p, |01 1)) of (0.1) (resp. (0.2)) such that

{a)o—}—v — 1004, =w,++ — 1809, ¢ O, and
0o+ — 100y, =w,++ — 130p,=a, (i.e., R(®)=0w,).
Once one shows (0.3), the proof of Theorem A proceeds as follows:

(i) Consider the 2 -energy map u: 4 —R of the Kéhler manifold
(X, w,). Recall that p takes a constant value C on O (cf. [9]). Since
(@, —133¢,) is a monotone decreasing function of ¢ (cf. (5.1)), the
fact (0.3) above implies ¢=>C on a dense subset of % *. By the continuity
of u, we obtain p=>C on A (cf. (8.1)).

(i) Note that (0.2) has a unique solution ¢, € 5 at t=0 (cf. (4.3.2)).
Hence one can easily show that, over {0 <7 <1}, only one smooth family
of solutions of (0.2) is possible (cf. (5.3), (5.4)). We now fix arbitrary
G-orbits O,, 0, in &. In view of (0.3), a sufficiently general @ e 2#"* can
be connected with both O, and O, by smooth families {p{|0<s <1}
(i =1, 2) of solutions of (0.2) such that

w,+v —100¢ € 0,, (i=1,2), where R(®)=w,.

Since these two families must coincide, we have ¢*'=¢l* and therefore
01=02-

We now give an outline of the proof of (0.3). It roughly consists of
the following three steps. (For technical reasons, the actual proof is not
divided into such steps.)

Step 1: Given a point # € O, we can always find a solution +, of
0.1) at t=1 such that §=w,++ — 13dy,. Except the obvious case
H(X, 0(T(X))) = {0}, this +, may fail to extend to a smooth family
{¥r,]1—e=t <1} of solutions of (0.1). Because if such a family exists,
differentiating (0.1) with respect to ¢ at =1, we have ([J,+ D(y,-1)=
—r,. Hence +, must satisfy

0.4) f Vf"=0  forallpe H,,
X

where H, denotes Ker ([1,+1) in C*(X)z. We therefore seek 8=,
+ — 1004, € O which satisfies (0.4), and a method to find such a @ will be
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given in Section 6. However, the condition (0.4) is not enough (cf. (7.2),
(7.3)) and a detailed analysis of (0.1) using a bifurcation technique will be
effectively employed (cf. Section 7). Finally, since the point @ e ¢, is
sufficiently general, a suitably chosen +, (resp. ¢,) extends to a smooth
family {,|1—e<t <1} (resp. {p, |1 —e <t £<1}) of solutions of (0.1) (resp.
(0.2)).

Step 2: By the monotonicity of z(w,++ — 190¢p,) (Where we always
consider such ¢,’s as depending smoothly on ¢), one has

0.5) o+ V=1 33%) = @+ V=1 33%) = p(0)

along the solutions of (0.2), and the family {p,|1—e<?<1} in Step 1
uniquely extends to a smooth family {p,|0<z <1} of solutions of (0.2),
because for each 0<r<1, the existence of the lower bound of p(w,+
~/=1d3¢,) gives us a rough a priori estimate for ||, co-

Step 3: Now, another difficulty comes up at ¢=0, since the
straightforward a priori bound for |jp,|lc, obtained from (0.5) tends to
infinity as 7|0. In Section 3, we derive a general lower bound of the
Green function for the Laplacian from the isoperimetric inequality of
Gallot [6]. This bound allows us to overcome the difficulty and thus we
complete the whole extension to {p, |07 <1}

In conclusion, we wish to thank Professors S. Kobayashi and H.
Ozeki and Doctors I. Enoki and R. Kobayashi for their valuable sug-
gestions and constant encouragements.

§ 1. Notation, convention and preliminaries

(1.1) Throughout this paper (with the only exception of Section 8)
we fix, once for all, an element w, of »#". In addition to the notation
defined in Introduction, we put

C>(X)¢: the space of complex-valued C>-functions on X,
% the space of real d-closed (1, 1)-forms on X in 2z¢,(X)pg,
¥ the set of all volume forms on X,

where on X, everywhere positive real 2n-form is called a volume form.
We write an arbitrary element o of Z~ as

o=+ =13 g,dz* \dz*

in terms of holomorphic local coordinates z=(z*, z%, . --,z") on X. The
corresponding Ricei tensor is denoted by Y R(w),;dz*®dz? and we put
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R():=+—13 R(w),;dz"\dz?. Then R(w)=+—1050logdet(g,,) e %.
We furthermore denote by o(w) (resp. [1,) the corresponding scalar
curvature (resp. Laplacian on functions):

o(@): =2 g R(®).p,

Coi=>, g« 8*/0z°02%,
where (g#*) is the inverse matrix of (g,;). For each ¢ € C*(X)g, we put
(1.1.1) oop):=w,++ — 1300, '
(1.12) 0e) —exp ()",

where & is the unique element of 2", such that R(@)=w, Recall that
the following is a straightforward consequence of Yau's affirmative answer
[14] to Calabi’s conjecture:

(1.1.3) The mapping we A —>R(w) e € defines a homeomorphism
R: (|| Nowsnd = (G || lona) for each (k, @) € ZX R with k=0 and 0<
a<l.

Now, (1.1.1) and (1.1.2) above define the mappings w,: C=(X)z 3> ¢
—ap) € € and 2 C*(X)g 3 o—>2(p) € 7. Let

H:={p e C*(X)r|o\p) € £}
as in Section 0. Then the natural map
H——>, o—>0,(0)

is surjective. To each wyp)e o, the corresponding .., (@),
R(w,(p)) will be denoted respectively by [1,, o(¢p), R(p) for simplicity.
Finally, we define the mappings v: #—¥" and Ric: ¥"—=% by

v(w):=o" (we X)),

Ric(Q):=+ —1ddlogv (2e¥),
where we write Q=v(z) [[?., (v — 1 dz*A\dz®) in terms of holomorphic

local coordinates z=(z', z% ---,z") on X. Then the following diagram
commutes:

£
Co(X)g—a—37"

v O

¢ —>A

Wo

n

=
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(1.2) Let I be a (not necessarily open or closed) interval in R, and
S be either I or a product I XIX---XIof I. A family {¢,|se S} of
functions in C=(X)y, is said to be smooth if the map
SXX—>R,
(S’ X)|——>§DS(X)
is a C~-mapping. Any one-parameter family {¢,|s € I} of functions in

C>(X)g is called a path, and for every smooth path {p, | ¢ € I}, the function
9¢,/0t € C=(X)g is denoted by ¢,.

(1.3) Let & be a non-empty set. Then a mapping H: ¥ X F—R
is said to satisfy the 1-cocycle condition if

(i) H(ey, 0)+ H(o;, 0,)=0, and

(i) H(oy, 0,)+ H(o;, 05)+ H(gs, 0,)=0
for all ¢y, 05, 7, € <.

(1.4) (cf.[9])). Let ¥V, be the volume J‘ w,"/n! of the Kahler mani-
X

fold (X, w,). We put V:=n!V,. To each pair (¢’, ¢"") € C*(X)g X C=(X)g
(resp. (¢', ¢') e A X ), we associate a real number L(y’, ¢”) (resp.
M(¢', ¢")) by

a4 L= ([ ganoriv ),
142 (resp. Mo, )= = {[ goter—manto)riv }ar),

where {p,|a<t<b} is an arbitrary piecewise smooth path in C~(X)g
(resp. o) such that ¢, =¢’ and ¢,=¢"”. Then L(¢/, ¢”) (resp. M(¢’, ¢"))
is independent of the choice of the path {p,|a<t<b} and therefore
well-defined. Recall that L (resp. M) satisfies the 1-cocycle condition.
Furthermore,

(1.4.3) L(ps, ¢+ C)=L(p,— C, @) = L(gs, )+ C,
(1-4-4) (resp. M(€D1 + Cla ¢z+ Cz) = M(gol, §02))a

for all ¢,, ¢, € C=(X)p (resp. ¢,, ¢, € ) and all Ce R (resp. C,, C, € R).
In view of (1.4.4) above, M: 5 X s#— R factors through #" X #". Hence
we can define the mapping M: o X o — R (denoted by the same M) by

M((l)/, w”):=M(SD,, SD//) (a)l’ (0/, 3 %‘)’

where ¢, ¢” are elements of J# such that ¢ )=’ and op”)=0".
Then the mapping
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n: A —>R, o—>p(w): = M(wy, v)
is called the £ -energy map of the Kahler manifold (X, »,). We now put

Ho:={p e #|L(0, p)=0}. The mapping #, > p—w,(p) € # enables us
to identify s, with &, and we have the following commutative diagram:

Ha)

-)0

Cm(X)R——S——VV
U N\A lRic
# Y e
U C B U

Hy — A"

(1.5) We regard L as a function on " X" via the identification
0, C>X)g=7". Let N: A X —R be the pull-back —v*L of —L by
v: A" —¢". Then this N is characterized by the following commutative
diagram:

A XA ——>R
e —L
VXY = C(X)gXC=(X)z.

Since L satisfies the 1-cocycle condition, so does N. A straightforward
computation shows that, for each pair (o', 0”’) € A X A", the number
N(o’, 0"} is given by

(1.5.1) N, o) = f " { J - (ingbt)R(go‘)"/V}dt,

where {¢, |a@ <t <b} is an arbitrary piecewise smooth path in s such that
w(p.) =0 and wlp,) =0".

Remark (1.5.2). Several generalizations of L, M, N (which were
announced in [8], [9] to appear in this paper) will be given separately in
[3] as a self-contained article.

(1.6) (cf. Aubin [2]). For each pair (¢/, ¢”') € 5 X H#, we put
(1.6.1) I(¢', ¢"): =L (0" — ¢ W) —ale” )V,

1.6.2) J(@', ¢')i=—L(¢/, ¢”)+IX (" — o) V.
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Then both I: 57 X #—R and J: 5 X #— R factor through " X ', i.e.,
I and J are regarded as functions on £~ X £ by

o', 0")y:=I{¢,¢') and J(&, 0"):=J(¢, ¢")

for all o', 0"’ e X, where ¢/, ¢’ € 2 are such that wy(¢')=0«’ and w(¢")
=w’’. We later need the following properties of I and J:

(1.6.3) J(¢', ¢")=0 and the equality holds if and only if ¢'=¢"+
constant.

(1.64) 0y, o) <(n+ 1)U, 9")—J(¢'s ¢ ) Snl(g!, ¢ for all
so/’ SD”-
These follow from Aubin’s result [2; p. 146] and the identity J{(¢’, ¢’)+
J@”, o) =1(¢’, ¢")=1(¢", ¢'). We now take an arbitrary smooth path
{p,]a<t<b}in o#. Then a simple calculation shows that

165 2.0, 0)-10.00=-[_oiTed0serIY.

(1.7) Throughout this paper, we always denote by f the function in
C=(X)y, defined by »

(1.7.1)  R(w)=w++—183f and J exp (o =V (cf. Section 0).

To each ¢ € ), we can similarly associate a function f, ¢ C=(X), with
the following properties (cf. [9]):

(1.7.2)  Rl@)=o(p)++—13df,

(173 poe)=—[ _foker/v,

(1.7.4 o ve=—(0,,+ 1), for every smooth path {¢,|a<t <b} in H#,.

ot
(1.8) We shall now show that

(18.1) N, o) —M(&, o) = J(o, R@"))—J(o/, R@)) for all
o,0"eH.

Proof. Choose ¢/, ¢ € o, so that w(p) =0’ and w¢”)=w". Let
@1 =¢'+1(p" —¢ )+ C, & #,, 0=t <1, and we denote each wy(p,), f;,, (1,
respectively by o®, f;, (J,. Then by (1.7.2) ~(1.7.4) and (1.5.1),

a

1)) d )y — d Dyn
oMy o) =) =2 (<[ fworrv),
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—ddt_N(wO’ ®) =JX (a t¢z)R(¢t)n/ V= _IX (¢t+fz)wo(§0t +) 1V
-
7 L0, o, + f))-
Since L(0, ¢,)=0 for all ¢, we have
N )= Mo o =2{[ [PV —Lign gt 1)

d
27?] (@, R(p,))-
Integrating this over the interval [0, 1], we obtain (1.8.1).

§ 2. Matsushima’s theorem and some identities on Einstein Kihler mani-
folds

Throughout this section, we assume &+, and then fix an arbitrary
element §=+/—1 3 6,5 dz* \dz? of &. By quoting the well-known theo-
rem of Matsushima [11], we shall introduce several notations on Einstein
Kahler manifolds. Some technical identities on such manifolds will also
be proven for later purposes.

(2.1) Let g be the space HX, O(T(X))) of all holomorphic vector
fields on X. For each Y e g, let Y denote the real vector field Y+ Y and
We Set Q0 i={Yg|Y eg}. Then Y Y, defines an isomorphism of the
complex Lie algebras (g, v/ — 1) =(G.ear» J), Where J is the complex struc-
ture of X. We now consider the G-orbit O through ¢ in &. This is
written as

0=G/K,

in terms of the isotropy subgroup K, of G at §. Let f, be the set of all
Killing vector fields on X with respect to the Kahler metric §, where each
Killing vector field is regarded as an element of g via the identification
§=Q,.;- Then i, is the Lie subalgebra of g corresponding to K, in G.
For each ¢ ¢ C~(X),, we define the vector field Y§ on X by

1 ]
2.1.1 Yor=_— « 9
( ) @ 5 2.0 pye
where ¢*=73" 6°3;0, (67) being the inverse matrix of (4,;). Take the
one-parameter group )%,:=—exp(¢Y%g), e R, on X generated by Y.
We now have the following theorem of Matsushima [11]:
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Theorem (2.2). Let Hy:={pe C*(X)g|(ds+ =0} and we set
poi=+—1f,and HS:=H,Qz,CCC>(X);. Then

221) t,={YjlpevV—THy} and p,={Y3|p e Hy};

(22.2) ¢e HS—Y5eg defines an isomorphism HE=g and hence
g="%,+1, and £,N p,=1{0}.

This theorem in particular implies the following identification:

To(o) = Te(G/Ko) =P, = Ho
(2.2.3) 3
—87((.]’?:)*0) li=ge—> Y §¢—>0.

We put ¥:= Y%, for brevity. Then by the next computation, the left-hand
side of (2.2.3) is shown to have a very nice description:

%((yzt)*e)|t=o=Lya=<doif+ifod)a
(2.2.3)

S L d(—ap+3p) =+ =T 0.
We shall now prove the following technical Lemma:

Lemma (2.3). Let { , Y,: {p-forms on X} X {p-forms on X}—
C*(X)e, p=1,2, - -+, be the natural Hermitian pairings induced from the
Kdhler metric . Then for all p, \» € Hy and all { € C=(X)g, we have

2.3.1) (14438, 300 = (33C, 330 o+ (AT 4L), 30>

In particular (T, 1){@4, 8pYs= (00, 300> s=(T14+1){dp, 2>, and

2.32) —L o(B0L, G " =L» (o — 8o, B> ){(T o+ DEYO™.

Proof. Fix an arbitrary point x of X, and choose holomorphic
local coordinates (z', z%, - - -, z*) centered at x such that 6,,(x)=4,, and
(d6,5)(x)=0 for all « and 8. Note that ¢*, «=1,2, .- -, n, are all holo-
morphic (cf. (2.1.1), (2.2.2)). Therefore, at the point x,

D 0<8C9 aSD>0= D 0(2 Ca¢a)= 4;5: CaBSDa,e‘l' aZﬁ Caﬁﬁgoa
= <a‘§cﬂ 6590>6+ <3(D ) a§0> 0

which proves (2.3.1). For (2.3.2), let &:=(,+1)¢. Then
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[ v—cap. 060
— V=T [ (pa0y+3pN0IE ARG (because 4= — (%)
oy | IX ga(goaw)Ana"-l:J——le 008 A\ G Ang-1
—[ o8, 007 =_o(D1uaL, 993, 0%, 0> o
+ L{wz;, " (cf. (2.3.1)

= ——j ©<00C, oy 0" (because = [,¢).
X

§ 3. Lower bounds for the Green function of the Laplacian

In this section, using the isoperimetric inequality of Gallot [6], we
shall construct some lower bound for the Green function of the Laplacian
on a compact Riemannian manifold. This bound applies to our compact
Kahler situation and allows us to obtain an inequality which turns out to
be crucial in our later investigation.

(3.1) Let (M, g) be an m-dimensional compact Riemannian mani-
fold. The corresponding Ricci tensor, volume, volume form and diameter
- are denoted respectively by r,, V,, dM, and D,. We then set

ag:=D2 Inf {r,(r, r)/(n—1); [r[, =1},

where the infimum is taken over all unit tangent vectors in 7(M). Let 4,
be the Laplacian of (M, g) (we choose 4, so that it always has nonpositive
eigenvalues), and G, e C*(M X M —(diagonal)), be the corresponding
Green function (with the well-known prescribed singularity along the
diagonal) characterized by the following properties:

@) o=V, [ oMM )+ [ Gelx 1)~ L,0))IM (),

(@) [ Gelx )M 0)=0,
for all x e M and ¢ € C*(M)p.

Theorem (3.2). Let (m, ) € ZXR be an arbitrary pair satisfying
m=>2 and aa=0. Then there exists a positive constant T =1(m, &) depending
only on m and « such that, for every m-dimensional compact connected
Riemannian manifold (M, g) with a,= —o?,
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Gg(xa y) g _r(m> a)Dgz/ Vg
Jfor all x,y e M with x+y.

Remark (3.3). If @=0, the number 1(m, «) is easily computed. For
instance, 7(2, 0)=24.

(3.4) Proof of (3.2). Let W, be the space of the functions f in
LY X) which satisfy J‘ fdM,=0. Then a combination of Theorems of
M

Gallot [6; (1.3), (2.7)] shows that, there exists a positive constant x(m, «)
depending only on m and « such that, for every fe W,, the number
Ci=x(m, @)V /"D, " satisfies

(3.4.1) [ lz2cr, e ZCll Neomem-var, gy (f m=3);

(3.42) 1 st ZCV P f sy (G m=2).

Let H(x, y, t) be the heat kernel of (M, g), and we set
Hyx,y, t):=H(x, y, t)—V,™"

The proof is now divided into two cases:

(Case 1) m=3. A result of Cheng and Li [5; (2.9)] says that (3.4.1)
implies

0<Hx, x, ) <42t C*m)~™"?,
where (x, 1) € M X R with t >0. Hence for all x and y,
[Hy(x, y, )| S Hy(x, x, 1) Hy(y, y, 1) <4(2:C*[m)~""%,

Together with Hy(x, y, )= —V,~, we obtain
G (%, 7) =r Hyx, y, 1)dt = —f' v, dt—r 426CHm)-m
0 0 T

for each ¢ >0. If we set z:=2*"mx(m, ) >D*/2, the right-hand side of
this inequality is written as —7(m, «)D,*/V, for some constant 7(m, e)
depending only on m and «, as required.

(Case 2)* m=2. Foreach (x,1)e MXR, weput M, ,:={x}x M
X {t}, which is a submanifold (= M) of M X MX R. For C~-functions

*® Gy (=Gy,n) is written in terms of the Green function Gyxg, wxu, Which
provides us with a very simple proof for this case by reduction to m—4. How-
ever, the estimate thus obtained is not so sharp (for instance, y(2,0) would
exceed 24).
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o(x, y,t) defined on an open subset of MXMXR, we denote by
dy: o(x, y, t)—>d,o(x, y, t) the d-operator coming only from the second
factor. Then the same argument as in Cheng and Li [5; (2.7)] together
with (3.4.2) yields

(6H0/3t)(x, X, t)= _”d'yHO(x5 Y, t/2)“iz(M.1;,t/2,g)

(3.4.3) 2 -1/2 2
g —C Vg ”Ho(x9 ya t/z)”Ll(Mz,m,g)

for each (x, t) e M X R with t>>0. On the other hand, in view of

[ 1 0la, [ (Hex p, 0+, am ) =2
and the Holder inequality

]”Ho(x» Y, t/2) 12/3”143/2(1’!,7;,&/2»3)”tHO(x7 y’ t/z)lqsliLa(Mz,t/z»g)
= [ | Hoy, DFAM) (=Hx, 1),

we obtain || Hy(x, ¥, #/2)|[acuy, e = Ho(X, X, £)**/2. This combined with
(3.4.3) shows that

(OH,[01)(x, x, 1) < —(C*/2)V ;" H (x, X, 1)*".

Then the same argument as in Cheng and Li [5; (2.9)] again applies.
Thus,

Hyx, x, t) S(tC*4)"2V,.

Finally, similar to Case 1 above, it follows that

G,(x, »)—= j T H(x, y, £)dr= —f Vg“dt—r (1CY4)*V dr
0 0 T
> _§/C*= —8s(2, @)DV,
by setting r=4V,/C*.

(3.5) We now return to our original compact Kahler situation. In
terms of the notation in (3.2) above, let f(n):=7(2n, 0), which is a con-
stant depending on n alone. Furthermore, for each ¢ € S, let 4, (resp.
4,) denote the real Laplacian 27, (resp. 2[1,,) of the compact Kéhler
manifold (X, wy(p)) (resp. (X, ), and G, (resp. G,) be its corresponding
Green function as is defined in (3.1). We denote by —K, (resp. —K))
the infimum of G, (resp. G;) on X X X —(diagonal). Finally, for each
te R, we put
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H:={p e #|R(p)—twp) is positive semi-definite}.
Theorem (3.2) now has the following important implication.

Proposition (3.6). Let t>0 be arbitrary. Then for every ¢ & ',
its oscillation Osc ¢:=Maxy ¢ —Miny ¢ satisfies

Osc p <1(0, )+ 2n(K, Vo + (n— D f(n)n’t M.

Proof. We observe, by virtue of the identity wy(¢)=w,++ —1 909,
that the following inequalities hold:

—4p<2n and —Adp=-—2n.

Hence we have
o=V [ goint+ [ (Gx )+E) = A ln!
<V, IX o /nl +2nK,V, |
and

=V [_poerini+ [ (@n 9+ EN=4e)afer (in!

>y, L o) In! —2nK, V.
Therefore
Osco <V [ plos—an@) )i+ 2n(K Vit K, Vo)
— 100, )+ 20K, Vo + K, V) (cf. (1.6.1).

Let D, be the diameter of (X, w, (¢)). Since R(p)=tw(p), Meyer’s theorem
asserts that D, <a((n—1)/t)"*. We now conclude from Theorem (3.2)
that

K,V,<p()D,2 < (n—1)pn)z’t ",

§4. Generalized Aubin’s equations

In a recent paper [2], Aubin introduced a very interesting one-param-
eter family of non-linear equations in applying the continuity method to
the existence of Einstein Kéhler metrics on some compact Kéhler mani-
folds with ¢,>0. In this section, we shall consider a slightly modified
family of equations so that it fits our purpose. Elementary properties
of such a family will also be given.
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(4.1) We define the mapping 4: #—C>(X), by
Alp):=log (w(p)" /") (¢ & H),

and then consider the following one-parameter families of equations:

(4-1-1) A(ﬂ”z)z_‘t?’z—l‘(o, Soz)'{'f; 0=r<l,
4.1.2) AW )= —ty,+f; 0=r<l,

where solutions ¢, and 4, are both required to belong to /#. We call
the former the family of generalized Aubin’s equations of the Kihler
manifold (X, w,), while the latter is the original family introduced by
Aubin.

Remark (4.1.3). At each point ¢ of (0, 1] (resp. [0, 1]), we put

J@):=.+17'LO, ) (resp. " (¥):=p,—(+DLO, ¥.))

for every ¢, (resp. 1) satisfying (4.1.1) (resp. (4.1.2)). Then by substitut-

ing j’(p,) (resp.j”(y.)) for +, (resp. ¢,), one can easily see that j'(p,)
(resp. j”’(\r,)) satisfies (4.1.2) (resp. (4.1.1)). Furthermore, j’oj’=id and
j"oj’=id. Hence in finding solutions for #==0, there is no difference
between (4.1.1) and (4.1.2).

(4.2) Choose an arbitrary e [0, 1]. Let ¢, (resp. ¥,) be a solution
of (4.1.1) (resp. (4.1.2)), and we set 0®@:=aw,p,) (resp. o®:=wy(Y,)).
Then o™ satisfies

4.2.1) R(0W)=(1 —)w,+ta®,

(cf. Aubin [2; p. 149]), and in particular ¢, (resp. y,) belongs to s (cf.
(3.5)). On the other hand, one can easily pass from the solutions of
(4.2.1) to those of (4.1.1), though we do not go into details.

(4.3) We shall next study the solutions of (4.1.1) and (4.1.2) at
t=0. Recall the following affirmative answer to Calabi’s conjecture:

Theorem (4.3.1) (Yau [14]). If t=0, then (4.1.2) has a solution which
is unique up to an additive constant.

This in particular implies:

Corollary (4.3.2). For t =0, the equation (4.1.1) has a unique solution
@, Moreover, 1(0, ¢,) =0 and R(w¢p,)) = w,.

Proof. The existence of a solution is straightforward from (4.1.3)
and (4.3.1). For uniqueness, let ¢, be a solution of (4.1.1) at r=0. Then
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[ or=]_exp o =exp(—20,0)) [ exp(Nos

Since J‘ exp (w," =I a," (cf. (1.7.1)), we obtain L(0, ¢,)=0. Therefore,
X X

¢, is a solution of (4.1.2) at t=0. The required uniqueness now follows
from a combination of Theorem (4.3.1) and L(0, ¢,)=0. R(wy(p,))=w, is
an immediate consequence of (1.7.1) and A(p,) = f.

Remark (4.3.3). Suppose that {p, |0t <z} (¢>>0) is a smooth one-
parameter family of solutions of (4.1.1). By (4.3.2) above, L(0, ¢,)=0,
and hence by setting +,:=j'(¢,) =@, + 1 'L(0, ¢,) (cf. (4.1.3)), we see that
{¥,]0=t <<} is a smooth family of solutions of (4.1.2). (For similar
arguments, see Aubin [2; p. 149].)

(44) Let 5%« (where 2<ke Z and 0<a<1) be the set of all
p e C**(X)p with positive definite o (). Note that #*¢ is an open
subset of C**(X),. We now conclude this section by showing the fol-
lowing local extension property of solutions of (4.1.1) for 0 < <1.

Proposition (4.4.1) (cf. Aubin [2]). Let 2<ke Z and fix ¢« € R with
0<a<l. Let 0<r<1. Suppose, moreover, that (4.1.1) has a solution
¢, at t=c. Then for some >0, ¢, uniquely extends to a smooth one-
parameter family

{p1te0, D N[c—e, t4el}

of solutions of (4.1.1) in A, and furthermore, if (¢, t) € %=X [0, 1) satisfies
the conditions || ¢ —¢.|lor.«Z¢, |t—7|Ze and A(p)= —to—L(0, o)+ f, then
¢ coincides with ¢,.

Proof. Consider the mapping I": 2% X R—C*~>%(X), defined by
I(p, 1):=Alp)+1o+LO, 9)—f,  (p,1) € #**XR.

Then its Fréchet derivative D,I": C**(X)p—C* >%(X)g (at (p, t)) with
respect to the first factor is given by

DI =D+ 00+ Jan@l'lV, ¥ & C (X

Note that, by the well-known regularity theorem, we have ¢ € J# for every
(¢, 1) € A X R, whenever I'(p, t)=0. Since I'(p,, 7)=0, an application
of the implicit function theorem now reduces the proof to showing that
D,I' is invertible at (¢,, ). The following cases are possible.
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(Case 1) ©=0. Then D[], is the mapping

C**(X)g 2 y—>0] ooV +IX V)"V e C¥>%(X)g,
which is invertible.

(Case 2) ©+0. Since R(p,)—rtwp.) is positive definite (cf. (4.2)),
a theorem of Lichnerowicz [7] asserts that ¢ is less than the first (positive)
eigenvalue of —[1,.. Hence D,I'},, ., is invertible.

Remark (4.4.2). Proposition (4.4.1) is valid even if ¢, and (4.1.1) are
replaced respectively by 4, and (4.1.2). This is the original local extension
theorem proved by Aubin [2].

§ 5. The X -energy map along the solutions of generalized Aubin’s equa-
tions

Recall that (4.1.1) has a unique solution ¢, at ¢t =0 (see (4.3.2)). By
using an explicit description (cf. (5.1)) of the 2 -energy map g along the
solutions of (4.1.1), we shall show that any ¢, satisfying (4.1.1) at t=¢
(r1) uniquely extends to a smooth one-parameter family {p,|0=1 <<}
of solutions of (4.1.1). Note that this fact in particular shows that (4.1.1)
admits at most one solution at t=z for 0=<¢<{1 (cf. (5.3)). The same
technique enables us to show that if y is bounded from below, then ¢,
uniquely extends to a smooth one-parameter family {p,|0<t<1} of solu-
tions of (4.1.1) (cf. (5.7)).

Theorem (5.1). Let {p,|a<t <b} be an arbitrary smooth one-para-
meter family of solutions of (4.1.1) in S#. For brevity, we put

o® ¢=wo(§0¢), I:=I(w, o) (=1(0, Qot)):
J.:=J(wy, 0®) (=J(0, SDL))-
Then on [a, b],

du0®) _ _1_n- 4 1 —r1)<0
T ( )dt(L ) =0.

Proof. By R(p,) =1 —1t)o,+ to® = ofp,)—+ — 1(1—1)ddp, (cf.
(4.2.1)), we have a(p,)=n—(1—1),,,- Hence,

4 o)=L M0, p)=[ 1=0pDipdosprIV

(=Yg -
=—(1=0)-2(=J) (k. (16.5)).
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On the other hand, differentiating (4.1.1) with respect to ¢, we obtain
D¢z¢t+t¢z+¢c+ct:0

for some constant C, ¢ R on X. Combining this with (1.6.5), we now see
that

d
dt

where the last inequality is a straightforward consequence of (the first
eigenvalue of —[1,,)>1.

(5.2) (i) Fix @ e R with 0<<a<C1. Let ¢, be a solution of (4.1.1) at
t=r (where 720, 1). A smooth family {p,|o<<t <z} (resp. {p, |t <t <a})
of solutions of (4.1.1) is said to be maximal if for any sequence ?; ¢ (o, 7]
(resp. [z, 0)) (j=1,2, ---) with lim #;=¢, the corresponding sequence
{@,,} in o does not converge to any point of #** in the C** -norm.

(It “Jt) =J‘X (D¢z¢:+ tﬁbz)(Dmgbt)wo(ﬂ%)n/VZO,

(i) Suppose &=¢. Then to each § € &, we can uniquely associate
a function 2, € 5 such that §=w,(4,) and that 2, satisfies (4.1.2) at =1,
ie.,, A(2)=—2,+f- An element § of & is said to be excellent on the
Kéhler manifold (X, w,) if for some ¢>>0, there exists a smooth family
{¥,|1—e =t <1} of solutions of (4.1.2) such that +r, =2,.

Theorem (5.3). Let 0<<c<1. Then any solution ¢, of (4.1.1) at t=<¢
uniquely extends to a smooth family {p,|0=<t <<} of solutions of (4.1.1).
In particular (4.1.1) admits at most one solution in ¥ at t=r.

Corollary (5.4). (i) There exists at most one 6 € & which is excellent
on the Kdhler manifold (X, w,).

(ii) Suppose that 6 € & is excellent on the Kdihler manifold (X, w,).
Then M@, o(p,))=0.

(5.5) Proof of (5.3). The required uniqueness is immediate from
(4.4.1), once the existence of an extension is proven. We therefore assume,
for contradiction, that any such extension is impossible. Then by (4.4.1),
we have a maximal smooth family {p,|o <t <<} of solutions of (4.1.1) for
some 0=<¢ ¢ R. In this proof, we always denote by ¢ ¢ R an arbitrary
number satisfying ¢<t <r, and where a constant occurs, it denotes a
positive real number which depends neither on ¢ nor x € X. The proof is
now divided into two steps.

Step 1: By (1.6.4) and Theorem (5.1),
(5:5.1) 0=l =+ 1) —J)<(n+ DI~ T).
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We put F,:= —tp,—L(0, ¢,)+ fe C*(X)g. Then by (4.1.1),

L{ " =JX exp (A(p;))w," =J; exp (Fpw,".

Applying the mean value theorem, we have F,(x,)=0 for some x, ¢ X.
Therefore for every x ¢ X,

| F(x)|=|Fy(x)— F(x,)|=| — t(p.(x) — p.(x1)) + () — f(x,) |
<t(Osc ©.)+2 1/ 1eo
St +2n(K Yo+ (n— D)"Y +2(| flleo  (cf. (3.6), (4.2)).

Hence by (5.5.1), there exists a constant K, such that
(5.5.2) [ Fllco=Ki.

Since A(p,)=~F,, a result of Yau [14] (see also Bourguignon et al. [4; VII])
now asserts that

(5.5.3) Osc ¢, =K,

for some constant K,. Put ¢,:=¢,—¢,(x,) € C*(X)g. In view of
0="Fy(x)=—(140)p,(x)—LO, )+ f(x,) (cf. (1.4.3)),

we obtain ,

(5.54) lo (x| =ILO, 3+ S llco-

Since || @, |lco £ K, it follows that
1
iz, al= [ ([ sarsporiv)ds|

(5.5.5) §£ (J‘X szo(sgb,)"/V)dS:KZ‘

Hence by (5.5.3) and (5.5.4),
(5.5.6) l@ellee =K,

for some constant K,. Since L(0, ¢,)=¢,(x,)+ L(0, ¢;), a combination of
(5.5.5) and (5.5.6) now provides us with a constant K, such that

(5.5.7) | =L, p)+flles =K.

Step 2: Recall that A(p,)+tp,=—L(0,¢0)+f By (55.6) and
(5.5.7), we have constants K;, K;, K; such that



30 S. Bando and T. Mabuchi

ll@ellee.er K5 for all o’ with a<<a'<1,
K, Zolp)SKw, (cf. Aubin [1; pp. 151-154]).

We now choose an arbitrary decreasing sequence ¢, € (g, z], /=1, 2, - - -
such that lim ¢;=¢. Then by Ascoli’s theorem, there exists a convergent
subsequence of {¢,} in C**, which leads to a contradiction to the max-
imality of {¢,|c<t=z}.

(5.6) Proof of (5.4). " Let 6 € & be excellent on the Kihler manifold
(X, w). Then in view of Remark (4.1.3), there exists a smooth family
{¢,]1—e<t=<1} of solutions of (4.1.1) such that 0=ayp,). By (5.3)
above, {p,|1—e=<t<C1} uniquely extends to the smooth one-parameter
family {p,|0<t <1} of solutions of (4.1.1). Then (i) immediately follows
from

p=limg, in C*(X)y (k=0),
-1

and (ii) from M (6, wy(¢,)) = p(@e(¢)) — @e(1)) 20 (cf. (5.1)).

The following theorem, which we do not need later, is of some
interest in understanding the J#-energy map p. We therefore give it
together with a proof.

Theorem (5.7). Let & :={wp)|¢ e H# satisfies A(p)= —tp—L(0, )
+f for some tel0,1)}. Suppose that p is bounded from below on .
Then ¢, uniquely extends to a smooth one-parameter family {¢,|0=t<1} of
solutions of (4.1.1).

Proof. We assume, for contradiction, that there exists a maximal
smooth family {p,|0=<t<g} of solutions of (4.1.1) for some ¢<<1. Let
K e R be the infimum of 1 on &#. Then whenever 0=t <{g, 07 :=0y(p,)
belongs to & and in particular g(w®)=K. For each such ¢, we infer
from Theorem (5.1) that

1—J, j —1 4™ 4ot (-
1—s ds

—1 d#(wu)
<[ =L = A o (-0

é—l—;(ﬂ(wow’o}) —K)+(,— J0)s

where we used the notation in (5.1). Thus I,—J, (0t <o) is bounded
from above. The rest of the proof is quite similar to (5.5).
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§ 6. Lemmas for choosing a good gauge

(6.1) Throughout this section, we use the same notation as in
Section 2, and fix an arbitrary G-orbit O in &, assuming §=¢. To each
# e O, we can uniquely associate a function 1, € 5 such that 6=w,(1,)
and that A(1,)= —2,-+ f (cf. (ii) of (5.2)). Then #— 2, defines a bijection
between O and O:={4,|6 € O}. We endow O with the topology naturally
induced from the C**-norm of 5. This defines a topology on O, in terms
of which the G-action on O is clearly continuous. Hence our topology
on O coincides with the natural topology of the homogeneous space G/K,
via the identification 0= G/K, (cf. (2.1)). Recall that for each ¢ € H,, we
have the corresponding one-parameter group 35, =exp (¢Y%g), e R. For
simplicity, we put 6(¢):=(%,)*¢ and A(t):=2,,,. Then by (2.2.4) and
w(A(2)) =0(t), we have A(0)=¢+ C for some C e R. On the other hand,
differentiating the identity A(A(z))= —A(¢)+ f with respect to ¢ at ¢=0,

we obtain [7,(i(0)) = — i(0). Hencej H0)g" =0= j 6" and this implies
X X

X(0)=¢. Thus we established the following identification (cf. (2.2.3)):

T,(0) = T,(0) = H,

(0)=p<«—>0(0) =+ — 1 3dp<—>p.

The purpose of this section is to prove the following lemmas:

(6.1.1)

Lemma (6.2). The C~-function ¢ defined by
t: O—>R, O0——(0):=1(wy, O)—J(wy, ) (=0)

is @ proper map. In particular, its minimum is always attained at some
point of the orbit O.

Lemma (6.3). Let 6 e Q. Then the following are equivalent.
(i) 0 is a critical point for ¢;

(ii) j 200" =0 for all ¢ € H,;
X
(i) @ is expressible as o () for some function € # such that
[ o8 =0 for all g € H,.
X

Lemma (6.4). Let 0 € O be a critical point for ¢. Then the Hessian
(Hess ¢), of ¢ at the point 0 is given by

(Hess D4, )= (1420000 )"0V

forall ¢, ¢ € Hy (=T,0)).
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(6.5) Proof of (6.2). By the well-known regularity theorem applied
to the equation A(y)= —++f, the proof is reduced™ to showing

(6.5.1) given a real number r =0, one can always find positive num-
bers K,, K, K € R such that

[Vl =<K, and Kio,Zo()<Kw,
hold simultaneously for all vy € O satisfying | ¢,(w,(y))|<r.

Fix an arbitrary element 4 of O as in (6.5.1). Then by (1.6.4), 1(0, )<
(m+1Dr. In view of (4.2), we have +» € " and hence by (3.6),

(6.52) Osc¢<K, where K:=(n-+ r+2nK,V,+(n—1)pn)z*.
On the other hand, from A(y))= —-+ f, we obtain

[ o= exoaos=| expo(—y+1or

Therefore by the mean value theorem, there exists a point x € X such that
Py(x)=f(x). Together with (6.5.2), we have

¥ lleo =K+ flco-

Then applying standard arguments (cf. Aubin [1; pp. 151-154]), we obtain
K., K, K as required in (6.5.1).

(6.6) Proof of (6.3). (ii) and (iii) are clearly equivalent. To see the
equivalence of (i) and (ii), we fix an arbitrary ¢ € Hy(=T,(0)) with its
corresponding one-parameter families {§(t) € O |t € R} and {A(t) € O|t e R}
asin (6.1). Then in view of (1.6.5),

d _d 3
A0 =0, A= IO 20|

= [ 20w r=— j A0V . (61.1)
=J; 200"V (because ¢ € H,).

The required equivalence is now straightforward.
(6.7) Proof of (6.4). Let {1,,|(s,?) e [—e, e] X[—¢, €]} be a smooth

* This reduction is easily obtained from the following standard fact: O is
a connected component of & (see Calabi’s article “Extremal Kiahler metrics II”
in “Differential Geometry and Complex Analysis” dedicated to H. E. Rauch,
Springer-Verlag, 1985).
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family of functions in O satisfying the following conditions:

( i ) Zo,o=za,

o (1)
(ifi) (—aat— zm)

We shall denote [7,, , (resp. w(4,,,)) by [1,,, (resp. 6, ,) for brevity. Dif-
ferentiating the identity A(4, )+ 4,,, — f==0 with respect to ¢, we obtain

P P
6.7.1 \ __zs) <_zs t):o.
©67.1) D"( ot + PY

S 4

(5,£)=(0,0)

(s,8)=1(0,0)

Y4

Further differentiation with respect to s yields

_<aa<”—2”"t>’ aa( Ao >> + (0. +1)<a ot “):0’

where we denote { , ), , (cf. (2.3)) simply by { , »,,. Evaluating this
at (s, 1)=(0, 0), we obtain

1 . ={00¢’, 300" 4.
(Da']" )(a 2t ,z) 0.0 < ¢ ¢ >0
Together with (2.3.1), it then follows that

a?.

(6.7.2) (557

AMM =g, 0p’">y=<0¢"”, 0¢’>, (modulo HY).
©,0)
We can now finish the proof by the following computation:

2
(HESS l)g(@,, 99”) ‘—‘:i"‘([(oa zs,t)_J(O, Zs,t))i
osot ©,0)

=i{sz ( ;t . )(as t)”/VH C: (6.7.1})

_f {/ r <a ot ”)

__J‘ {sol //+2-—l(<a¢/’ a¢,/>g+<a€0”’ a€0/>€)2€_20€0/¢//}6n/17
(cf. (6.7.2))

(0,0)

+zasa"(mago')}0”/ v

(0,0)
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=IX {90/90”_*_ 2-—1((D OSD/)¢”+ (D ogoll)sal
+B¢’, 89> 400", 09" )A,}6" |V

=J {90’50” + —l~la O o(so’so”)}ﬂn/ v =I (1 + L5 919)90'50”0”/ V.
x 2 4 x 2

§ 7. Unfolding the singularity at #/=1 by a bifurcation technique

We again assume that §=¢ and fix an arbitrary G-orbit O in &.
Using the same notation as in Section 6, we fix a critical point # for the
mapping ¢: O—R (cf. (6.2)). The purpose of this section is to find out a
good sufficient condition for 6 to be excellent (cf. (ii) of (5.2)). Fixing
a € R with 0<<a<1, we set

H;L,k:={\1f e Co(X)p j o6 =0 for all g € H,}, k=0,1,2, ---.
X

Recall that, corresponding to #, we have the function 2, € &# with the
following properties (cf. (6.1), (6.3)):

(1) =wy(4,),
(i) A4Q)=—2,+1,
(i) 2,e Hf,.
Let k=2, and consider the mapping
D: RXCH(X)g—>C* 24 X)p, (t, w)—>D(t, u):=AW)+tu—f.

Note that, by the well-known regularity theorem, any v e #% = (cf. (4.4))
satisfying @(¢, v)=0 for some ¢ is automatically in #. Let

P: C*(X)p(=H,®H;)—>H,

be the natural projection to the first factor. For each ue C*%(X)g,, we
write

(7.1.1) u=2+0o+,

with o:=P(u—2,) ¢ H, and y:=(1—P)u—1,) € Hy,. Now the equa-
tion

(7.1.2) o(t, u)=0
is written in the form

PO, 2)+9+4)=0 and V(¢ ¢, 4)=0,
where ¥': RXH, X Hy,—H},_, is the mapping defined by
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U(t, 0, 0):=(1—=P)P(t, +0+v) (1, 0, ¥) € RXH, X Hjy).
Then ¥ (1, 0, 0)=0 and the Fréchet derivative D, ¥|, o, of ¥ with respect
to 4 at (¢, ¢, v)=(1, 0, 0) is

Hi . 3 ¥'——>Dy¥) 4,000 =(0s+ V" € Hi o,

which is invertible. Therefore the implicit function theorem enables us
to obtain a smooth mapping U > (¢, ¢)—,,, € Hy,;, of a small neighbour-
hood U of (1, 0) in RX H, to the Banach space H; such that

( 1 ) ‘I’l,o=03

(ii) |[¥s,pllox«=<8 on U for some §>>0, and

(iii) (@, o, v)=0 (where ||y |lcz..=<5) is, as an equation in e
C*4(X)g, uniquely solvable in the form =+, , on U.

Differentiating the identity ¥'(¢, ¢, 4,,,)=0 at (¢, ¢)=(1, 0), we obtain
(7.13) @ D(Ziplan) ==

(7.1.4) Dy Man@)=0  forall o' € H,,

where (D, ,)|u,00: Hi—H,, denotes the Fréchet derivative of -, , with
respect to ¢ at the point (¢, ¢)=(1,0). Then the equation (7.1.2), on a
small neighbourhood of 1,, reduces to

(7.1.5) Dt, )=0 (With u=2,+0+v,,),

where we put @1, ¢):=PO(t, 2;+¢+.,) for (¢, ¢) e U. Recall that
&(1,u)=0for all u e 0. Hence §,=0 on {t =1} and therefore the map-

ping
Ulpery 2 (@, §0)'—“"q)1(t> ¢):=(Do(ts )/(t—1) e H,

naturally extends to a smooth map: U—H, (denoted by the same @,) of
finite dimensional sets. In view of (7.1.3), we obtain

D,(1, 0)=(a9,/at)(1, 0)=0.

Furthermore, we shall later show that the Frééhet derivative D,®,|q,q: H,
—H, of @, with respect to ¢ at (¢, ¢)=(1, 0) is written in the following
form:

Lemma (7.2). For all ¢/, ¢'’ € H, (where § is a critical point of ¢),
(Dga¢1 la,0(@)s ©Vzacx, 0 =Jx (1 + %D alo>90/50”0n/n!

= Vy(Hess o),(¢", ¢).
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Suppose now that (Hess ¢),: H,X H,—~R is a nondegenerate bilinear
form. Then by this lemma, D,®,|,,, is invertible, and the implicit func-
tion theorem shows that the equation @,(¢, )=0 in ¢ is uniquely solvable
in a neighbourhood of (1, 0) to produce a smooth curve {p(¢)|l —e<r <1}
(¢>0) in H, such that (i) ¢(1)=0 and (i) D,(¢, ¢(¢))=0 (1—e =t Z1).
Therefore, in view of (7.1.5), we have @(t, 2,+¢(t)+ v, ,0) =0 (1—e=t
<1), and hence {Y,:=2,4+¢(t)+ V|1 —e=t<1} is a smooth one-
parameter family of solutions of (4.1.2) in s with +», = 2,, i.e., 6 is excellent
on the Kéahler manifold (X, w,) (cf. (ii) of (5.2)). Thus we obtain:

Theorem (7.3). Every critical point 6 of ¢ with non-degenerate Hessian
is excellent on the Kihler manifold (X, w,).

We shall finally show Lemma (7.2).
(7.4) Proof of (1.2). By (7.1.4), using the notation in (2.3), we have

(¢

(1,0)

D%, luoe)= (D, 2-0,)

=¢'—P(0(-2p o ). 334 -
Hence, it follows that
(DD 1,009, 9"V 1acx,09
=L, {so’so”—so"<63<—aat~~h,¢Iu,m)a 65¢’>ﬁ}0"/n!
*I (00" —(¢'9" —<8¢", 3¢y )A,}07In!  (cf. (2.3.2), (7.1.3))

::J‘X {gD/ //+2 ](<a§0 a¢ll>0+<a¢// a¢l>0)20_20§0/¢//}0n/n!
(cf. (6.7.2))

=f (1+%D,,z,)¢'¢"e"/n! (see the end of (6.7).
X

Since V =n!V,, this completes the proof (cf. (1.4), (6.4)).

Remark (7.4.1). If § e O is a point where ¢ attains its minimum (cf.
(6.2)), then (Hess ¢), is positive semidefinite. In the next section, we shall
realize a critical point for ¢ with positive definite Hessian via a small
change of our presently fixed w,.
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§ 8. Proof of Main Theorem

(8.1) Proof of (i) of Theorem A. Fix an element @ of 4 * and a
G-orbit O in & arbitrarily. In this section, we write

Wy =0}

regarding w, as a function of ¢ ¢ [0, 1]. Hence the corresponding f, ¢,, ¢,
K, wp) and A(p) (where ¢ € C=(X)g) will be written respectively as f,,
Ooses tes 5, 0f(p) and A(p) (see (1.7.1), (4.3.2), (6.2), (1.1), (1.1.1) and
(4.1)). We first consider the special case e=0 and then go to the general
situation ¢>0.

Case 1: ¢=0. Putw):=R(®). Then ¢,; O—R takes its minimum
at some point 8 of O (cf. (6.2)). Corresponding to this @, there uniquely
exists a function 2,,, € #° such that §=w{(2,,,) and that A°(2,,.)= —2,,
4+ f, (cf. (ii) of (5.2)). Recall that H, is Ker ([J,41) in C*(X)z. Then
by (6.3),

(8.1.1) j Rop0=0  forallpe H,
X

and the bilinear form (Hess ¢,),: H, X H,— R is positive semidefinite.

Case2: ¢>0. In this case, we set wj:=(l—e)w)+efd=wi(edy.o).
Again by (ii) of (5.2), one obtains a function 2,., € #° uniquely determined
by the identities §=w{(2,,.) and 4°(4,,.)= —4,..+ f.. Then in view of
0}(Ras0) =0 =0Y(A,e +e240), We have

8.1.2) g, =(1—¢€)24,0+ C. for some C, ¢ R.

Hence I Ao, 00" =I (1 —&)Ap,p0" =0 if ¢ € H, (see (8.1.1)). Therefore
X X
by (6.3), 6 is a critical point for ¢,: O—R. Moreover for all 0==¢ ¢ H,,

(Hess ¢.),(o, ¢)=JX (1+%D,z‘,;s)¢2an/rf (cf. (6.4))
=(1—¢) L <1+%Daz,;o)¢zan/ Ve L 6"V (cf. (8.1.2)

— (1—&)(Hess &)o(o, ¢)+¢ L 6"V >0.

Theorem (7.3) now shows that § is excellent on the Kéahler manifold
(X, ®}). In particular, by (ii) of (5.4),

(8.13) M@, 0i{gn,)) =0.
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By (4.3.2), R(wi(¢p,,.)=wi. We also have R(@)=wj. Note that wj—w)
in C%=(as £}0). Then by (1.1.3), wi(¢p,..)—d in C>=. Let £/0 in (8.1.3).
By the continuity of M, we have

M@, @)=0, ie, p@O=p*(@).

Recall that 4* is a constant function on O (cf. [9]). Since both @ e X4+
and the G-orbit O in & are arbitrary, it now follows that p*: % *—R
takes its absolute minimum C on &. Note that & is the set of all critical
points of g* (cf. [9]). Hence

foe | ut(@)=C}=6,

because, otherwise, at some point @ of £ * with & ¢ &, the function p*
would take its critical value C in contradiction to & ¢ &.

(8.2) Proof of (ii) of Theorem A. Let O’ and Q" be arbitrary G-
orbits in &. Then from the argument of (8.1) applied to the orbit O’, we
see the following:

(8.2.1) For a suitable choice of w;e ¢, the function ¢: O 3 w—
! (w):=I{w}, w) —J(w,, ®) € R has a critical point ¢ ¢ O’ with positive
definite Hessian.

Recall that the function ¢’: Q" 3 @~ ’(0):=I(w}, ®) — J(w}, w) € R
takes its minimum at some point §” € Q" (cf. (6.2)). We now put w:=
(1 —e)wi+ed"”, (0<Le<1). Again by the argument of (8.1) applied to O”,
we have:

(8.2.2) #” is excellent on the Kihler manifold (X, wi) whenever
0<eL.

We finally define ¢/: O’—R by
() =1(w}, 0)—J (@}, 0), (@eO).

Note that ¢ converges to ¢/, say in C*>%, as ¢ tends to zero. Fix a
sufficiently small ¢>>0. Then by (8.2.1), the function ¢, takes its local
minimum with positive definite Hessian at some point 6, of O’ near ¢'.
In view of Theorem (7.3), one finds that &, is also excellent on the Kihler
manifold (X, w§). Combining this with (8.2.2), we conclude from (i) of
(5.4) that ,=6"”. Thus, O’ =0" and the proof is now complete.

Theorem A is valid even when M: X" X #"—R is replaced by N:
A X A —R (cf. (1.5)). We conclude this section by showing:
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Corollary (8.3). Under the same assumption as in Theorem A, the
mapping

vt At —>R, w—>v*(w): = N(w,, »)

is bounded from below and takes its absolute minimum exactly on &.

Proof. By (1.8.1), v*(0)=p*(0)+J (0, R(w)) —J(w,, R(w,)) for every
o € . Since both y* and J(w, R()) (0 € X *) take their minima exactly
on & (see (1.6.3) and Theorem A), so does v*.

§ 9. Proof of Theorems B and C

(9.1) Proof of Theorem B. Recall that the natural Riemannian
metric on & is characterized in terms of lengths of smooth paths in & as
follows (cf. [10]):

For every smooth path I'={7,|a<t<b} in &, let {r,|a<t <b} be the
corresponding smooth path in 3, (cf. (1.4)) uniquely determined by wy(7,)=
7, (tela,b]). Then the length L (I") of the path I' in terms of the metric
of & is defined by

2D): =J° (L{ (h)znn/V)mdt.

In view of Theorem A, the proof is reduced to showing that Aut(X) acts
isometrically on &. Hence it suffices to show

L N=2I") (geAut(X))

for every smooth path I'={7,|a<t <b} in &. Then even if g ¢ Aut’(X),
the same proof as in [10] goes through as follows:

Let ¢, be the function in s uniquely determined by the properties
g*o,=wp,) and ¢ 4g*7, € #,. We put 7:=¢,+g*, (a<t<D).
Then g*7,=wy(y,) and 5, € #, for all #. Hence

2@ D)= ([ o) d
=[ (], err@iyy) a=zw

(9.2) Proof of Theorem C. By Theorem B, & is isometric to the
Riemannian symmetric space G/K without compact factors. In particular,
& is a simply connected Riemannian manifold with nonpositive sectional
curvature. Since the compact group H acts isometrically on &, it always
has a fixed point in &.



40 S. Bando and T. Mabuchi

Remark (9.3). If X admits no nonzero holomorphic vector fields,
then Theorems A and C assert the following:

Einstein Kdhler metrics on X are, if any, unique up to constant multiple.
Moreover, they are invariant under the action of Aut (X).
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