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On Plurigenera of Normal Isolated Singularities II 

Kimio Watanabe 

In this paper we prove some results on plurigenera of normal 
isolated singularities. This paper is a continuation of [19]. 

In Section 1, we recall some preliminary facts related to the concept 
of plurigenera of normal isolated singularities. In Section 2, we prove 
the Om-formula for non-degenerate hypersurface isolated singularities, 
which is a generalization of Theorem 1.13 [19, p. 71]. In Section 3, we 
determine the "type" of purely elliptic singularities of hypersurfaces. In 
the last section we show a criterion for a singularity to be Du Bois: In 
the case where a singularity is quasi-Gorenstein, a singularity (X, x) is Du 
Bois if and only if o <om(X, x) < 1. Finally we give examples of Du Bois 
singularities with possibly positive geometric genera, which are not quasi­
Gorenstein. 

§ 1. Plurigenera of normal isolated singularities 

We need to recall a few preliminaries related to the concept of 
plurigenera of normal isolated singularities. For more details we refer to 
[19]. 

Let (X, x) be a normal isolated singularity of an n-dimensional analytic 
space X. Let V be a (sufficiently small) Stein neighborhood of x and let 
K be the canonical line bundle of V -{x}. For convenience, we denote 
the line bundle K®m by mK. An element of T(V -{x}, (!)(mK)) is con­
sidered as a holomorphic m-ple n-form. Let w be a holomorphic m-ple 
n-form on V -{x}. We write w as 

using local coordinates (Zl> Z2' ••. , zn). We associate with w the continu­
ous (n, n)-form (wAw)l/m given by 
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Definition 1.1. OJ is called integrable (VIm-integrable) if 

for any sufficiently small relatively compact neighborhood W of x in X. 
Let Vlm( V - {x}) be the set of all integrable holomorphic m-ple n­

form on V -{x}, which is a linear subspace of reV -{x}, (!)(mK)). Then 
F(V -{x}, (!)(mK))jVlm(v -{x}) is a finite dimensional vector space. 

Definition 1.2. The plurigenus (m-genus), m being a positive integer, 
of a normal isolated singularity (X, x) is 

Om(X, x)=dim rev -{x}, (!)(mK))jVlm(v -{x}). 

These integers {om} are determined independently of the choice of 
the Stein neighborhood. 

In particular MX, x)=piX, x) (See Laufer [10], Yau [21]). 

Example 1.3. Let (X, x) be a normal surface singularity defined by 
the polynomial XB+yB+ZB+(xYZ)2. Then om(X, x)=48m2-36m+20; see 
Example 2.8. 

Let It': X-*Xbe a resolution of (X, x) and U=It'-l(V) and E=It'-l(X). 
By Sakai [15, Theorem 2.1, p. 243], 

Vlm(v _{x})~Vlm(u -E)=F(U, (!)(mK+(m-l)E)) 

if the exceptional set is a divisor which has at most normal crossings. 
Thus 

0m(X, x)=dimF(U -E, (!)(mK))/F(U, (!)(mK+(m-l)E)). 

This formula provides a practical means to compute Om in many cases. 

§ 2. Plurigenera of bypersurface singularities 

Next we consider an isolated singularity defined by a non-degenerate 
holomorphic function f Such singularities are always normal. 

In the following we give an effective method for calculating Om via 
the combinatorial data of the Newton polyhedron F + (f) of a function f 
under the assumption that f is nondegenerate with respect to F(f). It is 
based on the computation of resolutions of hypersurface singularities 
using the technique of toric varieties. 

Before stating our result, we refer to some results obtained by using 
the technique of toric varieties. 
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First Ehlers and Lo [2] has computed the minimal characteristic 
exponent of a non-degenerate holomorphic map germ with an isolated 
critical point at 0. Secondly Bernstein et al. [1] and Hovanskii [4] has 
computed the Euler-Poincare characteristic of the zero locus of a func­
tion, and Varchenko [18] has computed the characteristic polynomial of 
the monodromy of a critical point of an analytic function. 

It is known that there is a canonical resolution by the torus embedd­
ing associated with a simplicial subdivision of the dual Newton diagram 
of f So we need to recall a few preliminaries related to the repetition of 
the torus embedding associated with a simplicial subdivision of the dual 
Newton diagram off For more details we refer to [14]. 

Let f(zo, Zj) ... , zn) be a germ of an analytic function at the origin 
such that f(O) = ° and let f has an isolated critical point at the origin. 
Then f can be developed in a convergent Taylor series f(zo, Zl' ... , zn) = 
L, a,z' where z, = z~o . .. z~n. Recall that the Newton boundary r(f) is 
the union of the compact faces of r +(f) where r + (f) is the convex hull 
of the union of the subsets {A+(R+)n+l} for A such that a,::;t::O. For any 
closed face L1 of r(f), we associate the polynomialh(z)= L'EJ a)z'. We 
say thatfis non-degenerate if f4 has no critical point in (c*)n+l for any 
L1 E r(f). We assume that f has a non-degenerate Newton boundary. 
Let X be the germ of the hypersurface f-l(O). Let r*(f) be the dual 
Newton diagram and let 2* be a simplicial subdivision of r*(f). It is 
known that there is a canonical resolution 7(": X-?X which is associated 
with 2*. 

Let N+ be the space of positive vectors in the dual spaces of Rn+l. 
For any vector A=(ao, aI' ... , an) of N+, we associate the linear function 
A(A)= Li aiAi on r + (f) and let d(A) be the minimal value of A(A) on 
r+(f) and let L1(A) = {A E r+(f); A(A)=d(A)}. We introduce an equiva­
lence relation~on N+ by A~B if and only if L1(A)=L1(B). For any 
face L1 of r + (f), let 

L1*={A E N+; L1(A)=L1}. 

The collection of L1* gives a polyhedral decomposition of N+ which we 
call the dual Newton polyhedron of f We denote it by r*(f). L1(A) is 
a compact face of r(f) if and only if A is strictly positive. We say that 
a subdivision 2* of r*(f) is a simplicial subdivision if the following 
conditions are satisfied. 

( i ) 2* is a subdivision by the cones over a simplicial polyhedron 
whose simplexes are spanned by primitive integral vectors with determi­
nant +1. 

(ii) Let (J be an n-simplex spanned by {Ao, AI' ... , An}, which is 
denoted by <Ao, AI' ... , An). Then 
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n n LI(At) = {one point}. 
t=o 

(iii) Assume that T(f)I is non-empty where 

T(fF={x E T(f); xt:;t=O only if i E I} 

and lis a subset of {O, .. " n}. Then O'I={A E N+; a,=O if i is in I} is 
a simplex. 

Let p: N + --+ In be the natural projection onto an n-dimensional sim­
plex In = N + j R>o' Then p(S*) gives a simplicial subdivision of In. 

Since every cone in S* is non-singular, the associated torus-embedd­
ing Z is non-singular. 

Let E(A) be a divisor of Z associated with a one-dimensional cone 
generated by AE N+, i.e., using the notations ofOda [13] E(A) = orb (RoA). 
Since S* is an r.p.p. decomposition of N+, Z is a modification of cn+l. 
Let rr be its birational morphism from Z to C n +1• 

More precisely, let S* be a simplicial subdivision of T*(f). For 
each n-simplex 0'= (Ao, "', An), At=(ato, "', atj' "', a,n), we associate 
an (n+ I)-dimensional Euclidean space C n +1 with coordinates (u.,o, U.,l, 
.. " u.,n) and a birational mapping rr.: cn+l--+cn+l which is defined by 

z = (u )ao,J(u )a',J ... (u )an .;. j 0',0 0',1 6,n 

Let Z be the union of C:+ 1 which are glued "along the image of rr.". 
Let rr be the projection and let X be the closure of rr- 1(X -{x}), x being 
the origin. It is known that rrlx: X--+X is a resolution of X. Let dt= 
d(At) and Llt=LI(Pt). We assume that n~=oLl(Ai)={one point}. We 
define t.(u.) and.t:",.(u.) by 

!(rr.(u.» = t.(u.) n (U.,,),l, and h,(rr.(u.) = !4".(U.) n (U.)d,. , , 
By the definition, X is defined by !.(u.) = ° and xn {u.,,=O} is {u.; u,.,=O 
and !4".(U.) = O}. 

Note that !J".(u.) is a function of {u.,j; Lli-Llj:f::~}. Thus xn 
{u." = O} is non-empty if and only if dim Lli > O. Let E(Ai; 0') = 
{u. EX; U.,i=O}. rr(E(A,; O'»={O} if and only if A, is strictly positive. 
The union of E(At ; 0') for simplexes 0' which contain Ai is a divisor of X 
and we denote it by E(Ai)' We say that vertices Ao, .. " Ak in S* are 
adjacent if there is an n-simplex 0' of S* which contains Ao' .. " A k • 

Let w= Res «ljf)dzo/\dz1 /\ •• • /\dzn). w is locally written in the 
form 
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Then w is a nowhere vanishing holomorphic n-form on X -{x}. 

Lemma 2.1. n*(z'(dz/f)m) has zeros of order Ail)+m(IAol-l­
d(Ao» at a divisor E(Ao), where IAol=aoo+aOl +··· +aon' 

Proof. Pick n primitive integral vectors At = (aj,o, at,I' .. " ai,n) of 
2*, by which n-simplex (J is spanned. Then there exists the associated 
(n+ I)-dimensional Euclidean space C:+ I with coordinates (u.,o, .. " u.,n) 
and a birational mapping n.: cn+l~cn+1 which is defined by 

Then 

= ('tf!:o.o ••• uan.o)Ao . .. (uao.n . .. uan.n)'n 
11,0 tI,n u,o ",n 

= (U.,O)AO(l)(U.,I)Al(l) . .. (u.,n)AnO) 

n*dz=n*(dzo/\dzJ\ . . ·/\dzn) 

= (Uq,o)IAnl-l . .. (u.,n)IAnl-Iduq,o/\ .. ·/\du.,n 

n*f = (U',O)d(Ao) ... (u.,n)d(An) f.(u.,o, .. " u.,n)' 

The desired result follows immediately from the equations above. 
When (X, x) is defined by a non-degenerate holomorphic function, 

the numbers "{om} are expressed in terms of the Newton diagram. We 
denote by r -(f) the cone over r(f) with cone point the origin. 

Theorem 2.2. om(X, x)= #(mL/(f»-Ml E Nn+l; (l+r + (f» n mL/(f) 
=t'=qS} where mL/(f) = {A E Nn+l; l/m+(l, I, ... ,1) E r -(f)}. 

Proof. If () is any holomorphic m-ple n-form on X -{x}, g=(}/wm is 
a holomorphic function on X -{x} and hence extends to be holomorphic 
also at x. The singular point x is normal, so there exists a holomorphic 
function G(z) in C{zo, Zl> •• " zn} such that Glx=g. Expand G(z) in a 
power series: 

G- "" C ZloZll zln - L...J lo,ll,"',An 0 1'" n' 

Then n*(zlwm) E reX, (!)(mK+(m-I)E» if and only if A(l)+mClAI-l­
d(A» + (m - 1)~ 0 for any strictly positive integral vector A of 2*. So, 
n*(zlwm) ~ reX, (!)(mK+(m-I)E» if and only if A(A)<m(d(A)-IAI) for 
some strictly positive integral vector A of 2*, i.e., l/m+(I, 1, .. ·,1) E 

r -(f). 
An arbitrary polynomial F can be uniquely divided into two parts: 

F=(F)+ +(F)-, where (F)_ consists of monomials Zl such that 1 E mL/(f), 
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and we denote F-(F)~ by (FL. 
Hence ()_gmm (mod v/m(x_{x})), where g=(G)-lx. Moreover, 

assume moreover gmm E v/m(x_{x}). Then there exists H=H+ in 
C{zo, Zt> •.• , zn} such that H+ IX=G_IX. Hence G_-H+=P f=('L, c1z1)f 
= 'L, c.(zlj) = 'L, c1«zlj)+ + (zlj)J for some polynomial P. Therefore 
G_= 'L, clzlj)_. Thus the proof is complete. 

Example 2.5. Let (X, x) be a normal surface singularity defined by 
the polynomial x 2+y3+ z 7_1yz 5. Then 

x2m42 ~ V/42(X -{x}), y3m42 ~ V/42(X -{x}) and 

Z7m42 ~ V/42(X -{xD, but 

(x2+ y3+ z 7)m42= l yz5m42 E V/42(X -{xD. 

Corollary 2.6 (Merle-Teissier [11]). piX, x)= #(.d(f». 

Corollary 2.7. It is the Newton boundary of a non-degenerate holo­
morphic function that determines Om completely. 

Example 2.S. Let {X, x) be a normal surface singularity defined by 
the polynomial X8+y8+Z8+X2y2Z2. Then 

and 

Therefore 

Remark. Using Kato's theorem [9, p. 246], we can calculate Om of 
the above example. 

One can easily check that Theorem 2.2 gives the following: 

Proposition 2.9 (Watanabe-Higuchi [20], Yumiba [23]). Under similar 
conditions, 

(1,1, .·.,1) E (r_(f»O~om=O, for m>I, 

(1,1, ... ,1) E r(f)~om=I, for m>I, 

(1, 1, ... ,1) E (r +(fW ~lim sup om/mn>O, 

where ( ) 0 means the interior of ( ). 



Pillrigellera of Singularities 677 

§ 3. (0, s)-type purely elliptic singularities 

In this section we consider natural generalization of purely elliptic 
singularities of surfaces to higher dimensions. 

Definition 3.1. A normal isolated singularity (X, x) is purely elliptic 
if om(X, x)= 1, for m'2:.1, where om(X, x) is the m-genus of (X, x). 

They are the next most reasonable class of singularities after rational 
singularities. These purely elliptic singularities have a theory very similar 
to the theory for simple elliptic singularities and cusp singularities. They 
are also useful in answering some questions about other types of normal 
n-dimensional isolated singularities. Basically, we apply the result of 
Ishii [8] to this situation, our tool being the technique of toric varieties 
due to Varchenko [18], Ehlers-Lo [2] and Oka [14]. Several examples of 
such singularities are found, especially a certain class of hypersurface 
singularities with the minimal characteristic exponent equal to 1, and all 
cusp singulariti(;;s. 

In the case where dim" X = 2, (X, x) is a simple elliptic singularity or 
a cusp singularity if (X, x) is a purely elliptic Gorenstein singularity. In 
higher dimensions, however, the condition is in some sense less restrictive 
than in dimension 2, as the following example shows: 

Example 3.2. Let (X, x) be the n-dimensional normal isolated singu­
larity obtained by blowing down the zero section, denoted by M, of a 
negative line bundle. If the canonical line bundle of M is trivial, then 
(X, x) is purely elliptic; see [20]. 

Example 3.3. Let (X, x) be the n-dimensional normal isolated singu­
larity defined by a quasihomogeneous polynomial of type (ro' r1, •• " rn) 
with r(f)= rO+r1 + ... +rn= 1. Then by Proposition 2.9 (X, x) is purely 
elliptic; see also [20]. 

Now we derive a criterion for (X, x) to be purely elliptic. 

Definition 3.4. Let (X, x) be a normal isolated singularity. We say 
(X, x) is quasi-Gorenstein if there exists a ho10morphic n-form w defined 
on a deleted neighborhood of x, which is nowhere vanishing on this 
neighborhood. 

Theorem 3.5. Let (X, x) be a normal isolated quasi-Gorenstein singu­
larity and let w be an n-form satisfying the condition of Definition 3.4 and 
let V be a Stein neighborhood of x. Then (X, x) is purely elliptic if and 
only if w $ V(V -{x}) andfwm e Vlm(v -{x}) for any fe m, the maximal 
ideal in (!)x,x' 
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One can easily check that the Theorem above gives the following: 

Theorem 3.6. Let (X, x) be a normal isolated singularity. Suppose 
that w is a holomorphic n-form defined on a deleted neighborhood of x, 
which is nowhere vanishing on this neighborhood and that there exists a 
resolution rr: X --*X such that the exceptional set A=rr- 1(x) is a divisor 
which has at most normal crossings. Then (X, x) is purely elliptic if and 
only if w is not V-integrable and (rr*w)+A:2:0, i.e., any multiplicity of rr*w 
on each component of A is greater than or equal to - 1 and there exists at 
least one component where the multiplicity of rr*w is exactly -1. 

Remark. Let (X, x) be a normal isolated singularity whose local 
ring (!) X,x is Cohen-Macaulay. If the singularity (X, x) is quasi-Gorenstein, 
then the local ring (!)x,x is Gorenstein. 

Problem 3.7. Find a purely elliptic singularity which is not quasi­
Gorenstein. There are no known examples of this type. 

From now on, we study the exceptional sets of a good resolution of 
a purely elliptic singularity (X, x) of a hypersurface. By Theorem 3.5, 
Kg- I;iEI miEi - I;jEJ E j where mi;;SO for i E I. Put E1 = I;iEI E1 , EJ= 
I;jEJ Ej. We call EJ the essential part of the exceptional set, which 
plays, in fact, an essential role as we see below. 

Definition 3.8. A quasi-Gorenstein purely elliptic singularity (X, x) 
is of (0, i)-type (i= 0, 1, .. " n - 1) if Hn-l(EJ, (!) E) consists of (0, i)-Hodge 
component. 

Remark. Since C~Hn-l(EJ' (!)EJ) = Gr~Hn-l(EJ)= EB~;;-5 H~'~l(EJ)' 
Hn-l(EJ, (!)EJ) coincides with one of H~'~l(EJ)' 

Theorem 3.9 (Ishii [8]). Let (X, x) be a 3-dimensional Gorenstein 
purely elliptic singularity with a good resolution rr: J"--*X such that Kg= 
-EJ. Then EJ is either; 

( i ) a non-singular K3-surface if (X, x) is of type (0, 2), 
(ii) a chain of surfaces EI> E2, •• " Er where E1 and Er are rational 

and Ei (i=2, "', r-l) are elliptic ruled and any intersection curves are 
elliptic, if (X, x) is o.ftype (0,1), or 

(iii) the dual graph r EJ of EJ is a triangulation of the real 2-
dimensional sphere, any component of EJ is a rational surface and any inter­
section curve is rational if (X, x) is of type (0, 0). 

Let (X, x) be a normal n-dimensional isolated singularity defined by 
a non-degenerate holomorphic function! In the following, we study the 
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"type" of purely elliptic singularities. From the result of Ishii [8] we 
need not obtain all the information about the exceptional set. We only 
have to know the dimension of the dual graph of the essential divisors. 

Theorem 3.10 (Ishii [8]). Let 1':: X -..X be a good resolution of an 
n-dimensional purely elliptic singularity (X, x) of type (0, s) with the 
essential divisor E J • Assume moreover that (X, x) is quasi-Gorenstein. 
Then the dual graph of r EJ of E J is an (n-s-I)-dimensional simplicial 
complex. 

We can easily see that the converse of Theorem 3.10 is true. Let ,10 
be the compact face which contains the point (1, 1, ... , 1) as a (relatively) 
interior point. 

The notation being as in Section 2, the following propositions are 
trivial from Lemma 2.1. 

Proposition 3.11. A meromorphic (n + 1 )-form dzo /\ dZ1 /\ ••• /\ dznlf 
has a pole of order one along E(A) if and only if ,1(A) 3 (1, 1, ... , 1). 

Proposition 3.12. xn E(A) is non-empty if and only if dim ,1(A) >0. 

Theorem 3.13. Let s be the dimension of ,10. Then there are n+ I-s 
vertices AI, ... , A n+ 1 - s of 17* such that ,10= ni~~-l,1(Ai)' and the dual 
graph r EJ of EJ is a subdivision of the (n-s)-dimensional simplicial com­
plex spanned by AI, A z, ••• , A n +1 - s if s>O, and a (n-I)-dimensional 
simplicial subdivision of the boundary of the n-dimensional simplicial complex 
spanned by AI> Az, ••• , Au 1 if S = 0. 

Corollary 3.14. Let (X, x) be an n-dimensional purely elliptic singu­
larity defined by a non-degenerate holomorphic function, and let s be the 
dimension of ,10. Then (X, x) is of type (0, s-1) ifs>O, and of type (0,0) 
ifs=O. 

Remark. This corollary is due to s. Iida [5] in the case where all 
faces of r(f) are simplicial. 

Now consider non-degenerate holomorphic functions /(zo, ZI' ... , zn) 
with the property that the Newton boundary contains the point (1, 1, 
... , 1). All such functions fall into n + 1 classes according to the dimen­
sion of the compact face ,10 which contains the point (1, 1, ... , 1) as a 
(relatively) interior point. 

The following are examples of polynomials of 4 variables, which 
makes ,10. 
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Example 3.15 (Y onemura [22]). 

dim Llo= ° xyzw. 
dim Llo= 1 X2+ y2z 2w2, and others. 
dim Llo=2 X3+y3+ Z 3W", and others. 
dimLlo=3 xp+yq+zr+ w' (l/p+l/q+l/r+l/s=I), 

and other quasihomogeneous polynomials of type 
(a, b, c, d) with a+b+c+d= 1. 

Remark. The case of dim Llo= 1 is reduced to the case of dim Llo=O, 
e.g., X2+y2z 2W2=(X+yzW)2_2xyzw. 

§ 4. A criterion for a singularity to be Du Bois 

The purpose of this section is to prove the following: 

Theorem 4.1. If a purely elliptic singularity (X, x) is quasi-Gorenstein, 
then (X, x) is a Du Bois singularity. 

Remark. This Theorem is due to S. Ishii [8] in the case of Gorenstein 
singularities, for the Cohen-Macaulay property implies Hi(X, @x)=O for 
i*O, n-1. 

In fact, by Theorem 4.1, Ishii's Theorem [8, Theorem 2.3] holds in 
the case of quasi-Gorenstein singularities. For the reader's convenience 
we shall restate it in a generalized form. 

Theorem 4.2. Let rr: X -+ X be a good resolution of a normal isolated 
quasi-Gorenstein singularity (X, x) of dimension n~2. Denote rr- 1(X)red by 
E and decompose E into irreducible components Ei (i= 1,2, ... , n). Then 
the following three conditions are equivalent: 

( i ) om(X, x) ~ 1 for any mEN. 
(ii) (X, x) is a Du Bois singularity. 
(iii) Kx=rr*Kx+ I:; miEi with mi :?" -1 for all i. 

Normal isolated Du Bois singularities are characterized as follows: 
Let (X, x) be a normal n-dimensional isolated singularity and rr: X -+ X be 
a good resolution. Then (X, x) is a Du Bois singularity if and only if the 
natural maps Hi(X, @x)-+Hi(E, @E) are isomorphisms for all i >0 where 
E= rr- 1(X)red (see Steenbrink [16]). 

Assume moreover that X is a (contractible) Stein space. Let rr: X -+ X 
be a resolution of X such that E= rr- 1(X)red is a divisor with normal cross­
ings on X. 

For the analysis of the situation, two exact sequences are of funda­
mental importance: 
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and 

Lemma 4.3 (Steenbrink [16]). Let (X, x) be an isolated singularity 
where X is a contractible Stein Space; let ,,: X~X be a resolution of X 
such that E=,,-I(X)"ed is a divisor with normal crossings on X. Then for 
all i ~o the natural map 

is surjective. 

From this lemma, we need only to verify the natural map 

HiCK, @X)~Hi(E, @E) 

is injective for all i >0, i.e., we only have to prove the following Lemma 
and Proposition. From the assumption that (X, x) is a quasi-Gorenstein 
singularity there exists a non-vanishing holomorphic n-form defined on a 
deleted neighborhood of x e X. We denote ,,*w by w. The notations 
being as above, since (X, x) is purely elliptic, (w)+E~O. Then by cupp­
ing, or wedging with w we have a sheaf morphism from @x to @x(K+ E). 

Lemma 4.4. The associated morphism 

is injective for i <no 

Proof Recall the point of view of [10], which we will be using 
below. In particular, consider the sheaf cohomology with support at 
infinity. Then we have the following commutative diagram, where the 
vertical arrows are cupping, of wedging, with w: 

Vi .. . ~H~(U, @u) ) Hi(U, @u) )H~(U, @u)~· .. 

lpi Jri 
.. . ~H~(U, @u(K+E»---+Hi(U, @u(K+E))~H~(U, @u(K+E)~··· 

The right hand side arrows r i are isomorphisms, since "at 00" w = w 

doesn't vanish. By the result of Grauert and Riemenschneider [3] and 
Serre duality H~(U, @u)=O for i <n, so t't is bijective for all i <n-l and 
t'n-I is injective. Because fi 0 t't=r/>i 0 f3i is injective, f3t must be injective 
too. 
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Proposition 4.5. For all i>O, the natural map 

is injective. 

Proof Consider the following commutative diagram, where the 
vertical arrows are cupping, or wedging, with w: 

We obtain long exact sequences 

Just as in Lemma 4.4, Hi(U, (9u(K» =0 for i>O, so fl.i is bijective for 
i>O. Because fl.i 0 {3i=aio}.i is injective for i>O, Ai must be injective 
too. Thus the Proposition is proved, and therefore completes the proof 
of Theorem 4.1. 

Let us illustrate some of implications among rational singularities, 
purely elliptic singularities and Du Bois singularities, which have appeared 
so far. 
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Theorem 4.6. Let (X, x) be a normal isolated singularity with the 
property 

Om(X, x)=O if m$O (mod p) 

om(X, x)= 1 if m=O (mod p) 

and with a non-vanishing holomorphic cross section of (J)(pK) on X -{x}. 
Then the singularity (X, x) is Du bois. 

Proof Recall that there exists a quasi-Gorenstein purely elliptic 
singularity (Y, y) and a finite group G of Aut (Y, y) with no fixed points 
except at the singularity y such that (X, x)=(Y, y)/G. Since a quotient 
singularity of a Du Bois singularity is also Du Bois, from the preceding 
lemma (X, x) is Du Bois. 

Typical examples including the condition of Theorem 4.6 are the 
Tsuchihashi cusp singularities. For the definition of Tsuchihashi cusp 
singularities and their fundamental properties, see [I 7]. 

Let N be a free Z-module of rank n> 1. Let (C, T) be a pair of an 
open convex cone in NR=N®zR which contains no line in NR and a 
subgroup T of the automorphism group GL(N) of N such that C is T­
invariant, the action of T on D=C/R+ is properly discontinuous and 
free, and has the compact quotient D/T. 

For such a pair (C, T) there exists a normal isolated singularity, 
which is denoted by Cusp (C, T) and is called a Tsuchihashi cusp singu­
larity. 

The important properties to notice are as follows: 
(i) A Tsuchihashi cusp singularity (X, x) has a resolution i't": X~X 

whose exceptional set E consists of rational surfaces, crossing each other 
along rational curves, in such a way that the "dual graph" is a triangula­
tion of a compact topological surface T. 

(ii) According to TcSL(N) or not, a Tsuchihashi cusp singularity 
has a nonvanishing holomorphic cross section 0) of (J)(K) or (J)(2K) so that 
(0)= -E or (20)= -2E respectively, which is defined on a <;J.eleted 
neighborhood of the singularity x. This phenomenon corresponds to the 
fact that Tis orientable or not. 

(iii) Letmx bethemaximalidealatx. Then Ri't"*(J)x(-E)=m", in 
the derived category of complexes of (J) x-modules bounded below and 
with coherent cohomology sheaves. 

Corollary 4.7. The Tsuchihashi cusp singularities are Du Bois singu­
larities. 

Ishida [7] showed that Du Bois singularities are Buchsbaum. 
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Theorem 4.8. Let (X, x) be a normal isolated Du Bois singularity. 
Then the local ring (!)x,,,, is a Buchsbaum ring. 

Corollary 4.9 (Ishida). Tsuchihashi cusp singularities are Buchsbaum. 

Remark. Ishida [6] proves this Corollary directly. 

Finally we show that there is a Du Bois singularity, which is not 
purely elliptic. Let M be a compact complex manifold, and let F be a 
complex analytic line bundle over M. 

Lemma 4.10 (Kodaira vanishing theorem). If F - K is positive in the 
sense of[12], then Hq(M, (!)(F)) = o for q~1. Here K is the canonical line 
bundle of M. 

Assume that F is positive. We denote the total space of the dual 
line bundle F* by X. The zero section of X is contractible. Then we 
get an n-dimensional normal isolated singularity (X, x) by blowing down 
7t': X--'>-x. The Leray spectral sequence for p: X--,>-M, p the projection of 
F*, shows 

Hi(X, (!)g)=Hi(M, ROp*(!)x) = EB Hi(M, (!)(kF)). 
k.,O 

Proposition 4.11. If F-K is positive, then (X, x) is Du Bois. 

Proof From Lemma 4.10 it follows that the maps Hi(X, (!) x)--'>­
Hi(M, (!) M) are isomorphisms as soon as kF - K is positive for all k~ 1. 

Corollary 4.12. If K is negative, then (X, x) is Du Bois. 

Corollary 4.13. If F -K is positive and pg(M) > 1, then (X, x) is a 
non-quasi-Gorenstein Du Bois singularity. Consequently (X, x) is not an 
"elliptic" singularity, much less a purely elliptic singularity. Here pg(M) 
is the geometric genus of M. 
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