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On the Homotopy Theory of Arrangements 

Michael Falk* and Richard Randell** 

In this paper an arrangement d is a finite collection of hyperplanes 
{HI, .. " Hn} through the origin in ct. We wish to examine the comple­
mentary space M = c! - U~=lHt from a topological point of view. More 
specifically, we will discuss the homotopy properties of M, and how these 
properties relate to various other well-known properties of arrangements. 
As a focal point we will consider the question: 

Precisely when is M a K(rr, 1) space? 
Arrangements arise in many contexts. For example, one may refer 

to papers by Orlik, Sommese, and Terao in this volume. The question of 
when M is a K(rr, 1) was first considered by Fadell and Neuwirth [6], who 
gave an affirmative answer for the arrangements of type Ak (see (2.1) for 
definitions). Such questions burst upon the singularities scene with the 
work of Arnol'd and Brieskorn reported on in [3], and the lovely result of 
Deligne [5] that real simplicial (hence real reflection) arrangements (see 
(2.4)) yield K(rr, 1) spaces. In the time since that work a number of other 
properties of arrangements have been defined, some with the K(rr, 1) 
property in mind, and some in other contexts. We intend here to men­
tion those properties which seem relevant and to try to sort out their 
interrelationships. 

Since many of our readers will be familiar with most of these proper­
ties, we will defer precise definitions and examples until Section 2. We 
start in Section 1 with a broad overview of the field. Then after giving 
the relevant definitions we will consider each possible implication in a 
systematic fashion in Section 3. The section may be treated as a reference 
section, though it begins with a discussion of some major positive results 
and their proofs. Where counterexamples are required, we have tried to 
manage with as few as possible. All this information is assembled in a 
chart at the end of Section 2. A quick glance at this chart shows quite a 
number of question marks. In the final section we construct a commuta-
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tive diagram to help give some order to these questions, and we formulate 
several optimistic conjectures. 

A few comments on notation are in order. We will consistently 
abuse notation by referring to the "fundamental group. of the arrange­
ment" rather than the "fundamental group of the complement of the 
arrangement" and so forth (unless of course there is danger of confusion). 
Also, when we have occasion to refer to specific examples, we will attempt 
to let the context, not the notation, make it clear precisely which arrange­
ment we mean. 

We are pleased to thank those with whom we have had discussion 
concerning this material, particularly Mutsuo Oka, Peter Orlik, Andrew 
Sommese, and Hiroaki Terao. Our thanks also go to the organizers of 
the conference, Tatsuo Suwa and Kyoji Saito in Japan, and Phil Wagreich 
and Peter Orlik, in the United States, for the opportunity they helped 
provide to meet and exchange ideas. 

We consider homotopy properties of the space M=C!-U~~lHi' 
where Hi is a complex linear subspace of complex codimension one. Thus 
M is the complement of a real codimension two embedding, and has a 
rich fundamental group structure. One may see that 

(a) Ht(M; Z)=zn, with generators loops meridional to the indi­
vidual Hi' 

(b) 1t't(M)=1t't(Mnp), where P is a generic 3-space through the 
origin in C! [12]. 

(c) 1t't(Mn P) may be computed for a given arrangement with the 
standard "pencil" technique [4]. 

(d) For certain arrangements 1t't(M) may be written down in terms 
of generators and relations. For example, in [23] as corrected, a presenta­
tion is given for the complexification of a real arrangement. 

For the higher homotopy groups much less is known. One does 
know certain conditions for which M is not a K(1t', 1). For example, 
Hattori [13] observed that the arrangement of 4 planes in C 3 in general 
position does not yield a K(1t', 1) since in this case 1t'2(M) is the free 
Z[1t't(M*)]-module of rank 1 (M*=MjC*, 1t't(M*)=Z3). More generally 
(see Theorem 3.2), if 1t't(M) contains a subgroup isomorphic to Z" then 
M cannot be a K(1t', 1) (for MeC3). 

There are, however, a number of conditions under which M is a 
K(1t', 1). This happens, for example, if the arrangement comes from a 
real reflection group (2.3), or is the complexification of a real simplicial 
arrangement (2.4). Also, if M is the total space of a fiber bundle in 
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which the base and fiber are K(tr, 1) spaces, then the long exact homotopy 
sequence of the bundle shows that M is a K(tr, 1) also. This property 
holds for a number of arrangements, including the type Ak considered by 
Fadell-Neuwirth. Recently, Jambu and Terao [15] have introduced the 
property of super solvability (2.7.6) of an arrangement. It turns out (2.7.7) 
that a supersolvable arrangement has the fibering property mentioned 
above, so that supersolvable arrangements are K(tr, 1) arrangements. 

On the other hand, there are several properties which seem to have 
something to do with the homotopy of M, but do not (or are not known 
to) imply that M is a K(tr, 1). Several of these properties are combina­
torial in nature. That is, they depend only on the pattern of intersection 
of the hyperplanes, i.e., on the lattice associated to the arrangement (see 
2.3). Some such properties, such as supersolvability, do imply M a 
K(tr, I), while others, such as formality (2.7.11) do not. Since it is not 
known to us whether K(tr, I)-ness is combinatorial, the effects of these 
properties are of interest. 

We should mention also two particular problems of special concern, 
since they have actually been stated in print. 

(a) Is every free arrangement a K(tr, I)? 
(b) Is every complex reflection arrangement a K(rr, I)? 
The first of these has been suggested by K. Saito [26, p. 295], the 

second by P. Orlik and L. Solomon [21]. (Actually, they ask if such 
arrangements are of fiber-type.) Since complex reflection arrangements 
are free [27], an answer of "yes" to (a) implies a similar answer to (b). 
The answer to (b) is "yes" if the arrangement is associated to the symmetry 
group of a complex polytope [Orlik and Solomon, private communica­
tion]. 

Thus there are several conditions under which an arrangement is a 
K(tr, I). If we assume that M is a K(rr, 1), however, much less can be 
said. The only positive result we know of is that a K(rr, 1) arrangement 
must be "for:ual." (The precise definition of formal will be given later 
(2.7.11).) For now, suffice it to say that formal means "as much general 
position as possible, given the intersection pattern in codimension one 
and two." 

In summary, we have several conditions which force M to be a 
K(rr, 1). All but one of these (supersolvability) are clearly more geome­
trical than combinatorial. Also, examples are known which are K(rr, 1) 
but not supersolvable. 

On the other hand we have a combinatorial condition (formal) which 
is necessary for M to be a K(rr, 1). What seems still possible is the exis­
tence of a fairly weak topological condition (*) so that M is a K(rr, 1) if 
and only if M is formal and (*). 
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§ 2. Definitions and Examples 

Now we take up the task of presenting precise definitions of the 
relevant properties and of presenting several classes of examples. We 
first consider 

(2.1) Real reflection arrangements 
Let W be a finite irreducible group generated by reflections in R!. 

Then Woperates also on C l , and we have the arrangemeht.sd of reflecting 
hyperplanes. The list [2] of such groups is comprised of 

We consider two such classes in more detail. For AI, we have MX 
C ~Zl+l> where 

Zl+l = {(Zl' ... , Zl+l) E CI+11 Zi4=Zj, for all i 4= j}. 

Thus the number n of hyperplanes is given by n=(1 + 1)1/2. Notice that 
projection onto the first I coordinates gives a fiber bundle Zl +l---+Zl, with 
fiber C-{Zl' ... , Zl}, so that M is a K(rr, 1). 

For D l, we have M = {(Yl> ... , Yl) E CII Yi 4= ± Yj' for all i 4=j}. 
Following [3], set Z={(Zl, ... , Zl_l) E C l - 1 Izi 4=O and Zi4=Zj for all i4=j}. 
Then Z is a K(rr, 1) by projection as above, while setting Zi = Y;- y~ gives 
a fiber bundle M---+Z, showing that M is a K(rr, 1). Notice that this is 
not a projection or even linear mapping. 

(2.2) Pictures and real arrangements 
For certain arrangements it is easy to draw a very nice picture. 

These are the real arrangements in C'. Suppose the hyperplanes Hi of an 
arrangement are defined by linear forms !t(Zl' ... , ZI)=O. We say the 
arrangement is real if all the coefficients of all the!t may be taken as real, 
not just complex, numbers. The real reflection arrangements are examples. 

Suppose then that we have a real arrangement in C', and let us use 
(x, Y, z) as coordinates. Then we may linearly change coordinates so that 
hex, Y, z)=z, and for all other!t, we may set Z= 1 to obtain linear equa­
tions which we may graph on an xy coordinate system. Thus, if.j; =Z, 
h=x,f,=y, we would draw the picture 

Figure (2.2.1) 
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Of course, we are really drawing the real part of the projectivized 
arrangement in Cp2=C 3_{0}jC-{0}. Thus, for D3, which has 6 lines, 
we have 

Figure (2.2.2) 

If we wish a picture with the line at .infinity as one line of our arrange­
ment we may take a coordinate change 

z'=y+z 

y'=y 

x'=x 

which yields the 6 lines 

x'=±y' 

x' = ±(z' - y') 

y' = ±(z' - y'), or 2y' =z' and O=z'. 
This gives 

Fig~re (2.2.3) 

(2.3) The lattice and cohomology or an arrangement 
Following Orlik-Solomon [20], we define the lattice L=L(d) of an 

arrangement. The set L(d) is the set of non empty intersections of subsets 
of d, partially ordered by reverse inclusion. The Mobius function of L 
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is defined recursively by ,u(C!) = 1, and ,u(X) = - 1:YeL ,u(Y). For any 
y<x 

X e L, let the rank of X, reX), be defined by r(X)=I-dimcX. Finally, 
let the Poincare polynomial of M be defined by 

~ 

Py(t) = 1: bt(MW, 
i=O 

where bt(M) is the i-th betti number, bi(M) = dim Hi(M; C). Then [20] 
one has 

Thus, for D3 one has the lattice 

Figure (2.3.1) 

and Py(t) = 1 +6t + Ilt 2+6t 3=(1 +t)(1 +2t)(1 +3t). 
This is a very special case of a result of Brieskorn [3]: For real 

reflection arrangements, Py(t) factors into a product of terms (1+mi t), 
where the m i are the exponents of the corresponding reflection group. 

(2.4) Simplicial arrangements 
Let d be a real arrangement. Then we consider the intersection of 

the real hyperplanes in R! with the unit 1-1 sphere S!-l. If the resulting 
subdivision is simplicial, i.e., yields in the obvious way the structure of a 
simplicial complex on S!-1, we say the arrangement is a simplicial one. 
Thus D3 is simplicial (interpret the second picture as a picture on S2), but 
the arrangement below is not: 

Figure (2.4.1) 
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This notion is relevant because of Deligne's result [5] that the complexifica­
tion of a real simplicial arrangement yields a K(rr, 1) space, together with 
the fact [2] that real reflection arrangements are simplicial. 

(2.5) Unitary reflection arrangements 
Another natural class to consider is that of the unitary reflection 

arrangements, defined analogously to the real reflection arrangements. 
The list here (see [24]) includes the real reflection groups, certain monomial 
groups G(p, q, r), and a list of exceptional groups Gi • 

(2.6) Certain exceptional arrangements 
In this section we will define an interesting infinite collection of 

arrangements Jk , k"?l; along with certain other arrangements which will 
be useful as counterexamples. 

Consider the family of all nonsingular Fermat curves axk + byk + czk 

=0, subject to a+b+c=O. A routine computation shows that non­
singularity holds unless (a: b : c) E p 2 is one of (1: 0: -1), (0: 1 : -1), or 
(1: -1: 0). Further, each (x: y: z) E p 2 not lying on a singular curve is 
on exactly one nonsingular curve. Thus we have a well-defined mapping 
p: p 2_ UHr-+P 1 defined by p(x:y:z)=(a:b:c), where the Hi are the 
3k+l projective lines z=O, Xk=yk,yk=Zk, Xk=Zk. Let Jk be the cor­
responding arrangement of (3k+ 1) lines in C~. Then J1 is 

and J2 is 

If k>2, the arrangement is not real. Using the map p above, one may 
show that M* = MjC* fibers over a three-times punctured 2-sphere, with 
fiber a surface of genus (k-1)(k-2)j2 with k2+k punctures. Thus Mk 
is a K(rr, 1) space. One may compute 
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PJ1k(t) = 1 +(3k+ l)t+(3k2+k+ l)t 2+(3k2-2k+ l)t 3 

= (1 + t)(l + 3kt +(3k2 - 2k+ IW) 

so that P,l1.(t) factors over the integers if and only if k= 1 or k=2. 
Finally, we list some particular real arrangements with interesting 

properties. 

) 

(2.7) Definitions 
For the convenience of the reader we gather a number of definitions 

in this section. Several new properties (fibered, fiber-type, LCS, formal, 
and simple) are defined. 
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Definition (2.7.1). An arrangement d is fibered if M is the total 
space of a fiber bundle F --+M --+M', where F is a punctured surface, and 
M' is a K(rr, 1) space. 

Definition (2.7.2). An arrangement d factors if pollet) factors into 
linear terms over Z[t]. 

In [28], Terao showed that a "free" arrangement factors. To define 
freeness, we think of D = U Hi as a divisor in C l, and let Q be a local 
defining equation at O. Define Qq(log D) = {rational q-forms wi Qw and 
Qdw are regular}. The divisor D is free if Q1 (log D) is a free (1)c 1,0 module. 

Definition (2.7.3). An arrangement d is free if and only if the 
associated divisor D is free. 

This concept was introduced by K. Saito, who conjectured that an 
arrangement is free if and only if M is a K(rr, I)-space. Terao [26] found 
examples for which M is a K(rr, 1) but which are not free. The other half 
of the problem is open, as far as we know. 

Next we formalize terminology we have been using throughout. 

Definition (2.7.4). An arrangement sd is a K(rr, I)-arrangement if 
and only if M is a K(n, 1) space. 

The following three properties are closely connected. We consider 
them in order of decreasing strength. 

Definition (2.7.5). Let L be the lattice associated to an arrangement 
<<::1. An element x E L is called a modular element if it forms a modular 
pair with every y E L; i.e., if y<z, then yV(xAz)=(yV x)Az. 

Here aVb=anb, and aAb= n Vi' the intersection over all Vi E d 
such that a U be Vi. 

Definition (2.7.6). d is supersolvable if there exists a maximal 
modular chain 

O=XO<x1<··· <xL= I 

in the lattice; i.e., each Xi is a modular element. 

Supersolvable arrangements are free [15]. In [30] H. Terao has 
shown that an arrangement is supersolvable if and only if it is "fiber­
type," which we now define recursively. 

Definition (2.7.7). (i) The arrangement {O} in C 1 is a fiber-type 
arrangement. 

(ii) Suppose that, after suitable linear coordinate change, projection 
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to the first (I-I) coordinates is a fiber bundle projection M -+M', where 
M' is the complement of a fiber-type arrangement in C I - 1• Then d is a 
fiber-type arrangement. 

For example, Al is a fiber-type arrangement for alII. 

For the next definition we set G=rr1(M), G1=G, and Gn+1=[Gn, G], 
where [A, B] denotes the commutator subgroup of A and B. That is, 
[A, B] is the subgroup generated by a-1b-1ab, a E A, bE B. Then the 
Gn are just the terms of the lower central series of G. We further set 
G(n) = GnfGn+l. By [18, Theorem 5.4], G(n) is a finitely generated abelian 
group. We set ~n=rank G(n). 

Definition (2.7.8). We will say the lower central series of d is coho­
mologically determined provided that 

Il (l-tj)_pj=_~l ~- (in Zl[t]]). 
j~l PM ( ~t) 

We will say that d is LCS for short. Kohno showed this for Al in 
[17], and T. Oda [private communication] proved LCS for the Cl arrange­
ments. We have shown in [9] that this holds for all fiber-type arrange­
ments, but not for all K(rr, 1) arrangements. 

The next two definitions concern the rational homotopy theory and 
minimal model of M. Let vIt denote this minimal model and S denote 
the I-minimal model [10]. 

Definition (2.7.9) [16]. M is a rational K(rr, 1) if its minimal model 
is generated by elements of degree:::;: 1, i.e., if S=vIt. 

Definition (2.7.10). An arrangement d in C' is said to be parallel 
(with respect to HE d) if for any three Hp' Hq, Hr in general position 
there is a fourth H, such that Hs n Hr CHand H;:::J Hp n Hq. Here is a 
picture: 

).8 ---*--H8 

----.'----"<-- Hr 

In [16], Kohno shows that parallel arrangements are rational K(rr, l),s. 
We close this section of examples and definitions with two new 

properties designed to be related to the (topological) K(rr, 1) property. 
The first definition ("formal") is motivated by the following obser­

vations: 
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(a) If M is a K(rr,l), then rr=rr1(M) determines H*(M). 
(b) Bya Lefschetz-Zariski theorem [12], rrl(M)~rrl(QnM), where 

Q is a generic 3-space in ct. 
Thus we single out certain arrangements among those which have 

identical 3-space sections. Loosely speaking, we ask for as much general 
position as possible, given the intersections in (complex) codimension one 
and two. 

More precisely, d={H1, ••• , Hn}, where HiCC I, Hi=f:;l(O). Let 
h =ailz1 + ... +ailzl • We may setf: =ailz1 + ... ai1z l + OZI+l + ... + OZn 
(assuming n~l), and obtain an arrangement d*={H'!, ... , H;} in Cn, 
with L(d)=L(d*). Now consider a rank 2 element of L (=L(d». 
Such an element corresponds to an (n - 2) dimensional intersection of 2 
or more hyperplanes, say H,!, ... , Hj. Thus 

and we may consider the affine variety V C cn2 consisting of those collec­
tions of n distinct hyperplanes in cn satisfying conditions (*) (for all rank 2 
elements of the lattice). Since (*) are linear conditions in the coefficients 
aij defining the hyperplanes, V is an open subvariety of a linear variety, 
hence V is irreducible. Also, d* E V. Let Vz be the Zariski open subset 
of V consisting of all points at which all possible minors of (aij) are non­
zero. Then d* mayor may not be an element of Vz . Note that any 
two points of Vz have the same lattice L z . 

Definition (2.7.11). dis a formal arrangement if L(d)=Lz . 

The arrangement x=O, y=O, z=O, x+y+z=O in C 3 is not formal, 
while J2 is formal. Later we will see that d K(rr, I) implies d formal, 
but not conversely. 

To see that the first example is not formal, note that we have 

f'!= Ix+Oy+Oz+Ow 

ft =Ox+ ly+Oz+Ow 

ft =Ox+Oy+ lz+Ow 

ft = lx+ ly+ lz+Ow. 

The condition (*) is vacuous in this case, since there are no rank two 
elements corresponding to intersections of more than two hyperplanes. 
Thus Vz consists of all points of Vat which all minors of the 4 X 4 matrix 
(aij) are nonzero. Thus the lattice L z is the boolean lattice on 4 ele­
ments, and in particular has an element of rank 4. Thus Lz7=L(d), 
and the arrangement is not formal. 
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Next, we will show that J2 is formal. The hyperplanes of J2 (in C 3) 

are j; =z=O, h=X+Y=O, !a=x-y=O, h=x+z=O, h=x-z=O,!a= 
y+z=O, !t=y-z=O. There are some rank 2 elements of the lattice 
corresponding to 3 or more hyperplanes. These are 

a) z=O, y±z=O 
b) z=O, x±z=O 
c) x=z, y=z, x=y 
d) x=z, y= -z, x=-y 
e) X= -z, y=Z; x=-y 
f) X= -z, y= -z, x=y. 
Notice that these correspond to the six triple points in the picture 

of Jz given earlier. The equations (*) become 
a) fr=y-z=(y+z)-2z=ft-2ft 
b) ft=x-z=(x+z)-2z=ft-2ft 
c) fr=y-z= -(x-y)+(x-z)= - ft+ ft 
d) ft=y+z=(x+y)-(x-z)=f't- ft 
e) fr=y-z=(x+y)-(x+z)=f't- ft 
f) ft=(y+z)= -(x-y)+(x+z)= - ft+ ft· 
Since we have seven hyperplanes, we consider C 7, with coordinates 

(x=wI> y=Wz, Z=W3, W4, "', w7). Then points of V consist of seven 
hyperplanes gt=~~=laijWj, satisfying gr=gt-2gt, etc. We claim 
L z =L(Jz) here. By construction, one always has L z =L(d) in ranks 
less than three. Since L(Jz) has no elements of rank more than three, it 
suffices to show that L z has a single rank three element. This amounts 
in this case to showing that there are three of the gt which have the 
property that any g t can be written as a linear combination of them. 
Referring to the picture of Jz given before, we start at a triple point, say 
c); so we write gt= -gt+gt. We next find another triple point on 
h=O, say the one corresponding to b), so gt=gt-2gt. We see thus 
far that gt and gt are linear combinations of gt, gt, g;' We next look 
for multiple points involving g't and gt in terms of these and note that 
the points corresponding to e) and a) respectively will work. Thus each 
gt is a linear combination of gt, gt, gr, and so Lz has a unique rank 
three element and no elements of higher rank, as was to be shown. 

Our final definition, that of a "simple" arrangement in C 3, is moti­
vated by work of A. Sommese [25, Question 4.2]. Let d = {HI> .. " Hn} 
be an arrangement in C 3, and let d P={Ll' .. " Ln} be the corresponding 
arrangement in P2. For any point p E pz, let rp be the number of lines 
L j with p E L j • 

Definition (2.7.12). d is simple if and only if 
(i) for every L" I{p E L,lrp>3}1>2; 
(ii) given p, q with rp~3, rq>3, there exist L", "', L" with p E 
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L h , q E Lit and Lji n Lji+l = {z}, with r z ;;:0::3. 

For example, the arrangement X4 is simple, but not formal or a 
K(rr, 1) (see 3.13). Sommese's question is thus whether the Hirzebruch 
surface £(d, 11) associated to a simple arrangement is a K(rr, 1) space. 

(2.8) Table of implications 
The table below gathers what we know about these properties. The 

rows correspond to hypotheses, the columns to conclusions. The footnotes 
refer to results we learned of shortly before publication. Section 3 will 
analyze this table in detail. 

fibered free factor fiber SS 
type 

rat'l 
LCS K(tr:, 1) formal K(tr:, 1) comb. 

R-Refl. 

Simp. 

C-Refl. 

fibered 

free 

factor 

fiber type 

super­
solvable 

lower 
central 
series 

Rat'l 
K(tr:,l) 

Parallel 

formal 

simple 

! ?? 

I .; 
T 
F 

T 

F 

1-=--+--:-
I ? T 

i F 
F 

T T T 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

T 

F/l 

F 
F/l 

F 

F 
F 

T 

Fll 

F 

F 

F 

F 

F 

T T T T T 

T 

T 

? 

? 

? 

F 

F 

F';<) F';') F") Fl) 

F 

F 

F 

F 

F 
F 

F 

F 
F 

F 
F 

F 

T*) T';'l 

F F 
F F 

T 

T 

? 

T 

?? 
F 

T 

T 

?? 

T 

T':') 

F 

T 

T 

?? 

T 

?? 

F 

NA[ 
T21 

NAI 

T T 

T 

?? 

?? 

?? 

F 

F 

T 

T 

T 

T 

? 

T 
-------

I?? F 
----------------------1 

K(tr:,l) F 

Key: rows are hypotheses 
columns are conclusions 

T = true 
F = false NA = not applicable 
? = not known 

F F F 

?? = not known, of significant interest 

F T ?? 

") Depends on the assertion that parallel implies rational K(tr:, 1), proof of 
which has not appeared. 

1) D. is not rational K(tr:, 1) [8], but is LCS [T. Kohno, Poincare series of the 
Ma1cev completion of generalized pure braid groups, preprint]. 

2) C. Toda, as communicated by H. Terao. 
3) M. Falk [8] and T. Kohno [Rational K(tr:, 1) arrangements satisfy the LCS 

formula, preprint]. 

,) Added in proof: The LCS formula fails for Ha. 



114 M. Falk and R. Randell 

§ 3. Remarks and References 

In this section we discuss the various assertions in the table, proceed­
ing row by row. We cite references or sketch proofs for the valid impli­
cations, and refer to arrangements discussed in Section 2 for specific 
counterexamples. We also summarize the state of current research into 
the open questions: 

The following results will be useful in identifying counterexamples. 

Theorem (3.1). Suppose the arrangement d contains hyperplanes H j , 

H2, Hs, and H4 with the following properties: 
(i) ni~l Hi has codimension 3 in C l , and 
(ii) for l:::;;:i <j :::;;:3, Hi n H j is contained in no hyperplane of d 

other than Hi and H j • Then M is not a rational K(rr, 1). D 

A proof will appear in [8]. The idea is that {HI, ... , H4} gives rise 
to a relation in H*(M) which cannot be exact in the I-minimal model of 
M (see § 4). 

The following criteria generalize a result of A. Hattori [13]. 

Theorem (3.2). Let d be an arrangement in C l , and suppose rrl(M) 
contains a subgroup of cohomological dimension greater than I. Then M is 
not a K(rr, 1). 

Proof The complement M deforms onto an I-complex K. Let K 
be the covering space of K corresponding to the particular subgroup of 
rrj(M) = rrj(K) mentioned in the theorem. Then K is also an I-complex 
so HP(K)=O for p>l. If M=K is aspherical, K is also, and H*(K) = 
H*(rr/K)). Then rrl(K) has cohomological dimension at most I, provid­
ing a contradiction. 

Corollary (3.3). Let d be an arrangement in C 3 with real defining 
equations. Suppose HI, H2, Hs, and H4 are hyperplanes of d which satisfy 
properties (i) and (ii) of Theorem 3.1, and the real parts of H j, Hz, and Hs 
bound a connected component of the real part of M. Then M is not a 
K(rr, 1). 

Proof Using Randell's presentation for rrj(M) [23], one detects a 
free abelian subgroup of rank 4, and Theorem 3.2 applies. D 

We now proceed to the table of implications. 
bers refer to the rows (hypotheses) in the table. 
crossreferencing is unavoidable. 

The paragraph num­
A certain amount of 
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(3.1) Real reflection arrangements 
The properties of real reflection arrangements motivated many of 

the more well known theorems and conjectures in this table. Arnol'd [1] 
showed that the arrangements of type AI factor, and Brieskorn [3] extended 
this result to all real reflection arrangements. The integer coefficients of 
the linear factors coincide with the exponents of the corresponding reflec­
tion group. Fadell and Neuwirth [6] showed that the arrangements of 
type AI are fiber-type, hence have the K(7r, 1) property. Brieskorn [3] 
showed that the arrangements of type CI are also fiber-type, and con­
structed nonlinear fiberings for types DI and F4 • He conjectured that all 
real reflection arrangements are K(7r, 1). This conjecture is true but it is 
not known whether the arrangements of types Hs, H4, E6, E7, and E8 are 
fibered. The K(7r, 1) conjecture is confirmed by Deligne's result [5], since 
all irreducible real reflection arrangements are simplicial [2] (see 3.2). The 
formality of these arrangements follows (see 3.14). Terao [27] has shown 
that all these arrangements are free. The LCS and rational K(7r, 1) pro­
perties seem related to fiber-type and K(7r, 1) questions. But we have 
not yet been able to prove or disprove these properties for the smallest 
nontrivial example, D4• lambu and Terao [15] remark that this example 
is not super-solvable, and therefore not fiber-type (see 3.7). 

(3.2) Simplicial arrangements 
Deligne [5] showed that all simplicial arrangements are K(7r, 1), but 

his proof does not involve the fibration property. These arrangements 
must then be formal (see 3.14). The simplicial arrangement Ai13) of 
[11] has Poincare polynomial PM(t)=(1+t)(1+12t+39t Z), which does 
not factor. Hence A4(13) is not free (see 3.5). The arrangement Jz of 
Section 2 (labelled Al (7) in [11]) provides a counterexample for all the 
remaining assertions. In [9] we remark that the LCS formula does not 
hold for this arrangement. This may be verified using the method out­
lined in Section 4. Thus it cannot be fiber-type or supersolvable (see 3.7 
and 3.8). An application of Theorem 3.1 above will show this arrange­
ment is not a rational K(7r, 1). 

(3.3) Unitary reflection arrangements 
Orlik and Solomon [22] extended Brieskorn's factorization result to 

all unitary reflection arrangements, and subsequently Terao [27] showed 
that these arrangements are indeed free. All of these but a handful of 
exceptional arrangements are known to be K(7r, 1). Using Theorem 3.1 
and the combinatorial information provided in [19], we can show that the 
reflection arrangement labelled GZ6 is not a rational K(7r, 1). It is therefore 
neither fiber-type nor supersolvable (see 3.7 and 3.8). One expects the 
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LCS formula to fail for this arrangement; this remains to be seen/). This 
arrangement comes from the. symmetry group of a complex polytope, and 
is therefore K(1C, 1) by a recent result of Orlik and Solomon [private 
communication]. 

(3.4) Fibered arrangements 
A fibered arrangement is automatically K(1C, 1), and formal (see 3.14). 

However, the fibered arrangements Jk of Section 2 provide counter­
examples for all the other assertions. If k > 3, this arrangement does not 
factor, and is therefore not free (see 3.5), fiber-type, or supersolvable (see 
3.7 and 3.8). As mentioned in (3.2), the arrangement Jz is not a rational 
K(1C, I), and the LCS formula does not hold. 

(3.5) Free arrangements 
Terao introduced free arrangements in [26], and showed that all free 

arrangements factor [28]. This class includes the reflection arrangements 
[27], so the K(1C, 1) conjecture for free arrangements, due to Saito, is a 
natural extension of Brieskorn's original question. The arrangement Jz 
of Section 2 is seen to be free by applying Terao's Addition-Removal 
Theorem [29]. This arrangement fails to be a rational K(1C, 1), fiber-type, 
or supersolvable arrangement, and the LCS formula does not hold (see 
3.2). Whether freeness is a combinatorial property or not remains an 
open problem [29]. Though defined algebraically, there is an inductive 
technique, the Addition-Removal Theorem [29], which is combinatorial 
and accounts for many, but not all, of the free arrangements. 

(3.6) Factored arrangements 
On the other hand the more general factorization property is combi­

natorial, as noted in Section 2. And though many classes of arrangements 
enjoy this property, it seems to have little significance per se, as the 
arrangement Xl of Section 2 demonstrates. This arrangement factors, 
P M(t) = (I + t)(1 + 3t)2, but fails to have any of the other properties. 
Application of Theorem 3.1 and Corollary 3.3 shows that this arrangement 
is neither K(1C, 1) nor rational K(1C, 1). So Xl cannot be fibered, or fiber­
type, or supersolvable (see 3.8). The LCS formula fails, as may be 
checked by examining the one-minimal model (see § 4), and one also sees 
that the definition of formality is not satisfied. Finally, the simplicial 
arrangement A2(18) of [11] factors, with PM(t)=(1 +t)(1 +8t)(1 +9t), but 
is not free [26]. 

(3.7) Fiber-type arrangements 
Fiber-type arrangements are automatically fibered and K(1C, 1). For­

mality is a consequence of the K(1C, 1) property (see 3.14). In [9] we show 

,) Added in proof: The LCS formula fails for G26• 
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that fiber-type arrangements factor, and that the LCS formula holds. 
Terao [30] has shown that fiber-type arrangements are super-solvable and 
therefore also free. The methods of [9] may be employed to show fiber­
type arrangements are rational K(1C, 1) (see [8] for details). 

(3.8) Super-solvable arrangements 
Super-solvable arrangements were shown to be free by Jambu and 

Terao in [15]. In [30] Terao has shown all super-solvable arrangements 
are fiber-type. Referring to (3.7), we see that this purely combinatorial 
condition implies all the properties listed. 

(3.9) LCS arrangements 
Absent some other conditions, specifically fiber-type, the lower central 

series formula is virtually impossible to verify. This makes counter­
examples difficult to identify. It is possible that this formula is implied 
by the rational K(1C, 1) property, in which case many of the blanks could 
be filled in. *) Since the formula depends only on the cohomology and 
one-minimal model, the LCS property is combinatorial. 

(3.10) Rational K(1C, 1) arrangements 
The rational K(1C, 1) property depends on the one-minimal model, 

which is determined by the cohomology. This follows from Brieskorn's 
work [3], and is also evident from Orlik and Solomon's presentation 
of H*(M) (see § 4). So the rational K(1C, 1) property is combinatorial. 
However, its relationship to the topological K(1C, 1) property remains 
unclear. The example X2 of Section 2 is, according to Kohno's assertion, 
a rational K(1C, 1) (see 3.11), but does not factor (PM(t)=(I+t)(1+6t+ 
10t 2». Thus X2 cannot be free, fiber-type, or supersolvable (see 3.5, 3.7, 
3.8). The LCS formula has been checked only to third order for this 
example, but it is now known to hold for all rational K(1C, 1) arrange­
ments. ') We have been able to show that all rational K(1C, 1) arrange­
ments are formal-see Section 4. 

(3.11) Parallel arrangements 
This parallel postulate was introduced by T. Kohno in [16], where he 

claims that all parallel arrangements are rational K(1C, 1). Formality is 
then a consequence of Theorem 4.1. The example X2 of Section 2 belies 
all the other assertions here-refer to 3.10. 

(3.12) Formal arrangements 
Formality is clearly related to the K(1C, 1) property, but a glance at 

the table shows that some additional hypothesis should be added. The 

*) Added in proof: This is resolved; see Table 2.8. 
,) Added in proof: In fact, parallel implies LCS to order 3. 
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single example Xs of Section 2 serves as a counterexample for all the 
assertions here. That Xs is neither K(~, 1) nor rational K(~, 1) is seen by 
applying Theorem 3.1 and Corollary 3.3. The method discussed in 
Section 4 will show that the LCS formula fails. This arrangement has 
Poincare polynomial PM(t) = 1 +6t + 12t 2+ 7tB, which does not factor. 
This encompasses all the remaining assertions. The formality of Xs must 
be checked directly. Formality is not a priori a combinatorial property. 

(3.13) Simple arrangements 
Simple arrangements were defined by A. Sommese in [25], and are 

included here because of the similarity with the definition of formal, and 
the relation to K(~, 1) results. Specifically, Sommese [25] asks if the 
Hirzebruch surfaces [14] associated to simple arrangements are K(~, l)'s. 
Simple arrangements are not all formal, though, as example X 4 of Section 
2 shows. None of the other properties listed here hold for simple ar­
rangements. The example X 4 just cited cannot be rational K(~, 1) or 
K(~, 1) since it is not formal. Thus it cannot be fibered, fiber-type, or 
supersolvable. The example J2 of Section 2 is simple, but the LCS 
formula does not hold. And the arrangement X4 of Section 2 is simple 
but does not factor (P M(t) = (1 + t)(1 + 9t + 23t 2» and is therefore not free. 

(3.14) K(~, 1) arrangements 
Much of the current research is focused on the question of whether 

the K(~, 1) property is combinatorial or not. However, the fact that all 
K(~, 1) arrangements are formal (a proof is given in Section 4) gives a 
reasonable geometric criterion which is necessary for the K(~, 1) property 
to hold. Formality is not sufficient, though, as remarked in 3.12. Perhaps 
the most surprising counterexample here is the arrangement Jz of Section 
2, which is K(~, 1) (being fibered), but not a rational K(~, 1), by Theorem 
3.1. The LCS formula also fails for this arrangement. The simplicial 
arrangement A4(13) of [11] provides a counterexample for all the other 
assertions here. Being simplicial, it is a K(~, 1) arrangement (see 3.2), 
but does not factor. Hence Al13) is neither free, fiber-type, nor supersol­
vable. 

§ 4. Minimal models, formality, open questions 

In this section we discuss some of the newer results in the table and 
propose some specific conjectures. The basis for these ideas is a commuta­
tive diagram (*) which relates the K(~, 1) and rational K(~, 1) properties 
to the formality condition introduced in Section 2. We deduce from the 
diagram that a K(~, 1) or rational K(~, 1) arrangement is necessarily 
formal (Theorems 4.1 and 4.2). The diagram suggests several reasonable 
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conjectures consistent with the table, some of which we mention at the 
end of the section. 

The construction of the diagram (*) requires a preliminary discussion 
of formal arrangements and one-minimal models. This discussion de­
pends on a combinatorial model for H*(M) discovered by P. Orlik and 
L. Solomon [20]. Let us describe their result. 

Let d be an arrangement in Cl. For each HE d, let CPH be a linear 
form with H=kercpH' Let wH=(1/2rei)(dcpHlcpH), representing the one­
dimensional cohomology class meridional to the hyperplane H. Let R be 
the subcomplex of the De Rham complex A*(M) generated by {wHi HE d}. 
Brieskorn [3, Lemma 5] showed that the natural map R~A*(M) induces 
an isomorphism on cohomology. Note that the differential d is trivial on 
R. 

Let E be the free exterior algebra with one-dimensional generators 
{e H i H Ed} corresponding to the hyperplanes in d. For J<:;;;'d, J= 
{HI, .. " Hp}, we write eJ =eH,!\ ... !\eHp and 

where-denotes deletion. We say J is dependent if p >codim (nr~l Hi)' 
Let re: E~R map eH to W H, and let I = kernel (re). It is shown in 

[20] that I is the ideal of E generated by {aeJ i J<:;;;.d is dependent}. 
Therefore the natural map Ell ~R~A*(M) induces an isomorphism on 
cohomology, where Ell has differential zero. The differential graded 
algebra Ell is determined combinatorially, and provides a model for 
H*(M). These results remain true with rational coefficients. 

We now use Ell to construct the one-minimal model p: S~A*(M) 
for M. By definition [10], S is an increasing union of Hirsch extensions 
of degree one, and the induced map p*: HP(S)~HP(M) is an isomor­
phism for p = 1 and a monomorphism for p = 2. Rational coefficients 
are understood throughout. By the preliminary remarks, we may use for 
the one-minimal model of A*(M) the one-minimal model p: S~EII for 
the algebra Ell. Since Ell has differential zero, HP(EII) = (Ell) (P). 

The d.g.a. (S, d) and the mapping p are constructed inductively as 
follows: 

(i) SI = E, dl ===- 0, and PI: SI ~ Ellis the natural projection; 
(ii) for each n> 1, Sn+1 =Sn®A(Vn+I), where A(Vn+l) is the free 

exterior algebra on the vector space 

in degree one; pn+l: Sn+1~EII is the extension of pn satisfying Pn+1ivn +I 

=0; and dn+1 is the extension of dn defined by dn+1 ivn+,: Vn+I~S~2), a 
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linear choice of representative cochains. 
Now set S=U:=l Sn, with differential d and p: S---+EjI determined 

bydn and pn' Observe that pn 0 dn+1 \v" is trivial, so pn+l is a d.g.a. map. 
Also, the kernel of p':}:: HZ(Snl---+(Ej I)(Z) becomes exact in Sn +1> hence 
vanishes in HZ(Sn+l)' And the only closed I-forms of S are those of SI> 
which map isomorphically onto (EjI)Cll. Therefore p: S---+EjI induces an 
isomorphism p*: HI(S)---+{EjI)(I) and a monomorphism p*: HZ(S)---+ 
(EjI)Czl. 

Note that, because Ejlis generated by degree one elements, p*; /fP(S) 
---+(EjI)CPl is surjective for all p. Therefore M is a rational K{1I:, 1) if and 
only if kernel (p* : HP(S)---+(Ej I)(Pl) = 0 for all p. 

Now, by Sullivan's theory [10], the dimension k n of Vn is equal to 
the rank ((In{M) of the nth commutator quotient in the lower central series 
of 1I:1{M). So S may be used to check the first few terms of the LCS 
formula 

for some small arrangements. 
From the LCS formula one obtains equations for ({In(M) in terms of 

the betti numbers bp of M. The first three are 

({J1{M)=bl 

({Jz(M)=(~ )-bz 

((Js{M)=bs+~bl{bf-3b2-l). 
3 

Clearly the first is always satisfied. We can now see that the second is 
also satisfied in every case. For the kernel Vz of pi': H2{E) = E (2)---+(EjI) (2) 

is precisely 1(2), with dimension 

k2 = dim {E(2l-dim «EjI)(2l))=( ~I )-b2. 

To compute ((liM), one must examine p"t: H2(S2)---+(EjI) (2) • Given 
our knowledge of V2, it is not hard to show [8] that Vs is isomorphic to 
the kernel of the map D: E(I)®I(2)---+E(S) defined by D(2: et®r j ) = 2: etr j • 

This gives an algorithm to compute ({Js(M) which is manageable for 
arrangements of seven hyperplanes or less. 

We now move on to formal arrangements. Given an arrangement 
d, there is an associated formal arrangement d F whose hyperplanes 
correspond to those of d in such a way that the intersection lattices agree 
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through codimension two.' If. the latlices are isomorphic, then d itself is 
formal. The arrangement dp. satisfies as miJ,-ch general position as pos­
sible given the restrictions incodimensionspne and two. 

Let MF be the complement of the formal 'arrangement d F. Consider 
the combinatorial model EFIIF of H*(MF). The natural correspondence 
of d F with d gives a projection Er~EII=H*(M). The relation ideal 
IF for H*(MF) is contained in the kernel of this map. For one can show 
that a dependent subset J of d F is necessarily dependent when considered 
as a subset of d. Thus we obtain a surjective map H*(MF)~H*(M). 

A detailed analysis of the lattices LF =L(d F) and L=L(d) yield 
the following facts: 

(i) there is a surjective, order-preserving, rank-reducing map LF~ 
L, and 

(ii) rank (LF) > rank (L), with equality only if L is isomorphic to 
L F , i.e., d is formal. 
It follows that the map H*(MF)~H*(M) is an isomorphism if and only 
if d is formal. 

Observe that the construction of the one-minimal model p: S~EII 
depended only on the structure of Ell in degrees one and two. Since d F 

agrees with d in codimensions one and two, the one-minimal model of 
M F is identical to that of M. 

Now, let it'=it'I(M). As remarked as Section 2, it' is isomorphic to 
it'1(MF), since M and MF have identical planar sections. Therefore we 
have a map MF~K(it', 1) which induces an isomorphism on cohomology 
in dimension one and a monomorphism in dimension two. (K(it', 1) is 
obtained from a deformation retract of MF by attaching cells of dimen­
sion >3.) 

We can now display the commutative diagram: 

The only arrow as yet undefined is the map 7::H*(S)~H*(it'). This 
mapping exists for the following reason: suppose S.~A*(K(it', 1» is the 
one-minimal model for K(it', 1). Then the composite HP(S.)~HP(1t)~ 
HP(MF)~HP(M) is an isomorphism for p= 1 and a monomorphism for 
p=2. Thus S. is also a one-minimal model for M. By uniqueness of 
one-minimal models [10, Theorem 12.3] there is an isomorphism S ~S. 
such that 
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H*(S) ) H*(8,,) 

!~l 
H*(M) < H*(lC) 

commutes. 
We make the following observations concerning the diagram (*): 
(i) a, 13, r, 0, and a are surjective, 
(ii) 13 is injective if and only if M is a rational K(lC, 1), 
(iii) a is injective if and only if d is formal. 
The following result is immediate. 

Theorem (4.1). If M is a rational K(rc, 1), then d isformal. 

Proof If 13 is an isomorphism, then r is injective. Then r is also 
an isomorphism. Then a is an isomorphism so d is formal. D 

Only slightly more involved is 

Theorem (4.2). If M is a K(rc, 1), then d is formal. 

Proof If M is a K(rc, 1), there is a map ri= Mr-~M which induces 
the natural isomorphism rcl(MF)--*rcl(M). Then the composite 

H*(MF)~H*(M)~H*(MF) 
is an algebra map which is the identity on HI(MF). Since HI(MF) 
generates H*(MF), r;* 0 a is the identity. Then a is injective, so d is formal. 

D 

The map r;* coincides with 0 0 a-I in the diagram (*). 
In order to formulate several conjectures we consider the homomor­

phism !': H*(S)--*H*(rc) in more detail. In [16], Kohno observes that 

there are injections S~.itr.!"'.it, where .itr. (resp . .it) is the minimal 
model for K(rc, 1) (resp. M), and <p induces the map!'. He also observes 
that !'=<p* is an isomorphism if and only if limn HP(rc/rcn)~HP(rc). Thus 
we make the following definition: 

Definition (4.3). An arrangement d with rc=rcl(M) is called quasi­
nilpotent if and only if <p*: H*(S)--*H*(rc) is an isomorphism. 

While we are considering rcl(M) and its lower central series we make 
one additional definition. Let G be a finitely presented group, and let 
poet) be the Poincare series of a K(G, 1). 

Definition (4.4). The lower central series of G i~ cohomologically 
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determined if and only if 

IT (l-tj)-~j= 1 
j~l Pa(-t) 

We will abbreviate this property as LCS(G). A natural question is: 
what groups have this property? We have shown in [9] that products of 
free groups and fundamental groups of fiber-type arrangements have 
property LCS(G). 

We conclude with a number of possibly optimistic conjectures con­
cerning the above properties. 

Conjectures (4.5). (i) If d is a rational K(rr, 1) arrangement then 
d is a K(rr, 1) arrangement. 

(ii) d is a rational K(rr, 1) arrangement if and only if d is LCS.') 
(iii) d is quasinilpotent if and only if rr/M) is LCS(rr). 
(iv) d is a rational K(rr, 1) arrangement (f and only if d is a qua­

sinilpotent K(rr, 1) arrangement. 

As support for these conjectures, aside from naive optimism, we offer 
the facts that 

(a) They are consistent with our examples. 
(b) Kohno [16] proves (i) in the case that d is an arrangement in 

C 3 and rr2(M)0Q is finite dimensional over Q. This is not as much 
evidence as it might seem, however, since rr2(M), if not trivial, seems to 
generally have positive rank over Z(rr1(M)). 

(c) They seem to fit rather well into the diagram (*). 
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