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Lie Algebras and their Representations Arising from
Isolated Singularities: Computer Method
in Calculating the Lie Algebras
and their Cohomology

Max Benson and Stephen S.-T. Yau

Introduction

Let (V, 0) be an isolated hypersurface singularity in (C", 0) defined
by the zero of a holomorphic function f. The moduli algebra A(V) of V

isClzy, Zoy - -+, Z,} / ( £ _(%{:, cee, ﬁf_) Recall that the natural mapping
1

0z,
isolated hypersurface singularities commutative local
(0 : . —>
of dimension n Artinian algebras
(V.0 —> A(V)

is one to one (cf. [9], [2]). In [19], a connection between the set of
isolated hypersurface singularities (¥, 0) and the set of finite dimensional
Lie algebras L(V) was established. Namely L(}) is the algebra of deriva-
tions of A(V). Since A(V) is a finite dimensional complex vector space
and L(V) is contained in the endomorphism algebra of A(V), L(V) is a
finite dimensional Lie algebra. In [20] and {22], the second author has
proved that L(V) is a solvable Lie algebra for n<(5. It is known that the
problem of classification of solvable Lie algebras was basically reduced to
the problem of classification of nilpotent Lie algebras (cf. [8]). The above
construction provides us a new way in studying solvable and nilpotent Lie
algebras. For instance, new examples and phenomena of solvable or
nilpotent Lie algebras and their representations can be derived via isolated
singularities. In Chapter 1, we shall prove that the one parameter family
of inequivalent finite dimensional representations of a fixed Lie algebra
L(E) in [19] and [20] is not obtainable by the action of the automorphism
groups of L(E)) on a representation. We believe that in general a natural
representation of a Lie algebra on its moduli aigebra determines the
complex structure of the singularity. More generally if we consider a
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family of isolated singularities, then we expect the following: either we
shall obtain a new family of solvable Lie algebras or we shall have a one
parameter family of inequivalent finite dimensional representations of a
fixed Lie algebra. ‘

The injectivity of the map (0.1) raises the following natural question.
What kind of information does one need from the moduli algebra in
order to determine the topological type of the singularity. This question
has been studied by many others including Lé and Ramanujan [7], Pham
[14], Teissier [17], [18], and Zariski [23], [24]. Zariski shows that two
irreducible plane curves are topological equivalent if and only if their
associated numerical invariants so called Puiseux characteristic are the
same (cf. also Pham [14]). In 1968, Milnor [8] introduced his famous
topological invariant Milnor number. In [20], many numerical invariants
were introduced, namely, dim L(¥); dimension of the maximal nilpotent
subalgebra g(V) of L(V), dimension of a maximal torus of g(V); gener-
alized Cartan matrix C(¥); type and nilpotency of the singularity. It was
shown by an example in [19] that dim L(}’) is not a topological invariant.
However there is no evidence that the other numerical invariants -are not
topological. In Chapter 2, we shall first recall the construction of a
generalized Cartan matrix associated to isolated hypersurface singularities
(cf. [20]). Since rational double points play a distinguished role in many
ways, it is worthwhile to study them more closely than those given in [20].
We shall write down the multiplication table of g(}"), compute the algebra
of derivatives and maximal torus of g(¥). We shall also find root space
decomposition of g(¥") and generalized Cartan matrix C(¥). We remark
that the comutations of Der g(V) is by no means easy. Such explicit
computation will be useful in studying cohomology of g(¥V).

Deformation of the singularity (¥, 0) is related to the deformation of
the associated Lie algebra g(¥). It is well known that the Lie algebra
cohomology plays an important role in deformation of Lie algebra. For
instance, it was shown that g(¥) is rigid of H*g(V), g(V))=0, and a
neighborhood of g(V) can be parametrized in the real or complex case by
the zeros of an analytic map from H*g(V), g(V)) to H(g(V), g(V)) (cf.
[13]). The theory of cohomology groups of g with coefficient in g module
C, implicitly in the work of Elie Cartan, was first explicitly formulated by
Chevalley-Eilenberg (Trans. Amer. Math. Soc., 63 (1948), 85-124). For
the past two years, they have received special attention. We were told
by Professor Zuckerman that Physicists are particularly interested in
them. In any event, the dimensions of the Lie algebra cohomology
groups are interesting new invariants of the singularity (¥, 0). However
any explicit computation of these Lie algebra cohomology groups are
extremely difficult, if not impossible by hand. Therefore we have devel-
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oped in Chapter 3 a computation method so that the computer can do
this complex calculation. We actually write down the algorithm for
computing cohomology of any finite dimensional Lie algebra L with
coefficient in L-module W. Our scheme goes as follows. We first observe
that by equation (3.14) in Chapter 3 it is enough to compute the ranks of
the linear maps g, d, - - -, ,_;, which are the coboundary operator in the
cochain complex. To compute the images of the §,, we have to make
use of Proposition 3.20 in Chapter 3. 1In fact, we also write down the
algorithms computing the image of §, and its rank. Doubtless, the
readers may find that most of the explicit computation of the Lie algebra
L(V) is extremely time consuming. Hence it will be convenient to let
the computer do the calculation for us. For this purpose we also have
developed an argorithm so that this kind of calculation can be done in
computer too. For more details, we refer the readers to Chapter 3.
Finally the second author would like to thank the National Science
Foundation for the financial support that made this work possible.

Chapter 1. A continuous family of finite dimensional
representations of a Lie algebra

In this chapter, we first construct a one parameter family of inequi-
valent representations of a Lie algebra L(E,). This family of representa-
tions is not obtainable by the action of the automorphism group of L(E))
on a representation,

Let L(E,) be a 10-dimensional complex Lie algebra spanned by (e,

€, €y, - - -, €15y With the following multiplication table.

\\. e \ ey l es | ey ‘ e !‘ eq er ‘ eg ‘ [2) €10
o | 01 0] 0] 0 -] 01 0] el 0] —a )
€y 0 0 0 eg 0 0 —eg 0 0 —ey
€3 0 0, 0 0 0 0 0 0 0 —2ey
s 0 | —e 0 0 0 0 ey 0 0 —ey
e e3 0 0 0 0 0 0 —eg 0 —e5
€ 0 0 0 0 0 0 0 0 0 —2es
€7 0 €3 0 | —e | O 0 0 0 0 —er
eg —eg 0 0 0 es 0 0 0 0 —eg
ey 0 0 0 0 0 0 0 0 0 —2eq
€1 €1 2 2e3 Y o5 2eq er ) 2eq 0
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For any t e C, let

Proposition 1.1.
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Moreover all these repre-

~

Then p, gives a matrix representation of L(Ey).
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sentations are all inequivalent.

Proof. 1t is a trivial matter to check that p, is a representation for
all te C.

Suppose t,=1,. If p,, were equivalent to g,,, then there would exist a
nonsingular matrix Q such that

(1.1 0p.(e)Q ™" =p.(e1)
(1.2)- Qp.(€)Q 7" =p,,(e)
(1.3) 0p.(e)Q " =p. (e,
(1.1) implies

(1.4) Qp.(e)*=p.,(e)*Q.

Since t,51t,, we shall assume without loss of generality that #,-20. By
(1.1) we have

(1.5) o1 == =51 = or =1 = =0
(1.6) Gus = G-

(1.2) implies

(1.7 G ="qu-

(1.3) implies

(1.8) G =9s

(1.9) 4G =G

(1.6), (1.7) and (1.8) imply

(1.10) 45 = G-

(1.9) and (1.10) give

Q33=q77=0-
(1.8) implies
(1.11) q,,=0.
In view of (1.5) and (1.11), Q cannot be nonsingular. Q.E.D.

Proposition 1.2. The family of finite dimensional representations of
L(E) in Proposition 1.1 is not obtainable by letting the automorphism
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group of the Lie algebra acting on a representation.

. Proof. Suppose that there exist s ¢ C and a one parameter family
A(t) of automorphisms of the Lie algebra L(E}) such that p2® is equi-
valent to p, for all . Choose ¢, such that p#“® is equivalent to p,. This
implies that p, is equivalent to pi“2™". Therefore pi ¢4 is equivalent
to p, for all ¢.

In order to prove the proposition, it suffices to prove that g is not
equivalent to p, for any ¢=0, and for any automorphism 4 of the Lie
algebra L(E;). Suppose on the contrary that there exist a =0 and an
automorphism A4 of the Lie algebra L(E,) such that is equivalent to p,.
Then there exists a 8 X 8 nonsingular matrix Q such that

Q'lpé"(é’z)Q=.0z(ei) for all 1<i<10
>0 p(4e)Q0=p.(e;) for all 1<<i<10
= 0dne;+ e+ - - - +a; 000 = Qp.(e) for all 1<i<10

’3ai,10 Aua+tay, Autd;s diptd;s diy Qe Gy 0)
0 2a, 1, 0 0 a, 0 a, 0O
0 0 2a, 0 a, a; 0 0
Y 0 0 2a, 4, 0 a, a, O
] o 0 0 0 @ O 0 0
0 0 0 0 0 a0 O 0
0 0 0 0 0 0 ;5 O
| 0 0 0 0 0 0 0 01
oaue+ape,+ - - - +a, 6,00 =
[ % ® ® ® ® ® ® ® )

2a; 10 20,109 20,1095 20, 195 .
+ayGse  +Aqs; T iqs A * * * *
+@pqn  + 09w TG T 0qu
;109 ;102 @109 Ay,10954
+agy  +0nls 0G0y ® ® * *
+a59g  + 0 TG 25
28,0095 2051090 205109 20,09
FauGy WG 0uGs e * * * *
+auqdy Faugr +auqs  +auqu
a;,1095 a;,10952 d;,10953 Qi 10950 A o955 Aiso9se Do0dsr Ai10s8
;10960 ;092 @i,10963 10968 Ai10965 Aiioes Gi,1096r Fi,10968
;1090 a; 10972 a;,10973 i 109m A0 Aiio9re Aeson Qiy1094s
0 0 0 0 0 0 0 0
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[ 3¢y 29 29y 29 4 G @ O ]
3¢n 29 29y 29u Qs G 9n O
3y 29 29y 29y Gy G 9w O
3¢y 29 294 294 G G qn O
Qe der) = 3¢ 295 295 2qu qs G Gs O
39y 290 29 294 4 G e O
3n 29w 29n 29w G G qn O
L 3y 29w 29 29u G G gu O )
(0 0 g: 0 g, 0 1q4 0]
0 0 g 0 g, O tg O
0 0 B 0 Up) 0 1qs; 0
0 0 a1 0 94z 0 m 0
Qpl(eS) ~ |0 0 51 0 D 0 1qss 0
0 0 s1 0 ez 0 1qes 0
0 0 ¢ 0 g, O 1tq, O
0 0 g O g» O 1G4s OJ

L

0@, i €+ - - - +10,10010)Q = Qpi(eyy)
(L12)  =(@i0,10— 351 =0=(10,10— 2o = (@10,10— 255 = (@10,10— 2) s
= (a10,10— 1)Gs5 = (a10,10— DG = (@10,10— 1)qs7= 10,1075s
(@10,30~ 3)961 =0 = (10,30~ 2)Ge2 = (10,10 — 2) s = (@10,10— 2
(@10,10— Des = (10,10~ Des = (@10,10— 1) Ger = 10,1095s

(1.14) (10,10 30y =0=(a19,10— 2)G72 = (@10,10— 2= (@9,10— 22

= (alo,lo — DGy = (alo,lo_ D= (@0,10— D= 10,1097

(1.13)

(1.15) Go1 = oo = oy = s = o = gy = iy =0.
Case 1. a4 ¢{1,2,3}
Then (1.12), (1.13), (1.14) imply
Gs1 =Go=Gss=qss = Jss=Gse =57 =0
o1 = Gos = s = Jos = o5 = Gos = Jsr =0
G0y = Gry =Gy = oy = G5 = Gre = qrr =0.

It follows that the matrix @ cannot be nonsingular, a contradiction
to our original assumption.

Case 2. ay,,=3
Then (1.12), (1.13) and (1.14) imply
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T:=0=¢y=qu=0x =0 =0qx
9s:=0="0es=Gos = Jos = Ges =
G =0=qn=qu=qs=4x=4qn-

The above equalities together with (1.15) imply that the matrix
951 Gse D53 Gss G5 Gse G517 Gse
91 G2 oz YGes o5 Ges o1 Yes

9u 912 91z 9u 49 9w 9 G
Gt sz ez dor Gss YGas o1 Ges

has rank at most 2. Therefore the matrix Q has rank at most six, a
contradiction to the fact that Q is nonsingular.

Case 3. a,,,=2
Then (1.12), (1.13) and (1.14) imply

G5 =0=¢s =gy =0qx
(1.16) G =0=qes =G =z
G =0=qr=qr=¢x.

Po(aa1e1+aszez+ e g 10000) 0 = th(ea)

simplies
5,109 =0 5,109 =0 Gg,10953 = 51 Q5,194 =0
g,1095: =0 @y,1095:=0 Q310953 = et 5,1095s =0
aa‘loqn:O aa,mqnzo Ag,1093=4n as,loqu:O
Qg,10955 =52 Ay,10956=0 a5,10951=1q55
ag,10965 = G2 g,10955="0 Ag,10967 = 155
03,1075 = Gz @, 10975 =0 3,109 = 1q13.

If a;, ,,=0, then

qsz=0=%3
(1.17) Joo=0=¢,,
Gre=0=¢.

(1.15), (1.16) and (1.17) imply the matrix Q is singular, a contradiction to
our assumption.
If a,,,,#0, then
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91=0=¢u=0u=0u=0qx=05%x=0q5
961=0=0os=Gos=Gos = o =qss =z
9 =0=Gr=qn=0u=0q1s=q1s=qn.

So the matrix Q is singular, which contradicts to our assumption.

Case 4. a,,,=1
Then (1.12) (1,13) and (1.14) imply

452 =0=¢5,=g5s=¢,,
(1.18) 901 =0={¢5=Gus =0
In=0=¢n=0x=qx.
We compare the (21), (31), (32), (33), (34) and (41) entries of the matrix

P(alo,lel'l‘alo,zez"l‘ -+« 4 ay,146) and the matrix QPz(elo)-
Using (1.18) and the fact that a,,,,=1, we conclude that

(1.19) 9u=0=qy=qn=>qu=0qu=0q.,.
By (1.15), (1.18) and (1.19), the matrix

~

qu 91z 91 914 ]
92 22 923 9os
9 qss 933 s
9 94 9 9u
qst G52 953 s
e ez Ges 'tn
qn v 9z G
| Gt Ge: s Gss |

has rank at most three. So the matrix Q cannot be non-singular, which
is a contradiction. Q.E.D.

Let us consider a family of nonsingular elliptic curves in CP? defined
by

(1.20) X4 Y 4z txyz=0

where °427-+0. The complex structure of the elliptic curve depends on

1 I
274 2427
3-space, we have a family of simple elliptic singularities ¥,. For each
fixed ¢ with ¢+ 2750, the moduli algebra

t. Infact, j=— If we view (1.20) as an equation in affine

AWV)=<1, x, y, z, Xy, yz, zx, Zyx)
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with multiplication rules:

R t

2 ———X
3 Y

x———Lyx yz——f—zx z
3777 377

Xy=xy=yzr=yrt=x2z=xz2"=0
We shall assume #£0 and ¢%/27—7¢*—216-+0. Under these assumptions

0 t d 0 t d d
LV, =<x — ——ZX— ZX— — X y XYZ—e,
) yax 6 oy ox 6 yaz 7 ox

t 0 0 0 t a 0
—_—YZ—F+xy— Y2— — —Xy— XYZ
6yax yay yay 6 yaz yay

5 ] 9 2
——ax Ty % 2y T e Oy Y
6% o T T

xi+yi+zi

L(V)) is isomorphic to L(E)). The isomorphism is given by the following
map.
U: L(V,))—>L(E)

0 t 0
XY ZX———>e,
ox 6 oy
zxi—ixyim—wz
0x 6 0z
9
XYZ ————>e,
0x
t 0 0
——VZ— + XY—ous—>e
6 o T
0 t 0
e XY —>e
Yy 6 "
0
XYz ———>e,
oy '
t 0 0
——ZX—+ yz——>e
6 oy ) 0z !
t 0 B}
——yz— dzx——e
67 ox + oz ’

xyz _@——>e9
0z
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_xi +y_a- “+ z_a——)em.
0z

0x oy
The representations in Proposition 1.1 is actually the natural representa-
tions of L(V_,,) on A(V_,,). In view of Proposition 1.1 we suspect the
following is true.
Let V' ={z e C"*': f(z)=0} be a hypersurface with an isolated singu-
larity at origin. Then the natural rerpesentation of L(¥) on A(V)
determines the complex structure of the singularity (V, 0).

Chapter 2. Kac-Moody Lie algebras and isolated
hypersurface singularities”

In this chapter we shall attach a Kac-Moody Lie algebra to every
isolated hypersurface singularity. Let (¥, 0) be an isolated hypersurface
singularity. Let g(¥) be the maximal ideal of L(V) consisting of nilpotent
elements. Following [16], we shall construct a generalized Cartan matrix
C(V) from g(V), which is a new invariant of (V, 0) (cf. [20]).

Definition 2.1. An / X7 matrix with entries in Z, C=(c;,) is a gener-
alized Cartan matrix if

a) ¢;=2 Vi=1,.--,1

b) ¢,<0 Vij=l1,---,Li%]

¢) ¢,;=0ifand only if ¢;;=0 Vi, j=1,---,1iz]
To each generalized Cartan matrix C(V'), one can associate a Lie algebra
KM (C) (called a Kac-Moody Lie algebra) defined by generators:

{f;a N "fh hy, -~ hy ey, ez}
and relations:

[117;, ej]zcijej, [h’l,fj]‘:'—"cz‘jj;' (Vi,]-;l’ . ,l)
[hz‘s hj]=0: [ei:fi]=hia Vl,]:l, t '91
le,, fi1=0, (ade) c*le,=0=(adf) v*'f, (Vi#j))

Let H=Ch,+ - - -Ch,; denote #,(C) (resp. Z_(C)) the subalgebra
of KM (C) generated by {e,, - - -, e;} (resp. (f, - - -, f;}) One shows that:

KM(O)=2 (C)®HPZ_(C)
One can also define %, (C) by generators: {e,, - - -, ¢;} and relations:

(ade) 9tie,=0 Vi j=1,---,Li%]
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We shall construct a generalized Cartan matrix from an isolated
hypersurface singularity (¥, 0). Let g(¥) be the set of all nilpotent ele-
ments in L(V). Then g(¥) is the maximal nilpotent Lie subalgebra of
L(V). Let Der g(V) be its derivation algebra.

Definition 2.2. A torus on g(¥) is a commutative subalgebra of
Der g(V) whose elements are semi-simple endomorphisms. A maximal
torus is a torus not contained in any other torus.

The dimension of maximal torus is called Mostow number. Mostow
number is an invariant of isolated singularity (¥, 0).

Theorem 2.3 (Mostow 4.1 of [11])). If T, and T, are maximal tori of
g(V), then there exists 6 e Aut g(V') (automorphism group of g(V') such that
0T 0~ '=T,.

Let T be a maximal torus and consider the root space decomposition
of g(V) relatively to T:

s(N= >, a(V)*
BERT)

where g(V)f={x e g(V): tx=p(t)x, Vte T} and R(T)={Be T*: g(V)*+
(0)}. We denote: m=dim T
R(T)={B e R(T): g(V)LIa(V), s(N)]}
ly=dim (g(V)*/la(V), g(MINg(V)*)  VBe R(T)
dy=dim g(V)* B e R(T).
The map pg—d;, R(T)—N* gives the partition:
R(T)=R(T), U - - - UR(D),,

where p,<..-<p,, R(T),,#¢ and R(T),={B e R(T): d,=p}.
Let s,=4#R'(T),, and s=s,4---+s,; we number the elements of
R(T)={B,, - - -, B,} in such a way that:

RI(T)m:{‘BU R )83}9 Rl(T)p2={‘Bs1+19 Tt ABS1+82}’ Tt

Let d;=d,,, I,=I,, and /=1/+---+I (one checks that [/=dim g(V)/
[a(V), g(M)]. Let Py« be the group of permutations of {I, -- -, s}
which leave {1, - - -, s}, {s;+1, - - -, 5,45}, - - - invariant.

Lemma 2.4. The integers m, q, p,, 3 Pg Siy s S dyy e, dy,
L, - - -, 1, I defined above are invariants of isolated hypersurface singularity
(v, 0).
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Proof. Let T’ be another maximal torus; then there exists § e
Aut g(V) such that §T6-'=T"' (by Theorem 2.3). For T, we use the
previous notations with prime. We have m=m’. The map

6: T*—>T'*
p—08
where §3(6167)=p(t) VB e T*, ¥t e T is a vector space isomorphism and
one has obviously:

ba(Vy=a(V)*  VgeR({)
Therefore d{;ﬂ:dﬁ V 8 € RY(T) which gives

q9'=q, pi=p; s;=s5, 1<i<q, s'=s.

Since d[g(¥), g(V)]=I[g(¥), g(V)], one has I§,=1, Ve R(T).  Q.E.D.

The map 6 induces a bijection between: R(T') and R(T”), RY(T) and
R(T"), R(T),, and R'(T"),, 1<i<q; thus there exists ¢ € P such
that

0B.=F. 1<a<s.
Therefore, if T, T’ are two maximal torus on g(}), then there exists
0 e Aut g(V) and 7 € Pt such that g(V)Pe=g(V)% = 1<a<s.
Let f: {1, - - -, I}>{1, - - -, 5} be defined by
1 if 1<i<],

fi)= 2 if [<i<l+1,

s i L <i<I.

For ¢ e Piv%e, we lift ¢ to 6 € P, (Permutation group of / elements)
such that fog=c¢of. Define an action of P % on the set of /X!
matrices by setting

0(Cipici,ic1=Coss 1<, 5<1-
Theorem 2.5. Fori,je{l,---,1}, i==j; let
—ch(T)—_‘Mln {-—l’l e NU {0} (adv)"*'w=0 Yv e g(V)ﬁf(i)
VYw e Q(V)ﬂﬂj)

with (ad 0)° =0 and let ¢,,(T)=2 for i=1, ---,1. Then
(i) C(T)=(c;(TY1c1,;<: is a Cartan Matrix
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(ii) For any g € P % the action of o on C(T) is independent of the
lifting 6 of o. Furthermore the P 5t orbit of C(T) is an invariant of
(v, 0).

Proof. (i) Since adv is nilpotent, ¢, (T) is a well-defined non-
positive integer for i+ j: if [u, w]=0, then [w, v]=0, therefore ¢, (T)=0
implies ¢;(1)=0. Since ¢, (T)=2 by definition, C(T') is a Cartan matrix.

(i) Let T’ be another maximal torus on g(¥). There exist 4 ¢
Aut g(V) and 7 € P %« such that 8g(V)Pe=g(V )P 1 <a<s; if veg(V)ke
and we g(V)? and if i,je {1, - - -, [} are such that f(i)=a, f(j)=0, then
(ad v)~cuiM+1yw=0; thus (ad v)~c“D+'hw =0 with

v e g(V)fee=g(V)?7¢0 and  fw g g(V)Bo=g(V)Fren;

therefore — ¢, (T) < —¢,{T), and by symmetry c,,,;(T”)=c,,(T) which
proves that zC(T")= C(T). Q.E.D.

Definition 2.6. We choose arbitrarily 4 in P3v*e-orbit of C(T)
(which has most s!/s;!---5,! elements) and we say by an abuse of lan-
guage: “g(V) is of type C” or “C is the Cartan matrix of g(V)”. We
denote:

FAC)={T: T is a maximal torus on g(V), C(T)=C}
Py Cy={g e P54 ¢C=C}
Lemma 2.7. If T, T’ € #,(C) then there exist § ¢ Autg(V) and = e
Pvso(C) such that:
begV)e=gV)%  Va=1, -5
Proof. By Mostow’s Theorem, there exists § ¢ Autg(V) and t e

Psisaguch that 8g(V)P« =g(V)#+; by the proof of Theorem 2.5 (ii), =C(T”)
= C(T); therefore :C=:C(T")=C(T)=C. Q.E.D.

We denote by msg (g(?")) the set of minimal systems of generators
of g (V); by [3, Sect. 4, p. 119]: (xl, Xy - - -) € msg(g(V)) if and only if

(et 187, (M), x, +[8(V), g(V)], - - -) is a basis of g(V)/[g(V), o(V)].
Therefore each element of msg (g( V)) is an /-tuple (xl, -+, x,) where /=

dim g(¥)/[g(¥), o(V)].
Let Te #,(C) and denote:

msg (T)=msg (3(V)) € (g(M)™)" X - - - X (@(V)*)")
For all (x;, - - -,x,) € msg (T) one has:
(ad x,) ¢ 'x, =0 1<i#j<l.
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We shall now apply the above theory to study Lie algebras of rational
double points. We shall use the following convention:

g'=I[g, gl, ---, g7 =I[g. ¢

Proposition 2.8. Let V={(x, y,2z) e C*: x*++)*—z¥*'=0} be the A,
singularity, k>1. Then

AWV)=C{2}/(z5)={1,2, 2%, - --,Z*"">  with multiplication rule z* =0
a 2 0 N Zk”l;,,(?__

Lz , if k=2
L(V)y= az oz’ 0z
0 if k=1
729 0 289 0 19 0 if k>3
Il oz’ ]| oz H 0z
Xy Xo X2
i
0 if k=1.
For A, singularity,
V , 22
9= <| oz’ I az
Xy Xy

with multiplication rule [x;, x,] =0.

The type of A, singularity: =dim g(V)/[g(V), a(V)]=

The nilpotency of A, singularity: =min {p e NU{0}; a(V)?*'=0}=0.
Let t,, t, be two derivations of g(V') defined by the following rules:

1 g( V)y—>g(V) 1,2 g( V)—>Q( V)
X—>X; x—>0
X2—_‘>0 Xo—> X3

Then T =Ct,@DCt, is an uniqne maximal torus associated to g(V).
Let B;: T—>C be a linear map with B(t,)=0,; for i,j=1, 2.

g(M)=Cx;®Cx,
=gﬁ1 @gﬂz

(x1, X,) is a@ T-minimal system of generators.
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The generalized Cartan matrix associated to A, is
, (2 0
C(4)= (0 2).

For A; singularity

| 027 0=y o

Xy X2 X3
with multiplication rules:

[x, X.]=x,

[x1, x,] =0

[xz, x,]=0.

The type of A; singularity: =dim g(V)/[g(V), g(V)]=2.
The nilpotency of A, singularity: =min{p e NU{0}: g(¥)7*'=0}=1.
Let t,, t, be two derivations of g(V) defined by

Ly g—¢ L: g—>g
X—>X, x,—>0
X,——>0 Xo—>X;
Xy——>X, Xy—>X;.

Then T=Ct,®Ct, is a torus of g(V). Since dim T =2=the type of A;,
T is a maximal torus of g(V).
Let B,: T—C be a linear map with B,(t;)=6,, for i,j=1, 2.
Q(V):ﬁﬁl @ ﬁﬁz &) ﬁﬁﬁ B2
Cx; Cx, Cx,

(X, x,) is a T-minimal system of generators. The generalized Cartan
matrix associated to A is

C(A5)=(_% —é)

Far Ag singularity

Xy X X3 Xy
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with multiplication rules:

[x5, X ]=x, [xz, x5]=0 [x5, x,]=0
[x1, x]=2x, [x, x,]=0
[x;, x]=0

The type of A, singularity =dim g/[g, g]=2.
The nilpotency of A, singularity =min {p e NU{0}; g(V)**'=0}=2.
Let t,, t, be two derivations of g(V') defined by

L g—>¢g L g—¢
X,—>X x,—>0
x,—>0 Xo—>X,
Xy—>X, Xy—>X;
xX,—>2x, X;—>X,.

Then T=Ct,®Ct, is a torus of g(V). Since dim T =2=the type of A,,
T is a maximal torus of g(V). Let B,: T—C be a linear map with B(t;)
=4, for i,j=1,2.
g(V) =(ﬁﬁl &) ﬁﬂi @ ﬁﬂl‘*‘ B2 @ ﬁzﬁl*'ﬂz
Cx; Cx, Cx;, Cx,
(xy, x,) is a T-minimal system of generators. The generalized Cartan
matrix associated to A, is

C(A6)=(_f —g)

For A, singularity k>17,

0
Zk -1
8z | 8z >

xl Xz xk 2
with multiplication rules:
[x;, x)]=x, [z, Xgl =2,
[x, x,]=2x, [xe, x,]=2x,
X, Xy ] =(k—5)x, [, X, = (k—6)x,,
[xy, x4 sl =(k—Hx, . [xz, X, 5] =0
[x1, X, _o]=0 [xz, x4 _5]=0

The type of A, singularity for k>7: =dim g/[g, g]=2.
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The nilpotency of A, singularity for k>7: =min {p e NU{0}; g¥*'=0}
=k—4.
Let t be the derivation of g(V') defined by

t:g —> g
X, —> X

X, —>2x,

).c,c_z—%(k'— 2)x; s

We claim that T=Ct is an unigue maximal torus of g(V). Let f: T—C
be a linear map such that f(t)=1.

g(N=g! P g P --- Pgt2s
o Il
Cx, Cx, Cxy_s

(x,, x;) is a T-minimal system of generators.

Observe that (ad x)°x,=0 but (ad x)**x,%0. Therefore c,=
—(k—4).

In order to compute c,; we have two cases.

Case 1. kisodd and k=214+5>7
ad x{ ' (x)=—022—1D)2.3—-1)- - -2l —Dxy .4
ad xi**(x)=0
k—
ep=—(+D= _“Wz 3 .
Case 2. kis even and k=2[-+6>7

ad x* ()= —22—-DR3-DQ24—1)-- -2/ —Dxy s
ad x}%(x)=0
k—4

c=—(0+1)= —T
The generalized Cartan matrix associated to A, for k>T7 is
2 —(k—4)

) if k is odd and k>17
- 2

—(k—4)
k—4 ) if k is even and k>17.
e 2
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We now provide the proof that the unique maximal torus is spanned
by ¢ defined as above.
Let § be a derivation of g(V)

0(x) =X, +aXo+ - - - X, for 1<i<k-—2.

[xs, X _a] =0=5[80x,), x; o] +[x1, 3(x, )] =0
D02 X+ 20 55X, 30 g0 Xt
+(k—4a;_ s 3%,-.=0
DUy 5, =0=a;_, ;=" =0;_5, =0,

[Xe, X4 =0=[6(x,), ;o] + [z, 9(x,-0)] =0
$_‘ak—2,xx3+ak-2,3x5+2ak-2,4x6+ T
+(k'“6)ak-2,k—4xk—2=0
éak—i,lzo'
We assume that a,,, ,=0 for i<{j. We shall prove that a,,=0 for i<

j—1. We first consider j >3. We may as well assume that j <k—3 by
what we have proved above.

[x, x;]=(— 1)xj+1$[5(x1)’ x14[x, 0(x )1 =(j — Dd(x;.,)
>la,(j— l)xj+1+a12(j_2)xj+2+ <]
Hlapxs+2a;x,4 - - +(G—=2)ay,;- X+ (—Day x50+ -]
2.1 =0 = D@1, X1+ @gn X0t - - - 0 p-0Xe o]
2a;,=( —1a;.1;=0

—1
i = aj+1,4:0

j —1
Bhi-1= ;_2"11“,1:0

] {(j Dy, i 2k —25500(x), ]+ [, 0Cx)]
0 if j4+2>k—1
(G=2o(x,.)  if j+2<k—2
={0 G j42>k—1
>la(j— l)xj+1+azz(j—2)xj+z+ -]
Hl—ax+aux;+2a;x+ - - -]
(=M 10,1%:1 Az 0XoF -+ Agpp oXeg]  0f J+2<k—2
={o if j4+2>k—1

(2.2)
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(2~3) :>aj,1: -—(j—2)aj+2,3=0.

(2.1) and (2.2) imply that a,,=0 for j >3 and i <{}.
Set j=31in (2.2). By comparing the coefficient of x,, we get

2a,=ay
$(121=0
Hence ¢ is represented by upper triangular matrix
Ay Gy Qg
azz. .. 'aZ,k—-Z
A= . ;
0
Ay_2,5-2

0 is semi-simple & AA¥=A*A
= the length of i*® row of 4 =the length of j™ column of A4.

= a;;=0 for i=#j.

i
0
A= Ayy
0
Ay_2,5-2

249 [x1, x2] = x, =yt an=as
(2.5 [x1, x5]=2x, = 2ay,+2dy=2ay,
(2.6) [x1, x.]=3x, = 3ay,++3a,=3as;
2.7 (2.4), (2.5) and (2.6) = 3a,,+ap=0a;;
(2.8) [%s Xs]="x; =yt ay=ds,

Put (2.4) and (2.7) in (2.8),
Gyt =3a, +a,
$a22=2au.
We assume that a,_, ;_,=(j—1D)a,;. We shall prove that a, ;=ja,,.
[%1, xj—l]:(j—z)xjj[auxn xj—l]+[x17 aj-:,j—lxj—l]z(j“z)ajjxj
-—-;(j”‘z)an‘f'(j—z)aj—l,j—l=(j_2)ajj
D= jay a5

:jan-
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We have proved that any derivation of g(¥) must be a constant multiple
of t. To prove that ¢ is really a derivation, we first observe that the

multiplication rule of g(¥) is described by the following formula
(=1 X for i+j<k—2

[xi, x)]= L.

0 for i4+j>k—1.

Assume j+i<k—2. Then
tlxs, x)=t1(J = Dx; = — D1 (x;, ) = — D +)x;.
[£Cx2), x 14 [xe, t(x Pl =Tixy, x4+ [x5, jx ] = G + /)X, x)]
=(j =D +1)Xs4;

Assume j+i>k—1. Then

{x,, X1 =1(0)=0
[t(xi), xj] +[x;, t(xj)] =[ix,, xj] +[xi9jxj] =0.

In both cases, #[x,, x,]=[t(x;), x,]+[x;, t(x;)]. Hence ¢ is a derivation.

Proposition 2.9. Let V={(x, y,z) € C*: z" ' zy*+x*=0} be the D,

singularity, k>4. Then

AVY={,z,y,2% 2% - -+, 2%  with multiplication rule

zy=0
V=—(k—1z**
zF-1=0.
k—2 8 P 5 0 b
LV —1)z* 3___’ Zk-z__,
(N= < yay Y= ) 5 P
2 a k-2 a
oz’ 02 >
<y—+ k 1)z’° -0 , 2% 21 zzi ce., ZkR 9 > for k>5
) w7
g(V): x: Xy X3 Xp-1
> for k=4.
|| ay n oz

X1 Xg

For D, singularity, g(V)={x,, x,y with multiplication rule [x,, x,]=0.
The type of D, singularity: =dim g(V)/[g(V), g(V)]=2. The nilpotency
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of D, singularity: =min{p e NU{0}: g(")?*'=0}=0. - Let t,, t, be two
derivations of g(V') defined by the following rules.

i g(V)——>g(V) 12 g(V)—>g(V)
X —> X x, —> 0
x, —> 0 X, —> X,

Then T=Ct,® Ct, is an unigue maximal torus associated to g(V). Let
B:: T—C be a linear map with B,(t,)=2¢,, for i,j=1, 2.

g(V)=Cx, ® Cx,
zgﬁl C_D gﬁz

(x1, x;) is a T-minimal system of generators. The generalized Cartan
matrix associated to D, is

C(D)= (g g)

For D; singularity,

0 0 0 0 0
gM)=(y-—Fd4z* —, 2% " 2%~ 7z
SE | oy By 9z o
X X, X, X,
with multiplication rules:
[x, Xo]= —x, [xz, x;,]=0 [xs, x,]=0
[x1, X;]=—8x;,  [x; x,]=0

[xla x&] =0

The type of D; singularity: =dim g/|g, g] =2.
The nilpotency of D, singularity: =min{p e NU{0}: g?*'=0}=1.
Let t,, t, be two derivations of g(V') defined by

Lt g—¢ L g—g
X—>X x1—~‘)0
x,—>0 Xp;—>X,
Xy——> — X, Xg—>X;
X——>X, Xy—>X,.

Then T=Ct,®Ct, is an unique maximal torus of g(V). The root space
R(T) is {py, Boy where B,: T—C is a linear map with B,(t;)=6,; for i,j=
1,2 :
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g(V)T—‘_—_ﬁﬁl ® ﬁﬁz @ ﬁ-ﬁ1,+/52 @ ghr e
|
Cx, Cx, Cx, Cx,

(1, x3) is a T-minimal system of generators. The generalized Cartan
matrix associated to D, is

C(Dﬁ)z(_% —g)

For D, singularity,

0 0 0 0 0
(V)= y——+5"—, z* —, ", 2 —, " —
I 0z oy I oy | 0z I 0z I 0z

X1 Xo X3 Xy X3

with multiplication rules:

[x;, xp] = —x; [x,, x,]=0 [xs, x,J=x; [x,, x,]=0
[x;, Xg}=—15x, [x;, x,]=0 [x;, x;]=0

[x;, x]=0 [x,, x;]=0

[x,, x]=0

The type of Dy singularity: =dim g/[g,q] = 3.
The nilpotency of Dy singularity: =min{p e NU{0}: g?*'=0}=2.
Let 1, t, be two derivations of g(V) defined by

t: g——>g f,: g—>¢Q
X—>X, x,——0
x,—>0 X;—>X,
Xy——> — X3 Xg—>X,
X,—>2X, x,—0
Xs—>X; Xy——>X;.

Then T =Ct, @ Ct, is an unique maximal torus of g(V).
Let B,: T—C be a linear map with p,(t)=3¢,, for i,j=1, 2.

g(V)=ﬁﬁ1 @ ﬁﬁz @ ﬁ—ﬂﬁ 3 ﬁzﬁl ) ﬁﬂﬁ B2

Cx, Cx, Cx, Cx, Cx,

(X1, X5 Xy) is a T-minimal system of generators. The generalized Cartan
matrix associated to D is
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2 =2 0
CD)=[—-1 2 —1).
0 -1 2
For D, singularity,

d (0 50 20 38 .0 50
DGt T T T o o
Xy Xy X3 X4 Xy Xe
with multiplication rules:
[x1, xe] = —x, [y x]=0  [xy, x]=x;  [x06 x]=0 [x5 x]=0
X, Xl = —24x, [xp, x]=0  [x5 x]=2x; [x, x]=0
[x, x,]=0 [x2 xs]=0  [x3, x]=0
[x1, x]=0 [x5 x]=0
[x1, xg] =0

The type of D, singularity: =dim g/[g, g]=3.
The nilpotency of D, singularity: =min{p e NU{0}: g?*'=0}=2.
Let t,, t, be two derivations of g(V) defined by

t: g—>g 1,0 g—>¢g
X;—>X, x;——>0
x,——0 Xy——>X,
Xg—> —X; Xy——>X;
x,—3x, Xy—>—X,
Xi—>2X; x;—>0
Xe—> X Xs—> X,

Then T=Ct,®Ct, is an unique maximal torus on g(V). Let §;: T—C
be a linear map with B,(t,)=36,, for i,j=1, 2.

Q(V) ____ﬁﬁl @ (ﬁﬂz @ ﬁﬂﬂ—ﬁl @ ﬁ3ﬂx—ﬂ2 P ﬁzﬁl @ ﬁﬁﬂ- B2
Cx, Cx, Cx, Cx, Cx, Cx,

(X1, X5, %)) is a T-minimal system of generators. The generalized Cartan
matrix associated to D, is

2 =2 0
CD)=|~1 2 =21
o -1 2



Lie Algebras and their Cohomology

For D, singularity, k>8.

g(V)=<y_a_+(k—1)zk'3_a_’ 20 20 00
0z I oy I 0z I 0z

| %
X3

with multiplication rules:

[xs, X]= —x4 4
[, Xg]= _'(k_3)(k_' D)x,

[xla 'x4] =0
[x;, .xk—l] =0
[x4 X]=2x,

[X4 X1 =2x,

[xe, x1=3x,

[x4 .xk—3] =(k—T)x;-,

[xs X4 -2]=0

[x,, x;,-,]=0

X, X,
[xg, x,]=0
[xg, x]=0
[X, x;-1]=0

Xy

[xs, x]=x,
[x3, x5] =2,

[x3, 'xs] =3x,

LA

I 0z /

Xp-1

[xs, .xk—l] =(k—6)xlc—-2
[xs, X ol =(k—5)x,_,

[xs, x;_1]=0

The type of D, singularity for k>8: =dim g/[g, g]=3.
The nilpotency of D, singularity for k>8: =min{p e NU{0}; g?*'=0}

=k—35.

Let t be the derivation of (V') defined by

t: g—>g

Xy—>X;

27
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2(k: —3)

Xp_1—>
k-1 k—4

Xe_1e

We claim that T =Ct is an unique maximal torus of g(V). Let f: T—C
be a linear map such that g(t)=1. Then

g( V)=g((k—2)/(k-4))ﬂ @ g(zl(k-4))ﬂ P g((Z'Z)/(k"4))ﬁ @ - @ g(ﬂk*s)/(k"‘))ﬁ.

I I l I
Cx, Cx, Cx, Cx,_,

(xy, X, x,) is a T-minimal system of genmerators. The generalized Cartan
matrix associated to D, for k>8 is

2 =2 0
CD)=|—1 2 —(k—5)).
0 —(k—6) 2
We now provide the proof that the unique maximal torus is spanned

by t defined as sbove.
Let 6 be a derivation of g(V)

() =auX+ Xyt -+ -+ 1 Xy for 1<i<k—1.
We shall prove by induction that a,;=0 for i>5 and i>j.
1% Step. i=k—1
[%5, X, ]=0=[00x5), X114 [xs, 0(x,_ )] =0
@(k_?’)(k—1)ak—1,1x2+ak—1,4x5+2ak-1,5xs
S+ +(k_5)ak~l,k-—2xk—1:0

?ak-—l,lz():ak—l,‘i:ak—lﬁ: v =g 1,52

Dxy, x,1=0=[0(x,), x;_ ]+ [x,, 5(xk—1)]=0
@'_ak-l,zxk—l_(k_?’)(k—l)ak—l,axzzo

1, =0=a,_;,

27 Step. Assuming that it is true for 7,, we shall prove that it is also
true for /,—1. Notice that we may assume that 6 <{i,<k—2

Pxg X ]= (f,— 4)x10:>[5(x3), Xio1l+[Xs 5(-’510—1)] = (i0_4)5(xio)-

For /,>>5. we have
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[(i0—4)a33xi0+(i0—5)(134)61”1—[— " ’]+[(k_3)(k_ I)aia—l,lxz
+aio—1,4x5+2aio—l,5x6+ <t +(k_5)ai0_1,k-2xk_1]
:(iO'_4)ai01x1+(i0_4)aiozx2+ st +(i0°_'4)aiosk—!xk—1

(k— 1)(k“3)a10-2,1 :(io—4)aio,z
aia—1,4=(i0_4)aio,5

(2-9) 2”10-1,5:(i0_4)ai0,6

(io_.5)aio-1,io-2=(i0”4)a¢0,—50—1
[x,, xio-llzoﬁ[a(xl), xio~—1]+[x19 5(xio—1)]=0-

For i,>5
(2.10) =[G, Dayx,,+,—5aux 0+ +QRi—k—3)a, 4o 13X 1]
bl —ay 1,0 — =3k — Da;,_; %] =0
>y 1,3=0
(2.11) goog0=—Qiy—k—=3)a 4,21,
[x., x,]= —(k—3)(k—1)x,
Sk —3)(k—)ay,x, —a,x,— 2, % — 3,0, — - - -
—(k—0)a, ;_3x_o— (k—5), ;% 1]
H[—ayx, . — (k— 3k — Day,x,)
=(k—1) [~ (k—3)ayx,—(k—3)ayux,— - - —(k—3)aty ;1% 1]
=k — 3k — Dayx, -+ (k— D[(k —3)a,, — (k—3)a, — (k — 3)ag]x,
+ (k — Dk — 3)ayx; + (k — Dk — 3)dyx,
+[(k— D) (k —3)ay;,— a,Jx,+ [(k — 1)k — 3)ay, — 2a,]x,+ - - -
Hk— 1)k —3)s, 5o — (k—6)a, ;. _s]x, o +[(k— D(k—3)aty,,
—(k—5)a, ;1 —dslx, =0
;=0
a,,={(k—1)(k—3)ay
2.12) =a=>(k—1Dk—3)ay

@y s = (k—1)(k — 3y
(2-13) a:sz:(k_s)al,k—z—(k—1)(k“3)az,k—1
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[y, x]=0=[0(x)), xJ]+ [xy, 8(x)]=0
(2.14) Slagx,—ax+ - - 1+ [—apx,_ — (k—3)(k— Dagx,] =0

=>a,=0=a;=a;="--+=0a ;4
Here we have used the fact that k—1>7>5.
(2.15) ay=—k—Ta, ;s
(2.16) a,=0

[x2, x,]=0=3[6(x,), x:]+[xs, 3(x;)] =0
= — (k—3)(k — Dayx, — Ay X5 — 20555 — 3y Xy — -+ « -
—(k—5)ay ;_ X1+ Ay X =0

2.17) DU,y =0=a,=ay=0dy="+ - =0a,,_,
(2.18) dsy=(k—5)a, ;-
Using (2.12), (2.14) and (2.17), we deduce that
(2.19) @ yra-1,=0 for 6<i,<k—1

(2.9), (2.10), (2.11) and (2.19) and the induction hypothesis give that
a;,_,,;=0 for 6<iy<<k—2 and {,—1>>j. This finishes our claim.
Put /,=5 in (2.9), we have

(2.20) (k—3)a,,=a,,=0
=a,,=0.
Hence ¢ is represented by the following matrix
a, ay 0 0 0 0 Az A2 i
0 Ay, 6 0 O 0 0 Aoz Aop-a

(k—3) (k—s)al,k~2 Ay3 3y 35 Q34 Q35 32 Ay i1
a2,1¢—2 —(k—3)a1,k—1

0 _(k_7)al,k~—3 0 Ay Gy Ogpes OQug-s Qagoz Aigea
0 0 0 0 @ aus Gy G-z Gspy
0 0 0o 0 O 0 0 0 a4 15y

d is semi simple: & AA*¥=A*A
= the length of i*™ row of A= the length of j™ column of 4
= a,;=0 fori=+j
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ay 0
dy,
A =3
0
Ay 1,51

(2.21,1) [x., xz]:_xk—léall—}_am:ak—l,k—l
(2.21,2) [x1, Xs] = — (k— 3}k — DX, @ —a,, =ay
(2.21,3) [xs, X, ] =X+ ay=as;
(221, 4) [xs, X5] =2x= Ay + a5 = s
(2.21,5) [xs, Xe] = 3x:=> a5+ s =y,
(2-2-1: k-4) [Xa,- Xe_g]= (k— 6)x; 2= oy F g s = 2,52
(221, k—3) [x3, xk_z] Z(k—“ 5)xk—1$a33+ak~—2,k-—2:ak—1,k—1
(2.21, k“2) [x4,9 Xl=x>a,+ s =a,
(2.21, k-1) [x4; Xe] = 2X, > Ay + o= dig
(2.22, 1) (2.21,3)4+Q2.21,4 =a,=a,+ 24,
(2.22,2) Dy =dyu+ 3

(2.21, k—2), (2.21,3) and (2.22,2) =a,=2a,,

55=13ay,

(2~23) o= 4“33

ék—l,k—l =(k—3)a,

(2.23), (2.21,2) and 2.21, 1) =a,= :—i 4y
A3 == Ay, a“——z 11
k—4
2.2
A= 2a33-—~k_4 ay
2.
Ay =30, = 3 an

2(k—3)
k—4

ak—l,k—lz(k‘“?’)ak—a,k-s: a;.
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We have proved that any derivation of g(¥) must be a constant multiple
of . To prove that ¢ is really a derivation, we first observe that the
multiplication rule of g(¥) is described by the following formulas:

[, Xo]=—x, 4
[x1, x)] = —(k—3)x,

(2.24) [x;, x]=0

[xx; Xy-1]=0
[xz, x;] =0
(2.25) [xz, x,]=0

[Xp X,_s] =0

{(j_i)xm_z if j+i—2<k—1, 3<i,j<k—1
0

[xiaxj]z P ..
if j4+i—2>k, 3K, j<k—1

Then it is an easy matter to check t[x,, x,J=[t(x,), x,]+[x;, t(x,)] for all
1<i, j<k—1.

Proposition 2.10. Let V ={(x, y,2) € C*: z*+ y*+x*=0} be the E,
singularity. Then

AVY={1, z, 2%, y, yz, Z°y) with multiplication rule z* =0, y*=0

0 0 d 0 0 0 a
v =<z A A 20
¢ 6zyazyazyayayyay
0 0 0
g(N)= < 0 20 3z 0y 0y 0
I 0z Il oz’ I oy I 0z I ay
X, X, X5 X4 X5

with multiplication rules:

[x, X5]= —x, [, X]= —x, [x5, x,]=0 [x., x]=0
[x), x5]=x; [x2 x]=0 [x;, x5]=0

[x;, x,]=0 [x5, x5]=0

[x,, x;]=0.

The type of E, singularity: =dim g/[g, g]==3.
The nilpotency of E, singularity: =min {p e NU{0}: g?*'=0}=1.
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Let t,, t,, t, be three derivations of g(V') defined by

L g—>¢g f: g—>¢g I: g—>g
X—>X; x;—>0 X;—>X,
x,—>0 Xg—>X, x,—>0
Xy—>X, x,—>0 Xg—>X,
Xy—>X, X—>X, Xy——> — X4
Xs—>2X; x;—>0 x;—>0.

Then T=Ct,® Ct,® Ct, is a torus of (V). Since dim T=3=the type of
E,, T is a maximal torus of g(V). Let B;: T-—>C be a linear map with

ﬁi(tj)=5i]f0r i’jzla 29 3-
Q(V)=ﬁﬁz@g2ﬁ1@ﬁﬁl+ﬁs ® ?Iﬁl—ﬂs ® ﬁﬁﬁﬂz—ﬁs
Cx, Cx; C(x,+x) C(x,—x;) Cx,

(e, x5, X, — X3, X,) is @ T-minimal system of generators. The generalized
Cartan matrix associated to Eg singularity is

2 —1 0
CE)=|—-1 2 -1
0 —1 2

Proposition 2.11. Let V ={(x, y, z) € C*: 2%+ y*+x*=0} be the E,
singularity. Then

AV)={1, z, y, 2%, yz, z°, z*) with multiplication rule

yz*=0, y2=—%zs, z*=0, »'=0
9 P P F 3 3
v =<3 0 40520 2,0 13,0 500 13,0 0
(Ny= (225 2oy o 220y sy

0 _+0 _; . 0

A LI LI LR

0z’ oz " oy’ oy

g(V)=<3yi+2zz.a_, 2zzu.a_+3yz 9 ) yzi, zs_a__, z*i
0z I ay 0z Il ay Il 0z I 0z I 0z
xl x2 x3 X4 xs
520 0 >
1oy o

Xs Xy
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with multiplication rules-

[x;, %] =3x,—5x, X2 X5l =4 [x; x,]=0
x5, x:}=x, [xs x,]=2x; [x,, x]=0
[x,, x,]=—4x, [x,, x]=0 %5, X6} = —x;
[x,, x;]=0 [x;, x5]=3x, x5, x,]=0
[x;, Xs]= —3x, [x,, x;]=0

[x;, %7} = —3x,

[xs, x]1=0 [xs, %] =0 [%, X ]=0
[%s X5]=0 [x5, x;]=0

[x,, x,}=0.

The type of E, singularity: =dim g/[g, g]=3.
The nilpotency of E, singularity: =min {p e NU{0}: g?*'=0}=4.
Let t be a derivation of g(V) defined by
I g—>g
XX,
X,—>2X,
X;—>3X,
X,—>4x,
x;—>6X,
xXe—>3x,
x—>5x,

T=Ct is the unique maximal torus on g. Let B: T— C be a linear map

such that p(t)=1. Then
g(V)=T;" &) gi“ @ %”’ ® ﬁ‘ﬂ ® ﬁ*”ﬁ @ ﬁ"ﬁ.
| |
Cx, Cx, Cx,®BCx, Cx, Cx, Cx,

(X1, Xp, X5) Is @ T-minimal system of generators. The generalized Cartan
matrix attached to E, singularity is

2 —4 —3
CE)y=[—-2 2 -—1].
-1 -1 2

We shall now prove that there is only one semi-simple derivation of
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g(¥) up to multiplicative constant. Let §: g—g be a derivation
(X)) =auX;+apXy+ - - Fapx,  1<Ki<L7T

[%1, x5} =3x, — 5x,=[0(x,), 2]+ [x;, 5(2¢)] =35(x) — 56(x,)
=[3a,,x;— Sa,,x,— a0, — 2,,%,— 3a,,x,]
A [3a55%, — Sapx+ dpyx, — 4a X, — 3,6, — 3a5x,)
= (3asy;, — 5a4,)x; + (3@, — 5a45) %, + (3 — Sates) x;+ Bty — Sag) x,
+Bayy— 5a,:)x;+ (3, — 5a4) %+ (3a,;, — Sag)x,

=3a, —5a,=0
3a,—5a,=0
3a,,— Sag—3a,,—3a,,=0
(2.26) 30y, Sy — Apy -+ 3y =0
3a,,—5S5a.;-+2a,,+3a,,=0
35— 5845+ 581+ 5dp, =0
3a,,—Sag,+a,+3a,+4a,,=0

[x1, x] = x,[0(x), x5+ [x,, 6(x)] =(x,)
Slanx,+ GioX+ Giexs] + [B3asux, — Sa5,x -+ dax, — 4a,,x;
—3a,5x, — 30X = Ay X+ Ao X+ - - - FauX;
—>d,=0
a,=0

a;—3a,,=0

2.27) Ay — Ayy— 11+ 30, =0
Ay~ 15+ 3dy; =0
a5+ 5a;,=0

Qp—d;,y+ 4‘134 =0

[xy, x)= —4x=3[0(x,), x.J+[x;, 6(x)]= —40(x;)
S[—4a, x4+ 2a,,x.] - [Bayx, — Sa,x,+ apx, — 4a,x,

— 3%, — 3aux]= —da,x, —da,x,— - - - —dayx,
$‘771 =0
a,=0

4a,;-+3a,=0



36 M. Benson and S. S.-T. Yau

(2.28) 4a,,+a,,—3a,,=0
da;+2a,,—3a,,=0
4a,,—5a,=0

4a,,—4a,,—4a,,=0

[x;, x]=0=[0(x,), x5]+[x,, 6(x:)] =0

=355 X — 505X+ A5 X, — 45, X — a5 %, — 3a5x, =0

>d,=0

(2.29) a5 —3a;,,=0
a; =0
a,=0

[x1, X = —3x,=[0(x)), Xs]+[x;, 6(xx)] = —36(x,)
[ —3a,04 3,5 — A1 X 5] [35x, — S X+ Ay Xy — A X,

— 3%, — 3 x5] = — 3a,x, —3a,x,— - - - —3a,%,
>a,+d,=0 :
3a,—3a,+a,—3a,,=0
(2.30) 3a,—a;—3a,=0

3a,,—5a,=0
3a,+3a,;,—4a,=0

[x1, X = —3x,=2[00xy), x:]+[x;, 60x7)] = —36(x;)
= —3a,, X+ (35X, — 5@, X o+ A1y X, — a0 — 3%,

—3a,x, = —3a,X,—3a,x,— - - - —3a5:%;
=>a;,=0
a5+ a;,=0
(2.31) 3ay,+ay,—3a,=0
Ay — @y —ay; =0
3a,,— S5a,,=0
3a,,—4a,,=0

[z, X5l =%,=[0(x,), X,] +[X,, 6(x;)]=6(x7)
Ao, 4 Aoy Aaex5] 4 [ — 303, X, + 5051 X5+ Ay, + 205,
+ 3] =+ apXy - - - - - apx;
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>a;+3a,=0
(2.32) A —a, =0
s~y — 203, =0
Qrg— Sy =0

Gy — gy~ gy — 303, =0

[x,, x]=2x,2[0(x,), x,]+ Xz 8(x)] =26(x;)
[ — 4%+ 285X 4+ [ — 34X, Say, X+ X, + 204,
+3a,x)=2a,x,+2a,x,+ - - - +2a,:X;
=>2a;,+3a,=0

ay, = 0
(2.33) Qg5 — Ay, —ay =0
2a,,— S5a,, =0

2ay,+-4ay —3a,,—a,, =0

[X2, %3] =0=[0(x,), x5]+[xz, 6(x5)]=0
(2.34) = — 305, X5+ 55y Xs + 5 X7+ 205, X5+ 355X, =0
Sds+3a,=0

[xzs Xe] = 3x:2[0(x,), Xl [ Xz, (X)) = 36(x7)

Sl —3ay x4 3,55, — Apaxs] 4 [ — 3a4,%, - S x5 + dgax,
+ 24, X5+ 3a ) =3a,x, + 3a,,%,+ - - - +3a.%;

S+, =0
a+ay, =0

(2.34) 3,5+ — 20, =0

3a,,—5a, =0
33, — 30y — g —3a, =0

[x5, X 1=0=[6(x,), x7]+[x,, 0(x)]=0
= —3a,, %+ [ — 3@uxs + San X+ AryX, 4+ 20,054 30,1 =0
(2.35) => —2d,,—3a, =0
a;+3a,=0

[xs, x,] =0=>[0(x,), x]+[xs, (x,)]=0
[—4ayx;+ 2ap,x, |+ [ — dyxs— apX, — ax;] =0
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(2.35) =>2a,,—a,,=0
4a,+a,=0
[x5, 2] =0=>[0(x,), x,]4[x,, (x,)]=0
(2.36) = — U5y Xy — Uy Xy— Ay X =0
=dy =0

[xs, X5]= —x,=[0(x5), Xl 4[5, 0(x)] = —0(x;)

[ —3a5,, 4 35,0 — Qe X ] [ — o1 X, — Aoy — AgeXs]

= — U5y Xy — e Xg— =« » — U5 Xy
$a53=0
(2.36) g — 3, —a, =0

Qg5 Ay~ gy =0
Ay 30— a5, =0
[xs, x] =0=[0(x5), X;]+[x,, 6(x)]=0
(2.37) = — 30X, [ — oy X — X — 7% ] =0
=>3a,+a,=0

[xs, x]=0=[0(x,), x]+[x,, 6(x,)]=0
24ayx;—2a,x,=0

[x4, X =0=[8(x.), xo] +[x,, 6(x)]=0

(2.48) S[—3auX,+ 3a,,%, — ayx ] - [4ag X, — 2a4,x] =0
2+ 2a,=0
ay=0

x4, x;]1=0=[0(x,), x;]+[x,, d(x)]=0
= —3a,x,—[4a,x, — 2a,,x,]=0

[‘xsa xﬁ] :O$[5(X5)7 -XG] + [Xs, 5()&'6)] =0
= — 35X, 305X, — Ay X, =0

[x,, x]=0=>[0(x5), X} +[x5, 6(x)]=0
= —3a,x,=0

[xe, x:]=0=2[0(x5), x7]+[x;, (x)] =0
= —3a, X5+ [3ay,x,— 3a,%; 4 a,x,] =0
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(2.26), (2.27), - - -, (2.38) imply

a, =0

a31=0=a32=a36
ay=0=ap=a,=a,
ay=0=a,=a,=a,=a,=as
dy=0=a,=ag
ay=0=a,=a=a,=a,

Ay = 2"11

Ay = 115(27012 +4ay,)

Aoy = -;'(1 2a,,— 5ay;)
@y, =3ay,
1
Ay = -1—2(— 9a,,+4a,,)
1 54
A37 = 2—7(3a16 —4a,,— —4—012 - 2azs>
a,=4a,
Q= Il-s'(lzals +8ay;+27a3,+4a,)
Ay = i(3a12 —dy)
3
g =6ay,
1
gy = Z( 15a;,—4ay,)
Qg5 = %(3‘735 +2a,,+3ay,)
g =3a,,
Qg7 = 11—8(12‘716 +2ay;+27a,,+44a,,)
Q5= ‘1‘(5‘112 —2ay)
2

ay=35ay,
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a;, Gy, ay  dy a; G a4y
0 2a; a, a, A N
0 0 3a, a, a; O ay,
A= |0 0 0 4a, a; O Ay
0 0 0 0 6a, O ayy
0 0 0 +(15a,—4a,) a, 3an  ay
|0 0] 0 0 a; 0 Sa, |

d is semi simple & AA*=A*A
= the length of /"™ row of A=the length of j** column of A.

= a;;=0for iz}

ay )
ay;
3a, 0
A= da,,
6a,,
3a,,
5a,

We have proved that any derivation of g(}") must be a constant multiple
of t. It is a trivial matter to prove that ¢ is really a derivation.

Proposition 2.12. Let V={(x,y,z) e C*: z2°+ ) +x*=0} be the E,
singularity. Then
AWVY={, z, 2%, 2, y, yz, yz*, yz*) with multiplication rules z*=0, y*=0

] ] 0 0 ] 0 0 ]
LV z—,z2 T 7 vz oyt Ty Zyz
)= 0z 0z oz’ e oz’ 7 0z ‘ 0z * oy 7 oy’

0 0
229 yzs 9
vt )
0 0 0 2 0 d __ 9 0 0
g(V)= <Zzw z2— yz -, yz'—, yz*——, yz—, yz* —, yz’ —
ja Ty o o e e ey o |ay>
X Xy X3 Xy X5 Xg Xq
with multiplication rules:
[x;, x,]=0 [z, X ] = —2x, [x3, x,]=0
ey Xg] = —x, [x, x]=0 [x3, x5]=0
[x, x]=0 [xz, x,]=0 [, Xel=—x,

[x,, x,]=0 [xe, Xgl =2, [xg X )= — x5
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[x, X = x4 [x; x]=0 [x3, X5} =0
[x;, x]=2x, [x5, X] =0

[, x5] =0

[x, x]=0 [x;, x]= [xs, x,]=0 [x;, x]=0

0
[X4, x6]: X5 [xs, .X'7]=0 [XG, xs]:O
[x,, x;]=0 [xs, x;]=0
[x,, xg]=0.
The type of E; singularity: =dim g/[g, g]=4.

The nilpotency of E, singularity: =min {p e NU{0}: g**'=0}=2.
Let t,, t, be two derivations of g(V') defined by

Li: g—>g It g—>g
X;—>X, x,—>0
Xp——>2X, X;—>0
x;—>0 Xy—>X,
Xy—>X, Xe—>X,
Xs—>2X, Xy——>X5
Xg——> X, x;—0
xX—>2X, x,—>0
Xg=—>3X, x;—>0.

41

Then T =Ct,® Ct, is an unique maximal torus on g(V). Let B;: T—C be

a linear map such that B,(t,)=29,, for 1<i, j<2.

aM=g* © ¢* © "D grOFHrOgn

[ I l I I I
Cx,®Cx, Cx,®Cx;, Cx, Cx, Cx, Cx,q

(%, Xy, Xy, X,) Is @ T-minimal system of generators.
R(T)={B. 28, B}
:RI(T)I U RI(T)Z
where R(T))= {,32}, R(T)= {2,815 ﬁl}
We number the number of elements of R'(T) in such a way
R(T)={g, &, F}
where B'=pB,, F'=2p8, =5
a*=Cx, g”=Cx, P Cx,g¥*=Cx, @ Cx,
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The generalized Cartan matrix associated to E, singularity is

2 1 —1 —1
“1 2 -1 —1
CE=|_o _1 2 —2|

-2 -1 =2 2

We shall now show that g(¥’) has an unique maximal torus spanned
by ¢, and ¢, defined as above. Let § be a derivation of g(V).

0(x)=a,x;+aux,+ - - Fagx, for 1<i<8

[x,, %] =0=>[6(x,), x.]+[x,, 6(x;)] =0
[2a13%5— ayeXg] [ — Aopx, 4 Ape, 205X =0

>, =0
(2.39) a,=0
;=0

2a,,—a,;=0

[x, X3] = — x,=>[0(xy), X;]+[x, 60x)] = —8(x,)
D[ —ayx,—2a,,%+ 41X, A X ] - [ — Ay X+ Ay X+ 2d5x]

= X — Xy — - - — Xy
=>a,=0
a,=0
a,;=0
(2.40) Ay— Ay — gy + ;=0
ay—2a,+a,=0
g =0
A+ dy=0
a+2a,;,=0

[x1, x]=0=[0(x), x,]+[x;, 6(x,)]=0
SieXs+ [ — QX+ AieXy - 2a,,%,] =0
(2.41) =>a,,=0
a,=0

[x1, %] =0=[8(x), x]+[x,, 5(-"5)] =0
D — dsyXy + dse X+ 2d5, X, =0
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(2.42) >a,=0
a5,=0
a5 =0

[x1 X] =x7$[5(x1)3 Xo]+[x1, 6(xe)]1=0(x)
a1 4 A1pX — @y — @y, X5] - [ — Ay Xy oo+ 2a5:x]
=Xy F ArgXg -+« - - Xy

=>a,=0

a,=0

(2.43) ;=0
A+ a;, =0
Qs +a,=0

=0

Ay — Ay — Ay =0
Qg — iy — 20 =0
[xh x7] =2X8$[5(X1), x7] + [xn 5()(7)] =2(X3)

>[2a1,xs— ayx5] [ — Qrsxy + drexy +2a0,x5]
=2a31x1+2‘?82xz+ o 205,

>y =0

A, =0

(2.44) @y =0
2dy,+a;; =0
2a+a;;=0

;=0

;=0

Qg — Ay~ a7y =0
[x1, x] =0=[3(x)), xg]+[x1, 0(xg)] =0

(2.45) = e Uy X+ B X+ 28:X%, =0

gy = 0
[X5 Xl = — 2,5 [0(x,), Xl 4 [x,, 0(x9)] = —20(x;)
D[ — g1, — 205555+ AoeXs + Aor 5] [ — 205535+ g,

= 205, — 205X, — 2005, X, - + + — 205X,

(2.46) =da,, =0
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a5, =0
205 —ay +a,,=0
2a5,—2ay,—2a;,+ay, =0
2a5+a,,=0
[x2, x,]=0=[0(x,), x]+ x50 0(x)]=0
X5+ [ — 28,504 4] =0
[xs, x]=0=[0(x,), X514 [x,, 5(x5)] =0
= — 253+ Ay Xy =0
[, 6] = X, D[0(x2), X6l 4+ [X, 5(x)] =6(x5)

[0+ AopXg — AogX — Ay XS] [ — 2055 % + a5 X ]
=gy X+ Ay Xyt - - - X

(2.47) g+ a,, =0
Qo5+t + 205, =0
a,=0

Agg— Apy— g =0
[xz, ] = 0=5[3(x,), xo] 4 [xz, 3(x)] =0
=[2a,,% — x|+ [ —2a,x5+ X, =0
(2.48) =4, =0
Ay +2a,,=0
[xz, Xe] = 0[0(xy), Xel+[Xa, 0(x5)] =0
= — 205, X+ Qe Xy =0
[xs, x.]=0=3[0(x,), x,]4-[x5, 6(x,)] =0
(2.49) DXy + [ X+ 2a,x— Ay X, — apx;] =0
Ay t+2a,—a,=0
[xs, x:] =0=5[0(xy), x3] + [x5, 9(x;)]=0
Sy X+ 205X — AgeXy — Ay X =0
[x5, xe] = — x,=0[(xy), xe] -+ [x5, 6(xe)] = —(x,)
Dy X0 AypXg — Ayy Xy — A X 5]+ [y X4 200X — e Xy — Ao X5)
= — X — Xy — + + - — Xy
(2.50) gy — gyt Agy — Ay =0
Ay — gy + 20— gy =0
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QA+ a, =0
A+ a5, =0
[xg, X7]= — X, [0 (x5), X714 x5, 0(x,)] = —d(x;)
>[2ay, X, — @y x5 ]+ [anx,+ 20,0, — ay,x, — A,

=y Xy — A Xy — » -+ » — AyeXy

(2.51) =, =0

Ays— s+ 20— a7, =0
s+ 2031 =0

[X3, Xa] = O@[B(X;i), xal + [xa’ 5(xa)] -0
Dy X4+ 25y Xy — Ao Xy — Ay X5 ="

[x,, x]=0=>[6(x,), x;]+[x,, 6(x5)]=0
—Ayx; =0

[xu xe] = —x5f7>[5(x4), xs] + [xu 5(x6)] = 5()66)

a4+ AupXg— Ay Xy — Ay X5 — Age x5

(2.52) = =y X, —AspXy— « + - —UyeXy

?ass—au‘_asezo
;=0
[x,, x]=0=[6(x,), x,]+[x,, 6(x;)]=0

>l2a,,xs— a x| — a,x,=0

[x,, X ] =0=[6(x,), Xo]+[x,, 6(x5)] =0
= —UgeX; =0

[x5, X =0=[0(x5), xe] + x5, 0(x)] =0
S0y Xy Aoy Xg— Ay Xy — Ay X =0

[x5, x:] =0=[0(x5), x7]+[x5, 6(x7)] =0
205X, — d53X; =0

(x5 Xe] =0=>[0(x5), xa]+[x5, 0(x)] =0

[Xea x7] = 0@[5()66), x7] + [xss 5(x7)] =0
S[2a5:%, — Ay Xs] + [ — A X — X g+ Ay X+ a7 X5 =0

(2.53) Ay — g3 =0

2a,=0

45
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[xe, xg] =0=[0(x5), Xg] [, 0(x5)]=0
(2.549) — gy X — Qgg Xy - Aoy X+ A X, =0
a34=0

[xz, xg] = 0@[5()(-7)’ Xg] +[x7, 3(x5)] =0
= —2dy X+ dgyx; =0

(2.39), (2.40), - - -, (2.54) imply

a;=0a;,=0

Ay = Ay = Uy = Uy = Uy; =0

Ay =y =0

Ay =0y =0y =0=0,;=0

sy = U5y =gy = gy = Uy = U5y = 53 =0
dy=a5, =0

Ay =0y =0y =0y =0y =0

Qy; == gy = gy = Uy = gy = gy = gy =0

Ayy =241y, Qg =0y

‘137:%032 Ay =20, — Ay~ Ay + 204
Ay =0y, + a5, Aps= —0a4

Ay =20, —ay; =2y,

A== — Qg =Sty — 201, — 203445
Ay =0y +2a,, Ay =34.

Then ¢ has the following matrix representation

-

a; a, 0 ay ays 0 i Qg

0 24, O 0 s 0 0 Aos

0 ay, Oy gy Qg 0 'flias2 Qg

0 0 0 ay+ta, 2a,—a, O 0 —

A=10 0 O 0 2a,,+a,; 0 0 v 0
2a,—a
0 ay O s Qg5 i _1‘;34+127”62 S aesz
Qg — 2lyq

0 0 O 0 —a, 0 2a, Dy Aty

L0 0 O 0 0 0 0 3a,
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0 18 semi simple & AA* = A*A4
= the length of i** row of A= the length of j* column of A.
a,;=0 for i £j.

Hence
(a, 5
2a,, 0
a33 +
A= Q11T Ay
2a,,4ay
a
2a,,

3a, |

We have proved that any derivation of g(}) must be a linear combination
of t, and 7, It is an easy matter to check that ¢, and 7, are really a
derivation of g(¥).

Chapter 3. Using a computer to calculate the Lie algebra
of derivations and Lie algebra cohomology

3.1. Overview

A computer can be used to calculate many singularity invariants.
In this paper we will describe how the Lie algebra of derivations of an
isolated hypersurface’s moduli algebra can be computed. We will also
show how to calculate its Lie algebra cohomology.

The computation methods we will discuss have been implemented by
M. Benson in the C programming language. His programs presently run
on several versions of UNIX® but should be portable to other operating
systems. They are designed for making calculations in local rings which
are finite dimensional quotients of power series rings.

The implementation approach is modular. Each program works
more or less independently of the others, but in most cases the standard
output of one can be used as standard input for another. Because of
this, the modules are easily glued together using UNIX pipelines. Output
documenting the computation is sent to the standard error and a disk
file.

The calculations we are interested in are performed by four distinct
program modules MODULI IDEAL, STANDARD BASE, LocAL DEriy, and LiE
CoHo pipelined in this order. These program modules rely on a large
library of support routines. The module dependency is depicted below.

1) UNIX is a trademark of AT & T Bell Laboratories.
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MODULI IDEAL STANDARD BASE] LOCAL DERIV LIE COHO
POLYNOMIAL ARITEMETIC LINEAR EQUATION SOLVER!

N\ /

EXACT ARITHMETIC

Organization of Program Modules

We will begin by indicating how some of the library routines have
been implemented.

3.2. Representation of polynomials

Polynomials are stored as linked lists of terms, where each term is
represented by a vector specifying the exponents of the top level variables
and by a coefficient. This coefficient can be either a pointer to polyno-
mial in parameter level variables or else an exact fraction.

The methods of implementing the algebraic operations with polyno-
mials are standard. Operations include reading and writing polynomials,
addition, subtraction, negation, multiplication, exponentiation, truncation
of high degree terms, and reduction modulo a list of polynomials. The
last two operations facilitate computations in quotient rings.

3.3. Representation of derivations
Any derivation D of a local ring which is a quotient of C[x;, x,, - - -,
x,] can be written in the form

3.1 D=f 9 450 L4 0
_ ox, 0x, 0x,
where f;=Dx, for i=1,2, ---,n. This can be seen by first using induc-
tion on the degree to check that the left and right hand sides of (3.1)
agree when you apply them to any monomial. Then (3.1) must hold true
in all cases by linearity.
In our implementation, a derivation is stored as an array of the
polynomial coefficients f, f,, - - -, f,. Operations like applying derivations
to polynomials or calculating Lie brackets were easy to implement.

3.4. Solving systems of linear equations
Large systems of linear equations with fractional coefficients appear
in both LocAL Dertv and Lie Cono. Examples that a mathematician
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would normally choose turn out to be very sparse.

A system of linear equations is represented by a linked list of sparse
coefficient vectors representing the equations. Thus each equation in the
system is represented by a linked list of its nonzero coefficients. To
facilitate adding new columns to the system, a pointer to the last node in
each row is stored.

The uses of the systems of linear equations in the programs differ.
In one case the basis of the kernel of a linear system of equations is
required, in another only the rank is needed. In a third case a set of
particular solutions to a muitiple system of equations of the form

anzi + a2z, 4 - -+ iz =byy, by, -, by,
nZy +ApZy 4+ - A2y, =byy, by, - - -, by
(3.2) e
aplzl+ap222+ s +apmzm:bp19 pr’ ct bpk

is required. In the first two situations the rows can be generated sequen-
tially so Gaussian elimination can be performed as the rows are prod-
uced. This appears to be a big space saver because the systems are
extremely over-determined. In the last case the columns are produced in
sequence, meaning that the system must be stored and then solved at the
end.

Both situations can be handled adequately with the approach used
here. Gaussian elimination is performed sequentially by adding a row to
a matrix already in echelon form and eliminating. If the row reduces to
zero, the row is dropped. When the row vectors are generated sequentially
this gives a space efficient implementation. And, it works satisfactorily
for the other case as well.

Once the matrix is in echelon form it can be put in reduced echelon
form by Gauss-Jordan elimination if particular solutions or a basis of the
kernel are required. All of these procedures have been implemented.
They return matrices whose sparse rows are the desired vectors.

3.5. 'The user interface

MobuLI IDEAL is a small program used to read the defining equation,
calculate the partial derivatives of this polynomial, and then write infor-
mation about the moduli ideal to the standard output.

3.6. Finding the standard base

STANDARD Base reads the generators of an ideal 7 in C[x,, x,, - - -,
x,], and attempts to find a standard base for this ideal. The calculation
will terminate whenever the quotient ring is finite dimensional. The
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standard base is a new set of generators for which testing membership in
the ideal 7 is easy. It is implicit in many of papers of H. Hironaka, and
it has been widely used in the study of polynomial ideals. A nice presen-
tation of the concepts for polynomial ideals is given by D. Bayer in [1].
He and M. Stillman have used a computer to calculate standard bases of
polynomial ideals.

STANDARD BASE uses the ideal base it finds to construct a basis of
monomials for the quotient algebra A=C[x,, x,, - - -, x,]/I considered as
a complex vector space. This is easy to do because the initial forms of the
standard base elements lie on a “staircase” which delineate the elements
in the monomial basis from the rest.

Here is an example which illustrates the use of the standard basis.
In this case the ideal is the moduli ideal for the singularity defined by

(33) S, Xg, Xg) = x3— (3 +x2)(XT -+ X3)
The generators of the moduli ideal are

2x,

—2X3%, — 3X3x} =~ 5x}
— 403 — 2, X2 — 2,3
x5 — (X7 4+ x3)(x] 4 x3)

34

and a standard base is given by

X3
xi
3.5 X x5+ 2x3
2x2x, -+ 5x4
x3.
We can depict the portion of the “staircase” lying in the xy-plane by
using asterisks to indicate the monomials which are initial forms of ele-

ments of the ideal. The monomials which lie outside the asterisks are
elements of the monomial basis.

® % % %k %

X% % % %

xXoox % x o=
(3.6) z

X2 ox % % ox

X, X Xp % % %

1 x, X2 X x
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Given the standard base and the basis of monomials, it is easy to
reduce any power series to a linear combination of basis elements by sub-
tracting off multiples of members of the standard basis. Reduction of a
polynomial by a list of polynomials is one of the basic routines in the
library which performs arithmetic of multivariate polynomials.

The algorithms used to construct the standard base of a finite dimen-
sional power series ring are important for many calculations. A complete
description of these algorithms will be given elsewhere.

3.7. Computing the derivations

LocaL DEeriv reads the standard base for an ideal Iin C[[x,, x,, - - -,
x,] and the monomial basis of the quotient algebra A=C[x,, x,, - - -, x, ]/I.
It uses this information to compute the Lie algebra, Der 4, of derivations
of A.

Any element of Der A can be written in the form (3.1). Since the
coefficients f}, f;, - - -, f, are defined only up congruence modulo 7, we can
choose representatives which are linear combinations of the monomial
basis. For the example of the previous section, any derivation of the
moduli algebra must be of this form

2 d
(@, + ax, + ax, + x4 asx, X, + X3+ ax} + a,x3 + asx;)a—
X

1

B+ (Bybbyx,+byxy+bxi+bx,x,+byxi-+ byxd - by byxs ai

Xs

(614 Xy + X+ €, - 05X, X, - X5 4 €63+ X3+ CyX3) ai .

3

LocAL Deriv actually generates a symbolic expression like (3.7).
Not every expression of this form is really a derivation of 4. Derivations
must send each generator of I back into I. To determine the possible
derivations of 4 we must apply the form (3.7) to each of the generators
of I, reduce this formal expression modulo Z, and then set it equal to zero.

For example, if we apply (3.7) to the standard base given in (3.5) we
get the equations

€1 €%+ € X+ C X3+ X1 X+ CoX - € X5 - Ce X+ o xi =0
4a,x}=0

(38)  6a,x342b,x,x,+a,x3+ (4a,— 4b,)x3 4 a,x3+(— 15a,— 5b,+a)xi=0
2b,x7+ 4ayx,x, + (—8a, -+ 2b,)x3 + 20b,x3 + (— 10a,+ 15b,)xs =0
5b,x5=0.
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The coefficients of the basis elements must vanish independently of
each other. Each of these coefficients is a linear form in the parameter
variables. We end up with a homogeneous system of linear equations
determining which values of the prameters in (3.7) give derivations.

These equations are solved to get a basis for the kernel, and therefore
also a basis for the Lie algebra of derivations. Here is the basis of deri-
vations computed from the system of equations arising from (3.8).

0 0 0
D, =xt - D,=x3 "~ D,=xi~_
T o, o, " e,
0 ) 0
D=x*" D,=xx Dy=x "
59 f M ax, " ox, T o,
D=x 0 Dy=xi 0 Dy=xt2_
axz axz axz
0 0
D, =xx,— D =x2 "
10 1 Zax2 11 2ax2

The final step is compute the structure constants for the Lie algebra
Der A. The Lie brackets [D;, D], for i <j are computed as derivations
and then expressed back in terms of the basis elements. In principle,
expressing each of the Lie brackets in terms of the basis means solving a
system of linear equations, although typically many of the brackets are
zero and therefore can be eliminated.

Here is what LocarL DEeRrIv found when it calculated the Lie brackets
of each pair of elements of the basis given in (3.8).

[Dy, Di]=D, [D,, D,)]=D, [D,, D,]= —D,
(3.10) [D,, Dij=35D;, [D,, D,]=2D, [D,, D,)]=£D,

[Ds, D))= —D,—5D, [D;, Dl=%D,—2D, [D,, D,]=2D,

[Dy, Dyy]= —D; [Dy, D\y]=D, [Dy, D,j]=—2D,

All of the other brackets vanish.

It is important from the standpoint of computing to notice that
fractional coefficients often appear in the Lie brackets even though the
original basis had integer or even monic coefficients. This occurs when
we reduce modulo /. This phenomenon forces us to work with exact
fractions instead of trying to stay with exact integers for efficiency.

Here is summary of the algorithm used by LocAL DEriv to find the
Lie algebra of derivations of a finite dimensional power series quotient
ring.
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Algorithm 3.1 (Local Deriv).

1. Read data specifying power series ideal from the standard input.

- 2. Generate n X dim 4 parameter variables.

3. Construct the general form, D, of a derivation as in (3.7) using the
standard basis monomials and the parameter variables constructed in
the last step.

4. Initialize KERNEL SYSTEM to be an empty list of rows.

5. For each element ¢, of the standard basis.

(a) Compute De; and reduce moduli 7. The result will be a linear
combination of basis monomials with coefficients being linear
forms in the parameter variables.

(b) For each term in the list representing De,.

i. -Convert the coefficient of that term to an nXdim 4 dimen-
sional sparse coefficient vector v.

ii. Add v asarow of KERNEL SYSTEM. Bring the matrix back to
echelon form by elimination. Drop v if it reduces to zero.

6. Bring KERNEL SysTEM to reduced echelon form.

7. Compute a basis for the kernel of KERNEL SYSTEM.

8. Construct a derivation D, for each element of the kernel basis.

9. Initialize BRACKET SYSTEM to be a list of n X dim 4 empty rows.

0. Foreach D, in the basis of derivations

(a) Add a new column to BRACKET SYSTEM representing D,.

11. Initialize the set NON ZERO to be empty.

12. For each D, in the basis of derivations

(a) For each D, in the basis of derivations, j >/
i. Compute the Lie bracket [D,, D,]
ii. If this new derivation is not zero, then
A. Insert (i, j) into NON ZERO
B. Add a new column to BRACKET SYSTEM representing [D,, D,].

13. Bring BRACKET SYSTEM to echelon form by Gaussian elimination,
and then to reduced echelon form by Gauss-Jordan elimination.

14. Construct a list SOLUTIONS of particular solutions to the multi-system
of equations given by BRACKET SySTEM. Each row in SOLUTIONS
expresses one of the nonzero Lie brackets in terms of the D,.

15. Output the derivations and the nonzero brackets to the standard
error and file. The contents of NoON Zgro indicate which brackets are
in the list of SOLUTIONS.

16. Output dimension and structure constants to the standard output.

3.8. Calculating Lie algebra cohomology
Lie CoHO calculates the Betti numbers of the cohomology groups
HYL, W) where L is a Lie algebra and W is an L-module. Before discus-
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sing the algorithm that Lie CoHO uses, we will review the definition of Lie
algebra cohomology.

The set of k-cochains C*(L, W) of L with coefficients in W is defined
to be the vector space of all linear maps from the k-fold tensor product
L® =¥, L into W. Letn=dimL, then C*L, W)=0 for k>n, and
both CYL, W) and C™(L, W) can be identified with the set of constant
maps into W. C(L, W) is defined to be the direct sum @, C*(L, W).

The coboundary operator §: C(L, W)—C(L, W) is a homogeneous
linear operator of degree 1. It is defined on each of the homogeneous
pieces of C(L, W) as follows. If fe C¥L, W), then §,f ¢ C**/(L, W)
where

05 f(xps X35 - - -, xk)"_‘io(_l)ixi'f(xo@' S RFQ- - Bxy)
-}-Z'(—l)“jf([xi, X]®xp - X @ - - RF,Q - - - Qxy).

<j

(3.11)

In the first summation, the dot is used to represent the action of x; €
Lonf(x® - - @£, -&x,)e W.

The pair (C(L, W), §) forms a cochain complex. The Lie algebra
cohomology of (L, W) is defined to be the homology of this complex.

Computing Lie algebra cohomology turns out to be just a gigantic
linear algebra problem. As we know, H(L, W) measures the exactness
of the sequence

O d.
(G.12) CUAL, W) CHL, W)—2sCHL, W)—5CHL, W) ..
that is
(3.13) dim H*(L, W)=dim (Ker 3,)—dim (Im 3,_,).

In this equation the second term on the right hand side is assumed to be
zero for k=0.

We can bring (3.13) into an even simpler form for computing the
Betti numbers. Using the Rank+ Nullity Theorem we get

(3.19) dim H*(L, W)=dim C*(L, W)—(rank §,+rank §,_,)

where again if k=0, the rightmost term of the right hand side of (3.14) is
understood to be zero. This shows that it is enough to compute the
ranks of the linear maps 6, 6;, - - -, 6,_;.

We are going to introduce coordinate systems in the C*(L, W) in
order to compute these ranks. Let v, v, ---, U, be a basis for L and
Wy, Wy, - - -, w,, for W. In terms of these bases, the Lie algebra structure
and the action of L on W can be expressed as follows.
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(3.15) [ve, vl=23 Iy,
(3.16) vew, =3 Plw,

12

[
—-

We will call any k-element subset J ={i;, #,, - - -, {,} of {1,2, ---,n} a
k-index. For any k-index I we define v,=v,,Qv,®- - -Qu,, where i,<
i,<--.<i,. Theset B, of all such v, forms the product basis of L®,

We can now define a basis B of C*(L, W). B} consists of all v},
for I a k-index and p=1, 2, - - -, m, where v}, is defined on the elements
of B, by

J=I
(3.17) vk (w)=1""
I ,p( J) 0 J # I
and extended to L® by linearity. We see from this construction that
dim CHL, W)=mx (’]’é)

We will introduce some more notation. The sign of the permutation
of 71U {p} that you get by listing p first, followed by the elements of I\{p}
will denoted as follows

(3.18) sign (p, I)=(— 1)ewstierii<n,

We can now compute §,v¥, for each k-index [ and p=1,2,---,m.
The first step is to evaluate it on each element of the basis B, of L®,

Lemma 3.2. Suppose I is a k-index, J is a k-4 1-index, and p=1, 2,
«««,m. Then
1. If I and J share less than k—1 indices, then

(3.19) 0, V¥ ,(v,)=0.

2. If I and J share exactly k—1 indices, where J\I ={r, s}, r <s and
I\J ={t}, then

(3.20) 8,UF (v,)= —sign(r, J)-sign (s, J)-sign (1, I)- "t w,.
3. If I and J share exactly k indices, where J\I ={r}, then

(3.21) 8,.Uf J(v,)=sign (r, I)(v, - w,+ 26; I'tw,).
q

This lemma gives us enough information to express each J,vf, in
terms of the basis B¥,, of C**'(L, W).
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Corollary 3.3. Suppose I is a k-index and p=1,2, - - -, m. Then we
have

el

0. Uf,=— > 2. sign(r,J)-sign(s, J)-sign(t, I)- I't0¥, cip
7rys€l
(3.22) r<s .
+ Z Sign (r’ I)(Z ngv;k(r),q_f_ Z Fgrv;k(r),p>
rer’ g=1 q€el

where I'=1{1,2, - - -, n\L, I(r)=1U{r}, and I(r, s; t)=T U {r, s}\{t}.

Lie CoHO uses (3.22) to compute the ranks of the §,. The image
6,vf, of each basis element in B} is written in terms of the basis Bf,,.
The matrix formed by using the coefficients of these linear combinations
as row vectors has the same rank as §,. We can deduce from (3.22) that
this matrix is very sparse. Each row has at most

2

nonzero coeflicients, far less than m X (kai— 1), which is the dimension of
C*+Y(L, W).

Lie ConHo uses a bit vector to store a k-index. When m and » are
not too large, then each pair (7, p) can be represented in a compact format
by one computer word. The exact encoding method is not important for
stating the algorithms which follow, We will use the notation index
(1, p) to represent the integer corresponding to (7, p).

Here is an outline of the algorithm used by Lie CoHO to compute
the Betti numbers of Lie algebra cohomology.

Algorithm 3.4 (Lie Coho).
1. Read dimension » and structure constants '}, of Lie algebra from

standard input. Store as sparse matrix.
2. If present, read dimension m and constants P!, of the representa-

tion. Otherwise assume L= W and take the adjoint representation.
3. Fork=0ton—1

(a) Call CompuTE RANK to find rank of 4,.
4. Fork=0ton

(a) Output k-th Betti number using the formula

n
W= m(

k)—rank 8, —rank d,_,.

Algorithm 3.5 (Compute Rank).
1. Set BAsis IMAGES to be an empty matrix.
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2. For each k-index set 7 {1,2, - .-, n}
(&) Forp=Iltom
i. Call ComputE IMAGE to find E,v¥,. Returns sparse row
vector giving this quantity as a linear combination of the B},,.
ii. Insert row into BAsIS IMAGES bringing matrix back into echelon
form. Drop row if it reduces to all zeros.

3. Return the number of rows of Basis IMAGES.

Algorithm 3.6 (Compute Image).
1. Initialize a sparse row to be empty.
2. Let J be the first k4 I-set in lexicographical order which meets 7 in
at least k— 1 members.
3. While J exists do
(@) If J meets I in exactly k—1 members with J=1 U {r, s}\{t}, r <s,
then
i. Compute —sign (r, J)-sign (s, J)-sign (¢, I)-I%,.
ii. Place result in position index (J, p) of the sparse row.
(b) Otherwise, J meets I in exactly k members with J =1 U {r}
i.  Copy the product of the sparse row representing v,-w, with
sign (r, 1) into position index (J, J), index (J, 2), - - -, index (J, m)
of the sparse row.
ii. Add the quantity sign (r, I)- >, .; %, to the entry in position
index (J, p) of the sparse row.
() Set J to be the next k4 1-set in lexicographical order which
meets / in at least k— 1 members.
4. Return sparse row constructed.
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