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in Calculating the Lie Algebras 
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Max Benson and Stephen S.-T. Yau 

Introduction 

Let (V, 0) be an isolated hypersurface singularity in (en, 0) defined 
by the zero of a holomorphic functionj. The moduli algebra A(V) of V 

is e {z" Z2' .. " Zn}/(f, aaf , .. " af ). Recall that the natural mapping 
z, aZn 

(0.1) {
isolated hypersurface SingUlaritieS} ------+ {commutative lOCal} 

of dimension n Artinian algebras 

(V, 0) A(V) 

is one to one (cf. [9], [2]). In [19], a connection between the set of 
isolated hypersurface singularities (V, 0) and the set of finite dimensional 
Lie algebras L(V) was established. Namely L(V) is the algebra of deriva­
tions of A(V). Since A(V) is a finite dimensional complex vector space 
and L(V) is contained in the endomorphism algebra of A(V), L(V) is a 
finite dimensional Lie algebra. In [20] and [22], the second author has 
proved that L(V) is a solvable Lie algebra for n~5. It is known that the 
problem of classification of solvable Lie algebras was basically reduced to 
the problem of classification of nilpotent Lie algebras (cf. [8]). The above 
construction provides us a new way in studying solvable and nilpotent Lie 
algebras. For instance, new examples and phenomena of solvable or 
nilpotent Lie algebras and their representations can be derived via isolated 
singularities. In Chapter 1, we shall prove that the one parameter family 
of inequivalent finite dimensional representations of a fixed Lie algebra 
L(E6) in [19] and [20] is not obtainable by the action of the automorphism 
groups of L(E6) on a representation. We believe that in general a natural 
representation of a Lie algebra on its moduli algebra determines the 
complex structure of the singularity. More generally if we consider a 
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family of isolated singularities, then we expect the following: either we 
shall obtain a new family of solvable Lie algebras or we shall have a one 
parameter family of inequivalent finite dimensional representations of a 
fixed Lie algebra. 

The injectivity of the map (0.1) raises the following natural question. 
What kind of information does one need from the moduli algebra in 
order to determine the topological type of the singularity. This question 
has been studied by many others including Le and Ramanujan [7], Pham 
[14], Teissier [17], [18], and Zariski [23], [24]. Zariski shows that two 
irreducible plane curves are topological equivalent if and only if their 
associated numerical invariants so called Puiseux characteristic are the 
same (cf. also Pham [14]). In 1968, Milnor [8] introduced his famous 
topological invariant Milnor number. In [20], many numerical invariants 
were introduced, namely, dim L(V); dimension of the maximal nilpotent 
subalgebra g(V) of L(V), dimension of a maximal torus of g(V); gener­
alized Cartan matrix C( V); type and nilpotency of the singularity. It was 
shown by an example in [19] that dim L(V) is not a topological invariant. 
However there is no evidence that the other numerical invariants are not 
topological. In Chapter 2, we shall first recall the construction of a 
generalized Cartan matrix associated to isolated hypersurface singularities 
(cf. [20]). Since rational double points playa distinguished role in many 
ways, it is worthwhile to study them more closely than those given in [20]. 
We shall write down the multiplication table of g(V), compute the algebra 
of derivatives and maximal torus of g(V). We shall also find root space 
decomposition of g(V) and generalized Cartan matrix ceV). We remark 
that the comutations of Der g(V) is by no means easy. Such explicit 
computation will be useful in studying cohomology of g(V). 

Deformation of the singularity (V, 0) is related to the deformation of 
the associated Lie algebra g(V). It is well known that the Lie algebra 
cohomology plays an important role in deformation of Lie algebra. For 
instance, it was shown that g(V) is rigid of H2(g(V), g(V» =0, and a 
neighborhood of g(V) can be parametrized in the real or complex case by 
the zeros of an analytic map from H2(g(V), g(V» to H3(g(V), g(V» (cf. 
[13]). The theory of cohomology groups of 9 with coefficient in 9 module 
C, implicitly in the work of Elie Cartan, was first explicitly formulated by 
Chevalley-Eilenberg (Trans. Amer. Math. Soc., 63 (1948), 85-124). For 
the past two years, they have received special attention. We were told 
by Professor Zuckerman that Physicists are particularly interested in 
them. In any event, the dimensions of the Lie algebra cohomology 
groups are interesting new invariants of the singularity (V, 0). However 
any explicit computation of these Lie algebra cohomology groups are 
extremely difficult, if not impossible by hand. Therefore we have devel-
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oped in Chapter 3 a computation method so that the computer can do 
this complex calculation. We actually write down the algorithm for 
computing cohomology of any finite dimensional. Lie algebra L with 
coefficient in L-module W. Our scheme goes as follows. We first observe 
that by equation (3.14) in Chapter 3 it is enough to compute the ranks of 
the linear maps 00, 01> •• " On_I> which are the coboundary operator in the 
cochain complex. To compute the images of the Ok' we have to make 
use of Proposition 3.20 in Chapter 3. In fact, we . also write down the 
algorithms computing the image of Ok and its rank. Doubtless, the 
readers may find that most of the explicit computation of the Lie algebra 
L(V) is extremely time consuming. Hence it will be convenient to let 
the computer do the calculation for us. For this purpose we also have 
developed an argorithm so that this kind of calculation can be done in 
computer too. For more details, we refer the readers to Chapter 3. 

Finally the second author would like to thank the National Science 
Foundation for the financial support that made this work possible. 

Chapter 1. A continuous family of finite dimensional 
representations of a Lie algebra 

In this chapter, we first construct a one parameter family of inequi­
valent representations of a Lie algebra L(Ea). This family of representa­
tions is not obtainable by the action of the automorphism group of L(Ea) 
on a representation. 

Let L(Ea) be a 10-dimensional complex Lie algebra spanned by <e1, 

e2, es, •• " e10) with the following multiplication table. 

~I 61 I 62 I 63 I 64 I 6~ I 6a I 67 I 68 I 69 I 610 

61 0 0 0 0 -e3 0 

1-:3 

e9 0 -61 

62 0 0 0 66 0 0 0 0 -e2 

e8 0 0 0 0 0 0 I 0 0 0 - 2ea 

e4 0 -ea 0 0 0 0 e9 0 0 -e4 

e5 e8 0 0 0 0 0 0 -e6 0 -e5 

e6 0 0 0 0 0 0 0 0 0 -2e6 

e7 0 es 0 -e9 0 0 0 0 0 -e7 

68 -e9 0 0 0 e6 0 0 0 0 -e8 

e9 0 0 0 0 0 0 0 0 0 - 2e9 

el0 el ~2 2ea e. e5 2ea e7 e8 2eg 0 
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Proposition 1.1. For any t E C, let 

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 gl 0 0 0 0 0 t 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

pt(e1) = 0 0 0 0 0 0 1 0 
PtCe2) = 0 0 0 0 t 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 t 0 

plea) = 0 0 0 0 0 0 0 0 pt(e4) = 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

pt(e5) = 0 0 0 0 t 0 0 0 
pt(es)= 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 t 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 t 0 

PtCe7) = 0 0 0 0 0 0 0 0 
pleB) = 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

pt(e9) = 0 0 0 0 0 0 0 0 
ple10) = 0 0 0 2 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 gJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Then Pt gives a matrix representation of L(Es). Moreover all these repre-
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sentations are all inequivalent. 

Proof It is a trivial matter to check that Pt is a representation for 
all t E C. 

Suppose tl =1= t2 • If Pt, were equivalent to Pt., then there would exist a 
nonsingular matrix Q such that 

(1.1) 

(1.2) 

(1.3) 

(1.1) implies 

(1.4) 

QPt,( el)Q -I = pt.(el) 

Qpt,(e2)Q-I =pt.(e2) 

QPt,( e4)Q -I = Pt,( e4). 

Since tl =1= t2, we shall assume without loss of generality that tl *0. By 
(1.1) we have 

(1.5) 

(1.6) 

(1.2) implies 

(1.7) 

(1.3) implies 

(1.8) 

(1.9) 

(1.6), (1.7) and (1.8) imply 

(1.10) 

(1.9) and (1.10) give 

(1.8) implies 

(1.11) 

In view of (1.5) and (1.11), Q cannot be nonsingular. Q.E.D. 

Proposition 1.2. The family of finite dimensional representations of 
L(Es) in Proposition 1.1 is not obtainable by letting the automorphism 
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group of the Lie algebra acting on a representation. 

_ Proof Suppose that there exist see and a one parameter family 
A(t) of automorphisms of the Lie algebra L(E6) such that pt(t) is equi­
valent to Pt for all t. Choose to such that pt eto) is equivalent to Po. This 
implies that p. is equivalent to pt(tO)-I. Therefore pt(tO)-I..!(t) is equivalent 
to Pt for all t. 

In order to prove the proposition, it suffices to prove that pt is not 
equivalent to Pt for any t =1=0, and for any automorphism A of the Lie 
algebra L(E6)' Suppose on the contrary that there exist a t =1=0 and an 
automorphism A of the Lie algebra L(Es) such that is equivalent to Pt. 
Then there exists a 8 X 8 nonsingular matrix Q such that 

Q-lpt(ei)Q=ptCei) 

~Q-lpiAei)Q=Pt(ei) 

for all I <i< 10 

for all I <i::S:: 10 

for all I <i < 10 

3ai ,Io ai,l+ai,7 ai ,4 +a,,6 o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 

* 
2ai,Ioq21 

+ai6q52 
+ai2q71 

a i ,Ioq31 

+aHq51 
+ai5qsl 
2ai,loq.1 

+ai4q61 
+ailq71 

ai ,Ioq51 
ai,Ioq61 
ai,loq71 
o 

2ai ,Io 
o 
o 
o 
o 
o 
o 

* 
2ai,Ioq22 

+ai.q52 
+ai2q72 

a"loq32 
+ai7q52 
+ai5q62 
2ai,Ioq42 

+aH qs2 
+ailq72 

ai,Ioq52 
ai,Ioqs2 

a"Ioq72 
o 

o 
2a"lo 
o 
o 
o 
o 
o 

* 
2ai,Ioq23 

+aisq5 
+Ci2q73 

ai,Ioq33 
+ai7q53 

+a'5Qs3 
2ai,Ioq43 

+aj4q63 

+a'IQ73 
a"Ioq53 
ai,Ioqs3 
ai ,IoQ73 
o 

2a,,10 
o 
o 
o 
o 

* 
2a',IoQ24 

+aisQ54 
+ai2Q74 

a"IoQ34 
+ai7Q54 

+a'5Q64 
2ai,IoQH 

+ai4Q64 
+ailQu 

* 

* 

* 

* 

a"IO 0 
o 
o 
o 

* 

* 

* 

* 

ai,lO 0 0 
o ai,lO 0 
000 

* * 

* * 

* * 

* * 

ai,IoQ54 ai ,IOQ55 a"IoQ56 ai ,IoQ57 a"IoQ56 
ai ,IoQ64 ai,IoQ65 a"loQ66 ai,IoQs7 ai ,IoQ66 
ai,loQu ai ,IoQ75 ai ,IoQ76 a"IoQ77 ai ,IOQ'6 
o 0 0 0 0 



(1.l2) 

(1.l3) 

(1.l4) 

(1.15) 
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3qn 2ql2 2ql3 2qa ql5 ql6 q17 0 
3q21 2q22 2q23 2q2~ q25 q26 q27 0 
3q31 2q82 2q33 2q34 q85 qS6 qS7 0 

QptCelO) = 
3q41 2q~2 2q4s 2q44 q45 q46 q47 0 
3q51 2qS2 2q53 2q54 q55 q56 q57 0 
3q61 2q62 2q68 2q64 q65 q66 q67 0 
3q71 2q72 2q78 2q74 q75 q76 q77 0 
3q81 2q82 2q88 2q84 q85 q86 q87 0 

0 0 qu 0 ql2 0 tqls 0 
0 0 q21 0 q22 0 tq23 0 
0 0 q31 0 q82 0 tq88 0 

Qpt(e8)= 
0 0 q41 0 q42 0 tq48 0 
0 0 q51 0 q52 0 tq53 0 
0 0 q61 0 q62 0 tq63 0 
0 0 q71 0 q72 0 tq73 0 
0 0 q81 0 q82 0 tqas 0 

. PO(aIO, lei + alO ,2e2 + ... +alO ,lOelO)Q= Qpt(elo) 

~(alO,lO- 3)q51 = 0 = (alO' 10 - 2)q52 = (aIO,IO- 2)q5S = (alO,lO- 2)q54 

= (alO,IO- I)q55 = (alO,IO- I)q56 =(alo,IO- I)q57=alO,loq58 

(alO, 10- 3)q61 = 0 = (alo,lo - 2)q62 = (alo,lo - 2)q63 = (aIO,IO- 2)q64 

(alo,IO- I)q65 =(alO,IO- I)q66 =(alO,10-I)q67 =aIO,loq68 

(alO, 10 - 3)q71 = 0 = (aIO, 10 - 2)q72 = (aIO, 10 - 2)q73 = (aIO, 10 - 2)q74 

=(alO,IO-I)q75=(alo,10-I)q76=(alO,IO-I)q77=alo,loq78 

Case 1. alO,IO ~ {t, 2, 3} 
Then (1.l2), (1.l3), (1.14) imply 

q51 = q52 = q58 = q54 = q55 = q56 = q57 = 0 

q61 =q62=q63=q64=q65=q66=q67=O 

q71 = q72 = q78 = q74 = q75 = q76 = q77 = O. 

9 

It follows that the matrix Q cannot be nonsingular, a contradiction 
to our original assumption. 

Case 2. aIO,IO=3 
Then (1.l2), (1.l3) and (1.14) imply 
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q52 = 0 = q53 = q54 = q55 = q56 = q57 

q62 =0= q63 = q64 = q65 =q66 = q67 

q72 = 0 = q73 = q74 = q75 = q76 = q77' 

The above equalities together with (1.15) imply that the matrix 

r" 
q52 q53 q54 q55 q56 q57 

Q"1 q61 q62 q63 q64 q65 q66 q67 q6s 

q71 q72 q73 q74 q75 q76 q77 q7S 

qSl qS2 qS3 qS4 qS5 qS6 qS7 qss 

has rank at most 2. Therefore the matrix Q has rank at most six, a 
contradiction to the fact that Q is nonsingular. 

Case 3. a lO,IO=2 
Then (1.12), (1.13) and (1.14) imply 

(1.16) 

simplies 

as,loq51 =0 

as,loq61 =0 

as,loq71 =0 

If as,IO=O, then 

(1.17) 

q51 =0=q55=q56=q57 

q61 =0=q65=q66=q67 

q71 =0=q75=q76=q77' 

as,loq52=0 as,loq53 = q51 

as,lOq62 = 0 as,loq63 = q61 

as,loq72 =0 aB,loQ73 = Q71 

as,loQ56 =0 as,loQ57 = tQ53 

as,loQ66 =0 as,loQ67 = tQ63 

as,loQ76 =0 as,loQ77 = tQ73' 

Q52=0=Q53 

Q62=0=Q63 

Q72=O=Q73' 

as,loq54 =0 

as,loq64 =0 

as,loQ74 =0 

(1.15), (1.16) and (1.17) imply the matrix Q is singular, a contradiction to 
our assumption. 

If as,IO:;t:O, then 
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q51=0=q52=q53=q54=q55=q5S=q57 

q61 =0=qS2=q63=qS4=qS5=qS6=qS7 

q71 = ° = q72 = q73 = q74 = q75 = q76 = q77· 

So the matrix Q is singular, which contradicts to our assumption. 

Case 4. a 10 ,10= 1 
Then (1.12) (1,13) and (1.14) imply 

(1.18) 

q51 =0=q52=q53=q54 

qSl =0=q62=q63=q64 

q71 =0=Q72=Q73=q74. 

11 

We compare the (21), (31), (32), (33), (34) and (41) entries of the matrix 
p(alO,lel+alO,2e2+· .. +a10,10elO) and the matrix Qpt(e10). 

Using (1.18) and the fact that alO,lO= 1, we conclude that 

(1.19) 

By (1.15), (1.18) and (1.19), the matrix 

Qll Q12 Q13 Q14 

Q21 Q22 Q23 Q24 

Q31 Q32 Q33 Q34 

Q41 Q42 Q43 Q44 

Q51 Q52 Q53 Q54\ 

Q61 Q62 QS3 QS4\ 

Q71 Qn Q73 Q74\ 

QSl QS2 QS3 Q84 J 
has rank at most three. So the matrix Q cannot be non-singular, which 
is a contradiction. Q.E.D. 

Let us consider a family of nonsingular elliptic curves in Cp2 defined 
by 

(1.20) 

where t 3 + 27 *0. The complex structure of the elliptic curve depends on 

t. In fact,j= __ I ___ t S
_. If we view (1.20) as an equation in affine 

27.4 t 3+27 
3-space, we have a family of simple elliptic singularities Vt. For each 
fixed t with t 3+27*0, the moduli algebra 

A(Vt)=<I, x, y, z, xy, yz, ZX, zyx) 
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with multiplication rules: 

t x2=-_yx, 
3 

2 t Y =--zx, 
3 

t 
Z2= --xy 

3 

We shall assume t *0 and t S/27 -7t 3-216*0. Under these assumptions 

( at a a t a a L(V,)= xy---zx-, zx---xy-, xyz-, 
ax 6 ay ax 6 az ax 

t a a a t a a --yz-+xy-, yz---xy-, xyz-, 
6 ax ay ay 6 az ay 

t a a t a· a a - -zx- - yz-, - - yz-+ zX-, xyz-, 
6 ay az 6 ax az az 

x-~+ y~+ z~). 
ax ay az 

L(V,) is isomorphic to L(Es). The isomorphism is given by the following 
map. 

1Jf: L( V,)-----+ L( Es) 

a t a xy- - -zx------+e l 
ax 6 ay 

a t a zx- - -xy------+e2 
ax 6 az 

a xyz-··-----+e3 
ax 

t a a - - yz-+ xy------+e. 
6 ax ay 

a t a yz- - -xy------+e5 

ay 6 az 

a xyz------+es 
ay 

t a a --zx-+ yz------+e7 

6 ay az 

t a a - - yz-+ zx------+es 
6 ax az 

a xyz------+e9 

az 
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a a a 
x-+ y-+ z-------+elO" ax ay az 

The representations in Proposition 1.1 is actually the natural representa­
tions of L(V_ 6t) on A(V_ 6t). In view of Proposition 1.1 we suspect the 
following is true. 

Let V ={z E C n + l : f(z)=O} be a hypersurface with an isolated singu­
larity at origin. Then the natural rerpesentation of L(V) on A(V) 
determines the complex structure of the singularity (V, 0). 

Chapter 2. Kac-Moody Lie algebras and isolated 
hypersurface singularities· 

In this chapter we shall attach a Kac-Moody Lie algebra to every 
isolated hypersurface singularity. Let (V, 0) be an isolated hypersurface 
singularity. Let g(V) be the maximal ideal of L(V) consisting of nilpotent 
elements. Following [16], we shall construct a generalized Cartan matrix 
C(V) from g(V), which is a new invariant of (V, 0) (cf. [20]). 

Definition 2.1. An I X 1 matrix with entries in Z, C=(cij) is a gener-
alized Cartan matrix if 

a) cH =2 Vi=l,···,1 
b) cij<O Vi,j=l, ... ,l,i=l=j 
c) cij=Oifandonlyifcji=O Vi,j=l, ... ,l,i=l=j. 

To each generalized Cartan matrix C(V), one can associate a Lie algebra 
KM(C) (called a Kac-Moody Lie algebra) defined by generators: 

and relations: 

[hi' ej]=cijej, [hi,fj] = -ciJj (Vi,j=l, .. ·,/) 

Vi, j = 1, ... , 1 [hi' hj] =0, [ei,fi] =hi, 

[ei,ft] = 0, (ad ei)-Cij+lej =0= (ad/;)-Cij+ Ifj (V i =1= j) 

LetH=Chi+·· ·Ch l ; denote 2\(C) (resp. 2_(C)) the sub algebra 
of KM (C) generated by {el , ••• , ell (resp. U;, ... ,ft}) One shows that: 

KM (C) =2 +(C) ttl Httl 2 )C) 

One can also define 2+(C) by generators: {e1, ••• , ell and relations: 

Vi, j = 1, ... , I, i =1= j. 
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We shall construct a generalized Cartan matrix from an isolated 
hypersurface singularity (V, 0). Let g(V) be the set of all nilpotent ele­
ments in L(V). Then g(V) is the maximal nilpotent Lie sub algebra of 
L(V). Let Der g(V) be its derivation algebra. 

Definition 2.2. A torus on g(V) is a commutative subalgebra of 
Der g(V) whose elements are semi-simple endomorphisms. A maximal 
torus is a torus not contained in any other torus. 

The dimension of maximal torus is called Mostow number. Mostow 
number is an invariant of isolated singularity (V, 0). 

Theorem 2.3 (Mostow 4.1 of [11]). If TI and T2 are maximal tori oj 
g(V), then there exists 0 E Aut g(V) (automorphism group oJg(V) such that 
OTIO-I=T2· 

Let T be a maximal torus and consider the root space decomposition 
of g(V) relatively to T: 

g(V)= L: g(V)fi 
fiER(T) 

where g(V)fi={x E g(V): tx=j3(t)x, Vt E T} and R(T)={j3 E T*: g(V)fi* 
(O)}. We denote: m=dim T 

RI(T)={j3 E R(T): g(V)~[g(V), g(V)]} 

lfi=dim (g(V)fij[g(V), g(V)] n g(V}8) 

dfi=dim g(V)fi 

The map j3---+dfi , RI(T)---+N* gives the partition: 

RI(T) = RI(T)Pl U ... U RI(T)pq 

where PI<··· <Pq, RI(T)Pi*<ft and RI(T)p = {j3 E RI(T): dfi=P}. 
Let si=#RI(T)Pi and S=SI+··· +Sq; we number the elements of 

RI(T) = {j3I' ... , j3s} in such a way that: 

Let di = dfii , Ii = lfii and I = II + ... + Is (one checks that I = dim g( V)j 
[g(V), g(V)]). Let P:l.·.Sq be the group of permutations of {I, ... , s} 
which leave {I, ... , SI}, {SI + 1, ... , SI +S2}, ... invariant. 

Lemma 2.4. The integers m, q, PI> ... , Pq• SI' ... , Sq' dl> ... , ds> 
II, ...• Is, I defined above are invariants oj isolated hypersurJace singularity 
(V, 0). 
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Proof Let T' be another maximal torus; then there exists 8 E 

Aut g( V) such that 8T8-1 = T' (by Theorem 2.3). For T', we use the 
previous notations with prime. We have m=m'. The map 

0: T*~T'* 
f1~0f3 

where 0f1(8t8-1) = f3(t) V f3 E T*, V t E T is a vector space isomorphism and 
one has obviously: 

V f1 E R(T) 

Therefore d~fi=dfi V f1 E R1(T) which gives 

Since 8[g(V), g(V)] = [g(V), g(V)], one has I~fi=lfi V f3 E R1(T). Q.E.D. 

The map 8 induces a bijection between: R(T) and R(T'), R1(T) and 
R1(T') R1(T) and R1(T') I<i<q· thus there exists 1: E pS, ... 8q such 'Pi Pi - - , 8 

that 

Therefore, if T, T' are two maximal torus on g(V), then there exists 
8 E Aut g(V) and 1: E p~, ... s, such that 8g(V)fia=g(V)fifa 1 <a<s. 

Letf: {I, ... , I}~{l, ... , s} be defined by 

f(i)~1 f 
if l<i</1 

if 11<i</1+/2 

For a E p~' ... Sq, we lift a to a E PI (Permutation group of I elements) 
such that foa=aof Define an action of p~' ... Sq on the set of IXI 
matrices by setting 

Theorem 2.S. For i,j E {I, ... , I}, i =l=j; let 

Vv E g(V)fif(i) 

Vw E g(V)fiJ(j) 

with (adO)o=Oandletct>(T)=2for i=l, .. ·,1. Then 
(i) C(T)=(CtlT))1s:t,;S:1 is a Cartan Matrix 
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(ii) For any a E P~""8q, the action of a on C(T) is independent of the 
lifting fJ of a. Furthermore the p~, ...• , orbit of C(T) is an invariant of 
(V, 0). 

Proof (i) Since ad v is nilpotent, cJT) is a well-defined non­
positive integer for i=l=j: if [v, w]=O, then [w, v]=O, therefore ctlT)=O 
implies C jt(T) = O. Since ctt(T) = 2 by definition, CCT) is a Cartan matrix. 

(ii) Let T' be another maximal torus on g(V). There exist 0 E 

Aut g(V) and T E P!,····q such that Og(V)~a=g(V)~~a I ::;;:a::;;:s; if v E g(V)~a 

and WE g(V)Pb and if i,j E {I, .. " l} are such thatf(i)=a,f(j)=b, then 
(ad v)-Cj;(T)+IW=O; thus (adOv)-CiJ(T)+10w=0 with 

Ov E g( V)~;a = g( VYruil and Ow E g( V)~;b = g( V)P!(t j) ; 

therefore -cm/T,)< -cdT), and by symmetry cmiT')=ctlT) which 
proves that TC(T') = C(T). Q.E.D; 

Definition 2.6. We choose arbitrarily A in P~""Sq-orbit of C(T) 
(which has most S!/SI!' "Sq! elements) and we say by an abuse of lan­
guage: "g(V) is of type C" or "C is the Cartan matrix of g(V)". We 
denote: 

"v(C)={T: Tis a maximal torus on g(V), C(T)=C} 

P!""Sq(C)={a E P!,····q: aC=C} 

Lemma 2.7. If T, T' E "v(C) then there exist 0 E Aut g(V) and T E 

P!"" Sq(C) such that: 

Va=l, "', S 

Proof By Mostow's Theorem, there exists 0 E Autg(V) and T E 

P~""Sq such that Og(V)~a=g(V)~;a; by the proof of Theorem 2.5 (ii), TC(T') 
= C(T); therefore TC = TC(T') = C(T) = C. Q.E.D. 

We denote by msg (g(V» the set of minimal systems of generators 
of g (V); by [3, Sect. 4, p. 119]: (XI> x z, ••• ) E msg (g(V» if and only if 
(XI + [g(V), g(V)], X z + [g(V), g(V)], ... ) is a basis of g(V)/[g(V), g(V)]. 
Therefore each element of msg (g(V» is an I-tuple (XI' ... ,xz) where 1= 
dim g(V)/[g(V), g(V)]. 

Let T E " v( C) and denote: 

msg(T)=msg(g(V» E «g(V)~'Y'X'" X(g(V)~8)Z8) 

For all (XI' ... ,Xl) E msg(T) one has: 

I<i=l=j<l. 
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We shall now apply the above theory to study Lie algebras of rational 
double points. We shall use the following convention: 

Proposition 2.8. Let V={(x, y, z) e C 3: X2+y2_ Zk+!=O} be the Ak 
singularity, k> 1. Then 

A(V)=C{z}/(zn=<l, z, Z2, ... , Zk-l) with multiplication rule Zk=O 

{<z~ z2~ ... zk-1~) 
L(V)= oaz' az' , az 

if k>2 

if k=l 

if k>3 

if k=2 

o ifk=l. 

For A. singularity, 

g(V)=<Z2~, Z3~) 
II az II az 
Xl X2 

with multiplication rule [XI> X2] = O. 
The type of A. singularity: = dim g( V)/[g( V), g( V)] = 2. 
The nilpotency of A. singularity: = min {p e NU {O}; g(V)P+I=O}=O. 

Let tl> t2 be two derivations of g( V) defined by the folloWing rules: 

t2: g(V)---)-g(V) 
x!---)-O 
X 2---)-X2 

Then T=Ct/S)Ct2 is an uniqne maximal torus associated to g(V). 
Let (3t: T -+C be a linear map with (3t(t j ) =OtJ for i, j = 1,2. 

g( V) = Cx! Ee CX2 
=g.Bl Eeg.B. 

(XI> x2) is a T-minimal system of generators. 
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The generalized Cartan matrix associated to A4 is 

For As singularity 

(V) < 2 a s a 4 a ) g = z-,z-,z-
II az II az II az 

with multiplication rules: 

[XI' x 2]=Xs 

[XI' xs]=O 

[x2 , xs]=O. 

The type of As singularity: =dim g(V)/[g(V), g(V)] =2. 
The nil potency of As singularity: = min {p e N U {O}: g( vy + I = O} = 1. 

Let t]> t2 be two derivations of g(V) defined by 

Then T=Ct/(f,Ct2 is a torus of g(V). Since dim T=2=the type of As, 
T is a maximal torus of g(V). 

Let !3i: T.-+C be a linear map with !3i(t j )=oiJor i,j=l, 2. 

g(V)=gPl EB gP. EB gPl+P. 

II II II 
CXl CX2 CXg 

(X]> x2) is a T-minimal system of generators. The generalized Cartan 
matrix associated to As is 

Far Aa singularity 

-1) 2 . 

L(V)=<z2~, zg~, Z4~, zs~) 
II az II az II az II az 
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with multiplication rules: 

[XI' x2]=xg 

[XI' Xg]=2X4 

[XI' x4]=O 

The type of As singularity = dim g/[g, g] = 2. 
The nilpotency of As singularity =min {p e NU {O}; g(V)P+I =O}=2. 

Let tl> t2 be two derivations of g(V) defined by 

tl: g~g t2 : g~g 

XI~XI XI~O 

X2~O X2~X2 

Xg~Xg Xg~XS 

x4~2x4 X4~X4' 

19 

Then T=Ctl(f)Ct2 is a torus of g(V). Since dim T=2=the type of A6, 

T is a maximal torus of g(V). Let /3i: T ~C be a linear map with /3£(t j) 
=o£jfor i,j=l, 2. 

g( V) = gfil (f) gfi. (f) gfil + fi. (f) g2fi1 + fi. 

II II II II 
CXI CX2 CXg CX4 

(Xl> xJ is a T-minimal system of generators. The generalized Cartan 
matrix associated to A6 is 

For A" singularity k>7, 

with multiplication rules: 

[XI' x2]=XS 

[XI' xS]=2x4 

[Xl> x"_4]=(k-5)x,,_g 

[XI' x,,_s]=(k-4)x"_2 

[Xl> Xk _ 2]=O 

-2) 
2' 

[X2' XS]=x5 

[X2' x4] = 2xs 

[X2' Xk _ 4]=(k-6)x"_2 

[x2, x,,_s]=O 

[X2' x"_21=O 

The type of A" singularity for k>7: =dim g/[g, g]=2. 



20 M. Benson and S. S.-T. Yau 

The nil potency of Ak singularity for k>7: =min {p e NU {OJ; gP+I=O} 
=k-4. 

Let t be the deril'ation of g(V) defined by 

t:g ~ g 

. . 
Xk_2~(k-2)Xk_2. 

We claim that T=Ct is an unique maximal torus of g(V). Let 13: T ~C 
be a linear map such that 13(1) = 1. 

g(V)=gP EB g2P EB ••• EB g(k-2)P 

II II II 
CXI CX2 CXk_2 

(XI' x2) is a T-minimal system of generators. 

Observe that (adx,)k-3x2 =O but (adx,)k-4x2 *O. Therefore c12 = 
-(k-4). 

In order to compute C21 we have two cases. 

Case 1. k is odd and k=2/+5>7 

ad X~+I(XI)= -(2.2-1)(2.3-1) ... (21-1)x21 +3 

ad X~+2(XI)=O 
k-3 

C21 = -(I + 1) = ---. 
2 

Case 2. k is even and k=21+6>7 

ad X~+I(XI) = -(2.2-1)(2.3-1)(2.4-1) ... (21-1)x2l+ 3 

adx~+2(x,)=O 

k-4 
C21 = -(/+ 1)= ---. . 2 

The generalized Cartan matrix associated to Akfor k>7 is 

(_k~3 -(k~4») 

C(A k ) = 

(_k~4 -(k~4») 

if k is odd and k>7 

if k is even and k>7. 
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We now provide the proof that the unique maximal torus is spanned 
by t defined as above. 

Let 0 be a derivation of g(V) 

for 1<i<k-2. 

[Xl> Xk_2]=0~[O(Xl)' Xk_2] + [Xl> O(Xk_2)] =0 

~~k_2'2xS+2ak_2,3x4+3ak_2.4x5+··· . 

+(k-4)ak_2,k_3Xk_2 =0 

~ak_2,2=0=ak_2,S=' .. =ak - 2,k-S=0, 

[X2' Xk_2]=0~[O(X2)' XH ]+ [X2' O(Xk_J] =0 

~-ak_2,lxS+ak_2,Sx5+2ak_2,4x6+" . 

+(k -6)ak_2,k_4Xk_2=0 

We assume that aj+l,i=O for i<j. We shall prove thataj!=O for i< 
j-I. We first considerj>3. We may as well assume thatj<k-3 by 
what we have proved above. 

[Xl> Xj] =U-l)Xj+l~[O(Xl)' Xj]+[X1, O(Xj)] =(j -1)o(Xj+l) 

~[al1(j-l)Xj+l +aI2(j -2)xj+2+· .. ] 

+ [a j2xS+ 2ajsx. + ... +(j-2)aj,j_lxj+(j-l)aj,jxj+1 + ... ] 
(2.1) =(j -1)[aj+" ,x, +aj+I,2x2+ ... +aj+l,k_2Xk_2] 

~aj,2=(j -1)aj+"s=O 
. 1 -

a -]- a -0 j,S--2- j+1,4-

a1,1-1 = ~ -21aj+" J=0 
]-

{(j -2)Xj+2 if j +2<k-2~[o(X2)' x j]+[x2, o(x j)] 
[X x]-

2, J - 0 if j + 2:;:::: k - 1 

= {(j -2)O(Xj+2) if.i +2<k-2 

(2.2) 0 ifj+2>k-l 

~[a21(j-l)xj+l +a22(j-2)x j+2+ ... ] 

+[ -aj1xs +ajSx5 + 2aj4x6 + ... ] 
= {U-2)[aJ+2,lxl +aJ+2,2x2+' .. +aJ+2,k-2Xk-2] 

o if j+2>k-l 

if j+2<k-2 
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(2.3) =,?aj,1 = -(j -2)aj +2,3=0. 

(2.1) and (2.2) imply that a ji = 0 for j > 3 and i <j. 
Set j = 3 in (2.2). By comparing the coefficient of X 4, we get 

2a21 =a54 

=,?a21 =0 

Hence (] is represented by upper triangular matrix 

[

al1 aI2 ···· al ,k_2] 

A= a22:···a2:k_2. 
o ..: 

ak- 2,k-2 

(] is semi-simple {=} AA*=A*A 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

='? the length of ith row of A = the length of ph column of A. 
='? aij=O for i*j. 

al1 
0 

A= 
a22 

0 

ak- 2,k-2 

[XI' X2]=X3 ='? al1 + a22 = a33 

[Xl> x3]=2x4 ='? 2al1 + 2a33 = 2aH 

[XI' x4] = 3X5 ='? 3al1 + 3a44 = 3a55 

(2.4), (2.5) and (2.6) ='? 3al1 + a22 = a" 

[X2' x3] =X5 ='? a22 + a33 = a" 

Put (2.4) and (2.7) in (2.8), 

a22 + all + a22 = 3all + a22 

=,?a22 = 2al1 · 

We assume that aJ-I,j-l =(j -l)al1 . We shall prove that aj,j=jal1 . 

[XI' Xj-I] =(j -2)xj =,?[al1x l , Xj-I] + [XI' aj_1,j_IXj_l] =(j -2)ajjxj 

=,?(j -2)al1 +(j -2)aj _1,j_1 =(j -2)ajj 

=,?ajj = jal1 +aj_l,j_1 

=jal1 · 



Lie Algebras and their Cohomology 23 

We have proved that any derivation of g(V) must be a constant multiple 
of t. To prove that t is really a derivation, we first observe that the 
multiplication rule of g(V) is described by the following formula 

Assumej +i::::;;;k-2. Then 

for i+j<k-2 

for i + F?k-l. 

t[Xi' Xj] = t[(j -i)xj+i] =(j -i)t(Xj+i) =(j -i)(j +i)xj+i 

[t(Xi)' Xj]+[Xi, t(Xj)] = [iXi' xj]+[xi,jxj]=(i + j)[Xi' Xj] 

=(j -i)(j +i)Xt+j. 

Assumej+i~k-l. Then 

t[Xi, xj]=t(O)=O 

[t(Xi)' Xj] + [Xi' t(X j)] = [ixi, Xj]+[Xi,jX j ] =0. 

In both cases, t[Xi' xj]=[t(x i ), Xj]+[Xi, t(x j)]. Hence t is a derivation. 

Proposition 2.9. Let V={(x, y, z) E C 3: Zk-l+ zi+x2=0} be the Dk 
singularity, k>4. Then 

A(V) = <1, z, y, Z2, Z3, ... , Zk-2) with multiplication rule 

zy=O 

y2= _(k_l)zk-2 

Zk-I=O. 

<y~+(k_l)Zk-3~, Zk-2~, Z2~, ... , Zk-2~) for k>5 
oz II oy II oy II oz II oz 

for k=4. 

For D4 singularity, g(V) = <Xl> x 2) with multiplication rule [Xl' X2] =0. 
The type of D4 singularity: =dim g(V)/[g(V), g(V)]=2. The nil potency 
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of D4 singularity: =min {p E NU {O}: g(V)P+I=O}=O. Let tl> t2 be two 
derivations of g(V) defined by the following rules. 

tl: g(V)~g(V) 

XI~XI 

X 2 ~ 0 

t2: g(V)~g(V) 

XI~O 

X 2 ~ X 2 

Then T = Ctl ffi Ct2 is an unique maximal torus associated to g(V). Let 
!3i: T-+C be a linear map with !3i(tj )=oiJor i,j=l, 2. 

g(V)=CXI ffi CX2 

=gfil ffi gfi2 

(XI' x 2) is a T-minimal system of generators. The generalized Cartan 
matrix associated to D4 is 

For D5 singularity, 

g(V)=/ y_L+4z2~, zs~, Z2~, zs~) 
\ oz II oy II oy II oZ II oz 

X 2 Xs 

with multiplication rules: 

[XI' x2]= -X4 [X2' xs]=O 

[XI' xs]= -8X2 [X2' x4]=O 

[Xl> x 4]=O 

The type of D5 singularity: =dim g/lg, g]=2. 
The nilpotency of D5 singularity: =min {p E NU {O}: gp+1 =O}= 1. 

Let tl, t2 be two derivations of g(V) defined by 

X2~X2 

Xs~Xs 

X4~X4· 

Then T = Ctl ffi Ct2 is an unique maximal torus of g( V). The root space 
R(T) is </310 /32) where !3t: T -+C is a linear map with !3t(tj)=Oij for i,j = 
1,2. 
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g(V)=gfi1 EB gfi. EB g-fi1+fi2 EB gfi1+fi2 

II II II II 
CXI CX2 CX3 CX4 

(XI' x3) is a T-minimal system of generators. The generalized Cartan 
matrix associated to D5 is 

For D6 singularity, 

with multiplication rules: 

[XI' x2] = -X5 [x2, xsJ =0 

[xl,x3]=-15x2 [X2,X4]=0 

[XI,X4]=O [X2,X5]=0 

[XI' x 5]=0 

-2) 2 . 

[X3' X4]=X5 

[x3, x 5]=0 

The type of DB singularity: =dim g/[g,g] =3. 
The nilpotency of D6 singularity: = min {p E N U {O}: gP + I = O} = 2. 

Let tl, t2 be two derivations of g(V) defined by 

tl: g---+g t2: g---+g 

XI---+XI xI---+O 

x 2---+0 X2---+X2 

X3---+- X3 X3---+ X3 

x4---+2x4 x4---+0 

X5---+ X5 X5---+X5· 

Then T = ClI EB Ct2 is an unique maximal torus of g( V). 
Let !3i: T--'J>C be a linear map with !3i(t j) =Oij for i,j=l, 2. 

g(V)=gfi1 EB gfi2 EB g-fi1+fi2 EB g2 fi1 EB gfi1+fi2 

II II II II II 
CXI CXz CX3 CX4 CX5 

(XI> X3, x4) is a T-minimal system of generators. The generalized Cartan 
matrix associated to D6 is 
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-2 
2 

-1 -no 
For D7 singularity, 

with multiplication rules: 

[Xl> x2]= -Xs 

[Xl> xa] = - 24x2 

[XI' x4]=0 

[Xl> xs]=O 

[Xl> xs] =0 

[X2' xa]=O 

[X2' x4]=O 

[X2' xs]=O 

[X2' xs]=O 

[Xa, xs]=xs 

[xa, xs] = 2X6 

[xa, xs]=O 

[X4' xs]=O 

[X4' xs]=O 

The type of D7 singularity: = dim g/[g, g] = 3. 
The nil potency of D7 singularity: =min{p E NU{O}: gP+I=O}=2. 

Let tl> t2 be two derivations of g( V) defined by 

tl: g~g t2: g~g 

XI~XI XI~O 

X2~0 X2~X2 

Xa~-Xa Xa~Xa 

x4~3x4 X4~-X4 

xs~2xs Xs~O 

Xs~Xs Xs~Xs' 

Then T=Ctl ffiCt2 is an unique maximal torus on g(V). LetA: T-+C 
be a linear map with ~ltj)=aiJOr i,j = 1,2. 

g(V) = gfil ffi gfi2 ffi gfi2 - fil ffi gafil - ,82 ffi g2fil ffi gfil + fi2 

\I II II II II \I 
CXI CX2 CXa CX4 CXs CXs 

(XI' X a, X4) is a T-minimal system of generators. The generalized Cartan 
matrix associated to D7 is 

-2 
2 

-1 
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For Dk singularity, k~8. 

g(V)=<y~+(k-l)zk-3~, Zk-2~, Z2~, Z3_~, "', Zk-2~) 
az II ay II ay II az II az II az / 

with multiplication rules: 

[XI' x2]= -Xk_1 [X2' x3]=O 

[XI' x3]= -(k-3)(k-l)xz [xz, x4]=O 

[XI> x4]=O 

[X4' X5]=X7 

[X4' x e]=2xs 

[X4' x7] = 3xg 

[X4' Xk- 3] =(k-7)Xk_1 

[X4' xk_Z]=O 

[X4' Xk_I]=O 

[Xa, X4]=X5 

[xa, x5] = 2xs 

[xa, xs] = 3X7 

[X3, Xk_I]=(k-6)xk _ Z 

[xa, Xk_2]=(k-S)Xk_1 

[xa, Xk_I]=O 

The type of Dk singularity for k~8: =dim 13/[13,13]=3. 

27 

The nilpotency of Dk singularity for k~8: =min {p E NU {O}; gP+I=O} 
=k-S. 

Let t be the derivation of g(V) defined by 

t: 13----+13 

XI----+XI 

k-2 
XZ----+--.xZ 

k-4 
2.1 

Xa----+--Xg 
k-4 
2.2 

X4----+--X4 
k-4 
2.3 

X5----+---X5 
k-4 



28 M. Benson and S. S.-T. Yau 

. . 

. 2(k-3) 
X k _ l -----+ X k - l • 

k-4 

We claim that T =Ct is an unique maximal torus of g(V). Let (3: T-+C 
be a linear map such that (3( t) = 1. Then 

g(V)=g«k-2)!(k-4))fi EEl g(2/(k-4))fi EEl g«2.2)!(k-4))fi EEl ... EEl g(2(k-3)/(k-4))fi. 

II II II II 
CXI CX2 CX3 CXk_1 

(Xl' X3, x4) is a T-minimal system of generators. The generalized Cartan 

matrix associated to D k for k?::. 8 is 

-~ -f2k - S»). 
-(k-6) 

We now provide the proof that the unique maximal torus is spanned 
by t defined as sbove. 

Let 0 be a derivation of g(V) 

for lS::iS::k-1. 

We shall prove by induction that ail = 0 for i?::. Sand i > j. 
pt Step. i =k-l 

[X3' Xk _ I]=0=?[O(x3), Xk_I]+[X3, O(Xk_I)] =0 

=?(k - 3)(k -1)ak_I,lx2+ak_I,4x5 + 2ak_I,5xS 

+ ... +(k-S)ak_l ,k_2Xk_I=0 

[Xl' Xk_I]=O=?[O(XI), Xk_I]+[XI, O(Xk_I)] =0 

=? -ak_I,2Xk_I-(k-3)(k-l)ak_I,3X2 =0 

=?ak_I,2=0=ak_I ,3 

2nd Step. Assuming that it is true for io, we shall prove that it is also 
true for io-I. Notice that we may assume that 6S::ioS::k-2 

For io?::'S. we have 
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[(i0-4)a33 XiO +(io- 5)a34XiO+1 + ... ]+ [(k- 3)(k-1)aiO _ I ,IX2 

+aiO-I,.X5+2aiO_I,5X6+· .. +(k-5)aiO _ I,k_2Xk_l] 

= (i0-4)aiOIXI + (i0-4)ai02X2+ ... +(i0-4)aiO ,k-IX"-1 

(k-1)(k-3)aiO _2,1 = (i0-4)aio,2 

aiO - I,' = (i0-4)aio ,5 

2aiO - I ,5 = (i0-4)aio ,6 

(2.10) =?[(i0-4)a13xio+(i0-5)a14xio+1 + ... +(2io-k-3)al,k+2_ioXk_l] 

+ [-aio-I,2Xk-I-Ck-3)(k-l)aio_1,3X2] =0 

=?aio - I ,3=0 

(2.11) aio - I,2= -(2io-k-3)al,k+2_ io 

[Xl' X,] = -(k-3)(k-1)X2 

=?[ -(k-3)(k-1)al1x2-a14x5-2aI5x6-3aI6x7-' .. 

- (k - 6)al , k- 3Xk_ 2 - (k - 5)al,k _ 2Xk-l] 

+[-a32Xk_1 -(k- 3)(k-1)a33X2] 

=(k-1). [-(k-3)a2IXI-(k-3)a22X2- ... -(k-3)a"k_IXk_l] 

=?Ck-3)(k-1)a2I XI +(k-l)[(k-3)a22-(k-3)all-Ck-3)a3,JX2 

+(k-1)(k-3)a23X3+(k-1)(k-3)a24X4 

+ [(k -1 )(k - 3)a25 - a14]x5 + [(k -1 )(k - 3)a26 - 2a15]x6 + ... 
+ [(k-1)(k-3)a2,k-2-(k-6)al,k-3]xk_2+[(k-1)(k- 3)a2,k-l 

- (k - 5)al ,k_1 -a32]xk _ 1 = 0 

a23 =0 

aI4 =(k-1)(k-3)a25 

(2.12) =?aI5 =(k-1)(k-3)a26 

al,k_3=(k-1)(k-3)a2,k_2 

(2.13) a32 =(k- 5)al,k_2-(k-1)(k-3)a2,k_1 

29 
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[Xl' x4]=0=?[O(XI), x4] + [Xl' O(X4)] =0 

(2.14) =?[aI3X5-aI5X7+' .. ]+[ -a42xk_I-(k-3)(k-l)a43x2] =0 

Here we have used the fact that k - 1 :2:: 7 > 5. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

[X2, x3]=0=?[O(x2), X3]+[X2, O(X3)] =0 

=? - (k - 3)(k -1)a2Ix2 - aZ4 X5 - 2aZ5x6 - 3a2Sx7 - ... 

-(k - 5)a2,k_2xk_1 + a31x k_1 =0 

Using (2.12), (2.14) and (2.17), we deduce that 

(2.19) 

(2.9), (2.10), (2.11) and (2.19) and the induction hypothesis give that 
aio_l,j=O for 6<io-:;'k-2 and io-l >J. This finishes our claim. 

Put io = 5 in (2.9), we have 

(2.20) (k-3)a4,1 =a5,2=0 

=?a4,1 =0. 

Hence 0 is represented by the following matrix 

a11 al2 0 0 0 0 al,k-3 al,k-2 al,k-l 

0 a22 0 0 0 0 0 a2,k-2 a2 ,k-1 

(k-5) (k-5)al,k_Z a33 a3• a35 a3,k-4 a3,k-3 a3,k-2 a3,k-1 
aZ,k-Z -(k-3)al,k_1 

A= 0 -(k-7)al,k_3 0 a44 a45 a4,k-4 a4,k-3 a4,k-2 a4,k-1 

0 0 0 0 a55 a5,k-4 a5,k-3 a5,k-2 as,k-1 

0 0 0 0 0 0 0 0 ak-l,k-l 

o is semi simple R AA*=A*A 
=? the length of ith row of A = the length of ph column of A 
=? ajj=O for i *j 



(2.21, 1) 

(2.21,2) 

(2.21, 3) 

(2.21,4) 

(2.21, 5) 

(2.21, k-4) 

(2.21, k-3) 

(2.21, k-2) 

(2.21, k-1) 

(2.22, 1) 

(2.22,2) 
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[Xl' X2] = -Xk_l=?all +a22 =ak_I,k_1 

[Xl' XS] = -(k-3)(k-1)X2=?a22 -a11 =a33 

[XS, X4]=X5=?aSS+a44=a55 

[XS, x5]=2x6=?aSS+a55=a66 

[X3' Xe] = 3X7=?a33+aee=a77 

[XS, Xk- S] = (k - 6)Xk_2=?a3S +ak-S,k-S = ak - 2,k-2 

[XS, Xk_2] =(k- 5)Xk_l=?a3S+ak_2,k_2=ak_I,k_1 

[X4" X5]=X7=?a44+a55=a77 

[X4' Xe] =2x8=?a44 +a66 =a88 

(2.21, k-2), (2.21, 3) and (2.22, 2) =?aH =2ass 

(2.23) 

(2.23), (2.21,2) and (2.21, 1) 

a55 =3ass 

a66 =4ass 

. 2(k-3) 
ak- I,k-l=(k-3)ak- S,k_S= k-4 all' 

31 
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We have proved that any derivation of g(V) must be a constant multiple 
of t. To prove that t is really a derivation, we first observe that the 
multiplication rule of g( V) is described by the following formulas: 

(2.24) 

(2.25) 

[Xl' X 2]= -Xk _ l 

[XH X3]= -(k-3)X3 

[Xl' x4]=0 

[Xl' Xk_I]=O 

[X2' x 3]=0 

[xz, X 4] =0 

if j +i -2<k-l, 3~i, j <k-l 

if j+i -2>k, 3<i,j<k-l 

Then it is an easy matter to check t[Xi' xj]=[t(x i ), Xj ] + [Xi' t(xj )] for all 
l~i,j<k-l. 

Proposition 2.10. Let V = {(x, y, z) E C 3: Z4+ y3+ X2=0} be the E6 
singularity. Then 

A(V)=<I, Z, Z2, y, yz, Z2y ) with multiplication rule Z3=0, y2=O 

L(V)=/z~, Z2~ __ , yz~, yz2~, y~, yz~, YZ2~) 
\ 8z 8z 8z 8z 8y 8y 8y 

with multiplication rules: 

[Xi) x 5]= -X4 

[Xl' X3]=X5 

[Xl' x4]=0 

[Xl' x 5]=0. 

[X2' xal= -X4 

[X2' x 4]=0 

[X2' x 5]=O 

The type of E6 singularity: = dim g/[g, g] = 3. 
The nilpotency of E6 singularity: =min{p E NU{O}: gP+I=O}=l. 
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Let t1, t2, t3 be three derivations of g(V) defined by 

tl: g-----+g t2: g-----+g ta: g-----+g 

X1-----+X1 x 1-----+0 X1-----+Xa 

x 2-----+0 X2-----+X2 x 2-----+0 

Xa-----+Xa xa-----+O Xa-----+ Xl 

X4-----+X4 X4-----+X4 X4-----+-X4 

X5-----+2X5 x 5-----+0 X5-----+0. 

Then T = Ctl EB Ct2 EB Cta is a torus of g( V). Since dim T = 3 = the type of 
E6, T is a maximal torus of g(V). Let f3i: T ~C be a linear map with 
f3;(tj)=oidor i,j = 1,2,3. 

(Xl +xa, XI-Xa, X2) is a T-minimal system of generators. The generalized 
Cartan matrix associated to E6 singularity is 

-1 
2 

-1 

Proposition 2.11. Let V = {(x, y, z) E C a: zay + ya+ x 2=0} be the £, 
singularity. Then 

A(V)= <1, z, y, Z2, yz, za, Z4) with multiplication rule 

20 2 la 50 aO yz =, y = - -z, z = , y = 
3 

L(V)=(3Y~+2z2~, 2z~+ 3y~, 2Z2~+3yz~, yz~, 
az ay az ay az ay az 

za~, Z4~, zaJL_, Z4~) 
az az ay ay 

(V) (3 a +2 2 a 2 2 a 3 a a 3 a 4 a g = y~ z~, z'~+ yz~,yz~,z~,z~ 

az II ay az II ay II az II az II az 
Xa 
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with multiplication rules-: 

[XI' x2]=3xg-5x6 

[XI' xg]=x4 

[XI' x41= - 4X7 

[Xl> x5]=O 

[XI' x6] = - 3x4 

[XI' x7] = - 3X5 

[X4' x5]=O 

[X4' x 6]=O 

[X4' x7]=O. 

[X2' x g]=x7 

[x2, x4] = 2X5 

[X2' x 5]=O 

[X2' x 6] = 3X7 

[X2' x7]=O 

[X5, x6]=O 

[X5' X7]=O 

The type of E7 singularity: = dim g/[g, g] = 3. 

[Xg, x4]=O 

[Xg, X5]=O 

[xg, x6] = - X5 

[Xg, x7]=O 

The nil potency of E7 singularity: = min {p E N U {O}: gP + I = O} = 4. 
Let t be a derivation of g(V) defined by 

t: g---*g 

XI---*X1 

x2---*2x2 

xg---*3xg 

x4---*4x4 

x5---*6x5 

x6---*3x6 

x7---*5x7 

T = Ct is the unique maximal torus on g. Let f3: T -+ C be a linear map 
such that f3( t) = 1. Then 

g(V) = gfi EB g2 fi EB g3 fi EB g4 fi EB g5P EB g6 fi • 

II II II II II II 
CXI CX2 CX3EBCX6 CX4 CX7 CX5 

(Xl> X2, Xg) is a T-minimal system of generators. The generalized Cartan 
matrix attached to E7 singularity is 

-4 -3) 
2 -1. 

-1 2 

We shall now prove that there is only one semi-simple derivation of 
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g(V) up to multiplicative constant. Let 0: 9-+9 be a derivation 

[XI> X2] = 3xs - 5x6=?[o(XI), X2] + [XI> 0(X2)] = 30(xs) - 50(X6) 

=?[3allxs - 5allX6 -aISX7 - 214x5 - 3a16X7] 

+ [3a22XS - 5a22X6 + a2Sx4 - 4a24X7 - 3a26X4 - 3a27X5] 

35 

= (3asl - 5asl)xl + (3a32 - 5a62)X2 + (3ass - 5a6S)xS + (3aS4 - 5a64)X4 

+ (3aS5 - 5a65)X5 + (3aS6 - 5a6S)xS + (3a37 - 5aS7)X7 

(2.26) 

=? 3asl - 5asl = 0 

3a32 - 5aS2 = 0 

3aS3 - 5a6S - 3all - 3a22 = 0 

3a24 - 5a64 - a2S + 3a26 = 0 

3aS5 - 5aS5 + 2a14 + 3a27 = 0 

3aS6 - 5a66 + 5all + 5a22 = 0 

3a37 - 5a67 + a13 + 3al6 + 4a24 = 0 

[XI' XS] = X4=?[0(XI) , XS] + [XI' O(XS)] =0(X4) 

(2.27) 

=?[aIlX4 +qI2X7+aI6X5] + [3aS2xs- 5aS2X6+aSSX4 -4aS4X7 

- 3aS6X4 - 3aS7X5] = a41xI + a42x2 + ... + a47X7 

=?a41 =0 

a42 =0 

a4s -3aS2 =0 

a44 -ass-all +3a36 =0 

a45-aI6+3aS7 =0 

a46 +5aS2 =0 

a47 - al2 + 4a34 = 0 

[XI> X4]= -4x=?[0(xl), X4] + [XI> 0(X4)] = -40(X7) 

=?[ - 4aIlX7 + 2a12X5] + [3a42xS - 5a42X6 + a4SX4 - 4a44X7 

-3a46X4-3a47X5] = -4a7lXI-4a72X2-· .. -4a77X7 

=?a7l =0 

a72 =0 

4a~s + 3a42 = 0 



36 

(2.28) 

M. Benson and S. S.-T. Yim 

4a74, + a4S - 3a46 = 0 

4a75 + 2al2 - 3a47 = 0 

4a76 - 5a42 = 0 

4a77-4all-4a44=0 

[Xl> Xs]=O::}[o(xI), Xs]+[Xl> O(Xs)] =0 

(2.29) 

::}3aS2xs- 5a52x6+aSSx4 -4a54X7- 3a56x4 - 3aS7x5 =0 

::}a52 =0 

a5s -3a56 =0 

a57 =0 

aS4 =0 

[Xl> X6]= -3x4::}[o(XI), X6]+[XI, O(X6)] = -30(X4) 

(2.30) 

::}[ - 3allX4 + 3al2X7 - a13xs] + [3a62xS - 5a62x6 + a6Sx4 - 4a64X7 

- 3a66x4 - 3a67x5] = - 3a4lxI - 3a42x2 - ... - 3a47X7 

::}a43 + a62 = 0 

3a44 - 3all + a6S - 3a66 = 0 

3a45 - al3 - 3a67 = 0 

3a46 - 5a6~ = 0 

[Xl' X7]= -3x5::}[o(XI), X7]+[Xl> O(X7)] = -30(X5) 

(2.31) 

::} - 3allxS + (3a72xS - 5a72X6 + a7Sx4 - 4a74,X7 - 3a76X4 

-3anxs = -3aSIXI-3aS2X2- ... -3a57X7 

::}a51 =0 

a53 +a7Z =0 

3aS4 + a73 - 3a76 = 0 

a5S-all -a77 =0 

3a56 - 5a7Z = 0 

3aS7 - 4a74 = 0 

[XZ, XS] = X7::}[O(XZ), Xs] +[x2, O(X3)] = O(X7) 

::}[a21X4 +aZzX7+ aZ6XS] +[ -3aSlxS+ 5aSlX6 + aSSx7 + 2aS4xS 

+ 3aS6X7] = a71x1 + a72xZ + ... + anx7 
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=;,a73 + 3a31 = 0 

a74 -a21 =0 

a75-a2S-2a34 =0 

a7s -5a31 =0 

a77 - a22 - a33 - 3a3S = 0 

[X2' X4] = 2x5=;,[o(X2), X4] + [X2' O(X4)] = 20(X5) 

(2.33) 

=;,[ - 4a21 X7 + 2a22X5] + [ - 3a41X3 + 5a41XS + a43X7 + 2a44x, 

+3a4SX7] =2a51 X1 + 2a52X2 + ... +2a57X7 

=;, 2a53 + 3a41 = 0 

a54 =0 

a55 -a22 -a44 =0 

2a5S - 5a41 = 0 

2a57 + 4a21 - 3a46 - a43 = 0 

lx" x5]=0=;,[O(x2), X5] + [X2' O(X5)] =0 

(2.34) =;, - 3a51x3 + 5a51 xS + a53x7 + 2a54x5 + 3a5Sx7 = 0 

=;,a53 + 3a5S = 0 

lx2, xs] = 3x7=;,[o(X2), xs] + lx2, o(xs)] = 30(X7) 

(2.34) 

(2.35) 

=;,[ - 3a21 X4 + 3a22x7 - a23x 5] + [ - 3aSl x 3 + 5aSl X6 + aS3X7 

+ 2aS4X5 + 3aSS x7] = 3a71 X1 + 3a72 X2 + ... + 3a77X7 

=;,a73 + aSl = 0 

a74 +a21 =0 

3a75 + a23 - 2aS4 = 0 

3a7S - 5aSl = 0 

3a77 - 3a22 - aS3 - 3a66 = 0 

lx2, X7] = 0=;,[O(X2), X7] + lx2, O(X7)] = 0 

=;, - 3a21X5 + l- 3a71 X3 + 5a71 xS + a73x7 + 2a74X5 + 3a7SX7] = 0 

=;, - 2a74 - 3a21 = 0 

a73 +3a7S =0 

[X3' X4]=0= ) [O(X3), X4]+ [X3' O(X4)] =0 

[-4a31X7+2a32X5]+[ -a41 x4 -a42X7-a4SX5] =0 

37 
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::}2aS2 -a,s=0 

4aS1 +a'2=0 

[XS, Xs] =0::}[o(x3), Xs] + [xs, o(Xs)] =0 

(2.36) ::}-aSlx,-aS2x7-aSSxS=0 

::}ass=O 

[X3' xs]= -XS::}[o(x3), xs]+[xa, o(xs)J= -o(xs) 

(2.36) 

::}[ -3a31x, + 3a32X7-aaaXs] + [ -aS1x, -aS2x7-a6SxS] 

= -aSlxl-aS2x2- ... -aS7x7 

::}asa=O 

a54 -3aa1 -aS1 =0 

ass -a33 -ass = 0 

aS7+3aa2-aS2=0 

[X3, x7] = 0::}[o(x3), x7] + [xa, O(X7)] = 0 

(2.37) ::}-3a31xS+[ -a71x, -a72X7-a7SXS] =0 

::}3a31 +a76 =O 

[x" xs] = O::}[o(x,), xs] + [x" o(xs)] = 0 

::}4aS1x7 - 2aszXs = 0 

[x" xs]=O::}[o(x,), xs]+[x" O(XS)] =0 

(2.48) ::}[ -3a'IX'+ 3a'2X7- a43XS] + [4aSlx7-2aS2xS] =0 

::}a43 + 2aS2 = 0 

aS1 =0 

[x" x7]=0::}[o(x,), x7]+[x" O(X7)] =0 

::} - 3a41xS - [4a71x7 - 2a72xS] = 0 

[XS, xs]=O::}[o(xs), xs]+[xs, O(Xs)] =0 

::} - 3aS1x4 + 3aS2x7 - aS3x 5 = 0 

[XS, x7]=0::}[o(xs), x7]+[XS, O(X7)] =0 

::} - 3aS1x S = 0 

[XS, x7]=0::}[o(xs), x7]+[XS, O(X7)] =0 

::} - 3a61xS + [3a71 x4 - 3a7zX7 + a73xS] = 0 
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(2.26), (2.27), ... , (2.38) imply 

a21 =O 

a31 =O=a32 =a36 

au =O=a42 =a43 =a46 
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al1 a]2 a]3 a]. a]S a]6 a]7 

0 2al1 a23 a2, a2S a26 a27 

0 0 3al1 a3• a3S 0 a87 

A= 0 0 0 4al1 a.s 0 a47 

0 0 0 0 6al1 0 aS7 

0 0 0 t(15a12 - 4a23) a6S 3al1 a67 

0 0 0 0 a7S 0 5al1 

o is semi simple 8 AA*=A*A 
=? the length of ith row of A = the length of ph column of A. 
=? a(j=O for i=l=j. 

o 
A= 

o 

We have proved that any derivation of g(V) must be a constant multiple 
of t. It is a trivial matter to prove that t is really a derivation. 

Proposition 2.12. Let V = {(x, y, z) E C 3: ZS+y3+ X2=0} be the E8 
singularity. Then 

A(V)=<I, z, zZ, Z3, y, yz, yzz, yzS) with multiplication rules z'=O, y2=0 

with multiplication rules: 

[XI> x2]=0 

[x]' xs]= -x, 

[x]' x.] =0 

[XI> xs]=O 

[XZ, xs] = - 2xs 

[X2' x,] =0 

[x2, xs]=O 

[x~. xe]=x8 

[X3' X.] =0 

[xs, xs]=O 

[X3' x6]= -x. 

[x3• x7]= -x. 



[Xl' Xe]=X7 

[X}> x7]=2xs 

[Xl' XS]=O 

[X" X5]=0 

[X., Xe]= -X5 

[X" X7]=0 

[X" XS]=O. 
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[X2, X7]=0 

[X2' Xe]=O 

[X5, Xe]=O 

[X5' X7]=0 

[X5' xsl=O 

[X6, X7]=0 

[Xe, XeJ =0 

The type of Ee singularity: =dim g/[g, gJ =4. 
The nilpotency of Ee singularity: =min {p e NU {O}: gP+I=O}=2. 

Let tl, t2 be two derivations of g( V) defined by 

tl: g~g t2: g~g 

XI~XI XI~O 

x2~2x2 xz~O 

Xa~O X3~X3 

X,~X, X,~X4 

x5~2x5 X5~X5 

Xe~Xe Xe~O 

x7~2x7 X7~O 

xe~3xe Xe~O' 

41 

Then T = Ctl E9 Ct2 is an unique maximal torus on g( V). Let fii: T -+C be 
a linear map such that fii(t j) = Oi} for 1 <i,.i < 2. 

gP, E9 gP, + p, E9 g2 P' + p, E9 t P' 
II II II II 

CX3 Cx, CX5 Cxs 

(Xa, X2, Xl' Xe) is a T-minimal system of generators. 

RI( T) = {fi2' 2fi}> fil} 

= RI(T)1 U RI(T)z 

where RI(TI) = {fi2}, RI(T2) = {2fi}> fil} 

We number the number of elements of RI(T) in such a way 

RI(T)=W, fiz, fia} 

where fil = fi2' fi2=2fil' fi3= fil 

gP' = CX3 gP' = CX2 E9 Cx7gP8 = CXI E9 CXe 



42 M. Benson and S. S.-T. Yau 

The generalized Cartan matrix associated to Es singularity is 

[ 
2 

-1 
C(Es)= -2 

-2 

-1 
2 

-1 
-1 

-1 
-1 

2 
-2 

-1] -1 
-2 . 

2 

We shall now show that g(V) has an unique maximal torus spanned 
by tl and t2 defined as above. Let 0 be a derivation of g(V). 

(2.39) 

for 1 S::i <8 

[XI' x2]=0=}[O(xl), X2]+[XI, O(X2)] =0 

=}[2aI3x5 -aI6xS] + [ - a23x4 + a26x7 + 2aZ7xS] = 0 

=}a23 =O 

a13 =0 

a26 =0 

2a27 -aI6 =0 

[XI' x3] = -x4=}[O(XI), xal +[xb o(x3)] = -o(x4) 

(2.40) 

(2.41) 

=}[ - al1x4 - 2al2x5 + al6x4 + a17x5] + [- a33x4 + a36x7 + 2a37x S] 

=}a41 =0 

a4Z =0 

a43 =0 

a44 -al1 -a33 +aI6 =0 

a45-2aI2+aI7=0 

a46 =0 

a47 +a36 =0 

a4s +2a37 =0 

[XI' x4]=0=}[O(xl), X4]+[XI, O(X4)] =0 

=}a16x5 + [ - a43X4 + a46X7 + 2a47x S] = 0 

=}aI6 =0 

a47 =0 

[XI' X5]=0~[O(XI)' X5]+[Xb O(X5)] =0 

=} - a53x4 + a56x7 + 2a57xS = 0 
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=?a5S =0 

a56 =0 

a57 =0 

[x" XS]=X7=?[O(X,), XS]+[X" O(X6)]=O(X7) 

(2.43) 

=?[allx7+ a12xS-a,sXS -aU x5] + [-aSSX4 +assx7+2a67xsl 

=a71x, +a72 X2+ ..• +a7SXS 

=?a71 =0 

a72 =0 

a7S =0 

a74 +a63 =0 

a75 +a14 =0 

a76 =0 

a77-all-a6S=0 

a7S - a'2 - 2a6, = 0 

[x" X7] = 2xs=?[o(x,), X7] + [x" O(X7)] =2(xs) 

=?[2allxS-a13x 5] +[ -a7Sx4 + a76x7 + 2a77xsl 

=2as,x, + 2aS2X2 + ... +2assxs 

(2.44) 

=?as,=O 

aS2 =0 

aSS=O 

2aS4 +a7S =0 

2aS5 +a,s=0 

aS6 =0 

aS7 =0 

aSS -al1 -a77 =O 

[x" XS] = o =?[o(x,) , xs] + [x" o(xs)] = 0 

(2.45) =? - aSSx4 + aS6X7 + 2aS7xS = 0 

aS7 =0 

[X2' xs] = - 2x5=?[o(X2), xs] + [X2' o(xs)] = - 2o(x5) 

(2.46) 

=?[ -a2,x4 -2a22X5+ a2Sx4 +a27x5]+[ -2a3SX5+ assxs] 

= - 2a5,x, - 2a52x2 - 2a5SxS' .. - 2a5Sxs 

43 
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a52 =0 

2a54 -a21 +a26 =0 

2a5S - 2a22 - 2ass + a27 = 0 

2ass +ass =0 

[X2, x4J = 0=}[o(x2), x4] + [x2• o(X4)J = 0 

=}a2Sxs + [ - 2a4Sx S + a46xS] = 0 

[X2' x s]=0=}[o(x2), XS]+[x2, O(Xs)] =0 

=} - 2assxs + aS6xs = 0 

[X2, x6]=xS=}[o(x2), XS] + [x2, o(xs)]=o(Xs) 

(2.47) 

(2.48) 

=}[a2IX7+ a22xS-a2SX4 -a24x5] +[ -2assx, +assx;l 

=aS1xl + aS2x2 + ... +assxs 

a84 + a2S =0 

aS5 + au + 2ass = 0 

a21 =0 

ass - a22 - ass = 0 

[X2' x7]=0=}[O(x2), X7]+ [X2' O(X7)] =0 

=}[2a2IxS - a2Sx5] + [ - 2a7Sx S + a7sxaJ = 0 

=}a21 =0 

a23 + 2a73 =0 

[X2' Xs]=0=}[o(x2), XaJ + [x2, O(Xs)] =0 

=} - 2assxs + aasxa = 0 

[XS, x4]=0=}[o(xs), x4]+[XS, O(X4)] =0 

(2.49) =}asSxS+[a4Ix4 +2a42x5-a4Sx4 -a47x5] =0 

aSs + 2a42-a47 =0 

[X3' xsJ = 0=}[o(x3), xsJ + [xg, o(xs)] = 0 

=}aSlx4 + 2aS2xS -aSSX4 -aS7xs =0 

[XS, X6J= -x4=}o[(XS), x 6]+[XS, O(Xs)] = -o(x4) 

(2.50) 

=}[aSIX 7 + aS2Xa-aS3x4 -aS4xS] + [a61x4 + 2a62XS -aS6x4 -a67x S] 

= -a4Ixl-a42x2- ... -a4sXa 

a44 -ass + a6l - aS6 = 0 

a4S-as4 + 2a62 -a67 =0 
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a.7 +aS1 =0 

a.S+aS2 =0 

[XS, X7]= -X5:::}[O(XS), X7] + [XS, O(X7)] = -O(X5) 

:::}[2aSI Xs - aSSx5] + [a71 X4 + 2a72X5 - a7Sx. - a77X5] 

(2.51) 

= -a51xl-a52X2-· .. -a5SXS 

:::}a54 =0 

a55 - ass + 2a75 - a77 = 0 

a5s +2aS1 =0 

[x., XS]= -X5:::}[O(X4), XS]+[X., O(Xs)] = -O(XS) 

:::}[a41X7+a42XS-a.Sx. -a"X5] -aSSx5 

(2.52) 

(2.53) 

= -a51Xl-a52X2-· .. -a5SXS 

:::}a55 - a44 - ass = 0 

a5S =0 

[X4, X7] = 0:::}[O(X4), X7] + [X4' O(X7)] = 0 

:::}[2a41xs - a4SX5] - a7SX5 = 0 

[X4' XS]=0:::}[O(X4), XS]+[X., O(XS)] =0 

:::} - aSSX5 = 0 

[X5, XS] =0:::}[O(X5), XS] + [X5' O(X6)] =0 

:::}a51X7+a52XS-a5SX. -a54x5 =0 

[X5' X7] = O:::} [O(X5) , X7] + [X5, O(X7)] =0 

:::}2a51XS-a5SX5 =0 

[X5, XS]=0:::}[O(X5), XS]+[X5, O(Xs)] =0 

[xs, X7] = 0:::}[O(X6), X7] + [XS, O(X7)] = 0 

:::}[2aS1XS-a6SX5] + [-a71X7-a72XS+a73X. +a74X5] =0 

a74 -a6S =0 

2a61 =0 

45 
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[XS, xs] = O=}[o(xs), xs] + [X6' o(xs)] = 0 

(2.54) -aSlx7-a82x8+aS3x4+aS4x5=0 

aS4 =0 

[X7' xs]=O=}[o(xq), XS] + [X7' O(XS)] =0 

=} - 2aSlxS + aS3x 5 = 0 

(2.39), (2.40), .. " (2.54) imply 

aI3 =aI6 =0 

a21 = a23 = a24 = a2B = a27 = 0 

a31 =a36 =0 

a41 =a42=a43=a4S=a47=0 

a51 = a52 = a53 =a54 =a56 =a57 =a5S =0 

a61 =a63 =0 

a7l = a72 = a73 = au = a7B = 0 

a81 = a82 = a83 = aS4 = a85 = a8S = aS7 = 0 

a66 =all a22 =2all 

a37 =ta32 

a44 =all +a33 

a45=2aI2-aI7 

a67 = 2al2 - al7 - a34 + 2a62 

a4S = -a32 

a55 = a33 + 2all 

a77 =2all 

a7S = 5al2 - 2a17 - 2a34 + 4a62 

a6S = 3all · 

Then 0 has the following matrix representation 

all al2 0 a14 al5 0 a17 al8 

0 2all 0 0 a25 0 0 a28 

0 a32 a33 a34 a35 0 t a32 a3B 

0 0 0 all +a33 2a12 -a17 0 0 -a32 

A= 0 0 0 0 2all +a33 0 0 0 

0 a62 0 a64 a65 all 
2a1Z-a17 a6S -a34 +2aS2 

0 0 0 0 -a14 0 2all 
5a12 -2a17 
-2a34 +4a62 

0 0 0 0 0 0 0 3all 
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o is semi simple {=} AA* =A* A 
=? the length of ith row of A = the length of ph column of A. 
aij=O for i=l=.i. 

Hence 

1 
o 

o 

We have proved that any derivation of g(V) must be a linear combination 
of tl and t2. It is an easy matter to check that tl and t2 are really a 
derivation of g(V). 

Chapter 3. Using a computer to calculate the Lie algebra 
of derivations and Lie algebra cohomology 

3.1. Overview 
A computer can be used to calculate many singularity invariants. 

In this paper we will describe how the Lie algebra of derivations of an 
isolated hypersurface's moduli algebra can be computed. We will also 
show how to calculate its Lie algebra cohomology. 

The computation methods we will discuss have been implemented by 
M. Benson in the C programming language. His programs presently run 
on several versions of UNIX1) but should be portable to other operating 
systems. They are designed for making calculations in local rings which 
are finite dimensional quotients of power series rings. 

The implementation approach is modular. Each program works 
more or less independently of the others, but in most cases the standard 
output of one can be used as standard input for another. Because of 
this, the modules are easily glued together using UNIX pipelines. Output 
documenting the computation is sent to the standard error and a disk 
file. 

The calculations we are interested in are performed by four distinct 
program modules MODULI IDEAL, STANDARD BASE, LOCAL DERIV, and LIE 
COHO pipelined in this order. These program modules rely on a large 
library of support routines. The module dependency is depicted below. 

1) UNIX is a trademark of AT & T Bell Laboratories. 
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'STANDARD BASEl LIE COHO 

/ / 
'LINEAR EQUATION SOLVERI 

~.-------.:.,/ 
, EXACT ARITHMETIC I 

Organizat:on of Program Modules 

We will begin by indicating how some of the library routines have 
been implemented. 

3.2. Representation of polynomials 
Polynomials are stored as linked lists of terms, where each term is 

represented by a vector specifying the exponents of the top level variables 
and by a coefficient. This coefficient can be either a pointer to polyno­
mial in parameter level variables or else an exact fraction. 

The methods of implementing the algebraic operations with polyno­
mials are standard. Operations include reading and writing polynomials, 
addition, subtraction, negation, multiplication, exponentiation, truncation 
of high degree terms, and reduction modulo a list of polynomials. The 
last two operations facilitate computations in quotient rings. 

3.3. Representation of derivations 
Any derivation D of a local ring which is a quotient of C [X., X2, • , • , 

xn] can be written in the form 

(3.1) D=f.~+/Z~+···+fn~ 
aXl aX2 aXn 

where j; =Dxi for i = 1,2, ... , n. This can be seen by first using induc­
tion on the degree to check that the left and right hand sides of (3.1) 
agree when you apply them to any monomial. Then (3.1) must hold true 
in all cases by linearity. 

In our implementation, a derivation is stored as an array of the 
polynomial coeffiCients f., /Z, ... ,fn. Operations like applying derivations 
to polynomials or calculating Lie brackets were easy to implement. 

3.4. Solving systems of linear equations 
Large systems of linear equations with fractional coefficients appear 

in both LOCAL DERIV and LIE COHO. Examples that a mathematician 
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would normally choose turn out to be very sparse. 
A system of linear equations is represented by a linked list of sparse 

coefficient vectors representing the equations. Thus each equation in the 
system is represented by a linked list of its nonzero coefficients. To 
facilitate adding new columns to the system, a pointer to the last node in 
each row is stored. 

The uses of the systems of linear equations in the programs differ. 
In one case the basis of the kernel of a linear system of equations is 
required, in another only the rank is needed. In a third case a set of 
particular solutions to a multiple system of equations of the form 

allz, +a'2z2 + ... +a,mz", =b", b'2' ... , b'k 

a2,z, +a2~z2 + ... +a2",z", =b2" b22, ... , b2k 
(3.2) 

is required. In the first two situations the rows can be generated sequen­
tially so Gaussian elimination can be performed as the rows are prod­
uced. This appears to be a big space saver because the systems are 
extremely over-determined. In the last case the columns are produced in 
sequence, meaning that the system must be stored and then solved at the 
end. 

Both situations can be handled adequately with the approach used 
here. Gaussian elimination is performed sequentially by adding a row to 
a matrix already in echelon form and eliminating. If the row reduces to 
zero, the row is dropped. When the row vectors are generated sequentially 
this gives a space efficient implementation. And, it works satisfactorily 
for the other case as well. 

Once the matrix is in echelon form it can be put in reduced echelon 
form by Gauss-Jordan elimination if particular solutions or a basis of the 
kernel are required. All of these procedures have . been implemented. 
They return matrices whose sparse rows are the desired vectors .. 

3.5. The user interface 
MODULI IDEAL is a small program used to read the defining equation, 

calculate the partial derivatives of this polynomial, and then write infor­
mation about the moduli ideal to the standard output. 

3.6. Finding the standard base 
STANDARD BASE reads the generators of an ideal I in C[x" x 2 , ••• , 

x n ], and attempts to find a standard base for this ideal. The calculation 
will terminate whenever the quotient ring is finite dimensional. The 
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standard base is a new set of generators for which testing membership in 
the ideal I is easy. It is implicit in many of papers of H. Hironaka, and 
it has been widely used in the study of polynomial ideals. A nice presen­
tation of the concepts for polynomial ideals is given by D. Bayer in [1]. 
He and M. Stillman have used a computer to calculate standard bases of 
polynomial ideals. 

STANDARD BASE uses the ideal base it finds to construct a basis of 
monomials for the quotient algebra A=C[Xl' X2, ••• , xn]/I considered as 
a complex vector space. This is easy to do because the initial forms of the 
standard base elements lie on a "staircase" which delineate the elements 
in the monomial basis from the rest. 

Here is an example which illustrates the use of the standard basis. 
In this case the ideal is the moduli ideal for the singularity defined by 

(3.3) 

The generators of the moduli ideal are 

(3.4) 

2Xg 

-2xix2-3xix~-5x~ 

-4xi-2xl~-2xl~ 

x~ - (xi + xD(xi + xD 

and a standard base is given by 

(3.5) 

X3 

xt 
xl~+2xi 

2xix2+5x~ 

.xi. 
We can depict the portion of the "staircase" lying in the xy-plane by 

using asterisks to indicate the monomials which are initial forms of ele­
ments of the ideal. The monomials which lie outside the asterisks are 
elements of the monomial basis. 

* * * * * 
x~ * * * * 

(3.6) ~ * * * * 
x~ * * * * 
X2 X1X2 * * * 
1 Xl xi xi * 
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Given the standard base and the basis of monomials, it is easy to 
reduce any power series to a linear combination of basis elements by sub­
tracting off multiples 'of members of the standard basis. Reduction of a 
polynomial by a list of polynomials is one of the basic routines in the 
library which performs arithmetic of multivariate polynomials. 

The algorithms used to construct the standard base of a finite dimen­
sional power series ring are important for many calculations. A complete 
description of these algorithms will be given elsewhere. 

3.7. Computing the derivations 
LoCAL DERIV reads the standard base for an ideal I in C [Xl' X2 • .. " 

xn] and the monomial basis of the quotient algebra A = C[ Xl' X2, .. " Xn] / l. 
It uses this information to compute the Lie algebra, Der A, of derivations 
of A. 

Any element of Der A can be written in the form (3.1). Since the 
coefficients 11> J;, ... ,In are defined only up congruence modulo I, we can 
choose representatives which are linear combinations of the monomial 
basis. For the example of the previous section, any derivation of the 
moduli algebra must be of this form 

(3.7) 

(al +a2Xl +a8X2+a4x~+a5XIX2+aeX~+a7~+aB~+a9X~)~ aXl 

+(bl+b2Xl+b8X2+b4Xi+b5XlX2+b6X~+b7~+bBX~+b9XD~ 
aX2 

+(Cl +C2Xl +CgX2+C4X~+C5XIX2+C6X~+C7X~+CB~+C9X;)~. aXg 

LoCAL DERIV actually generates a symbolic expression like (3.7). 
Not every expression of this form is really a derivation of A. Derivations 
must send each generator of I back into l. To determine the possible 
derivations of A we must apply the form (3.7) to each of the generators 
of I, reduce this formal expression modulo I, and then set it equal to zero. 

For example, if we apply (3.7) to the standard base given in (3.5) we 
get the equations 

Cl + C2Xl + CSX2 + C4X~ + C5XIX2 + C6X~ + C7X~ + CB~ + C9X~ = 0 

4al~=O 

(3 8) 6al~ + 2blxlX2 + al~ + (4a2 - 4b8)~ + a8~ + ( -15a3 - 5b2 + oe)x; = 0 

2blX~+4alXlX2+( -8a8+2b2)~+20bl~+( -lOa2+ l5b3)x~=O 

5blx:=O. 
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The coefficients of the basis elements must vanish independently of 
each other. Each of these coefficients is a linear form in the parameter 
variables. We end up with a homogeneous system of linear equations 
determining which values of the prameters in (3.7) give derivations. 

These equations are solved to get a basis for the kernel, and therefore 
also a basis for the Lie algebra of derivations. Here is the basis of deri­
vations computed from the system of equations arising from (3.8). 

Dl=xi-~- D sa D3=X~~ 2=Xl -

aXl aXl aXl 

D,=xiJL- a D6=xiJ!-D,=xjx2-
aXl aXl aX2 

(3.9) 
D7=xi~ D8=X~~ Dg=xi-~--

aX2 aX2 aX2 

a Dll=X~-}-DlO =XlX2--
aX2 aX2 

The final step is compute the structure constants for the Lie algebra 
Der A. The Lie brackets [D i , D j], for i <j are computed as derivations 
and then expressed back in terms of the basis elements. In principle, 
expressing each of the Lie brackets in terms of the basis means solving a 
system of linear equations, although typically many of the brackets are 
zero and therefore can be eliminated. 

Here is what LOCAL DERIV found when it calculated the Lie brackets 
of each pair of elements of the basis given in (3.8). 

[D3,Dsl=DJ [D3, DlO] =D6 [D3, Dlll= -DJ 

(3.10) 
[D4' Ds]=tDj [D" Dg]=2D7 [D" DlOl=tD6 

[Ds, Dg]= -D2 -5D6 [D 5 , DlO]=%Dl-2D7 [D5 , Dll ]=2D2 

[DB' Dlll = - D6 [Dg, DlO]=D7 [Dlo , Dll]= - 2D7 

All of the other brackets vanish. 
It is important from the standpoint of computing to notice that 

fractional coefficients often appear in the Lie brackets even though the 
original basis had integer or even monic coefficients. This occurs when 
we reduce modulo I. This phenomenon forces us to work with exact 
fractions instead of trying to stay with exact integers for efficiency. 

Here is summary of the algorithm used by LOCAL DERIV to find the 
Lie algebra of derivations of a finite dimensional power series quotient 
ring. 
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Algorithm 3.1 (Local Deriv). 
1. Read data specifying power series ideal from the standard input. 
2. Generate n X dim A parameter variables. 
3. Construct the general form, D, of a derivation as in (3.7) using the 

standard basis monomials and the parameter variables constructed in 
the last step. 

4. Initialize KERNEL SYSTEM to be an empty list of rows. 
5. For each element ei of the standard basis. 

(a) Compute Dei and reduce moduli 1. The result will be a linear 
combination of basis monomials with coefficients being linear 
forms in the parameter variables. 

(b) For each term in the list representing Dei. 
1. Convert the coefficient of that term to an n X dim A dimen­

sional sparse coefficient vector v. 
ii. Add v as a row of KERNEL SYSTEM. Bring the matrix back to 

echelon form by elimination. Drop v if it reduces to zero. 
6. Bring KERNEL SYSTEM to reduced echelon form. 
7. Compute a basis for the kernel of KERNEL SYSTEM. 
8. Construct a derivation Di for each element of the kernel basis. 
9. Initialize BRACKET SYSTEM to be a list of n >< dim A empty rows. 

10. For each Di in the basis of derivations 
(a) Add a new column to BRACKET SYSTEM representing D i • 

11. Initialize the set NON ZERO to be empty. 
12. For each Di in the basis of derivations 

(a) For each D j in the basis of derivations, j > i 
1. Compute the Lie bracket [Di' D j ] 

ll. If this new derivation is not zero, then 
A. Insert (i,j) into NON ZERO 
B. Add a new column to BRACKET SYSTEM representing [Di' D j ]. 

13. Bring BRACKET SYSTEM to echelon form by Gaussian elimination, 
and then to reduced echelon form by Gauss-Jordan elimination. 

14. Construct a list SOLlrTIONS of particular solutions to the multi-system 
of equations given by BRACKET SYSTEM. Each row in SOLUTIONS 
expresses one of the nonzero Lie brackets in terms of the D i . 

15. Output the derivations and the nonzero brackets to the standard 
error and file. The contents of NON ZERO indicate which brackets are 
in the list of SOLUTIONS. 

16. Output dimension and structure constants to the standard output. 

3.8. Calculating Lie algebra cohomology 
LIE COHO calculates the Betti numbers of the cohomology groups 

Hi(L, W) where L is a Lie algebra and W is an L-module. Before discus-
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sing the algorithm that LIE COHO uses, we will review the definition of Lie 
algebra cohomology. 

The set of k-cochains Ck(L, W) of L with coefficients in W is defined 
to be the vector space of all linear maps from the k-fold tensor product 
Vk)=@f=IL into W. Let n=dimL, then Ck(L, W)=O for k>n, and 
both CO(L, W) and cn(L, W) can be identified with the set of constant 
maps into W. C(L, W) is defined to be the direct sum Et>k;;'O Ck(L, W). 

The coboundary operator 0: C(L, W).-+C(L, W) is a homogeneous 
linear operator of degree 1. It is defined on each of the homogeneous 
pieces of C(L, W) as follows. If f e Ck(L, W), then oJ e Ck+1(L, W) 
where 

Ie 

oJ(xo, Xl> • - ., x k)= 2: (-I)ixi -f(x/i)- - -@xi @- - -@xk ) 

(3.11) i=O 

In the first summation, the dot is used to represent the action of Xi e 
L onf(xo@- - ·@Xt@·· ·@xk ) e w. 

The pair (C(L, W),O) forms a cochain complex. The Lie algebra 
cohomology of (L, W) is defined to be the homology of this complex. 

Computing Lie algebra cohomology turns out to be just a gigantic 
linear algebra problem. As we know, Hi(L, W) measures the exactness 
of the sequence 

(3.12) CO(L, W)~CI(L, W)~C2(L, W)~C3(L, W)~ ... 
that is 

In this equation the second term on the right hand side is assumed to be 
zero for k=O. 

We can bring (3.13) into an even simpler form for computing the 
Betti numbers. Using the Rank+Nullity Theorem we get 

(3.14) dim Hk(L, W)=dim Ck(L, W)-(rank Ok + rank Ok_I) 

where again if k = 0, the rightmost term of the right hand side of (3.14) is 
understood to be zero. This shows that it is enough to compute the 
ranks of the linear maps 0o, 01, ... , On-I. 

We are going to introduce coordinate systems in the Ck(L, W) in 
order to compute these ranks. Let VI' V2, ••• , Vn be a basis for Land 
WI> W2, ••• , W", for W. In terms of these bases, the Lie algebra structure 
and the action of L on W can be expressed as follows. 
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(3.15) 

m 

(3.16) Vi· W j = L: PL· W l 
l~l 

We will call any k-element subset 1= g, i2, ••• , i k } of {l, 2, ... , n} a 
k-index. For any k-index I we define VI = Vi ,Q9Vi .Q9· .. Q9Vik where il < 
i2<· .. <ik • The set Bk of all such VI forms the product basis of D k ). 

We can now define a basis Bt of Ck(L, W). Bt consists of all vj,p 
for I a k-index and p = 1, 2, ... , m, where vr,p is defined on the elements 
of Bk by 

(3.17) v* v - p -{
w J-I 

I,P( J)- 0 J=I=-I 

and extended to Dk) by linearity. We see from this construction that 

dim Ck(L, w)=mx(~). 
We will introduce some more notation. The sign of the permutation 

of IU {p} that you get by listing p first, followed by the elements of I\{p} 
will denoted as follows 

(3.18) sign (p, 1) = ( _l)card(i Elli<p). 

We can now compute OkVj,P for each k-index I and p= 1,2, ... , m. 
The first step is to evaluate it on each element of the basis Bk of Dk). 

Lemma 3.2. Suppose I is a k-index, J is a k+ I-index, and p= 1,2, 
... , m. Then 

I. If I and J share less than k -1 indices, then 

(3.19) 

2. If I and J share exactly k -1 indices, where J\I = {r, s}, r <s and 
1\1 ={t}, then 

(3.20) 

3. If I and J share exactly k indices, where J\I = {r}, then 

(3.21) 

This lemma gives us enough information to express each OkVj,P in 
terms of the basis Bt+l of Ck+l(L, W). 
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Corollary 3.3. Suppose I is a k-index and p = 1, 2, .. " m. Then we 
have 

(3.22) 

OkVj,P = - 1: 1: sign (r, J). sign (s, J). sign (/,1). T;.vj(r,s;t),P 
r,SEI'tEl 
r<. 

+ 1: sign (r, I)(t P~pvj(r),q+ 1: r~rvj(r),p) 
rEI' q~l qEI 

where I' ={l, 2, .. " n}\I, I(r) =1 U {r}, and I(r, s; I) =1 U {r, S}\{/}. 

LIE COHO uses (3.22) to compute the ranks of the Ok' The image 
OkVj,P of each basis element in Bj is written in terms of the basis Bj+l' 
The matrix formed by using the coefficients of these linear combinations 
as row vectors has the same rank as Ok' We can deduce from (3.22) that 
this matrix is very sparse. Each row has at most 

"-(n_-k)(n-k-D-+m(n-k) 
2 

nonzero coefficients, far less than m X (k ~ I). which is the dimension of 

Ck+I(L, W). 
LIE COHO uses a bit vector to store a k-index. When m and n are 

not too large, then each pair (I, p) can be represented in a compact format 
by one computer word. The exact encoding method is not important for 
stating the algorithms which follow. We will use the notation index 
(I, p) to represent the integer corresponding to (I, p). 

Here is an outline of the algorithm used by LIE COHO to compute 
the Betti numbers of Lie algebra cohomology. 

Algorithm 3.4 (Lie Coho). 
1. Read dimension n and structure constants FlJ of Lie algebra from 

standard input. Store as sparse matrix. 
2. If present, read dimension m and constants P~j of the representa­

tion. Otherwise assume L= Wand take the adjoint representation. 
3. For k=O to n-l 

(a) Call COMPUTE RANK to find rank of Ok' 
4. For k=O to n 

(a) Output k-th Betti number using the formula 

Algorithm 3.5 (Compute Rank). 
1. Set BASIS IMAGES to be an empty matrix. 



Lie Algebras and their Cohomology 57 

2. For each k-index set Ic{I, 2, "', n} 
(a) For p=I to m 

3. 

i. Call COMPUTE IMAGE to find Ekv'!,p' Returns sparse row 
vector giving this quantity as a linear combination of the B[+l' 

ii. Insert row into BASIS IMAGES bringing matrix back into echelon 
form. Drop row if it reduces to all zeros. 

Return the number of rows of BASIS IMAGES. 

Algorithm 3.6 (Compute Image). 
1. Initialize a sparse row to be empty. 
2. Let J be the first k+ I-set in lexicographical order which meets 1 in 

at least k -1 members. 
3. While J exists do 

(a) If J meets 1 in exactly k-I members with J =1 U {r, s}\{t}, r <s, 
then 
1. Compute - sign (r, J). sign (s, J). sign (t, 1) . r~s' 

11. Place result in position index (J, p) of the sparse row. 
(b) Otherwise, J meets 1 in exactly k members with J = 1 U {r} 

i. Copy the product of the sparse row representing V r ' wp with 
sign (r, I) into position index (J, J), index (J, 2), ... , index (J, m) 
of the sparse row. 

ii. Add the quantity sign (r, I). ,L;QEI r~r to the entry in position 
index (J, p) of the sparse row. 

(c) Set J to be the next k+ I-set in lexicographical order which 
meets I in at least k -1 members. 

4. Return sparse row constructed. 
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