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Congruences between Hilbert Cusp Forms

Hiroshi Saito and Masatoshi Yamauchi

§ 0. Introduction

This is a continuation of our previous paper [14]. In that paper, we
reported an example of a congruence relation between Hilbert cusp forms
over a real quadratic field. - In this paper, we study such a congruence
relation in a more general setting, and add several examples. More
precisely, let F be a totally real algebraic number field and K a quadratic
extension of F with the relative discriminant q. For simplicity, we assume
g is a prime ideal not dividing 2. Mainly, we treat the case where K has
two real archimedean places, namely rank E,=rank E,+1. Here E;
(resp. Ep) denote the group of units in K (resp. F). When the class
number of Fin the narrow sense is odd, we can show that Ej is generated
by Er and a unit y of K.~ We define a certain polynomial H,(X) with
rational integral coefficients associated with 5 and a positive integer v (for
the definition of H/(X), see the text § 2 (2.4)). Under a condition on
7 (see the text § 2 (2.6)), for each prime p which satisfies p|H,(1) and
pYH,_ (1), we can construct characters 2 of K with the conductor Q*Rw,
where £ is the prime ideal of K lying above q and B is an ideal of K
such that LR =(p) and (B, L)=1 with the non-trivial automorphism ¢
of K over F. W is one of real archimedean places of K. The Hilbert
cusp form f; over F associated with 1 is of weight 1 and of level ¢**'(p).
Under some assumptions on the special value of L-functions of F (see the
text § 2 (2.7)), we can show that there exists a primitive cusp form f over
F of weight 2 and of level g®*', which is congruent to f; modulo a prime
ideal P lying above p. On the prime p, we note the following. When
F=Q the rational number field, K is a real quadratic field Q(+/ ¢) and 7
is the fundamental unit ¢ of K. We see in this case

H(1)= —tre?.

So the value H,(1) is a natural generalization of tre in Shimura [16] and
of tre?” in Doi-Yamauchi [6] and Ishii [8]. In Section 3, we give examples
of the above results and also include the examples in the case where
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rank Ex=rank E, and rank Ex=rank E;+2. In the former case, we
find a congruence relation between two Hilbert cusp forms, one of which
is associated with a Grossencharacter of K. In the latter case, as the
examples suggest, the situation seems to be different.

§ 1. Hilbert modular forms and Hecke operators

Let F be a totally real algebraic number field of degree n, and 0,=
0, D the ring of integers, the different of F respectively. In this paper, we
assume n>2. For a place v of F, F, denotes the completion of F at v,
and when v is a finite place, 0, denotes the ring of v-adic integers in F,.
To each finite place v, we fix a prime element @, of 0,. Let F, and F}
be the adele ring and the idele group of F respectively, and 11, =[], 0} X
[T« F%, where v and w run through all finite and infinite places respec-
tively. For ae FX, let |a| be the module of a with respect to a Haar
measure of F, and ao the ideal of F determined by (a0)o,=a,0, for finite
v. Here a, is the v-component of a. We choose a non-trivial additive
character t=[], 7, of F,, trivial on F. We assume that

Tw(x) o e—21t VIiz

for infinite places w. For each finite v, let §(v) be the integer so that z,
is trivial on @;*®p, but not on @, 'g,, and d the element of F} given
by d,=a,;*™® for finite v and d,=1 for infinite w. Then we have do=5.

Let G=GL(2) be the general linear group in 2 variables, considered
as an algebraic group over F, and Z the center of G. We write Gy, Z,
for the corresponding adelized groups. Z, can be identified with F%.
We denote by G, and G, the finite part and the infinite part of G, respec-
tively. For a place v, let G,=GL(2, F,) and let G,=GL(2, F).

In this section, we fix an integral ideal ¢ of F. Let =[], 4, bea
character of FX/F* of finite order such that f(y-) divides ¢, where {(i) is
the finite part of the conductor of 4. To each infinite place w, we
choose a positive integer x(w) satisfying (—1)** =}, (—1), and put £=
(x(w)). To ¢, 4, and &, we define a compact subgroup K= K(c) of G, and
a 1-dimensional representation p of K. To a finite place v not dividing c,
put K,=GL(2, 0,), and to an infinite place w, put K,=SO(2, R). Fora
finite place v dividing ¢, let v,=ord,(c)=ord,(c,), where ¢, is an element
of F, such that co,=¢,0, and ord, is the additive valuation of F, normal-
ized as ord,(@,)=1. Let

K,= {[Z Z] e GL(2, ov)lordv(c)zvo},

and let k=[], K,. For a positive integer m, let p,, be the representation
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of SO(2, R) given by

pm<[ cos @ sinﬁ]):em”j_
—sinf cos @

For k=(k,) ¢ K, we define
p(k) = H wv(dv) w il!;ilnite px(W)(kW)’

L]
e, d )
Now we define a space of Hilbert niodular forms associated with the
triple (¢, ¥, £). We call a C-valued continuous function f on G, a Hilbert

modular form (over F) of type (c, v, £) if f satisfies the following con-
ditions:

(LY) f(rgzk)=v(2)p(k)f(g) for T € Gy, z € Zy, and k € K;

(1.2) as a function of g, € GL(2, F,) for infinite w, f(gg,,) is of C=-class
and satisfies Xf(gg,)=0 for g e G,, where X= [«/t% - :1] in the
complex Lie algebra of GL(2, F,);

where

(1.3) for any compact set S(CG,) and a positive integer c, there exist
constants C and N so that

1([ Vle)| = crar

for all g e S and a e F with |a|>c.

Let M(c, 4, £) denote the space of Hilbert modular forms of type
(c, ¥, B). fin M(c, 4, ) is called a Hilbert cusp form of type (¢, v, &) if
f satisfies the condition:

1.4 f([l a])dazo for all g e G4, where da is the Haar measure
Frg \LO 1
of F\F,.

We denote by S(c, 1, £) the space of Hilbert cusp forms of type (¢, ¥, £).
In the rest of this section, we assume k(w)=¢ for all infinite w, and put
g=(k, +--,£). Let f be an element of M(c, v, ), then f has a Fourier
expansion;
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Yy Xi\_ /2 /2 ~22Tr(EVo0)
£([2 1) =+ 3. ey et

for x ¢ Fy and y € F¥,={a € F4]a,>0 for infinite w}. Here the sum is
extended over totally negative &£ ¢ F*. For y ¢ F}, ., is the infinite com-
ponent of y and Tr(y..)=> ., Y. C(y0)=0 unless yo is integral and C,()
satisfies Cy(yu) = C(y) for ue F* [[, 07 [|» Fifs with Ff.={ae F}la
>0} If fe S(, ¥, &), then Cy(y)==0. For f, we set

L(s, f)=2. ClmN(m)~

where m runs through all integral ideals of F.
To each integral ideal a, the Hecke operator T(a) on M(c, , ) or
S(c, , &) is defined in the following way. For finite vic(resp. v[c). Put

F(a)={g € My(0,)|ord,(det g)=ord,(a)}
(resp. H ()= {g € [0; Z”X] ord,(det g)= ordq,(a)})

€0, Dy,

and put Z(a)=[To: tuie Zo(@). Let H(@)=U7-; 8K, (K,=G,NK) be a
disjoint union. For fe M(c, r, £), we define

(L@@ =N@*" 3 Fd)f (&80,

where g;,= [a" ZZ] Let C(m)(resp. C’(m)) be the Fourier coefficients of
C; Gy
f(resp. T(a)f), then it holds

C'(m)= ”Z P*(OC(ma/)N (.

Here +*(1)=0 unless [ is prime to ¢, and when [ is prime to ¢, let /¢ F}
so that [,=1, I,=1 for vic, lo=[, and put ¥*(()=4+(/). It is shown in
Shimura [17] that M(c, ¥, #) and S(c, ¥, £) are spanned by forms for
which C(m) are integers in an algebraic number field and that the eigen-
values for T(a) are algebraic integers. Let fand 4 be Hilbert cusp forms
with coefficients C(int) and C’(m) in the localization of the ring of integers
of an algebraic number field M at a prime ideal P of M. We say fis
congruent to 2 modulo P if C(m)=C’(m) modulo P for all integral ideals
.

We introduce Eisenstein series following Hida [7]. Let x=]], X, be
a character of F/F* of finite order. Assume X,(x)=sgn(x)=x/|x| for
all infinite w or X,,=trivial for all infinite w. We also assume ¢={(X)=0
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and X,(—1)=(—1). Then there exists E, , in M(c, X, £), whose Fourier
expansion is given by

E; y x]): £/2 ,m- C"r d —2xTr (€Yo ,
’Z([O 1 7] +L(1—Ic,x) 5%"‘ (§dyo)e 7(§x)

where

>3 X*(m/a)N(a)- ! if m is integral
C, (m)=qom
0

otherwise.
Let S be the set of prime factors of ¢. For ScS, put

(Wsf)(g)=f(gws),

0

where wg= [
x

—(1)] with x,=a* for ve S and x,=1 for v¢ S. For

ve§, put

GC)= 2, (@, (a/(d,o?))

@ € (op/@}P)*

Then we have by [7]

W3E (|2 3]) == 1re-2r L= 1 Nem (] 2~ o262

X (5;|yl‘”x(yd)ci(y)JrIyi"ieZFXx(yd)C:, [(Edyo) e~ T v=Ig(Ex)),
<0

¢

where 6,=0 if £>1 and §,=1 if k=1. Cy»)=2""L(0, ), and C; ;(m)
= i (/)N (o) if m is integral and C[ ;(m)=0 if m is not integral.
Later, we need the action of W for SCS.

Proposition 1.1. Let fe M(c, ¥, £) be an eigenfunction for all T,(a).
Assume (W f)J(det) e M(c, v, £) is also an eigenfunction for all T (a) with
eigenvalues A(a). Let S be a proper subset of S. Assume {(y")o,=co, for
ve Sand (¥ [[ees To)(0°)5={1}. Then the Fourier expansion of h=Wsf
is given by

h([(J); )lc]) = vl;[s A(@,0) 7| @y |2 Do (— 529) G (o)
X1 3 TLlE)IC Edyoyetrme(ex)).
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For an integral ideal m, let m=mm, be the decomposition into integral
ideals m,, m, so that m, is prime to [[,cs@,0 and all the prime factor of
m, is contained in S. Then C’'(m)=C(m)A(m,).

This can be verified in the safne way as in Asai [1], and the prooj
will be omitted.

§ 2. Construction of characters 2 and congruences

Let K be a quadratic extension of F, and {g, its conductor. Let
Gal(K/F)={s). We assume the following;

(2.1) only one infinite place of F decomposes in K.

We denote it by w, and the other places by w,, w,, - - -, and w,. " Let
E; and E; be the groups of units of F and K respectively. Then by the
above assumption, we have rank Ey=rank Ep+1=n. Let Ey={ce Eg|
Ner()=1}, Ez ={e € Ez|we)>0 for all i}, and £, ={e € Ex|w,(e) >0 for
i>2}. Later, for the sake of simplicity, we assume the following con-
ditions:

(2.2) f{gr is a prime ideal q which is prime to 2 and by;
(2.3) the class number of Fis odd and [Er : Ef]=2".
Let Nq=g* with a rational prime ¢ and a positive integer a.

Proposition 2.1. (1) If (2.2) is satisfied, there exists y, in Ex so that
Ey is generated by 7, and Ep.
(2) If (2.2) and (2.3) are satisfied, then N, z(Ex)=E, and E% is generated
by +1 and 9iNg;r(n)) "

Proof. (1) It is enough to show that E./E, is torsion-free. Let
7 € Ex and assume 3™ € Ey, then (3°/y)"=1. Since K is not totally imagi-
nary, 7°/p==+1. If 9’/p=—1, then * ¢ E, and K=F(3). This contra-
dicts (2.2).

(2) Since Ny,z(Ex)CEy and [E, : Ez]=[E, : E%] by the condition
(2.3), it is enough to show that Ny,(y,) is not contained in Ej=EFE?2.
Assume g5 =¢* with ¢ € Ep, then (p,/e)(p,/e)=1. Put p=1+7,/e, then
o satisfies y=p pfe. If pis a unit, then

nole=plp = pp [ =),

with & € E,. But this contradicts the fact that s, gives a generator of
Ey/Er. Hence pis not a unit. Let I be the ideal of K generated by o
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then ¥ satisfies J"=S. Let « be an element of F so that K=F(v/ «).
Then, there exists an ideal a of F so that J=(+/ a )ao,. Since the class
number of F is odd, a is a principal ideal, which is generated by a e F.
Hence g=7av @ with a unit 7 of K, and we have

nle=pl/w’ = —yly’=—(EI7"),

with ¢?=y7°. This is a contradiction, and the proof is completed.

Let 7, be as in Proposition 2.1. We note Ng,o(5)=—1. For each
positive integer v, we define a polynomial in Z[X] of degree 2" associated
with 7,. Let f,(X)=X*—sX+m be the minimal polynomial of " over F.
For a e F, let a®, 1<i<n, be all distinct conjugates of g over Q, and let

X —sOX4mO = (X —a;)) (X —a,,).

Let S be the n-tuple products of the set {1, 2}. We define H,(X) by
24) H@O= T (X=T]aw)
(81,82;%++,8p) €S i=1

Then we see H,(X) e Z[X] and deg H,=2". It is easy to see that | H,(1)|
is unchanged if we replace 7, by ;! or by 7 for e € E,. To each prime
divisor p of H/(1) satisfying the following condition, we construct idele
class characters of K. Let p be a prime satisfying

2.9) plH), piH, (1), and ord,(H()=1.

Let C, be the completion of the algebraic closure @, of Q,. We fix em-
beddings ¢., : Q—C and ¢, : 0—C,. By means of ¢, and ¢,, algebraic
numbers can be seen as elements of C and as elements of C,. Let oy, g,

-+, 0, be all the distinct embeddings of F into Q. We assume w; cor-
responds to ¢.g, for each 7. Let us consider sets of embeddings 7=
{zy 7y -+, 7} of Kinto @ such that the restriction of 7z, to F coincides
with o, for all i. There exists 2” such 7’s. We denote them by T},
1<i<2". For xe K, we set x"=T[]%,x% Then H,(1)=[],(1—25)".
We consider K and F as subfields of Q by fixing an embedding z : K—Q
such that z|F=g,. Let K and F be the Galois closure of K and F over
Q respectively. Then it is easy to see [K : F]=2" by (2.1). Let G=
Gal(K/Q), H=Gal(K/K) and H=Gal(K/F). Then there exists a natural
one to one correspondence between the left cosets A \@ (resp. H \C~;) and
the embeddings of K (resp. F) into @, and p in G induces a permutation
among T, by the multiplication on the right. The embedding ¢, de-
termines a prime ideal  of K lying above p. We denote the decompo-
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sition group of ¢ by D.

Lemma 2.2, Let T={T|Tr=T for ¥ € D}, and T'={T\Tr=T for
some 7 € D}. Then
1) ¢, (x"eQ,forall xeKifandonly if T e X.
(2Q) Let p be a prime satisfying (2.5) and assume p is unramified in K.
Then, there exists only one T e T such that ¢ (1 —y§)7) is divided by p,
and all prime ideals p of F lying above p decomposes in K.

Proof. (1) is obvious, because ¢,(x7) e Q, for all x e K& x™ =x" for
all xe K and all 7e D&Tr=1T for all ¥ e D. If p divides ¢,((1—78)")
for Tin &/, then p* divides H,(1). The first assertion of (2) follows from
this. Let T be the set in ¥ satisfying the above condition. Then there
exists g;, 1<<i<d, in G so that T corresponds to the cosets | J¢_, H\Hg,D
in the correspondence stated above, where we assume | J¢, \ﬁ g,Dis a
disjoint union. By the condition on T, we have G=|J, Hg,D. Now it
holds

|A\GI<3 | H\Hg.D|<2 3 |A\Hg.D|=2[F : Q]=|\G|.

Hence the union | J; Hg,D is disjoint, and |H\Hg,D|=2|H\Hg,D|. The
second assertion follows from this.

Let T be as in Lemma 2.2 (2). The mappings ¢,7; : x—¢,(x") can
be extended to a homomorphism of K® Q, into C, and the mapping x—
¢,(x7) can be extended to a homomorphism as multiplicative groups of
(K®Q,)* into QX. We denote it by ¢,. Let P be a prime ideal of
Q(1'¢2-) lying above p and w, the character of Z} of order p—1 such
that o, (@)=amod p for a ¢ Z prime to p. Then ¢* divides p—1 and the
order of w,(¢,(n,)) is g*. Let o, be the character of (0, ® zZ,)* given by
o (@)=w,(¢;(a)), where o is the ring of integer of K. Then we obtain
the following by virtue of Lemma 2.2,

Corollary 2.3. Let %3, be the conductor of w,, then B, is prime to R
and L, P7=(p).

Let £ be the prime ideal of K lying above q and og o be the com-
pletion of o, at 2. Let /7 be a prime element of oy o and let py=a-+bIl
with @, b e 0, We consider the following condition on 7,.

(2.6) ngo=a-+bll with a unit b.

Lemma 2.4. If (2.6) is satisfied, then the order of the class 7, of 7, in
(0x,0/00,0)* is q* and {Fjo) N(0,/04*)* =<7, where {7} is the subgroup
generated by 7.
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Proof. For u+vll with u,veo, put (u+vil)?=v'+v'Il with
',V en,. Itis easy to see that if # is a unit in 0, and ord (v)=m, then
’ is a unit in o, and ord,(v)=m+1. Our assertion easily follows from
this.

Let ( /) be the quadratic residue symbol of (0,/q)* = (0x,a/Q)*, then
the infinite place W, of K lying above w, is uniquely determined by

sgn Wl(’?o):< g )
Let w be the Dirichlet character modulo p of order p—1 given by w(@)=
amod P. Now we prove the following theorem.

Theorem 2.5. Let K be a quadratic extension of F satisfying (2.1),
(2,2), and (2.3), and assume the condition (2.6). Let p be a prime number
satisfying (2.5) for a positive integer v, and assume p is unramified in K.
Let T be as in Lemma 2.2 for v, then for each k, 1<k<p—1, the
character wk of (0x® zZ,)* can be extended in (Nq/q)'hg/hy ways to idele
class characters A of K so that the conductor of 1 is Q*P,.W, and the
restriction to F is wNg,oXgr Where Xy ,p is the quadratic character of F
corresponding to the extension K/F. hy and hy are the class numbers of K
and F respectively.

Proof.  For fjia & {7,y (0,/q")*, put
2,(75@) =(w(70)* sgn wl(vo»“(‘é)'

Then, by Lemma 2.2, 1, is well-defined and gives a character of
{Toy(0,/0%)*, since the order of w,(y,) is ¢” and

(@20n0)* sgn W,())* = (%)

2, can be extended to characters of (0x o/0°0k,0)* of conductor O in
(Nq/q)y~* ways. Let 2, be one of such characters. For (g, b, ¢) € 05 o X
(0x®2Z,)* X K3,, put

A((a, b, c))=2(@)w(b)* sgn (c).
Then, by the definition, we see
23((770a Tos 7o) :Q’T(ﬁo)lC sgn W1(’70)0) T(’?o)k sgn ‘T’l(ﬂo)z L.

For ¢ ¢ Ey with N ,5(e)=1, we have
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(e, &, 5)) ( ) sgn W1(5)

Since []r..sgnw,(e)=1, and Xg,z(e)=(/Q) [[7-.sgn we)=1, we see
A5((e, &, €))=1. By Proposition 2.1, E is generated by », and ¢ in E, with
Nro(e)=1, hence we have 2,((y, 5, y))=1for all y e Er. We can conclude
from this that A, can be extended to characters of K%/K* of conductor
Q»B,w, of finite order in A, ways. But in these extensions, hg/hy
characters satisfy the second condition, since 11, K* N F¥=U,F* by (2.3).
Here Ux=1[]50%:X[]s K5, where U and % run through all finite and
infinite places respectively. This completes the proof.

Let 2 be as in Theorem 2.5. Then by a result of Jacquet-Langlands
[9], there exists a cusp form f; in S(q®*'(p), @+ Ny, 1) such that L(s, f;)
==L(s, 2). Following the argument of Koike [10], we will show that there
exists a cusp form in S(q**, 1, 2) congruent to f; modulo a prime ideal
dividing p under the following assumption (2.7) on L(0, @Nz,) and
L0, oNy ).

(2.7) L(0, wN,,g)=a/p mod p with a ¢ Z prime to p and L(0, wNy,g) is
prime to p.

Let $°(g**!, 1, 2) denote the subspace of new forms in S(q**', 1, 2) (for
definition cf. Miyake [12]). Under (2.7), we can prove the following
theorem.

Theorem 2.6, Let K, p and 2 be as in Th. 2.5.  Assume (2.7). Then
there exist a prime P of Q lying above P(CQ(1'/7~ ")) and a primitive form
hin S°(q®+', 1, 2) which is congruent to f, modulo P.

Proof. Let f'=f,E.5, where E{*);5(g)= E,,wN<g[(1) 2;] with N=

Nr,9, and let P’ be a prime ideal lying above P of the field generated by

the value of 2 over Q(1¥/¢*-"), Then f” e S(¢®*%, 1, 2) and f=f" mod P’
by (2.7). Put

f=Tr(f)= 2] f"(ga)

abeprlxp([;@’gp Zn] \6L@20p)

Let S be the set of prime divisors of p in F, and for a subset S of S, put

Ts=1Tlyes TLp) for c=q>**(p) and ¥*(S)=[[,cs V(@,) with r=0N.
Then we see f is contained in S(q>*%, 1, 2), and

f=f'+ 2NV TsWf'.
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By Proposition 1.1 and (2.7), it is easy to see that f=f’ mod P’, and f is
a common eigen function for all 7.(a) modulo P with /=q»** Let X
be a character of F* such that X|0}=( /q), and U, be the operator defined
in [15]. Then in the same way as in Corollary 4.2 [13], we see U, f'=
(U, L)EY ;5=c,f’ with a non-zero constant ¢,. Since Tr and U commute
with each other, it follows from Theorem 1.4 in [15] that f=Tr(f’) is
contained in S°(q**',1,2). They by a Lemma of Deligne-Serre [4], we
obtain our result.

Remark 2.7. The condition (2.7) is always satisfied if F=Q and
p=5, since L0, »)=—{(2—p)=1/pmod Z, and L(0, w)={(~1)=—
1/12mod P. For n>2, assume p is prime to 5. Then we have

L, oNy,9)=—L((2—p)mod Z,,

28) L(0, oNy/0)=Cp(—1) mod P.

Here &5 is the Dedekind zeta function of F. Hence the condition (2.7)
can be stated as {,(2—p)/l(2—p) and {(—1)/E(—1) are p-units. (2.8)
can be shown in the following way. Let L,(4, s) be the p-adic L-function
of a ray class character A2 of F constructed in Deligne-Ribert [5] and
Cassou-Nougués [3]. Then for a suitable ideal ¢, (A(c)(Nc/w(Nc))'~*
—1L,(4, 5) is an Iwasawa function. Hence

A WNcJo(Ne))— DL X, 0)=Q()(Nc/o(Nc))?~'—1)L (X, 2—p) mod P,

where P is the prime ideal of Q,(2) the field generated by the values of 2
over Q,. If by is prime to p, we can choose as ¢ an integral ideal such
that

ord, (N¢/w(Nc))—1)=1.
The first congruence follows from this taking A=trivial. The second one
can be shown in the same way taking 2z=(wNy/,,)’. Furthermore, if F is

an abelian extension of @, for a prime p with (p, 2dyn)=1 it is known by
Leopoldt [11] that

L2—-p)E2—p)=

where R, =det(Q,(¢)))ici<n1,s ccarr/y for a system of fundamental units
€1, &, -+ *5 6,5 Of F, and Q, is the Fermatquotient mod p, namely for an
integer 4 of F prime to p,

A t—1

0,(ADH=-= mod p.
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Here g is the norm of a prime divisor of p in F. Hence in this case, the
condition on &;(2—p)/¢(2—p) can be checked by 4, and R,.

§ 3. Numerical Examples

In this section, we will discuss a few examples of Theorem 2.5 and
Theorem 2.6, and examples of different type. Before giving them, we
explain some notations. Let X and U, be as in Section 2. Then
S%q>+*, 1, 2) decomposes into a direct sum of four subspaces Sy, Sy, St
and Sy;. Each subspace is given as follows;

L ={fe S @™, 1, ) |Wf=f, Uf=f}
Su ={fe SAa®*', 1, D)|Wf=f, Uf=—f},
Su,={fe 8@, 1, )|Wf=—f, Uf=—f}.
Sw={fe (™", 1, 2)|Wf=—f, U,f=f}.

Here (Wf)(g)=f (g [52 41 _01] > These subspaces are stable under

q
Hecke operators. We write Gy, Gy Got,, and G7,, for the character-

T (a)?

istic polynomials of 7,(a) with ¢=g**! on( )SI, Si, Su,, and Sy respec-
tively. Let A(X)=2'a,X* be a polynomial with coefficients in an algebraic
number field M. We set (Vo7 (X)= ], (Za;x"), where ¢ runs through
all the distinct embeddings of M into Q. For a prime ¢ and j, 1<j<
(g—3)/2, let a;=e?=1V=T/a4e-2=7 V-2, and wy=1. We express by (a,, - - -,
@ -ws,) the algebraic number ayo,+ -« « + a5 -52% -5 in the maximal
real field F, of Q(1V9). Let 7, be as in Proposition 2.1, and 7, =i Ng,»7;5 "
If we define the polynomial H/(X) in the same way as H,(X) taking 7,
instead of 5, then we find H)(—1)=H,/(1)’. The formula for H)(—1) is
simpler than that of H,(1). - For example, let X*—sX+41 be the minimal
polynomial of 77, then H)(—1)=(s+s')* for n=2, and H)(—1)=
(" +57+ 5"+ 55's” — 4y for n=3. Here s’ and s” are the conjugates of
s over @. Throughout the following examples, we assume v=1, namely
the level is a cube of a prime ideal. The examples 1, 2 and 3 are the case
where rank Fr =rank E.+1. The example 4 treats the case where
rank Ey=rank E,. In this case, K is a totally imaginary quadratic
extension of F. The examples 5 and 6 concern the case where rank E.
=rank F,+2. We note that this case does not occur for F=Q. These
examples are calculated by the formula in Saito [15].

Example 1. Let F=Q(v/ 5 ), and = () with 6= —14+24/'5, Ny,o(6)
=—19. Then we find dim S;=36 and dim S;;;=18, and the followings:
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G}'I(Icz))(X)-': NFls/Q(Xz—A)
with A=(4, —1,0,0,1, —1, —1,1,1), Np,o(4)=419;
G}V'I(I(S))(X)'_—_NFm/Q(Xz_'B)
with B=(6, —5, —2, —5, —5, —2, —5, —4, —3),
Ny, o(B)=372-419.

Let K=F(+¥ @), then f.,=q and F and K satisfy the conditions (2.1),
(2.2), and (2.3). We remark that for a prime ideal I of F which remains
prime in K, the Fourier coefficient for [ of f; associated with an idele class
character 1 of K vanishes. Hence the modulus P in Theorem 2.6 should
divide the constant of the characteristic polynomial of T'({) on Sy;;. In the
above example, the prime ideals (2) and (3) in F remain prime in K, so P
should divide 419. In fact, we may set

1=vo , _5+¥5 _1+45 5
4

o= 3 s T 4
Then we find
o= — 7815395405 — 34951510814/ 5
10_
4
4 4194233399+ 2875718199\/T J7,
and

Hy(—1)=H/(1)*=5,
HY(—1)= H(1=(5-419-3730499)%.

Since we have

Qp(1+;/_§>5158f5—modp for p=419,

and {x(—1)/C(—1)=—2/5, we see the prime 419 satisfies the conditions
in Theorem 2.5 and Theorem 2.6. So the above example gives a verifi-
cation of our Theorem 2.6. Now, the prime (3730499 in H,(1)* appears
in the remaining space .S; as follows:
Gé((z))(X) = Nl"m/Q(X4 —CX*+ D)
with C=(13,1,0,0,1,1,3,1,1)
D=(28,7,0, —6, —1,9, 15,5, 7),
Ny oo(D)=37%-3730499.
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Since we have Qp(1+J_5—)/251640877-f5— mod p for p=3730499, the
condition (2.7) is valid also in this case.

Example 2. Let F=F, and 8, =e2=i¥=1/74 ¢-2sj¥=1/7 for an integer j.
We set q=(6) with § = —3-+4p,+ B, then Ny ,()=13. We find

dim S;=12, dim Sy;=0,
and the following:

Gg"((2))(X) = NFls/Q(X2 - A)
with 4=(9,0,0, —2, —2, —4, —8)
Ny o(A)=3%-4447,

Let K=F(+ @), then F and K satisfy the conditions (2.1), (2.2), and (2.3).
We note Xz,7((2))=—1. We may set

_ 1428440 —(+p)—(+BIVE
0 2 ’ 771_ 2 .
Then we find
= —(326+261ﬁ1+117192)——(714—}—573,81+255,Bz)«/—5
T 2
and

H(—1)=3% Hj(—1)=(3"-4447)".
Since we have

R,= det( 0,(8)  2,(B) )
QP(ABI) Qp(fg3) )
=2613+16228,--24398 modp for p=4447,

and £ (—1)/{(—1)=—4/7, the condition (2.7) is satisfied.

Example 3. Let F=Q(f), where § is the unique solution of X*—4X
+2=0 satisfying 0<8<1. We take q=(0) with §=5+28—35". Then
Nz p(@)=35, and we find

dim S;=4, dim S;;=0,

and
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Gl (X =X*—8X*411,
GLy,(X)=X*—17X* 411,
where p,=(f) with Np,=2 and p,;=(6— — F°) with Np,;=13. Let K=

F(6), then F and K satisfy the conditions (2.1), (2.2), and (2.3), and the
prime ideals p, and p,, remain prime in K.  In this case we may take

—34+B+F+(1-28+5)V 8
2

1— —
7702_'_‘3_;__‘_/_0_’ and 7]1=

We find

i TITBF2EH(—5+28+28)V 0
2 2

and
Hi(—1)=2" Hi(—1)=211~

We know by the table 8 in Cartier and Roy [2] that {z(2—p)/{(2—p)
and £7(—1)/{(—1) are p-units for p=11, hence the condition (2.7) is
satisfied.

Example 4. Let F=Q(+/ 2), and q=(f) with = —7-+44/2. Here
Nro{6)=17. Then we find

dim $;=8-38, dim Si;=4-38,

and
Grivin(X) =N o((X— Ay (X*— BX+C))
with 4=(0,0,1,0,0,0,0,0,0)
B=(1,0,—1,1,1,0,0,0, 0)
C=(0,0,0,1,0, —1, —1, 1, 0)
GTi@(X)=Nr,yo((X*— D)X?)

D=(10, —1,—2,1,0,3,2,1,0).
Let G4 v5,(X) and G%)y(X) be the second factors of G v4,(X) and
GTlsy(X) respectively. Then we find
G.1) NG van(4))=953-1123

Ny 01o(Ghen(¥D))=953-1123.

Here we note 4 and +/D are the roots of the first factors of GI z,(X)



292 H. Saito and M. Yamauchi

and GI{s),(X) respectively. Let K=F W 0)=F («/ —T+44/2 ), then K is
a totally imaginary quadratic extension of F with the conductor q, /i, =
1, and Eg=(+1,1—4"2). Leto, and o, be the embeddings of K into
C given by a,(f)=p for e K and

a(B)=(@—bv 2)+(c—dv2)V 6,

for B=a+by 2 +(c+dv2)V 6 with a, b, c, de Q. Then all the em-
beddings of K into C are given by o¢,, poy, 0, and pg, with the complex
conjugation p. For a € g prime to q, let a=a’b mod (v #) with @’ € 0 and
b e o, congruent to 1 modulo (v 8), and for b let b=14-u+/ 9 mod (v )
with u e 0, and put J(b)=¢*"**/"", Let X be the quadratic residue symbol

of (0x/(v 6))*=(0/6)*. For a € og prime to ¢, define

(@) =21 (b)a(a)pox(a),

(@) =) (b)poy(a)ox(a),
then 2, and 2, give Grossencharacters of K with conductors (v 8)°. Let
/i and f, be the cusp forms satisfying L(s, f)=L(s, 4,) and L(s, ;)=

L(s, 2,), then we see f; and f, are contained in Sy;;. Let C,(m) and C,(m)
be the Fourier coefficients of f; and f;, respectively, then we find

NFu/Q(X'_ Cx((ﬁ)) (X— Cz((ﬁ))) = GOT(( J?))(X)

N o((X — CB) (X — CA(3))) = G an(X),
namely G%v5,(X) and G} ,,(X) correspond to the subspace spanned by
the companions of f; and f,. Hence (3) suggests that f; and f, are congru-

ent to some cusp forms in Sy; which are different from the companions
of f; and f, modulo prime ideals lying above 953 and 1123.

Example 5. Let F=Q(v/ 5) and q=(f) with 6=(11+4+/5)/2. Here
Nio(0)=29. Then we find

dim S;=8.14, dim S;;=6-14,
and
Gl ay(X) =Ny, o(X*— AX*+ BX*—C)
with 4=(13,0,0,1,1,0,0, —2,1,0,0,0, 1,0, 1)
B=(40,2,1,10,3,2,2, —9,7,0, —1,5,5,2,7)
C=(28,7,5,14,6,14,3,1, 14, 2,8, 12, 5, 16, 10),
Gl (X)=Np,o(X*—~DX*+ EX*—FX*+G)
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D=(22,0,0,1,1,0,0,4,1,0,0,0, 1,2, 1)
E=(154,5,0,6,15,1,7, 60, 11,7, 0, 0, 13, 29, 19)
F=(324, —17, 140, —68, — 17, —44, 25, 160, —15, 25, —63,
—61, —4,78,17)
G=(118, —103, —117, —156, — 104, —108, —51, —11,
—112, —60, —146, —126, —89, — 14, —104).
In jthe above two cases, we find Np,,o(C)=259¢-173* and Np,,o(G)=

33871%.763223" for the constant terms C and G of G%,,,(X) and GF.),(X)
respectively.

We shall give one more example of the same type as Example 5.

Example 6. Let F=Q(v/29), and q=(f) with §=11+2+429. Here
Nz,o(0)=5. Then we find dim S'=2, dim S™=4, and

Gl 2)(X) =Ny o(X*—AX*+ B)

B=(5, —5)*
GITI(I(z))(X) =NF5/Q(X2_' C)
C=(1, -1y
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