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On the Discriminant of Transformation Equations
of Modular Forms

Yoshitaka Maeda

Introduction

In our previous paper [3], we have proved that the transformation
equations of certain modular forms can be expressed by special values of
the zeta functions of those forms. At the symposium, we talked about
this result. Here we give some results obtained after that.

Let f be a modular form of weight k¥ on the congruence subgroup
T'(p) of SL(Z). We assume that p is an odd prime throughout the paper.
Then the transformation equation of f'is defined by

O(X;f)= [ X—=fla)=0,

a&To(p\SL2A(Z)

where (f,7)(z)=det (1)*"f((az+b)/(cz+d))(cz-+d)™* for
r=(¢ B)eGLi®=ir ¢ 6L(R) det (>0}

Obviously all coefficients ¢, of @(X; f) are modular forms on SLy(Z),
and therefore, the discriminant D of @(X;f) is also a modular form on
SLAZ) of weight p(p+1)k. We call that the transformation equation
O(X;f)=0 is Z-rational if all coefficients ¢, have Z-rational Fourier
expansions as modular forms (see § 1, for the Z-rationality of Fourier
expansions). Then one of our results is

Theorem 1. If the transformation equation O(X;f)=0 of f is Z-
rational and if p is an odd prime, then the discriminant D of ®(X;f) is
expressed as

D (=) @-0l2prgr+1p2 i fis a cusp form,
(=De-brprge-1p2 . otherwise,

where h is a modular form on SL(Z) with a Z-rational Fourier expansion
and 4 is Ramanujan’s function exp (2wiz) []-1 (1 —exp Qminz))™.
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Especially, when f is the special cusp form discussed in [3], we even
know the divisibility of the above form & by 4% +Y/* (Proposition 8). We
will prove this theorem in Section 2.

In Proposition 3, we will also show under the assumption in Theorem
1 the following congruence relation:

OX; f)=(X—0)(X?—0,) modp.

Here both ¢, and o, are certain modular forms on SL,(Z). Though this
result follows from the Eichler-Shimura congruence relation [6, Theorem
7.9], we will give an elementary proof without using their result.

“In [3], we considered the transformation equation @(X;f)=0 for
f=gE¥,, where g is a cusp form on I"(p) and E}, is a certain Eisenstein
series. In Section 3, we will show that for a certain choice of g, the
transformation equation @(X; gE¥,)=0 of gE¥, is Z-rational. In Section
4, we will give numerical examples of the transformation equations for
the above gE¥, and the specialized equations at several elliptic curves.
(See [3, § 3], for the definition of the specialized equation at an elliptic
curve.)

§1. Congruence relation of transformation equations
Let I' be a subgroup of SL,(Z) containing

F(N):{(‘c’ 2) ¢ SL(Z)|a=d =1, b=c=0 mod N}

for some positive integer N. We denote by .#,(I") the vector space
consisting of functions f on the upper half complex plane § with the
following three properties: '

(i) fis holomorphic on §;

(i) flir=fforallr el

(iii) The Fourier expansion of f|,7 has the form } ., a,(n)e(nz/N)
at joo for all 7 € SL(Z) (e(z)=exp (2xiz)).
Moreover, if ,(0)=0 for all 7 € SL,(Z), then f is called a cusp form.
The subspace of #(I") consisting of all cusp forms is denoted by &,(I").

Let /A be a subring of C and f be a function on § with a Fourier
expansion of the form > 7 ,a(ne(nz/N) for some positive integer N.
Then we say that f is A-rational if a(n) belongs to A for any n. Let
8(@)= > ob(me(nz/N) be another /A-rational function and m be an ideal
of A. Then we write f=g mod m if a(n)=>b(n) mod m for all n. Fur-
ther, for any field-automorphism p of C, we define an action of p on f by

@)= 3 alrye(nz|N).
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Let p be an odd prime and I",(p) be the subgroup of SL,(Z) defined
by

I'(p)= {(g 3) e SL(Z)|c=0 modp}.

Lemma 2. Let f be an element of M, (["(p)). Then the transforma-

tion equation Q(X; £)=0 is Z-rational if and only if both f and f l"((l) _(1))

are Z-rational.

Proof. Put r:((l) _(1)) Let us write the Fourier expansions of f
and f,z as
(1.1) @)= alnye(nz),
and
(1.1,) (/e)@)= 3 bln)e(nz]p).

Further let us write the transformation equation of f as
+1

a2 OX; f)=X"*'+3, (— g, X7*1-e,
#g=1

First let us show that if both f and f|,r are Z-rational, then all coefficients
g, are Z-rational. Let us define a set Z by

(1.3) 92:{((1) (1)) ru=((1) —2)‘u=0, 1, ---,p——l}.

Then, since p is a prime, the set Z gives a complete set of representatives
for I'(p)\SLAZ) (e.g., [4, Lemma 2.2]). Since z,= ((1) —(1)>((1) ;’), it
follows from (1.1,) that for any integer u,

(14) (fe)E)=3, " bletnzlp),

where {=e(1/p). Since all Fourier coefficients b(») belong to Z, the
modular forms f|,z, are Z[{}-rational. Thus the coefficients o, are Z[]-
rational. 1In fact, the coefficients g, are symmetric functions in {f],a}.ca-
On the other hand, (1.4) shows that for any field-automorphism p of C,
{(f1k@)}eca={f i@} sca- Thus we have ot=g,. This shows that the
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modular forms ¢, are Z-rational. Conversely assume that all coefficients
o, are Z-rational. Then we have, for any field-automorphism p of C,

(1.5 T O —fha) =TT (X (/1.

€z

Especially, we have f*=f| .« for some we Z. Assume a#((l) (1))

Then f* belongs to both #,(I"(p)) and A& (o 'I'(p)x); therefore, f* is
an element of #,(I"), where I" is the subgroup of SL,(Z) generated by
L'y(p) and a™'I'(p)a. Since p is a prime, I'y(p) is maximal in SL(Z);
thus I” is different from I")(p), and therefore, I" is equal to SL,(Z). This
shows that f*, and therefore, f belongs to #,(SL(Z)). Hence we have
fe=ffor any field-automorphism p. Namely, f is Q-rational. On the
other hand, the vector space ., (I'(p)) has a Z-rational basis (e.g.,
[8, (9)]). Thus we can write f as

f@)=c iﬂ d(n)e(nz)

with a rational number ¢ and rational integers d(n). Let us consider the
equation @(X; f)=0 over the ring Q[[¢]] of formal power series in g=e(z).
Then fis integral over Z[[q]] and is contained in its quotient field. In
fact, all coefficients of @(X; f) are Z-rational from the assumption, and
therefore, they belong to Z[[g]] for g=e(z). Since Z is principal, Z[[q]]
is a normal ring (e.g., [2, VIL. 3, Exercise 9c¢]), and this shows that f is Z-
rational. Next we shall show that f|,z is also Z-rational. Put g=f|z.
It follows from (1.5) that for any field-automorphism p of C, g* =g, 'a
for some « € Z. The set t7'Z# gives a complete set of representatives for
v y(p)c\SL(Z). Therefore, if the space #,(z~'(p)z) is stable under
the action of p, the above argument for f can be applied to g, and
therefore, g is Q-rational. In fact, the stableness of .#,(z~|(p)r) under
the action of p follows from [7, Theorem 6]. Let us verify an assumption
of [7, Theorem 6] in our case. Let G be the group GL,, viewed as an

algebraic group defined over Q, and G, be the adelization of G. Put

U= {(‘cz 3) e GL(Z,))|c=0 mode,},

U'={x=(x)) e [ GL(Z)XGL;(R)|x, e U, for all primes ¢},
']
and
S/= QX U/’

where Z, is the ring of ¢-adic integers. Furthermore put S=z7"1S'z,
and I'3=SNGy:, Where Gy.=GL,(Q)NGL;(R). Then we have ['g=
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Q*(z™'I'y(p)r) and Q* det (S)=Q%, where Q is the idele group of Q.
Moreover S contains the set 4g defined by

AS={<(1) ?) e Gylte U Z,X}.

Therefore, it follows from [7, Theorem 6] that the space 4 (z~'["\(p)r)=
M ('s) has a Q-rational basis. Consequently g is Q-rational. The
argument which shows the Z-rationality of f can be also applied to g.
However note that we need consider the transformation equation over
the ring Z[[g"/*]] in place of the ring Z[[q]].

Remark. A similar argument as in the proof of Lemma 2 shows that
the discriminant D of @(X;f) is equal to O if and only if f belongs to
M(SLL(Z)).

Proposition 3. Let f be an element of M (I"|(p)) and let us write the
transformation equation of f as

O(X; =X+ 33 (~1yg, X7+
u=1

If O(X; f)=0 is Z-rational, then we have a congruence
9(X; f)=(X —0,)(X?—g,) mod p.

Proof. Let us write =e(l/p) and p be the unique prime ideal of
Z[{] which divides p. Then we know that {=1 mod p. Since f|,z is
Z-rational by Lemma 2, the Fourier expansion (1.4) of f|,z, shows

Sltu=flir mod p
for any z,. Thus we have
X f)=X—f)X —flr)”  modp,
=X —f)X?—(flkr)") mod p.
Especially, we have
g,=f modp,
and

0,=(f|xr)? mod p.
Thus we have

OX; /)=(X —a)(X?—g,) mod p.
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Here all coefficients of @(X; f) are Z-rational, and especially both ¢, and
o, are Z-rational. Therefore we have

OX; =X —a)(X?—0,) mod p.

§ 2. Proof of Theorem 1

By the definition of the discriminant, we have

D=T] (fla—f1:p)

where the product is taken over all non-ordered pairs (o, f) with a8 in
the representative set Z as in (1.3). Then we see

D=l =Sl _ I (fhea—Slieo)

u<v=Ep

Obviously D is a modular form on SL,(Z) of weight kp(p-+1). Let us
put

=T =N L (o1l

Then we see D=4¢% First let us show

Lemma 4. ¢ is a modular form on SL(Z).

Proof. 1t is sufficient to prove that § [,,,((1) %):5 and o [,n((l) “(1))

=0 for m=kp(p+1)/2. Put o=<(1) %) and r=<(1) —(1)) The right
multiplication of ¢ on the coset space I"(p)\SL,(Z) induces a permutation
on the representative set %, and ((1) ?) is transformed to ((1) (1)), Ty 1O
7y, and z, to z,,,, for u=0,1, .. -, p—2. Thus we observe that the first
factor []224 (f —flr,) of 8 is invariant under ¢, and that

HS . (flkfu—flkrv)}!kp(p—l)lzaz(_l)p_lo n o (flezu—flito)-

0Zu<vEp— Su<vsp

Since p is odd, this shows that §|,0=4. Also, ¢ induces a permutation
on Z, and <(1) (1)) is transformed to 7, 7, to ((1) (1)), and 7, to t,q, for

u=1,2,...,p—1. Here v(u) is an integer in {1, 2, - .., p—1} satisfying
vwu=—1 mod p. Rewriting J as

T o=ed T Sha=rleds T lew—rle,
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we observe that

he=—T1 F=7hed T le=led_ L (Flwo—F )

Thus, in order to prove that 6],,z=4, we have to show that the last factor
Misucvsp-1(flita—flits) of & is alternating under the permutation v;
namely, it is sufficient to prove that the permutation +» on (Z/pZ)* defined
by y(a)= —1/a for a e (Z[pZ)* is an odd permutation. Since *=id,
we see that.

Y= H ,(a’ b),

where the product is taken over all the transpositions (a, b) between a
and b with ab= —1 and a#b. The number ¢ of the elements in (Z/pZ)*
with a*= —1is 2 or 0 according as.p=1 mod 4 or not. Thus (p—1—1¢)/2
is odd. Since the number of the transpositions in «» is (p—1—24)/2, 4 is
an odd permutation. This concludes the proof of Lemma 4.

We claim that

2.1) d=cg, where c is a constant with c¢*=(—1)?"Y"p? gnd g is a
Z-rational modular form on SL{(Z).

In fact, both fand f|,r are Z-rational by Lemma 2. Thus, using the
Fourier expansion (1.4) of f|;r,, we can find polynomials §,(x,y) in
Z[x, y] so that

22) Fleu=Fley=(C*—T) 3 Balc", )enzlp)

for all ¢, and z,. Put c=[[ocucvgp-1({*—E&%). Then we see that

(=1 ] ()

0fu<vsp-1
-1

=(=e-r 1 @ —¢)

U, V=
UFEY

=(=ne-e 17 e 1T a—e0)

U=

=(—1)@-vrpe,

Further put g= [[520(f —flita)* [Togucosp-1 {2001 Ba(E* L e(nz/p)}.
Then [[224(f—fl|kz.) is Z-rational as shown below. For any field-
automorphism p of C, we defined the action of p on a Fourier series
o= " c(n)e(nz/p) by ¢*=> 7 ,c(n)*(nz/p). Then the Fourier expansions
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(1.1,) and (1.4) of f and f|,z, show that any automorphism p induces a
bijection of the set { f — f,z, |4=0,1,2, - - -, p—1}. Thus [[33(f—fi7w)
is Q-rational. Moreover, all Fourier coefficients of f—f|,z, belong to
Z[£]. Thus [[224(f~flir.) Is Z-rational. A similar argument combined
with the symmetricity in x and y of the polynomial §,(x, y) shows that
Tosucvsp—1 {21 BalC® CVe(nz/p)} is also Z-rational. Therefore g is Z-
rational. Note that 6=cg. Then Lemma 4 shows that g is a Z-rational
modular form on SL,(Z). Thus (2.1) is established.

Now we prove the divisibility of g by the power of 4 as indicated in
the theorem. Let us put h=g/4®~-"”, where 4(z)=e(2) []r-. (1—enz))*.
Since the Fourier expansion of g starts from e((p—1)/2-2), A is still a
modular form. In fact, the Fourier expansion (2.2) of f|.r, —f|:7, starts
from e(z/p), and therefore, by counting the number of such factors in the
product for g, we know that the Fourier expansion of g starts from
e((p—1)/2.z). Further the cusp form 4 is nowhere vanishing on £ and
its Fourier expansion starts from e(z). Thus 4 is holomorphic on § and
so even at ico. Since the first coefficient of the Fourier expansion of 4 is
equal to 1, 4 is again Z-rational. Next we assume that f'is a cusp form.
Then, since the Fourier expansion of the first factor [[224(f—flst.) of &

starts from e(z) or higher term, that of g starts from e(f’-;—lz) or higher
term. A similar argument as above is still valid. This completes the

proof of Theorem 1.

We remark the following direct consequence of Theorem 1, which
may be well known:

Corollary 5. Let us consider the specialized equation of f at an elliptic
curve & defined over Q. For the definition of the specialized equation and
the details, see [3, § 3. Under the same notation as in [3, §3], if the
specialized equation O(X; f, £)=0 is irreducible, then the prime p always
ramifies in the splitting field of the equation.

Remark. The above proof of Theorem 1 shows that without assuming
the Z-rationality of transformation equation, we may express D as

D=g7-1p?
with a modular form h on SL{Z).

§3. The transformation equation of gE¥

In this section, let us consider in more detail the transformation
equation of gE¥, as in [3]. Here g is a cusp form in &(I'y(p)) and E¥,
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is the Eisenstein series defined by

rero\To(p) ¢

Et= 5 (et (1=(2 D))

where 1 is an even integer > 2 and ', = {-_t(é ’11> in € Z}. The Eisen-

stein series £}, is a modular form on I"y(p) of weight 2, and is expressed
as follows (see [9, p. 794)):

2
(P*—1B,

where B, is the A-th Bernoulli number and

(3.1 E} ()= {G{(2) —P'G(p2)},
(3.2) G(2)= — B,22+ f;l (3 dle(n).

Let us take a cusp form ¢(z)=>_; a(n)e(nz) in &, (I"y(p)) with the
following three properties:

0 —1
(3.3) go],(p 0)=r¢ for 7=+1;
(3.3) a)=1;
(3.3.) ¢ is Z-rational.

For example, any Q-rational primitive form in &, (I"|(p)) satisfies these
conditions. Moreover, we can construct another example of such cusp
forms. We will give this example at the end of this section.

Let us put
2/2
(3.4) g=2 Ne,
d
where we write
3.5 (p*—1)B,/24=N,/D,

with mutually prime integers N, and D;, and d is the greatest common
divisor of p?* and D,. Then we have

Proposition 6. The transformation equation of gE¥ , is Z-rational.

Proof. 1t is sufficient to show that gE¥, and gE¥ |,z are Z-rational
(see Lemma 2). Here k=/+2 and r=<(1) —(1)) We see from (3.1),
(3.2) and (3.5) that
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L3 be(na) )

(3.6) L= 52

with b(n) e Z. Thus N,E¥, is Z-rational, and therefore, gE¥, is Z-
rational. Since G,(z) is a modular form in 4 ,(SL,(Z)), we have

3.7 Gip2) ;= p~*G(z/p),

and hence, (3.1) shows that

(3.83) (N:E},li0)(2) =D {G(2) — G(z/p)}.
On the other hand, it follows from (3.3,) that

(3.9) (ple)(@)=Tp™"¢(z/p).

Thus gE¥ |,z is again Z-rational. In fact, both the modular forms ¢(z/p)
and G(z)— G (z/p) are Z-rational; therefore, the modular form:

D
(3.10) (8ES, [io)(2)= 7’7290(2/17){@(2) —Gy(z/p)}
is Z-rational. This is what we wanted to show.
Propesition 7. Let us write the transformation equation of gE¥ , as
p+1
O(X; gEF )=X?""4-3 (— o X P¥1mx,

z=1

Then the modular form ¢, has a Fourier expansion of the form

G.11) o, (5)= —r( ) o(22) + 3 c(r)e(nz)

with rational integers c(n).

Proof. Since o, is the p-th elementary symmetric function in
{8E¥,\x@}se z» We have by (1.3) that

p—1 p-1 p—1
0,=8E%, {5 1 (€Ef, e )+ T (GE L, beo)-
vFEU
H 0 —1 . 1w\ .
ere 7,=(; ) Since r,=7 0 1) it follows from (3.10) that

(.12)  @Efhr)@)= 7’-¢((Z+u)/P){Gz(Z) G(z+w/p)}
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Thus we can find polynomials 8,(x) in Z[x] so that (3.12) is rewritten as
D o
(3.13) (8EF, hira)(2)= —77* Z_]2 B(C")e(nz/p)

for all z,. Here {=e(1/p). Especially we have the second polynomial
BAx)=x* Therefore we have

e T ernle@=—1(2) 5wz

with rational integers w(r). Note w(2p)=1. On the other hand, since
the Fourier expansion of gE¥, starts from e(z), (3.13) shows that

619 eEn{S T EELlel@= 3wzl

VXU

with rational integers w/(n). Thus, considering w(2p)=1 and 3p—2>2p,
we see that the Fourier expansion of ¢, starts from e(2z) with the coeffi-
cient —7(D,/d)?. Moreover, it follows from Proposition 6 that ¢, is
a Z-rational modular form. This concludes the proof of Proposition 7.

Remark. Our modification of ¢ as in (3.4) is best possible. In fact,
analyzing carefully the above proof of Proposition 6, one sees that if both
coE¥, and cpE},|,r are Z-rational for a constant ¢, then ¢ is a rational
integer and a multiple of p**N,/d.

Proposition 8. The discriminant D of O(X; gE¥ ) is expressed as

2, .

D=(—1)®-brpp fxp+Dp2,
where h is a Z-rational modular form on SL(Z).

Proof. The Fourier expansion (3.13) of the modular form gEf,|,z,
shows that both the Fourier expansions of the modular forms gE}, —
gE} kv, and gE¥ v, —gE}, |7, start from e(2z/p) for any r, and =z,
Thus that of the modular form

p-1
1 (sEf,—gEf ke T (L eu—8Ei, e

starts from e((p+1)z). Then a similar argument as in the proof of
Theorem 1 shows our assertion.

Now let us give examples of the cusp forms ¢ satisfying the condi-
tions (3.3, , .) when there exists a primitive form of conductor p. Let us
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take a primitive form f in &(I"(p)) of conductor p and write the Fourier
expansion of f as

@)= bme(n2).

(For the primitiveness of cusp forms, see, for example, [9, p. 789].) We
denote by M the module generated over Z by all b(n) in C and by K the
field generated by M. For any isomorphism ¢ of K into C, we define
the conjugate f of f by

J@)=2 bloye(n).

As is well known, f° is again a primitive form in &, (I"y(p)). We define a
cusp form Tr(af) in & (I")(p)) for any element « in K by

Tr(af)=2af",

where ¢ runs over all isomorphisms of K into C. Since f is primitive, it
follows from [1, Lemma 3] that

(3.16) Wy “o)=1h T==L
Moreover we have

(316) Iy "o)=1r

for any f°, because 7 is expressed as

(3.17) 7= —b(p)p* "~

Thus we see

(3.18) Tr(af) ]g<2 ‘é):rTr(af)

for any element « in K. We see easily that

(3.19)  Tr(af) is Z-rational if and only if « belongs to
D={B e K|Try,o(px) € Z for all x e M}.

Proposition 9. Let us put
U={a e 2| Tr (af) has a Fourier expansion of the form
e(2)+ > ms c(n)e(nz) with rational integers c(n)},
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and
V={aeP|Trg,plae)=0}.

Then we have
(1) U is not empty;
(2) Visisomorphic to Z°~! for d=[K: Q];
() U=wa,+V for any element «, of U.

Proof. Let « be an element of 2. Since b(1)=1 and Tr(af)_
2 i1 Trg p(ab(n))e(nz), we see that

(3.20) « belongs to U if and only if Trge=1.

Since M generates K and since M is a Z-free module, M is isomorphic to
Z°. Let{w}{, be a Z-basis of M and {n;}{-; be the dual basis of {w,;}
with respect to Try,o; hence we have '

(3.21) Trrplwin;) =045

Then we know
d
(3.22) D=7, Zy, (direct sum).
i=1

Since 1 (=5(1)) belongs to M, we may write as 1=>_%_; m,w, for some
rational integers m, Then (3.21) shows that m,=Tr,y, for any i.
Namely, we have

d
(3.23) 1= ; (Trx/g7:)e;-

Let ¢ be the greatest common divisor of {Trgg7;}%.. Since f'is primitive,
all Fourier coefficients b(n) of f, and therefore, all w, are algebraic integers.
This combined with (3.23) shows that ¢ is equal to 1. Thus considering
(3.22), we know

(3.24) Try, 09 =Z.

Especially there exists an element ¢, of 2 such that Tr(e,f) belongs to U.
Since V' ®,Q is isomorphic to Q¢~*, we see the assertion (2). The third
assertion is clear from (3.20).

Now let us put p=Tr(«f) for any element « of U. Then (3.18),
(3.19) and (3.20) show that ¢ satisfies the conditions (3.3, ; ,).
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§ 4. Numerical examples

In this section, we are going to give several numerical examples of
the transformation equations @(x; gE},)=0 and the specialized equations
O(X; gE¥,, £)=0 at various elliptic curves & defined over Q. See [3, § 3]
for the definition of the specialized equation at an elliptic curve. For
simplicity, we consider only the case dim %(I'(p))=1. Thus we may
take as ¢ in (3.4) with (3.3,,,,.) the unique primitive form in %,(I"(p)).
Let us modify ¢ as in (3.4) and write the modified modular form as g.

Let us explain how to read the table given below by taking the
following case I as an example. This case is the restatement of the
example given in our previous paper [3, § 5]. We will add several new
examples here. We use the same notation in Section 3 and write simply
G, H, and D for 12g,, 216g,, and 4, respectively. = Here we put g,=20G,
and g,= —G,, where G, and G, are the Eisenstein series defined by (3.2).
Thus both 12g, and 216g, are Z-rational and their constant terms are
equal to 1.

Casel. p=5, {=4, 1=4, k=8.

g=—5-13¢.
X 1
X° 0
X* —25GD
X —1440D"
X: 155G*D*

X GH*D*+18096GD*
1 65H*D*-1-538240D*

The above table can be read that the transformation equation @(X; gEF,)

is given by the polynomial

4.1) X*—25GDX*—1440D*X°*+155G*D*X*+(GH*D*4-18096GD3) X
+(65H>D*+ 538240D%).

Thus, for example, the monomial —25GD given at the right-hand side of
X* is the isobaric polynomial of the coefficient of X*,

Tr(X) 0
220
Tr(X?) 50GD=2"%.3.14!. %
@) R R TN ERA
229 ¢
Tr (X% 4320D*=2-%.3.22! ( S )
9 Z 38-53-73-112-13~17-19«/144169f24
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Tr (X" 630G*D*=2-%.3.30!

Z( 234 o
v 3“-56-73-112-132-17.19-23.29¢18295489f”)
Tr(X%) —5GH?®D*+89520GD*=2"".3.38!
5 ( — 2% —3537792) P )
7\ 3%.57.75.11%.132. 172.192.23.29. 31 . 374/ (ar)
N(e—3537792)=2'.37.72.11.23.31.73.2161

Tr(X®) 7610H2D*+16815360D*=2"%.3.46!
5 < 2%(5117a+ 17457217536) P )
o\ 325075114135, 172.19%.23%.29.31 .37 .41 - 43¢/ (a) *

N(5117a+17457217536)
— —2%.3%.11.383%.3129512851870124265857.

Here Tr(X*) indicates the p-th power sum Tr(gEf;)” of all the roots of
the transformation equation given in (4.1), and the corresponding isobaric
polynomial is given at the right-hand side of Tr (X#). As we have seen
in [3], the power sum Tr (gE;)* can be expressed as

D@Ep—1, 1, "R} ¢
JEP®) = f, f> -

(See [3, Theorem] for the notation.) =~ After the isobaric polynomial in the
table, we have given this expression of the power sum. (This expression
is not given in [3, § 5].) Thus, for example, in the expression correspond-
ing to Tr (X¥), the value

—2*(@—3537792)/{3"-5".7°- 11*.13%. 17*.19%.23-29 - 31 - 37/ (@)}

gives the special value D(39, f,,, 8°E¥) /7 fi» fop- Here f,, indicates a
primitive form in %, (SL,(Z)); « is a generator of the field K(f,,) generated
over Q by all Fourier coefficients of f,; 4 indicates the characteristic
polynomial of & and '(x)=d+/dx. Further, in the above expression of
Tr(X?®), the summation is over all isomorphisms ¢ of K(f,,) into C. Note
that in the limit of the calculation we have done, all the primitive forms
in &,(SL,(Z)) are conjugate under the automorphisms of C. We denote
by N(7) the norm of an algebraic number 7, for example, N(a—3537792)
indicates the norm of the number «—3537792. 1If the factors in the
listed numbers are less than 10%, then they are primes; otherwise, we do
not know whether they are prime or not.

Let us now list the characteristic polynomials -(x) and their discrim-
inants D(y) of a generator « of the fields K(f,,):

Tr (gE,)" =226+ 3. (8 —2)!
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¥(x) and  D(¥)

40

P(x)=x*—548856x"— 810051757056 x ++213542160549543936
D(y)=2%.3".5%.72.13%.73. 59077 - 92419245301

48

P(x) = x* — 5785560x° — 467142374034432x*
1 1426830562183253852160x
+3297913828840214320807673856
D(y)=27.3%.56.7°.3] .3832
.10210753616344141199245524873423941499439

50

P(x) = x°424225168x* — 566746931810304x
—13634883228742736412672
D(yr)=2%.3".5*.74.12284628694131742619401

60

W(x) = x° -+ 449691864x* — 2209450184054433792x°
—736010060393513697870348288x*
1-810634763334812972416233648439689216x
1-263222216157060824115203098902237248565018624

D(yr)=2".3%.5°.75.17+.23.1019
.65191632047210387890272707448050309485567043235713

20700882988973280588502206945747301717487795597*

*This number 65191 . - .5597 is a number of 97-figures.

Case II. p=S5, (=4, 1=6, k=10.

g=5"31p

X1

X 0

Xt —145G°D

X 587520HD*

X*  3635GH®D*—377403840GD*

X  GH*D*+6290064G*HD*

1 —775H*D*— 7058849600 HD*
Tr(X) 0

Tr(X? 290G*D=2-%.3.18!.

2%.29

3°.5..72.11-13-17 T
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Tr(X?) —1762560HD*=2"%.3.28!

— 38 a
2 31.55.74.11%.13%.19.234/51349 fs")
Tr (X% 27510GH2D*+ 1582277760GD*=2-".3.38!
5 ( 24(131c+ 1196402688) P )
=\ 317.57.74.11°. 132 172-19%.23.29.31 . 374" (a)
N(131a+1196402688) = —277.37.72. 3833 . 32619042931

Tr(X®) —5GH®D*—457402320G*HD*=2-%.3.48!
5 ( —2%(o— 8757800448) P >
7\ 3%.50. 76 114.13°. 17°-19%-23%.29 . 31 - 37 -41 - 43 - 47/ () * ™

N(a—8757800448)=2%.3".5%.19-73.4235321855794559

Tr(X®) 2939450H*D*-+ 1421841072000 H?D* 4 585580127846400D°
—2-18.3.58]
2%%(168536131 %+ 47995636461477888 ,
. Z( 1-9993503564022187290525696) f).,
T\ 375175, 115, 134, 175 19%.232.29%. 31 . 3741 - 43 - 47 - 534 (a) *

N(168536131a*-+-47995636461477888a -+ 9993503564022187290525696)
=—215.3%.5%.11*.13.17*
-11658425315887617309205945633903040665382638265537
2507793225580762957007062391

Case Ill. p=5, £=4, i1=8, k=12.
g=—5-13-313¢p

X* 1
X3 604800
X —625H%D+1301832000D*

X? 117113760 H*D* 4+ 11768083937280D°

X 69755H*D? -+ 1728323786880H°D* 4 39309437117214720D*

X H*®D*4- 17889611952 H*D*— 18249030627747840 H*D*
4-15417626668505432064.D°

1 20345H¢D*4335091233981440H ¢ D* +- 6660452326511923200H*D?
+32175921734973802414080D°

Tr(X) —60480D
Tr(X?) 1250HD-+ 10541664000

Tr(X®) —A464741280H*D*—20325436323840D°

Tr(X*) 502230H*D*27308861671680 H*D*-411430804078878720D*
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Tr(X®) —5H®D*—552459647760H*D*—1001721601502668800H *D*
—8528203665906974392320D°

Tr (X% 226940810H°D*+4 101092055900113920H*D*
+30124477620177181286400H*D*
+178664126617848672068567040D°

Case IV. p=5, ¢{=4, 2=10, k=14.

g=5%71.521¢
X 1
X 0
X*  —2545GH®D —604109741760G D*

X 25344112320H°D*—211931520573911040HD?

X? 1207235G*H*D*—27110066987928960G*H*D?
—18393423999571176837120G*D*

X GH'D*+22434273283920GH*D?
-+ 5557901335458375149568G H *D*
—306714023877649287994343424GHD?

1 —924775H°D*—21779093073266168000H *D*
—137733379370650837386547200H* D*
—1335397897742946615034439270400H*D*

Tr(X) 0

Tr(X?) 5090GH*D-+1208219483520GD*

Tr(X®) —76032336960H°D*+635794561721733120 HD*

Tr(XY) 8125110G*H*D*+-114590105122832640G*H*D*
+803470856176952483143680G2D*

Tr(X®) —SGH'D*—434675195691600GH*D*
—101645803821847030179840G H*D*
1 641683050942935873278036869120G HD?

Tr(X®) 14539127450 H°D*4-2490718583181800323200 H*D*
1-72718216860527846662995763200 H* D?
1 642540701843479691260435943482982400 H* D"
1-877146390169927704752272689036106137600D"

Case V. p=5, {=4, 1=12, k=16.
g=—5-31-601-691¢
X 1
X° 81829440GD
X* —10225G*H*D 4 1216590866568000G*D*



X3

XZ

Tr (X)
Tr (X9

Tr (X?).

Tr (X%

Tr (X°)

Tr (X°)

XG
X5
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2910441252960 H*D*+ 6127470158334076661760H *D*
—32282327635049729294991360D*

20065355GH*D*+-204260280738724336320GH*D*
+10256756271487171426170408960G H*D*
+92754860107460880754044689448960G D*

G*H?®D*+-30194230743474480G*H* D*
—1616075240214171538481347584G*H*D*
+-4211742212834091386209897324806144G*H*D*
—13223615489524979651841803535733751808G*D*

64370105H " D*+ 1860464795874207408499840H D+
+1435861361962972042529821882490880H ¢ D*
+272324675659205212055849466146099036160H * D*
+108890178080782704778692703693672305131520H*D"
+-871861028963226012849339863959645515656724480D°

—81829440GD

20450G*H*D +4262875517577600G*D*

—11241441830880H*D* —267658181885197261025280H*D?

—333901542596495424649297920D*

128839830GH D* 4 359708164048445224320GH* D?
+17176524173998325938032762101760GH*D*
+15348600887342729858716479124930560G D*

—5G*H®D*—334334374436696400G*H*D*
—6232562017950017936662318080G*H*D*
—1105217254226789312600343970428511518720G* H*D?
—704474107875704575852741574977576721448960G*D°

907155508010H *D?+ 50642550664820076143642880H D*
+-84100815515218630048984550520668160H *D°
+4-71139193278750995233760020495784302385949573120H*D*
+-1520771048810479376839338928924910272909710

61616640H*D"
+558823976148858965042637471021663302378110
42088386560D°
Case V1. p=5, £=6, 1=4, k=10.
g=—5"130¢.

1

0

—55G*D

X4
X3

—41040HD?
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X* 395GH*D*—17266240GD?
X —G*H*D*4121104G*HD?
—325H*D*—2691200H*D*

o=y

Tr(X) 0
Tr(X?) 110G:D=2-".3.181- 2"

3°.52.72.13.17 T

231 'l
Tr(X®) 123120HD'=2-%.3.28! ( )
@3 2\ 3 5113 17. 237513457

Tr(XY) 4470GH2D*+39519360GD*=2"".3.38!
> ( 24(149+ 142350336) p )
31,5775 112132 172-19%.23.29 .31 - 374/ () * "
N(149a+ 142350336) = —2%5.37.52.72. 198389 - 89003
Tr(X%) 5G°H®D*-+10680480G*HD*=2-%.3.48!
5 2%%(r— 180741120) P )
T 38,570,114 13%. 172 192.232.29.31 - 37 .41 .43 . 4T/ (a)
N(ax—180741120)=2%.37.31.1223-18919300277

Tr(X®) 204350H*D°+ 8391590400H2D* 4 5137086873600D°
=2-11.3.581

25%(66374230* 4 2121380494196736«

-Z( —67543443341033481437184 )
327,510,790, 115,134 17°. 19°.232.292.31 .37 .41 . 43 .47 . 53y/(a) "

N (66374230 +21213804941967360 — 67543443341033481437184)

=217.3%,50.75. 17¢.181.233

-45045647242111565992568339193860114270691175

4

G

6985491297538017303
Case VII. p=5, {=6, 1=6, k=12.
g=5"3lp.
xe o1
X5 —10800D
Xt —175H®D-+39994560D°
X®  —954000HD"— 585066240000
X®  4595H*D*+ 5976610560 H*D® - 29346922598400D*
X —H*D*—26913792H*D*+ 1347784593408 HD*

1 3875H°D* - 35294248000H *D*



Tr (X)

Tr (X?)
Tr (X7)
Tr (X%
Tr (X¥)

Tr (X?)

Discriminant of Transformation Equations

10800D

350H*D +36650880D*

8532000H D%+ 139408128000D°

42870H*D*+4 70958165760 H>D* +- 554255811993600.D*

SH®D*42374938960H*D? +433666967592960 H*D*
+2237768521113600000D°

5935550H ¢D*+-42310659964800H *D*

169

+2330955736245043200H *D* 4 9081391088816750592000D°

© Case VIII. p=11, £=2, 2=4, k=6.

XIZ
Xll
Xlﬂ
X9
XB
X'I
X6
X5
X4
XS
X2

X

Tr(X)
Tr (X?)
Tr (X?)
Tr (X*)
Tr (X*)
Tr (X°)
Tr (X7)
Tr (X?®)
Tr (X°)
Tr (X1

g=—11-61gp.
1
0
11088D
—9075HD
—5962H"D +24952224 D"

—TTH’D— 67215456 HD*

37678713 H*D*+ 25829299584 D¢

—17237913H*D*— 119108926464 HD*

2011493 H*D*+4- 104087609758 H2D* — 68766745458048 D*

—55913H*D*—44737025102H °D* 4 98746847977536 HD*

440H°D"* 46582378638 H*D* — 52178539740844 H*D*
+21138255578398464D°

— H'"D*—308633685H °D*+ 6499878090033 H *D*
—20914887319687488 HD?

—671H*D?*—207290985242 H* D* +1480882485474007 H>D*
—3777866437306791104D°

0

—22176D

27225HD

23848 HD +146078592D*

385H*D —167040720HD"

— 375645699 H*D*— 1221354706176 D*
493425009 H*D*+ 1841678960352 HD*

131680032H*D* 4757929285648 H>D*® - 11020319744130048 D*
4634883 H*D*—9276821678520H°D*—21750837501488832HD*

25245H°D*4- 340701804850 H*D*—45226189141798280H*D*
—97227250729594799616 D°
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Tr (X") 11H"D*+-4400455461072H°D* 4 127109577108789495H*D*
+239140646004793752384 HD?

Tr(X*) 825050231500H°D*—19665598331764275H*D*
+393248139239476286700H*D°
-+ 845180451592627987085568 D°

In what follows, we are going to give the specialized equations
O(X; gE}¥,, £)=0 at several elliptic curves & defined over Q. Again let
us explain how to read the table given below for specialized equations.
We first list the curves where we specialize the transformation equations
in Case I-V:

Case A: y"=4x*—22.3"'x+3-2.19 (11A);
Case B: )= 4x*—2°x4-1 (37A);
Case C: y*=4x*—2%.3"'.5x43-%.251 (37B);
Case D: y*=4x*4-2%.3x 23

Case E: )*=4x’41 (27A).

The curve in Case A is isogeneous to the modular curve Xy (11),,
(=9/I'(11)). This curve is referred in [10] as 11A. The example of Case
A is the restatement of [3, § 5]. The curves in Case B and Case C cor-
respond the distinct non-isogeneous factors of the jacobian variety of
Xy(37),0. The curve in Case D is found in Serre [5, 5.9.2], which has
potential everywhere good reduction. The curve in Case E has complex
multiplication under Q(+/—3). In the following table, we list the special-
ized equations of the transformation equations already listed above at
these elliptic curves. In Case A, as is well known, all the specialized
equations of level 5 are reducible; so, we here list only one of them which
corresponds to that in Case I. All the factors of the equations listed
below are irreducible over Q.

Case A. G=2', H=-2*19, D=—11,
(D X°44400X*—174240X°+4801280X*—340643072.X 4 5881529280
=(X—22)(X°+4+22X*44884X*—66792X*}-3331856X
—267342240)

Case B. G=2*.3, H=-—2%.3% D=37.

(1) X°—44400X*—1971360X°+4488897280X" 4 47063460096 X
1162360730560 )
Discriminant=2%.31.5°.11%.37%.42044237*

Constant term=2°%.5.37%.71711
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(I) X°—12360960X*—173732014080X°%—906454164234240X2
—158592818333712384 X — 617317300619300044800
Discriminant =2%.3%.5%.37!2.4312.17515886745480535148167>
Constant term = —2'.3%.52.37%.1275457

1) X*4-2237760X°41781129088000.X ¢+ 603569053249044480.X
4+ 77756911326531739975680X*
—524619092816465160434614272X

' +105470303081456206598924843089920

Discriminant =2%¢.3%.5%.37'2.5387%.11719%
-1913209809413235735059612153*

Constant term=2%.31%.5.37%.71711.1272109

(IV) X°-39697470231920640X*+42318403282667096971018240X®
—79571649536431574388800162365440.X
-+215475800430255113967103637484510117888X
—180650394914609884769327204746079333724979200
Discriminant =2'%¢.3%.5°.11%. 37" ‘

S (169262060152722843155010000598315655808550985248)2

190802837328703
Constant term= —2%.3".5%.37%.2777 - 6469 - 19089662430217

(V) X*°4145329085440X°43837341672479781683200X*
—46021426623559234641189289328640X°
+351785812651605713387572533809327772794880X2
—46790723656122484150478959948110814885763660906496 X
+ 5075737063108711398438669685930545872239299744266

893393920
Discriminant = 2%9.31%. 53.37%.732.39521?
« (1638823091808126122004055543622661 8726893298260)2
185323381603186396722399746932636921

Constant term =2%.3"%.5.37%.661
-8897132982043042382280208129

Case C. G=2°.5, H=-2*.251, D=317.
(D X°—148000X*—1971360X°+5432192000X*
+1029841968640X + 14284097373120
Discriminant =2%.5%.37'2.972.251*.158512865466953"
Constant term=2°%-3-5.37%.293749
(II) X°®—137344000X*—1615064279040.X°-+151709417062400X 2
—16661863907206758400X — 53980077857153227161600
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Discriminant =2%. 5".37'2.25]%. 84649"
-80524545706391590943442857°
Constant term= —2".3.52.37%.103.251%.8353
) X°42237760X° - 1688966528000X* -+ 1242544486072320000.X
+428210896271006105600000.X >
—122101944360234810500710400000X
4 12154857571766922351262826496000000
Discriminant =2¢. 5%.37%2.149%.251%.613%.76812. 85999*
-28287114353335274990472
Constant term=2%.3.5%.11.37.433421914559869
(V) X°®—132384946524160000X*+21274901477944622530560000X 2
—1024232100465770191290105856000000.X 2
—6666338187777448119334115989258240000000X
—171765970451673771504422151468636281241600000000
Discriminant =2'¢. 54*.37%.223%.25]?
% <21041388636101 1 15247169710167790485273645676234)2
37015564475299986747399133

Constant term = —2%.3.58.372.2512.42776313398349053608831
(V)  X°+484430284800X°+42637091095065067520000X *
+1191013336577507913643327483000000.X *
-+ 13457249056881351216480342923175526400000000.X 2
++28017443414101677967629098569361263396126720000000000X
+179318260454300488579895539058291784993371546714
' 11200000000000
Discriminant = 22 5%.37%2.2514. 3001°
y <59569294896991541925368974827809306186927780234)2
914489024564400393948147302109439473683144103

Constant term=2.3.5".372.809
-679234447403551875231178057851449

Case D. G=-—2°.3%, H=2°.3% D= —2°.35
(I) X°—111974400X*—348285173760X3
+3109490031329280X 24 19395514284707414016X
+30756189783160164188160
Discriminant = 2. 31%2. 55. 5232. 19932
Constant term=2%.3%.5.31.53
(II) X°®-187042037760X*+245549406344970240X ¢
—409599982526419477463040X *
—3391011510639691674610040832.X
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—1232983430314568952093894456115200
Discriminant =2%2. 3. 55.132. 176660195838663136987*
Constant term = —2%.3%.5%. 551461
(1) X°—940584960X° 4 314896235102208000X*
—44180830874421892617338880.X®
+-2280132588424701078050853649121280X 2
—17214744129018591819208640165526254911488X
+437329739457071001758251942193692492633441566720
Discriminant =250 . 3%2. 55.2857°
-128103862043615822809259620839427%
Constant term=2%.3%.5.31.53.509.48955757
(IV) X°®4-42080459238584604426240X*
+1377552015614216371873334710763520X 3
—89221522557725558133720282371231512044503040X*
—13935080050601902328495731343754388260702333302
1057024X
—553005321475495000766649906481955867310524936332
65100180684800
Discriminant = 2%%. 312. 5. 472.109?
-44275612064289958736301204301726556694592007012
18607287629
Constant term=—= —27%.3%.5%.107 - 3240694984266366049

(V) X°4366512097853440X °+-24406304373574174539723571200X ¢
—1957290889419754283886842288845509560893440X®
+237870481893300376742671464172126808640943649582

79598080.X*
—164676730983625649174057125214334194001358947947
98454628675502473216X
+2946351257120748673032865078237641507167920249441
162884821938006433022156472320
Discriminant =2*%.3%2. 53
% <1705548135068099045964341 5602664324740824343889)2
635566755108629380009334997313026253707

Constant term=2%.3*.5.19.9787.20795362588083644126474341

Case E. G=0, H=—2%.3%, D= 33,
(D) X°—1049760X°4 226351350720
Discriminant =2%.3%.5%.11%.17¢
Constant term=2°.3%.5.11°
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) X°—92513249280X3%— 174990344338597478400
Discriminant=2%.3%.51.7¢.4]°.61¢
Constant term= —2'.3%.5%2.4]3
(II)  X°—1632960X° 4 949822848000.X *—227647896698880000.X 3
-+19303585597263052800000X *— 674475678084121598361600000X
+8394331582098381949894656000000
= (X*—544320X +20323353600)*
Discriminant of the irreducible factor=2%.38%.5°
Constant term of the irreducible factor=2*.3%.5%.11%

(IV) X°®—901218987881625600000000X
—19837121300256932128368336568320000000000000
Discriminant=21¢.3%¢.58.17¢.23%.59%.71%.70157°
Constant term = —2%.3%.5%.59%.7]3

(V) X°—22783187826815470647902208000000X*
+420663885954424404794201383021715969885287219200
000000000
Discriminant =2%1¢. 318, 5%.76.13¢.173%.521%.4519¢
-2070362216376807869728367*
Constant term=2*.3%.5".521%.4519°
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