Advanced Studies in Pure Mathematics 6, 1985 Algebraic Groups and Related Topics pp. 139-154

Holonomic Systems on a Flag Variety Associated to Harish-Chandra Modules and Representations of a Weyl Group

Toshiyuki Tanisaki

Dedicated to Professor Hirosi Nagao on his 60th birthday

§ 1. Introduction

1.1. In [KT] we studied the characteristic cycles of holonomic systems on a flag variety associated to highest weight modules of a complex semisimple Lie algebra, and investigated its relation to the representations of a Weyl group.

In this paper we consider Harish-Chandra modules instead of highest weight modules, and prove a theorem similar to the main theorem of [KT] (Theorem 1 below). The main theorem of [KT] turns out to be a special case of Theorem 1 and this paper gives a generalization of the result of [KT], although the proof is essentially the same as the one in [KT].

1.2. Let G be a connected complex semisimple algebraic group and $G_{\mathbf{R}}$ a real form of G. We assume that $G_{\mathbf{R}}$ is connected for simplicity. We fix a maximal compact subgroup $K_{\mathbf{R}}$ of $G_{\mathbf{R}}$ and denote its complex-ification in G by K.

We consider the abelian category $\mathscr{H}(\mathfrak{g}, K)$ whose objects are (\mathfrak{g}, K) modules of finite length with trivial central character. Here \mathfrak{g} is the Lie algebra of G. The result of Beilinson-Bernstein [BB] implies that $\mathscr{H}(\mathfrak{g}, K)$ is equivalent to the abelian category $\mathscr{M}(\mathfrak{g}, K)$ consisting of coherent \mathscr{D} -Modules on the flag variety X with K-actions. Using the fact that X is the union of finitely many K-orbits (Matsuki [M]), it is easily shown that any irreducible component of the characteristic variety $Ch(\mathfrak{M})$ of $\mathfrak{M} \in$ $\mathscr{M}(\mathfrak{g}, K)$ is the closure of the conormal bundle $T_{\mathcal{O}}^*X$ of a K-orbit O, and in particular \mathfrak{M} is holonomic (actually regular holonomic). We take the multiplicity of \mathfrak{M} along $\overline{T_{\mathcal{O}}^*X}$ into account and consider the characteristic cycle $Ch(\mathfrak{M}) \in \bigoplus_O \mathbb{Z}_{>0}[\overline{T_{\mathcal{O}}^*X}]$, where O is running through the K-orbits on

Received March 26, 1984

X. Let $K(\mathcal{M}(\mathfrak{g}, K))$ be the Grothendieck group of $\mathcal{M}(\mathfrak{g}, K)$. By the additivity of **Ch** we have a **Z**-linear homomorphism

(*)
$$K(\mathcal{M}(\mathfrak{g}, K)) \xrightarrow{\mathbf{Ch}} \bigoplus_{O} \mathbb{Z}[\overline{T_{O}^*X}].$$

One can define natural actions of the Weyl group W on $K(\mathcal{M}(\mathfrak{g}, K))$ and $\bigoplus_{o} \mathbb{Z}[\overline{T_{o}^{*}X}]$ (see Section 3 below). Then our main theorem is the following.

Theorem 1. The Z-linear homomorphism

$$K(\mathscr{M}(\mathfrak{g}, K)) \xrightarrow{\mathbf{Ch}} \bigoplus_{O} \mathbf{Z}[\overline{T_{O}^*X}]$$

is W-equivariant.

1.3. The contents of this paper are as follows. In Section 2 we summarize the known results concerning the Beilinson-Bernstein theory, the Riemann-Hilbert correspondence, Harish-Chandra modules and K-orbits on the flag variety. In Section 3 we give the definitions of W-actions and prove Theorem 1. Additional remarks are stated in Section 4.

1.4. On this occasion we give a remark on the paper [KT]. After writing it up, we learned that Theorem 6 in [KT] was already conjectured by Joseph [J], and V. Ginsburg informed us that he also proved the same theorem by a different method (letter dated January 25, 1984).

1.5. The author expresses his hearty thanks to Professor M. Kashiwara and Professor R. Hotta for valuable suggestions.

§ 2. Harish-Chandra modules and holonomic systems

2.1. The Beilinson-Bernstein theory

Let G be a connected semisimple algebraic group over the complex number field C with Lie algebra g. We denote the flag variety by X. X is naturally identified with the set of all the Borel subalgebras of g. We denote the sheaf of regular functions and the sheaf of differential operators on X by \mathcal{O}_x and \mathcal{D}_x , respectively. The natural action of G on X induces an algebra homomorphism $U(g) \xrightarrow{D} \Gamma(X, \mathcal{D}_x)$, where U(g) is the universal enveloping algebra of g. Let $\mathfrak{z}(g)$ be the center of U(g) and χ_0 the trivial central character of $\mathfrak{z}(g)$. χ_0 is the algebra homomorphism from $\mathfrak{z}(g)$ onto C given by $\mathfrak{z}(g) = \longrightarrow U(g) \rightarrow U(g)/\mathfrak{g}U(g) = \mathbb{C}$. A U(g)-module M is said to have the trivial central character if $z.m = \chi_0(z)m$ for all $z \in \mathfrak{z}(\mathfrak{g})$ and $m \in M$.

Theorem 2. (Beilinson-Bernstein [BB])

(i) D is surjective with Ker $D = U(\mathfrak{g})$ Ker $\chi_0 = U(\mathfrak{g})(\mathfrak{g}(\mathfrak{g}) \cap \mathfrak{g}U(\mathfrak{g}))$.

(ii) The abelian category of finitely generated $U(\mathfrak{g})$ -modules M with trivial central character and that of coherent \mathscr{D}_X -modules \mathfrak{M} are naturally equivalent to each other. The correspondence is given by $M = \Gamma(X, \mathfrak{M})$ and $\mathfrak{M} = \mathscr{D}_X \otimes_{U(\mathfrak{g})} M$.

2.2. The Riemann-Hilbert correspondence

Let $\mathcal{O}_{X_{n}}$ be the sheaf of holomorphic functions. We set

for a \mathscr{D}_x -Module \mathfrak{M} . A coherent \mathscr{D}_x -Module \mathfrak{M} is said to be regular holonomic if \mathfrak{M}_{an} is a holonomic \mathscr{D}_{xan} -Module with regular singularity in the sence of [KK]. For a regular holonomic \mathscr{D}_x -Module \mathfrak{M} , we set $\mathscr{DR}(\mathfrak{M}) = \mathbf{R} \mathscr{H}_{om} \mathscr{D}_{xan}(\mathscr{O}_{xan}, \mathfrak{M}_{an})$. $\mathscr{DR}(\mathfrak{M})$ is a bounded complex of \mathbf{C}_x -Modules which is an object of the derived category. Furthermore it is known that $\mathscr{DR}(\mathfrak{M})$ is a perverse sheaf, that is, $\mathscr{H} := \mathscr{DR}(\mathfrak{M})$ satisfies the following conditions.

- (i) $\mathscr{H}^{i}(\mathscr{K})$ is constructible for each *i*.
- (ii) $\mathscr{H}^{i}(\mathscr{K}) = 0$ for i < 0.

(iii) $\operatorname{codim}(\operatorname{supp}(\mathscr{H}^{i}(\mathscr{K}))) \geq i \text{ for } i \geq 0.$

(iv) $\operatorname{codim}(\operatorname{supp}(\mathscr{H}^{i}(\mathscr{K}^{*}))) \geq i$ for $i \geq 0$, where

 $\mathscr{K}^* = \mathbf{R} \mathscr{H}_{om_{\mathbf{C}_X}}(\mathscr{K}, \mathbf{C}_X).$

Theorem 3 (Kashiwara, Mebkhout see [Ka]). \mathcal{DR} gives an equivalence between the abelian category of regular holonomic \mathcal{D}_x -Modules and that of perverse sheaves on X.

2.3. Harish-Chandra modules

Let $G_{\mathbf{R}}$ be a connected real form of G. We fix a maximal compact subgroup $K_{\mathbf{R}}$ of $G_{\mathbf{R}}$ and denote its complexification by K.

Definition. A g-module M which has also a K-module structure is called a (g, K)-module if the following conditions hold.

(i) Any $m \in M$ is contained in a finite-dimensional K-invariant subspace M_0 and the induced homomorphism $K \rightarrow GL(M_0)$ is a homomorphism of algebraic groups.

(ii) If f is the Lie algebra of K, then the f-module structure on M obtained by differentiating the K-action coincides with the one obtained by restricting the g-module structure.

(iii) $k.(X.m) = (\operatorname{Ad}(k)X).(k.m)$ for $k \in K, X \in \mathfrak{g}$ and $m \in M$.

Let $\mathcal{H}(g, K)$ be the abelian category consisting of (g, K)-modules of

finite length which have the trivial central character as U(g)-modules. By the correspondence of Theorem 2 $\mathscr{H}(g, K)$ is equivalent to the category $\mathscr{M}(g, K)$ consisting of coherent \mathscr{D}_x -Modules with K-actions. We say that a coherent \mathscr{D}_x -Module \mathfrak{M} has a K-action if an isomorphism $p^*\mathfrak{M} \simeq q^*\mathfrak{M}$ of $\mathscr{D}_{K \times x}$ -Modules which satisfies the usual cocycle condition is given, where $K \times X \xrightarrow{q} X$ and $K \times X \xrightarrow{p} X$ are defined by q(k, x) = k.x and p(k, x) = x.

In order to investigate $\mathcal{M}(\mathfrak{g}, K)$ we need the following.

Proposition 1 (Matsuki [M], see also Vogan [V] and 2.4 below).

(i) There exist finitely many K-orbits on X.

(ii) For $x \in X$ let K_x be the stabilizer of x in K and $(K_x)_0$ its identity component. Then the order of any element of $K_x/(K_x)_0$ is at most 2. In particular $K_x/(K_x)_0$ is an abelian group.

We denote the set of the K-orbits on X by \mathscr{C} .

Lemma 1. For $\mathfrak{M} \in \mathcal{M}(\mathfrak{g}, K)$ any irreducible component of the characteristic variety $Ch(\mathfrak{M})$ is the closure of the conormal bundle T_0^*X of some $O \in \mathscr{C}$. In particular \mathfrak{M} is holonomic.

Proof. Since $\operatorname{Ch}(\mathfrak{M})$ is an involutive subvariety of T^*X , it is sufficient to show that $\operatorname{Ch}(\mathfrak{M})$ is contained in $\coprod_{o \in \mathscr{C}} T_o^*X$. Set $M = \Gamma(X, \mathfrak{M}) \in \mathscr{M}(\mathfrak{g}, K)$. Take a finite-dimensional K-invariant subspace M_0 of M so that $M = U(\mathfrak{g})M_0$ and set $M_i = U_i(\mathfrak{g})M_0$. Then $\operatorname{gr} M = \bigoplus_{i \in \mathbb{Z}} (M_i/M_{i-1})$ is a finitely generated $S(\mathfrak{g})$ -module and the support of the associated coherent sheaf $\widetilde{\operatorname{gr}} M$ on \mathfrak{g}^* is contained in $\mathfrak{t}^\perp = \{x \in \mathfrak{g}^* \mid \langle x, \mathfrak{t} \rangle = 0\}$. Let $T^*X \xrightarrow{\gamma} \mathfrak{g}^*$ be the natural map. Then we have $\operatorname{Ch}(\mathfrak{M}) \subset \mathcal{T}^{-1}(\operatorname{supp}(\widetilde{\operatorname{gr}} M)) \subset \mathcal{T}^{-1}(\mathfrak{t}^\perp) = \coprod_{o \in \mathscr{C}} T_o^*X$. Here the first inclusion follows from the definition since $\mathfrak{M} = \mathscr{D}_X \otimes_{U(\mathfrak{g})} M$.

Moreover we have the following.

Proposition 2 (Beilinson-Bernstein [BB], see also Vogan [V]). If $\mathfrak{M} \in \mathcal{M}(\mathfrak{g}, K)$, then \mathfrak{M} is regular holonomic.

Hence by Theorem 3 $\mathcal{M}(\mathfrak{g}, K)$ is equivalent to the abelian category $\mathcal{F}(\mathfrak{g}, K)$ consisting of the perverse sheaves on X with K-actions. Thus we have the following equivalence of the abelian categories:

(*)
$$\mathscr{H}(\mathfrak{g}, K) \simeq \mathscr{M}(\mathfrak{g}, K) \simeq \mathscr{F}(\mathfrak{g}, K).$$

Next we describe the simple objects of these categories. For $O \in \mathscr{C}$ and a one-dimensional local system (locally constant sheaf whose stalks are one-dimensional C-vector spaces) γ on O with a K-action, let $\pi \gamma$ be the *DGM*-extension of γ to \overline{O} . We also use the same notations for the zero

extensions of γ and $\pi\gamma$ to X. Then γ [-codim O] and $\pi\gamma$ [-codim O] are objects of $\mathscr{F}(g, K)$ and the latter is a simple object. Furthermore any simple object in $\mathscr{F}(g, K)$ is isomorphic to some $\pi\gamma$ [-codim O]. Hence the set of the simple objects is parametrized by

$\mathscr{S} = \{(O, \Upsilon) | O \in \mathscr{C} \text{ and } \Upsilon \text{ is a } K \text{-equivariant one-dimensional local system on } O\}.$

We remark here that the set of K-equivariant one-dimensional local systems on O is parametrized by the set of irreducible (one-dimensional) representations of $K_x/(K_x)_0$ for a fixed $x \in O$.

We denote the objects in $\mathfrak{M}(\mathfrak{g}, K)$ (resp. $\mathscr{H}(\mathfrak{g}, K)$) corresponding to \mathfrak{I} [-codim O] and \mathfrak{T} [-codim O] under the equivalence (*) by $\mathfrak{M}_{(0,\gamma)}$ and $\mathfrak{L}_{(0,\gamma)}$ (resp. $M_{(0,\gamma)}$ and $L_{(0,\gamma)}$). Then we have the following decomposition of the Grothendieck groups:

$$\begin{split} & K(\mathscr{H}(\mathfrak{g}, K)) = \bigoplus_{(0, \gamma)} \mathbf{Z}[M_{(0, \gamma)}] = \bigoplus_{(0, \gamma)} \mathbf{Z}[L_{(0, \gamma)}], \\ & K(\mathscr{M}(\mathfrak{g}, K)) = \bigoplus_{(0, \gamma)} \mathbf{Z}[\mathfrak{M}_{(0, \gamma)}] = \bigoplus_{(0, \gamma)} \mathbf{Z}[\mathfrak{L}_{(0, \gamma)}]. \end{split}$$

2.4. *K*-orbits on *X*

We give a parametrization of K-orbits on X and other informations for the convenience of the readers. The reader is referred to Matsuki [M] and Vogan [V] for the proofs and other results.

We denote the Lie algebras of $G_{\mathbf{R}}$, $K_{\mathbf{R}}$ and K by \mathfrak{g}_0 , \mathfrak{k}_0 and \mathfrak{k} , respectively. Let $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$ and $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be the Cartan decomposition of \mathfrak{g}_0 and its complexification. Let θ be the involution on \mathfrak{g} defined by $\theta(x+y) = x - y$ ($x \in \mathfrak{k}, y \in \mathfrak{p}$). we also denote its restriction to \mathfrak{g}_0 by θ .

For a θ -stable Cartan subalgebra \mathfrak{h}_0 of \mathfrak{g}_0 and a positive root system Δ^+ of $(\mathfrak{g}, \mathfrak{h}_0 \bigotimes_{\mathbf{R}} \mathbf{C})$ let $\mathfrak{b}(\mathfrak{h}_0, \Delta^+)$ be the corresponding Borel subalgebra of \mathfrak{g} .

Proposition 3 (Matsuki [M]). (i) Any Borel subalgebra of \mathfrak{g} is Kconjugate to $\mathfrak{b}(\mathfrak{h}_0, \Delta^+)$ for some θ -stable Cartan subalgebra \mathfrak{h}_0 of \mathfrak{g}_0 and a positive root system Δ^+ of $(\mathfrak{g}, \mathfrak{h}_0 \otimes_{\mathbf{R}} \mathbf{C})$.

(ii) Let \mathfrak{h}_0 and \mathfrak{h}'_0 be θ -stable Cartan subalgebras of \mathfrak{g}_0 . Let Δ^+ and Δ'^+ be positive root systems of $(\mathfrak{g}, \mathfrak{h}_0 \otimes_{\mathbf{R}} \mathbf{C})$ and $(\mathfrak{g}, \mathfrak{h}'_0 \otimes_{\mathbf{R}} \mathbf{C})$, respectively. Then $\mathfrak{b}(\mathfrak{h}_0, \Delta^+)$ is K-conjugate to $\mathfrak{b}(\mathfrak{h}'_0, \Delta'^+)$ if and only if there exists an element $k \in K_{\mathbf{R}}$ so that $k \cdot \mathfrak{h}_0 = \mathfrak{h}'_0$ and $k \cdot \mathfrak{b}(\mathfrak{h}_0, \Delta^+) = \mathfrak{b}(\mathfrak{h}'_0, \Delta'^+)$.

For a θ -stable Cartan subalgebra \mathfrak{h}_0 of \mathfrak{g}_0 let $W(\mathfrak{h}_0)$ be the Weyl group of $(\mathfrak{g}, \mathfrak{h}_0 \otimes_{\mathbb{R}} \mathbb{C})$. Set $W(\mathfrak{h}_0, K_{\mathbb{R}}) = (N_G(\mathfrak{h}_0) \cap K_{\mathbb{R}})/(Z_G(\mathfrak{h}_0) \cap K_{\mathbb{R}}) \ (\subset W(\mathfrak{h}_0))$. Since the set of $G_{\mathbb{R}}$ -conjugacy classes of Cartan subalgebras of \mathfrak{g}_0 and the

set of $K_{\mathbf{R}}$ -conjugacy classes of θ -stable Cartan subalgebras of g_0 are in one-to-one correspondence, we have the following.

Corollary (Matsuki [M]). Let $\{\mathfrak{h}_0^{(i)} | i \in I\}$ be a set of representatives of the $G_{\mathbf{R}}$ -conjugacy classes of Cartan subalgebras of \mathfrak{g}_0 so that each $\mathfrak{h}_0^{(i)}$ is θ -stable. We fix a positive root system $\Delta^{(i)+}$ of $(\mathfrak{g}, \mathfrak{h}_0^{(i)} \otimes_{\mathbf{R}} \mathbf{C})$ for each $i \in I$. Then the set of K-orbits on X (K-conjugacy classes of Borel subalgebras in \mathfrak{g}) is parametrized by the set $\prod_{i \in I} W(\mathfrak{h}_0^{(i)}, K_{\mathbf{R}}) \setminus W(\mathfrak{h}_0^{(i)})$, and the K-conjugacy class corresponding to $W(\mathfrak{h}_0^{(i)}, K_{\mathbf{R}})$ is the one containing $\mathfrak{b}(\mathfrak{h}_0^{(i)}, w\Delta^{(i)+})$.

For the classification of the Cartan subalgebras of g_0 we refer the reader to Sugiura [Su] and Warner [W]. In particular, since the number of the conjugacy classes of Cartan subalgebras is finite, the number of K-orbits on X is finite.

Let \mathfrak{h}_0 be a θ -stable Cartan subalgebra and Δ^+ a positive root system of $(\mathfrak{g}, \mathfrak{h}_0 \otimes_{\mathbb{R}} \mathbb{C})$. Let O be the K-orbit on X containing $\mathfrak{b} = \mathfrak{b}(\mathfrak{h}_0, \Delta^+)$. We denote the Borel subgroup corresponding to \mathfrak{b} by B. Then O is isomorphic to $K/K_{\mathfrak{b}}$ with $K_{\mathfrak{b}} = \{k \in K | k.\mathfrak{b} = \mathfrak{b}\} = K \cap B$. Note that the set of the irreducible K-equivariant local systems on O is in one-to-one correspondence with the set of irreducible representations of the component group $K_{\mathfrak{b}}/(K_{\mathfrak{b}})_0$. This group is described as follows.

Proposition 4 (see Vogan [V]). In the above notations set $H_{\mathbf{R}} = Z_{G_{\mathbf{R}}}(\mathfrak{h}_0)$ and $H = Z_G(\mathfrak{h}_0 \otimes_{\mathbf{R}} \mathbf{C})$. Then we have:

$$K_{\mathfrak{b}}/(K_{\mathfrak{b}})_{0} = (K \cap B)/(K \cap B)_{0} \simeq (K \cap H)/(K \cap H)_{0} \simeq (K_{\mathfrak{R}} \cap H_{\mathfrak{R}})/(K_{\mathfrak{R}} \cap H_{\mathfrak{R}})_{0}$$
$$\simeq H_{\mathfrak{R}}/(H_{\mathfrak{R}})_{0} \simeq (\mathbb{Z}/2\mathbb{Z})^{N}$$

for some non-negative integer N with $0 \le N \le \dim_{\mathbf{R}}(\mathfrak{h}_{u} \cap \mathfrak{p}_{0})$.

§ 3. *W*-module structures

3.1. *W*-module structure on $K(\mathcal{M}(\mathfrak{g}, K))$

Set $G_1 = G \times G$, $g_1 = g \oplus g$ and $K_1 = \Delta G = \{(g, g) \in G_1 | g \in G\}$. We first consider $\mathscr{M}(g_1, K_1) = \mathscr{M}(g \oplus g, \Delta G)$. The flag variety of G_1 is $X \times X$, where X is the flag variety of G, and its decomposition into ΔG -orbits is given by $X \times X = \coprod_{w \in W} O(w)$, where W is the Weyl group of G and $O(w) = \Delta G$. (eB, wB). Here we identify X with G/B for a fixed Borel subgroup B. Since each O(w) is simply-connected, we have:

$$K(\mathscr{M}(\mathfrak{g}\oplus\mathfrak{g},\,\Delta G)) = \bigoplus_{w \in W} \mathbf{Z}[\mathfrak{M}_w] = \bigoplus_{w \in W} \mathbf{Z}[\mathfrak{L}_w],$$

with $\mathfrak{M}_w = \mathfrak{M}_{(O(w),1)}$ and $\mathfrak{L}_w = \mathfrak{L}_{(O(w),1)}$.

Let $X \times X \times X \xrightarrow{p_{ij}} X \times X$ ($1 \le i \le j \le 3$) be the natural projection. For

 $\mathfrak{M}_1, \mathfrak{M}_2 \in \mathcal{M}(\mathfrak{g} \oplus \mathfrak{g}, \Delta G)$ we have

$$\mathscr{H}^{i}\left(\int_{p_{13}} \left(p_{12}^{*}\mathfrak{M}_{1}\right) \bigotimes_{\sigma_{X \times X \times X}}^{L} \left(p_{23}^{*}\mathfrak{M}_{2}\right)\right) \in \mathscr{M}(\mathfrak{g} \oplus \mathfrak{g}, \Delta G)$$

for each *i*. Hence we can define a multiplication on $K(\mathcal{M}(\mathfrak{g}\oplus\mathfrak{g}, \Delta G))$ by

$$[\mathfrak{M}_1]. \ [\mathfrak{M}_2] = \sum_i (-1)^i \bigg[\mathscr{H}^i \left(\int_{p_{13}} (p_{12}^* \mathfrak{M}_1) \bigotimes_{\mathscr{O}_{\mathcal{I} \times \mathcal{I} \times \mathcal{I}}}^L (p_{23}^* \mathfrak{M}_2) \right) \bigg].$$

Proposition 5 (see Lusztig-Vogan [LV] and Springer [Sp]). The above multiplication defines a ring structure on $K(\mathcal{M}(\mathfrak{g}\oplus\mathfrak{g}, \Delta G))$ so that

$$\begin{array}{ccc} K(\mathscr{M}(\mathfrak{g} \oplus \mathfrak{g}, \Delta G)) \simeq \mathbb{Z}[W]. \\ \mathfrak{w} & \mathfrak{w} \\ [\mathfrak{M}_w] \longleftrightarrow & \mathfrak{w} \end{array}$$

Remark 1. By the Riemann-Hilbert correspondence one can translate this proposition into topological language, and this is actually the approach given in [LV] and [Sp]. Since they consider the Hecke algebra of W, we must specialize the indeterminant q to 1 to get the above result.

Now we define a *W*-action on $K(\mathcal{M}(\mathfrak{g}, K))$. By Proposition 5 we have only to define an action of the ring $K(\mathcal{M}(\mathfrak{g}\oplus\mathfrak{g}, \Delta G))$ on $K(\mathcal{M}(\mathfrak{g}, K))$. Let $X \times X \xrightarrow{q_i} X$ (i = 1, 2) be the projection onto the *i*-th factor. For $\mathfrak{M} \in \mathcal{M}(\mathfrak{g}\oplus\mathfrak{g}, \Delta G)$ and $\mathfrak{N} \in \mathcal{M}(\mathfrak{g}, K)$ we have

$$\mathscr{H}^{i}\left(\int_{q_{1}}\mathfrak{M}\bigotimes_{\mathfrak{o}_{X\times X}}^{L}(q_{2}^{*}\mathfrak{N})\right)\in\mathscr{M}(\mathfrak{g},K)$$

for each *i*.

Proposition 6 (Lusztig-Vogan [LV]). An action of $K(\mathcal{M}(\mathfrak{g}\oplus\mathfrak{g}, \Delta G))$ on $K(\mathcal{M}(\mathfrak{g}, K))$ is defined by

$$[\mathfrak{M}]. [\mathfrak{M}] = \sum_{i} (-1)^{i} \bigg[\mathscr{H}^{i} \left(\int_{q_{1}} \mathfrak{M} \bigotimes_{\sigma_{X \times X}}^{L} (q_{2}^{*} \mathfrak{M}) \right) \bigg],$$

where $\mathfrak{M} \in \mathcal{M}(\mathfrak{g} \oplus \mathfrak{g}, \Delta G)$ and $\mathfrak{N} \in \mathcal{M}(\mathfrak{g}, K)$.

Hence $K(\mathcal{M}(\mathfrak{g}, K))$ is endowed with a *W*-module structure.

In particular $K(\mathcal{M}(\mathfrak{g}\oplus\mathfrak{g}, \Delta G))$ ($\simeq \mathbb{Z}[W]$) has a $W \times W$ -module structure. Note that this action of $W \times W$ coincides with the two-sided regular representation of $W \times W$ on $\mathbb{Z}[W]$.

For a simple reflection s of W let X_s be the variety of semisimplerank 1 parabolic subalgebras of g corresponding to s. Write $X \xrightarrow{\pi_s} X_s$ for the natural map.

Proposition 7. For $\mathfrak{M} \in \mathcal{M}(\mathfrak{g}, K)$ we have:

s.
$$[\mathfrak{M}] = [\mathfrak{M}] + \sum_{i} (-1)^{i} \bigg[\mathscr{H}^{i} \bigg(\mathbf{L} \pi^{*}_{s} \int_{\pi_{s}} \mathfrak{M} \bigg) \bigg].$$

This is proved by the same method as in the proof of Proposition 5 in [KT], so we omit the proof.

3.2. W-module structure on $\bigoplus_o \mathbb{Z}[\overline{T_o^*X}]$

We first review the Springer representations of W. We follow the approach of Lusztig [L] using DGM-extensions (see also Borho-MacPherson [BM]).

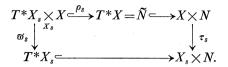
Set $\tilde{\mathfrak{g}} = \{(x, \mathfrak{b}) \in \mathfrak{g} \times X | x \in \mathfrak{b}\}$ and let $\tilde{\mathfrak{g}} \xrightarrow{P} \mathfrak{g}$ be the natural map. We denote the set of regular semisimple elements (resp. nilpotent elements) in \mathfrak{g} by \mathfrak{g}_{rs} (resp. N) and set $\tilde{\mathfrak{g}}_{rs} = p^{-1}(\mathfrak{g}_{rs})$ (resp. $\tilde{N} = p^{-1}(N)$). Let $\tilde{\mathfrak{g}}_{rs} \xrightarrow{p_{rs}} \mathfrak{g}_{rs}$ and $\tilde{N} \xrightarrow{p_N} N$ be the restrictions of p. Since p_{rs} is a W-principal bundle, we have an action of W on the local system $p_{rs^*}(\mathbf{Q}_{\mathfrak{g}_{rs}})$ on \mathfrak{g}_{rs} , where $\mathbf{Q}_{\mathfrak{g}_{rs}}$ is the constant sheaf on $\tilde{\mathfrak{g}}_{rs}$ whose stalks are the rational number field \mathbf{Q} . By the functoriality of the DGM-extension we have an action of W on ${}^{*}(p_{rs^*}(\mathbf{Q}_{\mathfrak{g}_{rs}}))$. Since ${}^{*}(p_{rs^*}(\mathbf{Q}_{\mathfrak{g}_{rs}}))$ is isomorphic to $\mathbf{R}p_{*}(\mathbf{Q}_{\mathfrak{g}})$ as an object in the derived category (Lusztig [L]) and since $\mathbf{R}p_{N*}(\mathbf{Q}_{\mathfrak{g}})$ is isomorphic to $\mathbf{R}p_{N*}(\mathbf{Q}_{\mathfrak{g}})$.

For $x \in N$ set $X_x = p^{-1}(x) = \{b \in X | x \in b\}$. Then the action of W on $\mathbf{R}p_*(\mathbf{Q}_{\bar{N}})$ induces its action on $H^i(X_x, \mathbf{Q}) = R^i p_{N*}(\mathbf{Q}_{\bar{N}})_x$ for each *i*. This is the Springer representation of W in the usual sence.

For $O \in \mathscr{C}$ we set $Z_o = T_o^* X$ and $Z = \bigcup_{o \in \mathscr{C}} Z_o$. Z is an algebraic variety of pure dimension $d = \dim X$. We identify T^*X with \tilde{N} via the Killing form on g. Then we have $Z = p_N^{-1}(N(\mathfrak{p}))$ with $N(\mathfrak{p}) = N \cap \mathfrak{p}$. Hence we have an action of W on $H_c^i(N(\mathfrak{p}), \mathbb{R}p_{N*}(\mathbb{Q}_{\bar{N}}) | N(\mathfrak{p})) = H_c^i(Z, \mathbb{Q})$. Since the dual space of the top cohomology group $H_c^{2d}(Z, \mathbb{Q})$ has a natural basis $\{[\overline{T_o^*X}]\}_{o \in \mathscr{C}}$, we have a W-action on the vector space $(H_c^{2d}(Z, \mathbb{Q}))^* = \bigoplus_{o \in \mathscr{C}} \mathbb{Q}[\overline{T_o^*X}]$.

Remark 2. In order to define a *W*-action we can use the method of Kazhdan-Lusztig [KL] in place of the above approach. The coincidence of these two approaches is proved in Hotta [H1; Appendix] though it is not exactly of this form.

Next we review a geometric description of the action of simple reflections of W on the space $(H_c^{2d}(Z, \mathbf{Q}))^*$ due to Hotta [H1], [H2]. We fix a simple reflection s. We define natural maps ρ_s , ϖ_s and τ_s by the following commutative diagram:



For $O \in \mathscr{C}$ we say that O is *s*-vertical (resp. *s*-horizontal) if $\tau_s^{-1}(\tau_s(Z_0)) = Z_0$ (resp. $\tau_s^{-1}(\tau_s(Z_0)) \supseteq Z_0$). Let \mathscr{C}_v^s and \mathscr{C}_h^s be the set of *s*-vertical and *s*-horizontal *K*-orbits on *X*, respectively. Set $O_s = \pi_s(O)$ for $O \in \mathscr{C}$. The following is obvious.

Lemma 2.

(i) O is s-vertical if and only if $\pi_s^{-1}(\pi_s(x)) \cap O$ is open dense in $\pi_s^{-1}(\pi_s(x))$ for any $x \in O$.

- (ii) $X_s = \bigcup_{o \in \mathscr{C}_n^s} O_s$ (disjoint union).
- (iii) $\rho_s^{-1}(Z) = \bigcup_{o \in \mathscr{G}_s^*} Z_o$ (irreducible decomposition).

(iv) $\varpi_s(Z_0) = \overline{T_{O_s}^* X_s}$ for $O \in \mathscr{C}_v^s$.

Proposition 8 (Hotta [H1], [H2]). Let O be a K-orbit on X. (i) If O is s-vertical, we have

$$s.[Z_o] = -[Z_o].$$

(ii) If O is s-horizontal, we have

s.
$$[Z_o] = [Z_o] + (\varpi_s^* \circ \varpi_{s*} \circ \rho_s^*)([Z_o]),$$

where ϖ_s^* , ρ_s^* and ϖ_{s*} are pull-back and direct image of algebraic cycles. Furthermore $(\varpi_s^* \circ \varpi_{s*} \circ \rho_s^*)([Z_0]) \in \bigoplus_{O'} \mathbb{Z}_{\geq 0}$ [$Z_{O'}$], where O' is running through $O' \in \mathscr{C}_v^s$ with $O' \subset \pi_s^{-1}(\pi_s(O))$.

By the above proposition we see that the Z-lattice $\bigoplus_{o \in \mathscr{C}} \mathbb{Z}[\overline{T_o^*X}]$ in $(H_c^{2d}(Z, \mathbf{Q}))^*$ is W-invariant. Hence we have an action of W on $\bigoplus_{o \in \mathscr{C}} \mathbb{Z}[\overline{T_o^*X}]$.

3.3. We prove the following in this subsection **Theorem 1** (repeated). *The Z-linear homomorphism*

$$K(\mathscr{M}(\mathfrak{g}, K)) \xrightarrow{\mathbf{Ch}} \bigoplus_{o \in \mathscr{C}} \mathbf{Z}[\overline{T_o^*X}]$$

is W-equivariant.

Remark 3. Set $\partial O = \overline{O} - O$. Since $\mathfrak{M}_{(0,\gamma)} | X - \partial O$ and $\mathfrak{L}_{(0,\gamma)} | X - \partial O$ are isomorphic to $\mathscr{H}_{O}^{\operatorname{codim} O}(\mathcal{O}_{X-\partial O}) \otimes_{\operatorname{C}_{X-\partial O}} \mathcal{I}$, we see that $\operatorname{Ch}(\mathfrak{M}_{(0,\gamma)})$ and $\operatorname{Ch}(\mathfrak{L}_{(0,\gamma)})$ belong to $[\overline{T_{O}^{*}X}] + (\bigoplus_{O' \subseteq \overline{O}} \mathbb{Z}_{\geq 0}[\overline{T_{O'}^{*}X}])$. Hence Ch is surjective.

Proof of Theorem 1. It is sufficient to show $Ch(s. [\mathfrak{M}]) = s. Ch(\mathfrak{M})$ for any simple reflection s and $\mathfrak{M} \in \mathcal{M}(\mathfrak{g}, K)$. By [Sa] (see [KT; Theorem 7]) there exist integers $m_s(O', O)$ for $O \in \mathscr{C}$ and $O' \in \mathscr{C}_v^s$ so that

$$\mathbf{Ch}(\mathfrak{M}) = \sum_{o \in \mathscr{C}} n_o[\overline{T_o^* X}]$$

implies

$$\mathbf{Ch}\left(\int_{\pi_s}\mathfrak{M}\right) := \sum_i (-1)^i \mathbf{Ch}\left(\mathscr{H}^i\left(\int_{\pi_s}\mathfrak{M}\right)\right) = \sum_{O \in \mathscr{G}} n_O\left(\sum_{O' \in \mathscr{G}_v} m_s(O', O)[\overline{T_{O_s'}^*X_s}]\right).$$

Furthermore we have

$$\sum_{O' \in \mathfrak{s}_{\vartheta}^{*}} m_{\mathfrak{s}}(O', O)[\overline{T_{O_{\mathfrak{s}}}^{*}X_{\mathfrak{s}}}] = (\varpi_{\mathfrak{s}*} \circ \rho_{\mathfrak{s}}^{*})([\overline{T_{O}^{*}X}])$$

for $O \in \mathscr{C}_h^s$. Hence we have

$$\mathbf{Ch}\Big(\mathbf{L}\pi_s^*\int_{\pi_s}\mathfrak{M}\Big) = \varpi_s^*\Big(\mathbf{Ch}\left(\int_{\pi_s}\mathfrak{M}\right)\Big) = \sum_{O \in \mathscr{C}} n_O(\sum_{O' \in \mathscr{C}_0} m_s(O', O)[\overline{T_{O'}^*X}]).$$

Thus by Proposition 7

$$\begin{aligned} \mathbf{Ch}(s. \, [\mathfrak{M}]) &= \sum_{o \in \mathfrak{e}_{b}^{*}} n_{o}([\overline{T_{o}^{*}X}] + \sum_{o' \in \mathfrak{e}_{b}^{*}} m_{s}(O', \, O)[\overline{T_{o'}^{*}X}]) \\ &+ \sum_{o \in \mathfrak{e}_{b}^{*}} n_{o}([\overline{T_{o}^{*}X}] + (\varpi_{s}^{*} \circ \varpi_{s*} \circ \rho_{s}^{*})([\overline{T_{o}^{*}X}])). \end{aligned}$$

On the other hand by Proposition 8

s.
$$\mathbf{Ch}([\mathfrak{M}]) = \sum_{o \in \mathfrak{s}_s^*} n_o(-[\overline{T_o^*X}])$$

+ $\sum_{o \in \mathfrak{s}_h^*} n_o([\overline{T_o^*X}] + (\varpi_s^* \circ \varpi_{s*} \circ \rho_s^*)([\overline{T_o^*X}])).$

Thus we have only to prove that if O and O' are distinct elements of \mathscr{C}_v^s , then $m_s(O', O) = 0$ and $m_s(O, O) = -2$.

For $O \in \mathscr{C}_v^s$ set $\hat{O} = \pi_s^{-1}(\pi_s(O))$. If we set $\hat{K} = \langle K, P \rangle$, the decomposition of X into \hat{K} -orbit is given by $X = \coprod_{o \in \mathscr{C}_v^s} \hat{O}$, and hence this decomposition satisfies the Whitney condition. For $O \in \mathscr{C}_v^s$ we define $\mathfrak{M}_o \in \mathscr{M}(\mathfrak{g}, K)$ by $\mathscr{DR}(\mathfrak{M}_o) = \mathbf{C}_o[-\operatorname{codim} O]$. Then

$$\mathbf{Ch}(\mathfrak{M}_o) \in [\overline{T_o^* X}] + \sum_{o'} \mathbf{Z}_{\geq 0}[\overline{T_o^* X}],$$

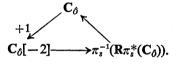
where O' is running through $O' \in \mathscr{C}_v^s$ with $O' \subset \partial O$. Hence using induction on dim O we see that it is sufficient to show

$$\mathbf{Ch}\Big(\mathbf{L}\pi_s^*\int_{\pi_s}\mathfrak{M}_o\Big)=-2\mathbf{Ch}(\mathfrak{M}_o)$$

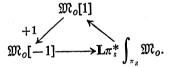
for $O \in \mathscr{C}_v^s$. By the Riemann-Hilbert correspondence we have

$$\mathscr{DR}\left(\mathbf{L}\pi_{s}^{*}\int_{\pi_{s}}\mathfrak{M}_{o}\right) = \pi_{s}^{-1}(\mathbf{R}\pi_{s}(\mathfrak{DR}(\mathfrak{M}_{o})))[1]$$
$$= \pi_{s}^{-1}(\mathbf{R}\pi_{s}(\mathbf{C}_{o}))[-\operatorname{codim} O+1].$$

Since π_s is a **P**¹-bundle, we have the following triangle



By the Riemann-Hilbert correspondence we have



Hence

$$\mathbf{Ch}\left(\mathbf{L}\pi_{s}^{*}\int_{\pi_{s}}\mathfrak{M}_{o}\right)=\mathbf{Ch}(\mathfrak{M}_{o}[1])+\mathbf{Ch}(\mathfrak{M}_{o}[-1])=-2\mathbf{Ch}(\mathfrak{M}_{o})$$

and we are done.

§ 4. Complements

4.1. We describe the *W*-module structure of $K(\mathcal{M}(\mathfrak{g}, K))$ and $(H_c^{2d}(Z, \mathbf{Q}))^*$ more explicitly.

The following is a generalization of a result of Kazhdan-Lusztig [KL; (6.1) and (6.2)]. Since the proof is the same as that of [KL], we omit it.

Proposition 9. As a W-module, we have

$$(H^{2d}_{c}(Z, \mathbf{Q}))^{*} \simeq \bigoplus_{x \in K \setminus N(\mathfrak{p})} (H_{2d_{x}}(X_{x}, \mathbf{Q}))^{C_{K}(x)},$$

where $d_x = \dim X_x$ and $C_{\kappa}(x) = Z_{\kappa}(x)/(Z_{\kappa}(x))_0$.

Hence suitable information on the K-conjugacy classes of nilpotent elements in \mathfrak{p} and the Springer correspondence of the group G give the irreducible decomposition of $(H_c^{2d}(Z, \mathbf{Q}))^*$ as a W-module.

Next we consider $K(\mathcal{M}(\mathfrak{g}, K))$. The explicit description of the action of a simple reflection with respect to the basis $\{[\mathfrak{M}_{(0,\gamma)}] | (O, \gamma) \in \mathscr{S}\}$ is given in [LV] (see also [V]). We include it here for the convenience of the readers.

Lemma 3 (Lusztig-Vogan [LV]). Fix a simple reflection s, $(O, \hat{\gamma}) \in \mathscr{S}$ and $x \in O$. Set $\hat{O} = \pi_s^{-1}(\pi_s(O))$ and $L_x^s = \pi_s^{-1}(\pi_s(x))$.

(a) If $L_x^s \subset O$, then s. $[\mathfrak{M}_{(0,\gamma)}] = -[\mathfrak{M}_{(0,\gamma)}]$.

(b1) If $L_x^s \cap O = \{x\}$ and $O' = \hat{O} - O$ is a single K-orbit, then there exists a unique locally constant extension $\hat{\gamma}$ of $\hat{\gamma}$ to \hat{O} and $s.[\mathfrak{M}_{(O,\gamma)}] = [\mathfrak{M}_{(O',\gamma')}]$ with $\hat{\gamma}' = \hat{\gamma} | O'$.

(b2) If $L_x^s \cap O = L_x^s - \{\text{point}\}\)$, then $O' = \hat{O} - O$ is a single K-orbit, there exists a unique locally constant extension $\hat{\gamma}$ of γ to \hat{O} and s. $[\mathfrak{M}_{(O,\gamma)}] = [\mathfrak{M}_{(O',\gamma)}]$ with $\gamma' = \hat{\gamma} | O'$.

(c1) If $L_x^s \cap O = \{x, y\}$, then $O' = \hat{O} - O$ is a single K-orbit, $\hat{\gamma}$ has two distinct extension $\hat{\gamma}_1, \hat{\gamma}_2$ to \hat{O} and s. $[\mathfrak{M}_{(O,\gamma)}] = -[\mathfrak{M}_{(O,\gamma)}] + [\mathfrak{M}_{(O',\gamma_1')}] + [\mathfrak{M}_{(O',\gamma_2')}]$ with $\hat{\gamma}'_i = \hat{\gamma}_i \mid O'$.

(c2) If $L_x^s \cap O = L_x^s - \{\text{two points in one } K\text{-orbit}\}$, then \hat{r} has at most one extension to \hat{O} . In the case \hat{r} has an extension \hat{r} to \hat{O} , $\hat{r} | \hat{O} - O$ has a unique extension \hat{r}_* to \hat{O} different from \hat{r} and $s : [\mathfrak{M}_{(O,\gamma)}] = [\mathfrak{M}_{(O,\gamma)}]$ with $\hat{r}_* = \hat{r}_* | O$. In the case \hat{r} does not have an extension, $s : [\mathfrak{M}_{(O,\gamma)}] = [\mathfrak{M}_{(O,\gamma)}]$.

(d1) If $L_x^s \cap O = \{x\}$ and $\hat{O} - O$ is a union of two orbits O' and O''with dim $O = \dim O'' = \dim O' - 1$, then $\hat{\tau}$ has a unique extension $\hat{\tau}$ to \hat{O} and s. $[\mathfrak{M}_{(O,\tau)}] = [\mathfrak{M}_{(O',\tau')}] - [\mathfrak{M}_{(O'',\tau'')}]$ with $\hat{\tau}' = \hat{\tau} | O'$ and $\hat{\tau}'' = \hat{\tau} | O''$.

(d2) If $L_x^s \cap O = L_x^s - \{\text{two points in two K-orbits}\}, \text{ then } s. [\mathfrak{M}_{(0,\gamma)}] = [\mathfrak{M}_{(0,\gamma)}].$

Now we give an alternative description of the *W*-module $(H_c^{2d}(Z, \mathbf{Q}))^* \simeq (K(\mathcal{M}(\mathfrak{g}, K))/\text{Ker Ch}) \otimes_{\mathbf{Z}} \mathbf{Q}$ different from that of Proposition 9.

Proposition 10. Let $\{\mathfrak{h}_{0}^{(i)}\}_{i \in I}$ be a set of representatives of the conjugacy classes of Cartan subalgebras of \mathfrak{g}_{0} so that $\theta(\mathfrak{h}_{0}^{(i)}) = \mathfrak{h}_{0}^{(i)}$. We fix for each $i \in I$ a positive root system $\Delta^{(i)+}$ of the root system $\Delta^{(i)}$ of $(\mathfrak{g}, \mathfrak{h}_{0}^{(i)} \otimes_{\mathbb{R}} \mathbb{C})$. We identify Cartan subalgebras $\mathfrak{h}_{0}^{(i)} \otimes_{\mathbb{R}} \mathbb{C}$ via the Borel subalgebras $\mathfrak{b}(\mathfrak{h}_{0}^{(i)}, \Delta^{(i)+})$ and regard W as its Weyl group. Then there exist linear characters $W(\mathfrak{h}_{0}^{(i)}, K_{\mathbb{R}}) \xrightarrow{\chi_{i}} \{\pm 1\}$ so that

$$(K(\mathcal{M}(\mathfrak{g}, K))/\operatorname{Ker} \operatorname{Ch}) \bigotimes_{\mathbf{Z}} \mathbf{Q} \simeq \bigoplus_{i \in I} \operatorname{Ind}_{W(\mathfrak{h}_{0}^{(i)}, K_{\mathbf{R}})}^{W}(\chi_{i}).$$

Remark 4. If \mathfrak{h}_1 and \mathfrak{h}_2 are Cartan subalgebras of \mathfrak{g} contained in Borel subalgebras \mathfrak{h}_1 and \mathfrak{h}_2 , respectively, then there exists $g \in G$ so that $\operatorname{Ad}(g)\mathfrak{h}_1 = \mathfrak{h}_2$ and $\operatorname{Ad}(g)\mathfrak{h}_1 = \mathfrak{h}_2$. Moreover $\operatorname{Ad}(g) | \mathfrak{h}_1 \colon \mathfrak{h}_1 \to \mathfrak{h}_2$ is uniquely determined by \mathfrak{h}_1 and \mathfrak{h}_2 .

(Sketch of the proof of Proposition 10)

For $O \in \mathscr{C}$ set $A_o = \sum_{(o,\tau) \in \mathscr{S}} [\mathfrak{M}_{(o,\tau)}]$. Then we see from Lemma 3 that $V = \bigoplus_{o \in \mathscr{C}} \mathbb{Q}A_o$ is *W*-invariant. By Remark 3 *V* is isomorphic to

$$(K(\mathcal{M}(\mathfrak{g}, K))/\operatorname{Ker} \operatorname{Ch}) \bigotimes_{\tau} \mathbf{Q} \simeq (H_c^{2d}(Z, \mathbf{Q}))^*.$$

Let \mathscr{C}_i be the set of $O \in \mathscr{C}$ such that $\mathfrak{b}(\mathfrak{h}_0^{(i)}, w\Delta^+) \in O$ for some $w \in W$. For $i, j \in I$ we write $i \leq j$ if i = j or dim $(\mathfrak{h}_0^{(j)} \cap \mathfrak{p}_0) \leq \dim(\mathfrak{h}_0^{(i)} \cap \mathfrak{p}_0)$. Then

$$\overline{V}^{(i)} = \bigoplus_{j \leq i} \left(\bigoplus_{o \in \mathscr{C}_j} \mathbf{Z} A_o \right)$$

is W-invariant and if we set

$$V^{(i)} = \overline{V}^{(i)} / \sum_{j \leq i, j \neq i} \overline{V}^{(j)},$$

we have $V \simeq \bigoplus_{i \in I} V^{(i)}$ as a *W*-module. We fix $i \in I$. For $w \in W$ let a_w be the class of A_o in $V^{(i)}$, where O is the *K*-orbit on *X* containing $\mathfrak{b}(\mathfrak{h}_0^{(i)}, w \Delta^{(i)+})$. Then we have $V^{(i)} = \bigoplus_{w \in W(\mathfrak{h}_0^{(i)}, K_{\mathbf{R}}) \setminus W} \mathbf{Q} a_w$. By Lemma 3 and the arguments as in [V] we see that $s. a_w = \pm a_{ws}$. Thus

$$V^{(i)} \simeq \operatorname{Ind}_{W(\mathfrak{h}_0, K_p)}^W(\chi_i)$$

for some χ_i and we are done.

Remark 5. χ_i is uniquely determined by $\chi_i(w)a_e = w. a_e$ for $w \in W(\mathfrak{h}_0^{(i)}, K_{\mathbf{R}})$. In particular, if $\mathfrak{h}_0^{(i)}$ is a fundamental Cartan subalgebra (i.e. dim $(\mathfrak{h}_0^{(i)} \cap \mathfrak{k}_0)$ is maximal) we see that χ_i coincides with the restriction of the sign representation sgn of W to $W(\mathfrak{h}_0^{(i)}, K_{\mathbf{R}}) = W(K) =$ (the Weyl group of K).

4.2. As an example we treat the case when g_0 has only one conjugacy class of Cartan subalgebras. By Propositions 9 and 10 we have the following.

Proposition 11. If g_0 has a unique conjugacy class of Cartan subalgebras, then we have

$$\operatorname{Ind}_{W(K)}^{W}(1) \otimes \operatorname{sgn} \simeq \bigoplus_{x \in K \setminus N(\mathfrak{p})} H_{2d\,x}^{-}(X_x, \mathbf{Q})^{C_K(x)}.$$

In the case g_0 is a complex semisimple Lie algebra viewed as a real semisimple Lie algebra, the above formula is just

$$\mathbf{Q}[W] \simeq \bigoplus_{x \in G \setminus N} (H_{2d_x}(X_x, \mathbf{Q}) \otimes H_{2d_x}(X_x, \mathbf{Q}))^{C_G(x)}$$

with $C_G(x) = Z_G(x)/(Z_G(x))_0$, from which the completeness theorem of Springer is obtained (see [KL]).

We see by [Su] that if g_0 is a non-compact real form of a complex simple Lie algebra, g_0 has only one conjugacy class of Cartan subalgebra if and only if the pair (g, f) is one of the following three types:

(I)
$$g = A_{2n-1}, t = C_n (n \ge 2),$$

(II)
$$g=D_n$$
, $f=B_{n-1}$ $(n\geq 4)$,

(III)
$$g = E_6, f = F_4.$$

Remark 6. Note that in the cases (I), (II) and (III) the automorphism θ of g is obtained by extending the symmetry of the Dynkin diagram of g using the usual presentation of g by generators and relations.

In order to write down the formula in Proposition 11 explicitly, we need a classification of K-conjugacy classes of nilpotent elements in \mathfrak{p} . Consider the natural map $K \setminus N(\mathfrak{p}) \xrightarrow{\emptyset} G \setminus N$. Then we have the following.

Proposition 12 (see [Se]). For $e \in N$ the following conditions are equivalent.

(i) e is conjugate to an element of N(p) under the action of G.

(ii) Let n_i be the number attached to the vertex *i* of the weighted Dynkin diagram of e ($n_i = 0, 1$ or 2). Then in the Satake diagram of g_0 we have:

Proposition 13. If g_0 has a unique conjugacy class of Cartan subalgebras, then the map Φ is injective.

Proposition 12 is stated in [Se] as a theorem of Antonyon and the proof is given for the case g_0 is a normal real form. But the proof in [Se] for normal forms applies to the general case under some modification. Proposition 13 is shown by using the results of [Ko] and [KR] if we note Remark 6.

Remark 7. We can prove more generally that the natural maps $K \mid p \to G \mid g$ and $K \mid \tilde{t} \to G \mid g$ are injective if g_0 has only one conjugacy class of Cartan subalgebras.

152

Using Propositions 12, 13 and the Springer correspondence (see [Sh] and [ALS]) we can write down the formula in Proposition 11 explicitly.

In the case (I) we have $\operatorname{Ind}_{W(G_n)}^{S_{2n}}(1) = \bigoplus \chi_{\sigma}$, where σ is running through the partitions of 2n whose parts are even and χ_{σ} is the irreducible representation corresponding to σ . A direct proof of this formula is given in [T]. I understand that this was originally conjectured by N. Iwahori.

In the case (II) we have $\operatorname{Ind}_{W(B_{n-1})}^{W(D_n)}(1) = 1 \oplus \chi$, where χ is the irreducible representation of $W(D_n)$ corresponding to the pair of partitions $((n-1>1), \emptyset)$ in the usual conventions. But this is trivial.

In the case (III) we have $\operatorname{Ind}_{W(F_4)}^{W(E_6)}(1) = 1_p \oplus 20_p \oplus 24_p$.

Remark 8. Using the recent result of Matsuki describing the closure relations of K-orbits on X, we can construct for each K-orbit O a nonsingular variety Y with a K-action and a K-equivariant proper surjective map $Y \xrightarrow{f} \overline{O}$ which is generically finite. This is an obvious generalization of the desingularization of Schubert varieties given in [D]. If g_0 has only one conjugacy class of Cartan subalgebras, the above f is birational and in this case we can calculate the dimension of each stalk of the intersection cohomology sheaf of the closure of any K-orbit by the method given in [Sp] (see [LV]).

References

- [ALS] Alvis, D., Lusztig, G. and Spaltenstein, N., On Springer's correspondence for simple groups of type E_n (n = 6, 7, 8), Math. Proc. Cambridge Philos. Soc., **92** (1982), 65–78.
- [BB] Beilinson, A. and Bernstein, J., Localisation de g-modules, Comptes Rendus, 292 (1981), 15-18.
- [BM] Borho, W. and MacPherson, R., Representations des groupes de Weyl et homologie d'intersection pour les variétés de nilpotentes, Comptes Rendus, 292 (1981), 707-710.
- [BK] Brylinski, J.-L. and Kashiwara, M., Kazhdan-Lusztig conjecture and holonomic systems, Invent. math., 64 (1981), 387-410.
- [D] Demazure, M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4), 7 (1974), 53-88.
- [H1] Hotta, R., On Joseph's construction of Weyl group representations, Tohoku Math. J., 36 (1984), 49–74.
- [H2] _____, A local formula for Springer's representation; this volume.
- [J] Joseph, A., On the classification of primitive ideals in the enveloping algebra of a semisimple Lie algebra, Lecture Notes in Math., 1041, Springer-Verlag (1983), 30-76.
- [Ka] Kashiwara, M., The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto Univ., 20 (1984), 319-365.
- [KK] Kashiwara, M. and Kawai, T., On holonomic systems of microdifferential equations III -systems with regular singularities-, Publ. RIMS, Kyoto Univ., 17 (1981), 813-979.
- [KT] Kashiwara, M. and Tanisaki, T., The characteristic cycles of holonomic systems on a flag manifold –related to the Weyl group algebra–, Invent.

Math., 77 (1984), 185-198.

- [KL] Kazhdan, D. and Lusztig, G., A topological approach to Springer's representations; Adv. in Math., 38 (1980), 222-228.
- [Ko] Kostant, B., Lie group representations on polynomial rings, Amer. J. Math., 85 (1963), 327-404.
- Kostant, B. and Rallis, S., Orbits and representations associated with [KR] symmetric spaces: Amer. J. Math., 93 (1971), 753-809.
- Lusztig, G., Green polynomials and singularities of unipotent classes, [L]
- Adv. in Math., 42 (1981), 169–178. Lusztig, G. and Vogan, D., Singularities of closures of K-orbits on flag manifolds, Invent. math., 71 (1983), 365–379. [LV]
- [M]Matsuki, T., The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, 31 (1979), 331-357.
- [Sa] Sabbah, C., Quelques remarques sur la theorie des classes de Chern des espaces analytiques singuliers, preprint (1983).
- [Se] Sekiguchi, J., The nilpotent subvariety of the vector space associated to a symmetric pair; Publ. RIMS, Kyoto Univ., 20 (1984), 155-212.
- [Sh] Shoji, T., On the Springer representations of the Weyl groups of classical algebraic groups, Comm. Algebra, 7 (1979), 1713-1745, 2027-2033.
- [Sp] Springer, T. A., Quelques applications de la cohomologie d'intersection, Séminaire Bourbaki, expose 589. Astérisque, (1982), 92-93, 249-273.
- Sugiura. M., Conjugate classes of Cartan subalgebras in real semisimple [Su] Lie algebras, J. Math. Soc. Japan, 11 (1959), 374-434.
- [T] Thompson, J. G., Fixed point free involutions and finite projective planes, in: Finite simple groups II. Proc. Sympos. Univ. Durham 1978, 321-337 Academic Press, 1980.
- [V] Vogan, D., Irreducible characters of semisimple Lie groups III: Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. math., 71 (1983), 381-417.
- Warner, G., Harmonic analysis on semisimple Lie groups I, Springer-[W] Verlag, 1972.

Mathematical Institute Tohoku University Sendai 980, Japan

154