Holonomic Systems on a Flag Variety Associated to Harish-Chandra Modules and Representations of a Weyl Group

Toshiyuki Tanisaki
Dedicated to Professor Hirosi Nagao on his 60th birthday

§ 1. Introduction

1.1. In $[\mathrm{KT}]$ we studied the characteristic cycles of holonomic systems on a flag variety associated to highest weight modules of a complex semisimple Lie algebra, and investigated its relation to the representations of a Weyl group.

In this paper we consider Harish-Chandra modules instead of highest weight modules, and prove a theorem similar to the main theorem of [KT] (Theorem 1 below). The main theorem of [KT] turns out to be a special case of Theorem 1 and this paper gives a generalization of the result of [KT], although the proof is essentially the same as the one in [KT].
1.2. Let G be a connected complex semisimple algebraic group and G_{R} a real form of G. We assume that G_{R} is connected for simplicity. We fix a maximal compact subgroup $K_{\mathbf{R}}$ of $G_{\mathbf{R}}$ and denote its complexification in G by K.

We consider the abelian category $\mathscr{H}(\mathfrak{g}, K)$ whose objects are (\mathfrak{g}, K) modules of finite length with trivial central character. Here g is the Lie algebra of G. The result of Beilinson-Bernstein [BB] implies that $\mathscr{H}(\mathfrak{g}, K)$ is equivalent to the abelian category $\mathscr{M}(g, K)$ consisting of coherent \mathscr{D} Modules on the flag variety X with K-actions. Using the fact that X is the union of finitely many K-orbits (Matsuki [M]), it is easily shown that any irreducible component of the characteristic variety $\mathrm{Ch}(\mathfrak{M})$ of $\mathfrak{M} \in$ $\mathscr{M}(\mathrm{g}, K)$ is the closure of the conormal bundle $T_{o}^{*} X$ of a K-orbit O, and in particular \mathfrak{M} is holonomic (actually regular holonomic). We take the multiplicity of \mathfrak{M} along $\overline{T_{o}^{*} X}$ into account and consider the characteristic cycle $\mathbf{C h}(\mathfrak{M}) \in \oplus_{o} \mathbf{Z}_{z 0}\left[\overline{T_{o}^{*} X}\right]$, where O is running through the K-orbits on
X. Let $K(\mathscr{M}(\mathrm{~g}, K))$ be the Grothendieck group of $\mathscr{M}(\mathrm{g}, K)$. By the additivity of $\mathbf{C h}$ we have a Z-linear homomorphism

$$
\begin{equation*}
K(\mathscr{M}(\mathfrak{g}, K)) \xrightarrow{\mathbf{C h}} \underset{o}{\oplus} \mathbf{Z}\left[\overline{T_{o}^{*} X}\right] \tag{}
\end{equation*}
$$

One can define natural actions of the Weyl group W on $K(\mathscr{M}(\mathrm{~g}, K))$ and $\oplus_{o} \mathbf{Z}\left[\overline{T_{o}^{*} X}\right]$ (see Section 3 below). Then our main theorem is the following.

Theorem 1. The Z-linear homomorphism

$$
K(\mathscr{M}(\mathfrak{g}, K)) \xrightarrow{\mathbf{C h}} \underset{o}{\oplus} \mathbf{Z}\left[\overline{T_{o}^{*} X}\right]
$$

is W-equivariant.
1.3. The contents of this paper are as follows. In Section 2 we summarize the known results concerning the Beilinson-Bernstein theory, the Riemann-Hilbert correspondence, Harish-Chandra modules and K orbits on the flag variety. In Section 3 we give the definitions of W actions and prove Theorem 1. Additional remarks are stated in Section 4.
1.4. On this occasion we give a remark on the paper [KT]. After writing it up, we learned that Theorem 6 in [KT] was already conjectured by Joseph [J], and V. Ginsburg informed us that he also proved the same theorem by a different method (letter dated January 25, 1984).
1.5. The author expresses his hearty thanks to Professor M. Kashiwara and Professor R. Hotta for valuable suggestions.

§ 2. Harish-Chandra modules and holonomic systems

2.1. The Beilinson-Bernstein theory

Let G be a connected semisimple algebraic group over the complex number field \mathbf{C} with Lie algebra g . We denote the flag variety by $X . X$ is naturally identified with the set of all the Borel subalgebras of g. We denote the sheaf of regular functions and the sheaf of differential operators on X by \mathcal{O}_{x} and \mathscr{D}_{X}, respectively. The natural action of G on X induces an algebra homomorphism $U(\mathfrak{g}) \xrightarrow{D} \Gamma\left(X, \mathscr{D}_{X}\right)$, where $U(\mathfrak{g})$ is the universal enveloping algebra of g. Let $z(g)$ be the center of $U(g)$ and χ_{0} the trivial central character of $z(\mathrm{~g})$. $\quad \chi_{0}$ is the algebra homomorphism from $z(\mathrm{~g})$ onto C given by $z(g) \longrightarrow U(\mathrm{~g}) \rightarrow U(\mathrm{~g}) / \mathrm{g} U(\mathrm{~g})=\mathbf{C}$. A $U(\mathrm{~g})$-module M is said to have the trivial central character if $z . m=\chi_{0}(z) m$ for all $z \in \mathcal{z}(\mathrm{~g})$ and $m \in M$.

Theorem 2. (Beilinson-Bernstein [BB])
(i) D is surjective with $\operatorname{Ker} D=U(\mathrm{~g}) \operatorname{Ker} \chi_{0}=U(\mathrm{~g})(\mathrm{z}(\mathrm{g}) \cap \mathrm{g} U(\mathrm{~g}))$.
(ii) The abelian category of finitely generated $U(\mathrm{~g})$-modules M with trivial central character and that of coherent \mathscr{D}_{x}-modules \mathfrak{M} are naturally equivalent to each other. The correspondence is given by $M=\Gamma(X, \mathfrak{M})$ and $\mathfrak{M}=\mathscr{D}_{X} \otimes_{U(\mathrm{~g})} M$.
2.2. The Riemann-Hilbert correspondence

Let $\mathcal{O}_{X_{\mathrm{an}}}$ be the sheaf of holomorphic functions. We set

$$
\mathscr{D}_{X_{\mathrm{an}}}=\mathcal{O}_{X_{\mathrm{an}}} \otimes_{O_{X}}^{\otimes} \mathscr{D}_{X} \quad \text { and } \quad \mathfrak{M}_{\mathrm{an}}=\mathscr{D}_{X_{\mathrm{an}}} \otimes_{\mathscr{O}_{X}} \mathfrak{M}=\mathcal{O}_{X_{\mathrm{an}}} \otimes_{O_{X}}^{\otimes} \mathfrak{M}
$$

for a \mathscr{D}_{X}-Module \mathfrak{M}. A coherent \mathscr{D}_{X}-Module \mathfrak{M} is said to be regular holonomic if $\mathcal{M}_{\mathrm{an}}$ is a holonomic $\mathscr{D}_{X_{\mathrm{an}}}$-Module with regular singularity in the sence of $[\mathrm{KK}]$. For a regular holonomic \mathscr{D}_{x}-Module \mathfrak{M}, we set $\mathscr{D} \mathscr{R}(\mathfrak{M})=\mathbf{R} \mathscr{H}_{\text {om }} \mathscr{D}_{X_{\mathrm{an}}}\left(\mathcal{O}_{X_{\mathrm{an}}}, \mathfrak{M}_{\mathrm{an}}\right) . \quad \mathscr{D} \mathscr{R}(\mathfrak{M})$ is a bounded complex of $\mathbf{C}_{X^{-}}$ Modules which is an object of the derived category. Furthermore it is known that $\mathscr{D} \mathscr{R}(\mathfrak{M})$ is a perverse sheaf, that is, $\mathscr{K}:=\mathscr{D} \mathscr{R}(\mathfrak{M})$ satisfies the following conditions.
(i) $\mathscr{H}^{i}(\mathscr{K})$ is constructible for each i.
(ii) $\mathscr{H}^{i}(\mathscr{K})=0$ for $i<0$.
(iii) $\operatorname{codim}\left(\operatorname{supp}\left(\mathscr{H}^{i}\left(\mathscr{K}^{\prime}\right)\right)\right) \geq i$ for $i \geq 0$.
(iv) $\operatorname{codim}\left(\operatorname{supp}\left(\mathscr{H}^{i}\left(\mathscr{K}^{*}\right)\right)\right) \geq i$ for $i \geq 0$, where $\mathscr{K}^{*}=\mathbf{R} \mathscr{H}_{\text {om }_{\mathbf{C}_{X}}\left(\mathscr{K}, \mathbf{C}_{X}\right) .}$

Theorem 3 (Kashiwara, Mebkhout see [Ka]). $\mathscr{D} \mathscr{R}$ gives an equivalence between the abelian category of regular holonomic \mathscr{D}_{X}-Modules and that of perverse sheaves on X.

2.3. Harish-Chandra modules

Let $G_{\mathbf{R}}$ be a connected real form of G. We fix a maximal compact subgroup $K_{\mathbf{R}}$ of $G_{\mathbf{R}}$ and denote its complexification by K.

Definition. A g-module M which has also a K-module structure is called a (g, K)-module if the following conditions hold.
(i) Any $m \in M$ is contained in a finite-dimensional K-invariant subspace M_{0} and the induced homomorphism $K \rightarrow \mathrm{GL}\left(M_{0}\right)$ is a homomorphism of algebraic groups.
(ii) If \mathfrak{f} is the Lie algebra of K, then the \mathfrak{f}-module structure on M obtained by differentiating the K-action coincides with the one obtained by restricting the \mathfrak{g}-module structure.
(iii) $\quad k .(X . m)=(\operatorname{Ad}(k) X) .(k . m)$ for $k \in K, X \in \mathfrak{g}$ and $m \in M$.

Let $\mathscr{H}(\mathfrak{g}, K)$ be the abelian category consisting of (\mathfrak{g}, K)-modules of
finite length which have the trivial central character as $U(\mathrm{~g})$-modules. By the correspondence of Theorem $2 \mathscr{H}(\mathfrak{g}, K)$ is equivalent to the category $\mathscr{M}(\mathrm{g}, K)$ consisting of coherent \mathscr{D}_{X}-Modules with K-actions. We say that a coherent \mathscr{D}_{x}-Module \mathfrak{M} has a K-action if an isomorphism $p^{*} \mathfrak{M} \simeq q * \mathbb{M}$ of $\mathscr{D}_{K \times X}$-Modules which satisfies the usual cocycle condition is given, where $K \times X \xrightarrow{q} X$ and $K \times X \xrightarrow{p} X$ are defined by $q(k, x)=k . x$ and $p(k, x)=x$.

In order to investigate $\mathscr{M}(\mathrm{g}, K)$ we need the following.
Proposition 1 (Matsuki [M], see also Vogan [V] and 2.4 below).
(i) There exist finitely many K-orbits on X.
(ii) For $x \in X$ let K_{x} be the stabilizer of x in K and $\left(K_{x}\right)_{0}$ its identity component. Then the order of any element of $K_{x} /\left(K_{x}\right)_{0}$ is at most 2 . In particular $K_{x} /\left(K_{x}\right)_{0}$ is an abelian group.

We denote the set of the K-orbits on X by \mathscr{C}.
Lemma 1. For $\mathfrak{M} \in \mathscr{M}(g, K)$ any irreducible component of the characteristic variety $\mathrm{Ch}(\mathfrak{M})$ is the closure of the conormal bundle $T_{o}^{*} X$ of some $O \in \mathscr{C}$. In particular \mathfrak{M} is holonomic.

Proof. Since $\mathrm{Ch}(\mathfrak{M})$ is an involutive subvariety of $T^{*} X$, it is sufficient to show that $\mathrm{Ch}(\mathfrak{M})$ is contained in $\coprod_{o \in \mathscr{\&}} T_{o}^{*} X$. Set $M=\Gamma(X, \mathfrak{M})$ $\in \mathscr{M}(\mathrm{g}, K)$. Take a finite-dimensional K-invariant subspace M_{0} of M so that $M=U(\mathrm{~g}) M_{0}$ and set $M_{i}=U_{i}(\mathrm{~g}) M_{0} . \quad$ Then $\operatorname{gr} M=\oplus_{i \in \mathbf{Z}}\left(M_{i} / M_{i-1}\right)$ is a finitely generated $S(\mathrm{~g})$-module and the support of the associated coherent sheaf $\widetilde{\operatorname{gr} M}$ on \mathfrak{g}^{*} is contained in $\mathfrak{f}^{\perp}=\left\{x \in \mathfrak{g}^{*} \mid\langle x, \mathfrak{f}\rangle=0\right\}$. Let $T^{*} X \xrightarrow{r} \mathrm{~g}^{*}$ be the natural map. Then we have $\operatorname{Ch}(\mathfrak{M}) \subset \gamma^{-1}(\operatorname{supp}(\widetilde{\mathrm{gr} M}))$ $\subset \gamma^{-1}\left(\mathfrak{f}^{\perp}\right)=\coprod_{o \in \mathscr{G}} T_{o}^{*} X$. Here the first inclusion follows from the definition since $M=\mathscr{D}_{X} \otimes_{U(g)} M$.

Moreover we have the following.
Proposition 2 (Beilinson-Bernstein [BB], see also Vogan [V]). If $\mathfrak{M} \in \mathscr{M}(\mathfrak{g}, K)$, then \mathfrak{M} is regular holonomic.

Hence by Theorem $3 \mathscr{M}(\mathfrak{g}, K)$ is equivalent to the abelian category $\mathscr{F}(\mathrm{g}, K)$ consisting of the perverse sheaves on X with K-actions. Thus we have the following equivalence of the abelian categories:

$$
(*): \mathscr{H}(\mathfrak{g}, K) \simeq \mathscr{M}(\mathfrak{g}, K) \simeq \mathscr{F}(\mathfrak{g}, K) .
$$

Next we describe the simple objects of these categories. For $O \in \mathscr{C}$ and a one-dimensional local system (locally constant sheaf whose stalks are one-dimensional \mathbf{C}-vector spaces) γ on O with a K-action, let ${ }^{\pi} \gamma$ be the $D G M$-extension of γ to \bar{O}. We also use the same notations for the zero
extensions of γ and ${ }^{\pi} \gamma$ to X. Then $\gamma[-\operatorname{codim} O]$ and ${ }^{\pi} \gamma[-\operatorname{codim} O]$ are objects of $\mathscr{F}(\mathrm{g}, K)$ and the latter is a simple object. Furthermore any simple object in $\mathscr{F}(g, K)$ is isomorphic to some ${ }^{\pi} \gamma[-\operatorname{codim} O]$. Hence the set of the simple objects is parametrized by

$$
\begin{gathered}
\mathscr{S}=\{(O, \gamma) \mid O \in \mathscr{C} \text { and } \gamma \text { is a } K \text {-equivariant one-dimensional } \\
\text { local system on } O\} .
\end{gathered}
$$

We remark here that the set of K-equivariant one-dimensional local systems on O is parametrized by the set of irreducible (one-dimensional) representations of $K_{x} /\left(K_{x}\right)_{0}$ for a fixed $x \in O$.

We denote the objects in $\mathfrak{M}(\mathfrak{g}, K)$ (resp. $\mathscr{H}(\mathfrak{g}, K)$) corresponding to $\gamma[-\operatorname{codim} O]$ and ${ }^{\pi} \gamma[-\operatorname{codim} O]$ under the equivalence $\left(^{*}\right)$ by $\mathcal{M}_{(o, r)}$ and $\mathfrak{Z}_{(o, r)}$ (resp. $M_{(o, r)}$ and $\left.L_{(o, r)}\right)$. Then we have the following decomposition of the Grothendieck groups:

$$
\begin{aligned}
& K(\mathscr{H}(\mathrm{~g}, K))=\underset{(o, r)}{\oplus} \mathbf{Z}\left[M_{(o, r)}\right]=\underset{(o, r)}{\oplus} \mathbf{Z}\left[L_{(0, r)}\right] \\
& K(\mathscr{M}(\mathrm{~g}, K))=\underset{(o, r)}{\oplus} \mathbf{Z}\left[\mathcal{M}_{(o, r)}\right]=\underset{(o, r)}{\oplus} \mathbf{Z}\left[\mathbb{R}_{(o, r)}\right]
\end{aligned}
$$

2.4. K-orbits on X

We give a parametrization of K-orbits on X and other informations for the convenience of the readers. The reader is referred to Matsuki $[\mathrm{M}]$ and Vogan [V] for the proofs and other results.

We denote the Lie algebras of $G_{\mathbf{R}}, K_{\mathbf{R}}$ and K by $\mathfrak{g}_{0}, \mathfrak{f}_{0}$ and \mathfrak{f}, respectively. Let $g_{0}=\mathfrak{f}_{0} \oplus \mathfrak{p}_{0}$ and $g=\mathfrak{f} \oplus \mathfrak{p}$ be the Cartan decomposition of g_{0} and its complexification. Let θ be the involution on g defined by $\theta(x+y)=x-y(x \in \mathfrak{f}, y \in \mathfrak{p})$. we also denote its restriction to \mathfrak{g}_{0} by θ.

For a θ-stable Cartan subalgebra \mathfrak{G}_{0} of \mathfrak{g}_{0} and a positive root system Δ^{+}of $\left(\mathfrak{g}, \mathfrak{h}_{0} \otimes_{\mathbf{R}} \mathbf{C}\right)$ let $\mathfrak{b}\left(\mathfrak{h}_{0}, \Delta^{+}\right)$be the corresponding Borel subalgebra of g.

Proposition 3 (Matsuki [M]). (i) Any Borel subalgebra of \mathfrak{g} is K conjugate to $\mathfrak{b}\left(\mathfrak{G}_{0}, \Delta^{+}\right)$for some θ-stable Cartan subalgebra \mathfrak{G}_{0} of \mathfrak{g}_{0} and a positive root system Δ^{+}of $\left(\mathfrak{g}, \mathfrak{h}_{0} \otimes_{\mathrm{R}} \mathbf{C}\right)$.
(ii) Let \mathfrak{Y}_{0} and $\mathfrak{G}_{0}^{\prime}$ be θ-stable Cartan subalgebras of \mathfrak{g}_{0}. Let Δ^{+}and $\Delta^{\prime+}$ be positive root systems of $\left(\mathfrak{g}, \mathfrak{h}_{0} \otimes_{\mathbf{R}} \mathbf{C}\right)$ and $\left(\mathfrak{g}, \mathfrak{G}_{0}^{\prime} \otimes_{\mathrm{R}} \mathbf{C}\right)$, respectively. Then $\mathfrak{b}\left(\mathfrak{G}_{0}, \Delta^{+}\right)$is K-conjugate to $\mathfrak{G}\left(\mathfrak{G}_{0}^{\prime}, \Delta^{\prime+}\right)$ if and only if there exists an element $k \in K_{\mathbf{R}}$ so that $k . \mathfrak{G}_{0}=\mathfrak{G}_{0}^{\prime}$ and $k \cdot \mathfrak{b}\left(\mathfrak{h}_{0}, \Delta^{+}\right)=\mathfrak{b}\left(\mathfrak{h}_{0}^{\prime}, \Delta^{\prime+}\right)$.

For a θ-stable Cartan subalgebra \mathfrak{G}_{0} of \mathfrak{g}_{0} let $W\left(\mathfrak{h}_{0}\right)$ be the Weyl group of $\left(\mathfrak{g}, \mathfrak{h}_{0} \otimes_{\mathrm{R}} \mathbf{C}\right)$. Set $W\left(\mathfrak{h}_{0}, K_{\mathrm{R}}\right)=\left(N_{G}\left(\mathfrak{h}_{0}\right) \cap K_{\mathrm{R}}\right) /\left(Z_{G}\left(\mathfrak{h}_{0}\right) \cap K_{\mathrm{R}}\right)\left(\subset W\left(\mathfrak{h}_{0}\right)\right)$. Since the set of G_{R}-conjugacy classes of Cartan subalgebras of \mathfrak{g}_{0} and the
set of K_{R}-conjugacy classes of θ-stable Cartan subalgebras of \mathfrak{g}_{0} are in one-to-one correspondence, we have the following.

Corollary (Matsuki [M]). Let $\left\{\mathfrak{h}_{0}^{(i)} \mid i \in I\right\}$ be a set of representatives of the G_{R}-conjugacy classes of Cartan subalgebras of \mathfrak{g}_{0} so that each $\mathfrak{G}_{0}^{(i)}$ is θ-stable. We fix a positive root system $\Delta^{(i)+}$ of $\left(\mathfrak{g}, \mathfrak{h}_{0}^{(i)} \otimes_{\mathbf{R}} \mathbf{C}\right)$ for each $i \in I$. Then the set of K-orbits on X (K-conjugacy classes of Borel subalgebras in g) is parametrized by the set $\amalg_{i \in I} W\left(\mathfrak{\sigma}_{0}^{(i)}, K_{\mathrm{R}}\right) \backslash W\left(\mathfrak{\sigma}_{0}^{(i)}\right)$, and the K-conjugacy ciass corresponding to $W\left(\mathfrak{G}_{0}^{(i)}, K_{\mathbf{R}}\right) w$ is the one containing $\mathfrak{b}\left(\mathfrak{h}_{0}^{(i)}, w \Delta^{(i)+}\right)$.

For the classification of the Cartan subalgebras of g_{0} we refer the reader to Sugiura $[\mathrm{Su}]$ and Warner $[\mathrm{W}]$. In particular, since the number of the conjugacy classes of Cartan subalgebras is finite, the number of K orbits on X is finite.

Let \mathfrak{h}_{0} be a θ-stable Cartan subalgebra and Δ^{+}a positive root system of $\left(\mathfrak{g}, \mathfrak{h}_{0} \otimes_{\mathbf{R}} \mathbf{C}\right)$. Let O be the K-orbit on X containing $\mathfrak{G}=\mathfrak{b}\left(\mathfrak{h}_{0}, \Delta^{+}\right)$. We denote the Borel subgroup corresponding to \mathfrak{G} by B. Then O is isomorphic to $K / K_{\mathfrak{b}}$ with $K_{\mathfrak{b}}=\{k \in K \mid k . \mathfrak{b}=\mathfrak{b}\}=K \cap B$. Note that the set of the irreducible K-equivariant local systems on O is in one-to-one correspondence with the set of irreducible representations of the component group $K_{b} /\left(K_{\mathrm{b}}\right)$. This group is described as follows.

Proposition 4 (see Vogan [V]). In the above notations set $H_{\mathbf{R}}=Z_{\sigma_{\mathbf{R}}}\left(\mathfrak{G}_{0}\right)$ and $H=Z_{G}\left(\zeta_{0} \otimes_{\mathbf{R}} \mathbf{C}\right)$. Then we have:

$$
\begin{aligned}
& K_{\mathrm{b}} /\left(K_{\mathrm{b}}\right)_{0}=(K \cap B) /(K \cap B)_{0} \simeq(K \cap H) /(K \cap H)_{0} \simeq\left(K_{\mathbf{R}} \cap H_{\mathbf{R}}\right) /\left(K_{\mathbf{R}} \cap H_{\mathbf{R}}\right)_{0} \\
& \simeq H_{\mathbf{R}} /\left(H_{\mathbf{R}}\right)_{0} \simeq(\mathbf{Z} / 2 \mathbf{Z})^{N}
\end{aligned}
$$

for some non-negative integer N with $0 \leq N \leq \operatorname{dim}_{\mathbf{R}}\left(\mathfrak{h}_{u} \cap \mathfrak{p}_{0}\right)$.

§ 3. W-module structures

3.1. W-module structure on $K(\mathscr{M}(\mathrm{~g}, K))$

Set $G_{1}=G \times G, g_{1}=g \oplus \mathrm{~g}$ and $K_{1}=\Delta G=\left\{(g, g) \in G_{1} \mid g \in G\right\}$. We first consider $\mathscr{M}\left(\mathrm{g}_{1}, K_{1}\right)=\mathscr{M}(\mathrm{g} \oplus \mathrm{g}, \Delta G)$. The flag variety of G_{1} is $X \times X$, where X is the flag variety of G, and its decomposition into ΔG-orbits is given by $X \times X=\amalg_{w \in W} O(w)$, where W is the Weyl group of G and $O(w)=$ ΔG. $(e B, w B)$. Here we identify X with G / B for a fixed Borel subgroup B. Since each $O(w)$ is simply-connected, we have:

$$
K(\mathscr{M}(\mathfrak{g} \oplus \mathfrak{g}, \Delta G))=\underset{w \in W}{\oplus} \mathbf{Z}\left[\mathfrak{M}_{w}\right]=\underset{w \in W}{\oplus} \mathbf{Z}\left[\mathfrak{R}_{w}\right],
$$

with $\mathfrak{M}_{w}=\mathfrak{M}_{(o(w), 1)}$ and $\mathfrak{R}_{w}=\mathfrak{R}_{(o(w), 11}$.
Let $X \times X \times X \xrightarrow{p_{i j}} X \times X(1 \leq i<j \leq 3)$ be the natural projection. For
$\mathfrak{M}_{1}, \mathfrak{M}_{2} \in \mathscr{M}(\mathfrak{g} \oplus g, \Delta G)$ we have

$$
\mathscr{H}^{i}\left(\int_{p_{13}}\left(p_{12}^{*} \mathfrak{M}_{1}\right) \underset{O X \times X \times X}{ } \underset{\otimes}{\otimes}\left(p_{23}^{*} \mathcal{M}_{2}\right)\right) \in \mathscr{M}(\mathfrak{g} \oplus \mathfrak{g}, \Delta G)
$$

for each i. Hence we can define a multiplication on $K(\mathscr{M}(\mathfrak{g} \oplus \mathfrak{g}, \Delta G))$ by

$$
\left[\mathfrak{M}_{1}\right] \cdot\left[\mathfrak{M}_{2}\right]=\sum_{i}(-1)^{i}\left[\mathscr{H}^{i}\left(\int_{p_{13}}\left(p_{12}^{*} \mathfrak{M}_{1}\right) \underset{O X \times X \times X}{\otimes}\left(p_{23}^{*} \mathfrak{M}_{2}\right)\right)\right] .
$$

Proposition 5 (see Lusztig-Vogan [LV] and Springer [Sp]). The above multiplication defines a ring structure on $K(\mathscr{M}(g \oplus \mathfrak{g}, \Delta G))$ so that

$$
\begin{aligned}
& K(\mathscr{M}(\mathrm{~g} \oplus \mathrm{~g}, \Delta G)) \simeq \mathbf{Z}[W] . \\
& {\left[\stackrel{\oplus}{\mathfrak{M}}_{w}\right] \longleftrightarrow \stackrel{*}{w}}
\end{aligned}
$$

Remark 1. By the Riemann-Hilbert correspondence one can translate this proposition into topological language, and this is actually the approach given in [LV] and [Sp]. Since they consider the Hecke algebra of W, we must specialize the indeterminant q to 1 to get the above result.

Now we define a W-action on $K(\mathscr{M}(\mathfrak{g}, K))$. By Proposition 5 we have only to define an action of the ring $K(\mathscr{M}(\mathfrak{g} \oplus \mathfrak{g}, \Delta G))$ on $K(\mathscr{M}(\mathfrak{g}, K))$. Let $X \times X \xrightarrow{q_{i}} X(i=1,2)$ be the projection onto the i-th factor. For $\mathfrak{M} \in \mathscr{M}(\mathrm{g} \oplus \mathfrak{g}, \Delta G)$ and $\mathfrak{N} \in \mathscr{M}(\mathrm{g}, K)$ we have
for each i.
Proposition 6 (Lusztig-Vogan [LV]). An action of $K(\mathscr{M}(\mathfrak{g} \oplus \mathfrak{g}, \Delta G))$ on $K(\mathscr{M}(\mathrm{~g}, K))$ is defined by

$$
[\mathfrak{M}] .[\mathfrak{N}]=\sum_{i}(-1)^{i}\left[\mathscr{H}^{i}\left(\int_{q_{1}} \mathfrak{M} \underset{O_{X \times X}}{\mathbb{Q}}\left(q_{2}^{*} \mathfrak{N}\right)\right)\right],
$$

where $\mathfrak{M} \in \mathscr{M}(\mathfrak{g} \oplus \mathrm{g}, \Delta G)$ and $\mathfrak{M} \in \mathscr{M}(\mathrm{g}, K)$.
Hence $K(\mathscr{M}(\mathrm{~g}, K))$ is endowed with a W-module structure.
In particular $K(\mathscr{M}(\mathfrak{g} \oplus \mathfrak{g}, \Delta G))(\simeq \mathbf{Z}[W])$ has a $W \times W$-module structure. Note that this action of $W \times W$ coincides with the two-sided regular representation of $W \times W$ on $\mathbf{Z}[W]$.

For a simple reflection s of W let X_{s} be the variety of semisimplerank 1 parabolic subalgebras of g corresponding to s. Write $X \xrightarrow{\pi_{s}} X_{s}$ for the natural map.

Proposition 7. For $\mathfrak{M} \in \mathscr{M}(\mathrm{g}, K)$ we have:

$$
s .[\mathfrak{M}]=[\mathfrak{M}]+\sum_{i}(-1)^{i}\left[\mathscr{H}^{i}\left(\mathbf{L} \pi_{s}^{*} \int_{\pi_{s}} \mathfrak{M}\right)\right] .
$$

This is proved by the same method as in the proof of Proposition 5 in [KT], so we omit the proof.

3.2. $\quad W$-module structure on $\oplus_{o} \mathbf{Z}\left[\overline{T_{o}^{*} X}\right]$

We first review the Springer representations of W. We follow the approach of Lusztig [L] using DGM-extensions (see also BorhoMacPherson [BM]).

Set $\tilde{g}=\{(x, \mathfrak{b}) \in \mathfrak{g} \times X \mid x \in \mathfrak{b}\}$ and let $\tilde{\mathfrak{g}} \xrightarrow{p} \mathfrak{g}$ be the natural map. We denote the set of regular semisimple elements (resp. nilpotent elements) in \mathfrak{g} by $\mathfrak{g}_{\mathrm{rs}}$ (resp. N) and set $\tilde{\mathfrak{g}}_{\mathrm{rs}}=p^{-1}\left(\mathfrak{g}_{\mathrm{rs}}\right)$ (resp. $\tilde{N}=p^{-1}(N)$). Let $\tilde{\mathfrak{g}}_{\mathrm{rs}} \xrightarrow{p_{\mathrm{rs}}} \mathfrak{g}_{\mathrm{rs}}$ and $\tilde{N} \xrightarrow{p_{N}} N$ be the restrictions of p. Since p_{rs} is a W-principal bundle, we have an action of W on the local system $p_{\mathrm{rs} *}\left(\mathbf{Q}_{\tilde{g}_{\mathrm{rs}}}\right)$ on g_{rs}, where $\mathbf{Q}_{\tilde{\mathrm{f}}_{\mathrm{rs}}}$ is the constant sheaf on $\tilde{\mathfrak{g}}_{\text {rs }}$ whose stalks are the rational number field \mathbf{Q}. By the functoriality of the DGM-extension we have an action of W on ${ }^{\pi}\left(p_{\mathrm{rs}}{ }^{*}\left(\mathbf{Q}_{\tilde{\mathrm{I}}_{\mathrm{rs}}}\right)\right)$. Since ${ }^{\pi}\left(p_{\mathrm{rs}}{ }^{*}\left(\mathbf{Q}_{\tilde{\mathrm{r}}_{\mathrm{rs}}}\right)\right)$ is isomorphic to $\mathbf{R} p_{*}\left(\mathbf{Q}_{\overline{\mathrm{g}}}\right)$ as an object in the derived category (Lusztig [L]) and since $\mathbf{R} p_{N *}\left(\mathbf{Q}_{\tilde{N}}\right)$ is isomorphic to $\mathbf{R} p_{*}\left(\mathbf{Q}_{\S}\right) \mid N$ by the base change theorem, we have an action of W on $\mathbf{R} p_{N *}\left(\mathbf{Q}_{\tilde{N}}\right)$.

For $x \in N$ set $X_{x}=p^{-1}(x)=\{\mathfrak{b} \in X \mid x \in \mathfrak{b}\}$. Then the action of W on $\mathbf{R} p_{*}\left(\mathbf{Q}_{\tilde{N}}\right)$ induces its action on $H^{i}\left(X_{x}, \mathbf{Q}\right)=R^{i} p_{N *}\left(\mathbf{Q}_{\tilde{N}}\right)_{x}$ for each i. This is the Springer representation of W in the usual sence.

For $O \in \mathscr{C}$ we set $Z_{o}=\overline{T_{0}^{*} X}$ and $Z=\bigcup_{o \in \mathscr{C}} Z_{o} . \quad Z$ is an algebraic variety of pure dimension $d=\operatorname{dim} X$. We identify $T^{*} X$ with \tilde{N} via the Killing form on \mathfrak{g}. Then we have $Z=p_{N}^{-1}(N(\mathfrak{p}))$ with $N(\mathfrak{p})=N \cap \mathfrak{p}$. Hence we have an action of W on $H_{c}^{i}\left(N(\mathfrak{p}), \mathbf{R} p_{N *}\left(\mathbf{Q}_{\bar{N}}\right) \mid N(\mathfrak{p})\right)=H_{c}^{i}(Z, \mathbf{Q})$. Since the dual space of the top cohomology group $H_{c}^{2 d}(Z, \mathbf{Q})$ has a natural basis $\left\{\left[\bar{T}_{0}^{*} X\right]\right\}_{o \in \mathscr{ళ}}$, we have a W-action on the vector space $\left(H_{c}^{2 d}(Z, \mathbf{Q})\right)^{*}=$ $\oplus_{o \in \mathscr{E}} \mathbf{Q}\left[\overline{T_{o}^{*} X}\right]$.

Remark 2. In order to define a W-action we can use the method of Kazhdan-Lusztig [KL] in place of the above approach. The coincidence of these two approaches is proved in Hotta [H1; Appendix] though it is not exactly of this form.

Next we review a geometric description of the action of simple reflections of W on the space $\left(H_{c}^{2 d}(Z, \mathbf{Q})\right)^{*}$ due to Hotta [H1], [H2]. We fix a simple reflection s. We define natural maps $\rho_{s}, \widetilde{\sigma}_{s}$ and τ_{s} by the follow-
ing commutative diagram:

For $O \in \mathscr{C}$ we say that O is s-vertical (resp. s-horizontal) if $\tau_{s}^{-1}\left(\tau_{s}\left(Z_{o}\right)\right)=Z_{o}$ (resp. $\left.\tau_{s}^{-1}\left(\tau_{s}\left(Z_{o}\right)\right) \supsetneq Z_{o}\right)$. Let \mathscr{C}_{v}^{s} and \mathscr{C}_{h}^{s} be the set of s-vertical and s horizontal K-orbits on X, respectively. Set $O_{s}=\pi_{s}(O)$ for $O \in \mathscr{C}$. The following is obvious.

Lemma 2.

(i) O is s-vertical if and only if $\pi_{s}^{-1}\left(\pi_{s}(x)\right) \cap O$ is open dense in $\pi_{s}^{-1}\left(\pi_{s}(x)\right)$ for any $x \in O$.
(ii) $X_{s}=\bigcup_{o \in \mathscr{Y}_{v}^{s}} O_{s}$ (disjoint union).
(iii) $\rho_{s}^{-1}(Z)=\bigcup_{o \in \mathscr{E}_{v}^{s}} Z_{o}$ (irreducible decomposition).
(iv) $\varpi_{s}\left(Z_{o}\right)=\bar{T}_{o_{s}}^{*} X_{s}$ for $O \in \mathscr{C}_{v}^{s}$.

Proposition 8 (Hotta [H1], [H2]). Let O be a K-orbit on X.
(i) If O is s-vertical, we have

$$
s .\left[Z_{o}\right]=-\left[Z_{o}\right] .
$$

(ii) If O is s-horizontal, we have

$$
s .\left[Z_{o}\right]=\left[Z_{o}\right]+\left(\varpi_{s}^{*} \circ \widetilde{w}_{s *} \circ \rho_{s}^{*}\right)\left(\left[Z_{o}\right]\right),
$$

where $\widetilde{\varpi}_{s}^{*}, \rho_{s}^{*}$ and $\widetilde{\varpi}_{s *}$ are pull-back and direct image of algebraic cycles. Furthermore $\left(\widetilde{\varpi}_{s}^{*} \circ \widetilde{\varpi}_{s *} \circ \rho_{s}^{*}\right)\left(\left[Z_{o}\right]\right) \in \oplus_{0^{\prime}} \mathbf{Z}_{\geq 0}\left[Z_{0^{\prime}}\right]$, where O^{\prime} is running through $O^{\prime} \in \mathscr{C}_{v}^{s}$ with $O^{\prime} \subset \overline{\pi_{s}^{-1}\left(\pi_{s}(O)\right)}$.

By the above proposition we see that the Z-lattice $\oplus_{o \in \mathscr{\ell}} \mathbf{Z}\left[\overline{T_{o}^{*} X}\right]$ in $\left(H_{c}^{2 d}(Z, \mathbf{Q})\right)^{*}$ is W-invariant. Hence we have an action of W on $\oplus_{o \in \mathscr{B}} \mathbf{Z}\left[\overline{T_{o}^{*} X}\right]$.
3.3. We prove the following in this subsection

Theorem 1 (repeated). The Z-linear homomorphism

$$
K(\mathscr{M}(\mathfrak{g}, K)) \xrightarrow{\mathbf{C h}} \underset{o \in \mathscr{\mathscr { C }}}{ } \mathrm{Z}\left[\overline{T_{o}^{*} X}\right]
$$

is W-equivariant.

Remark 3. Set $\partial O=\bar{O}-O$. Since $\mathfrak{M}_{(o, r)} \mid X-\partial O$ and $\mathcal{Z}_{(o, r)} \mid X-\partial O$ are isomorphic to $\mathscr{H}_{o}^{\text {codim } o}\left(\mathcal{O}_{X-\partial o}\right) \otimes_{\mathrm{c}_{x-\partial O}} \gamma$, we see that $\mathbf{C h}\left(\mathfrak{M}_{(o, \gamma)}\right)$ and $\mathbf{C h}\left(\Omega_{(o, r)}\right)$ belong to $\left[\overline{T_{o}^{*} X}\right]+\left(\oplus_{o^{\prime} \risingdotseq \bar{o}} \mathbf{Z}_{\geq 0}\left[\overline{T_{o}^{*}, X}\right]\right)$. Hence $\mathbf{C h}$ is surjective.

Proof of Theorem 1. It is sufficient to show $\mathbf{C h}(s .[\mathfrak{M}])=s . \operatorname{Ch}(\mathfrak{M})$ for any simple reflection s and $\mathfrak{M} \in \mathscr{M}(\mathfrak{g}, K)$. By [Sa] (see [KT; Theorem 7]) there exist integers $m_{s}\left(O^{\prime}, O\right)$ for $O \in \mathscr{C}$ and $O^{\prime} \in \mathscr{C} \mathscr{C}_{v}^{s}$ so that

$$
\mathbf{C h}(\mathfrak{M})=\sum_{o \in \mathscr{G}} n_{o}\left[\overline{T_{o}^{*} X}\right]
$$

implies

$$
\mathbf{C h}\left(\int_{\pi_{s}} \mathfrak{M}\right):=\sum_{i}(-1)^{i} \mathbf{C h}\left(\mathscr{H}^{i}\left(\int_{\pi_{s}} \mathfrak{M}\right)\right)=\sum_{O \in \mathscr{\ell}} n_{o}\left(\sum_{O^{\prime} \in \mathscr{Q}_{s}^{s}} m_{s}\left(O^{\prime}, O\right)\left[\overline{T_{O_{s}}^{*} X_{s}}\right]\right)
$$

Furthermore we have

$$
\sum_{O^{\prime} \in \mathscr{C}_{v}^{s}} m_{s}\left(O^{\prime}, O\right)\left[\overline{T_{o_{s}^{\prime}}^{*} X_{s}}\right]=\left(\widetilde{w}_{s *} \circ \rho_{s}^{*}\right)\left(\left[\overline{T_{o}^{*} X}\right]\right)
$$

for $O \in \mathscr{C}_{n}^{s}$. Hence we have

$$
\mathbf{C h}\left(\mathbf{L} \pi_{s}^{*} \int_{\pi_{s}} \mathfrak{M}\right)=\tilde{w}_{s}^{*}\left(\mathbf{C h}\left(\int_{\pi_{s}} \mathfrak{M}\right)\right)=\sum_{O \in \mathscr{\ell}} n_{o}\left(\sum_{O^{\prime} \in \ell_{v}^{s}} m_{s}\left(O^{\prime}, O\right)\left[\overline{T_{O^{*}}^{*} X}\right]\right)
$$

Thus by Proposition 7

$$
\begin{aligned}
\mathbf{C h}(s .[\mathfrak{M}])= & \sum_{o \in \mathscr{\varkappa}_{v}^{s}} n_{o}\left(\left[\overline{T_{o}^{*} X}\right]+\sum_{o, \in \mathscr{\varkappa}_{s}^{s}} m_{s}\left(O^{\prime}, O\right)\left[\overline{T_{o}^{*} X}\right]\right) \\
& \left.+\sum_{o \in \mathscr{\mathscr { C }}_{h}^{s}} n_{o}\left(\left[\overline{T_{o}^{*} X}\right]+\left(\widetilde{w}_{s}^{*} \circ \widetilde{w}_{s *} \circ \rho_{s}^{*}\right)\left(\overline{T_{o}^{*} X}\right]\right)\right) .
\end{aligned}
$$

On the other hand by Proposition 8

$$
\begin{aligned}
s . \mathbf{C h}([\mathfrak{M}])= & \sum_{o \in \mathscr{\vartheta}_{s}^{s}} n_{o}\left(-\left[\overline{T_{o}^{* X}}\right]\right) \\
& +\sum_{o \in \mathscr{\vartheta}_{h}^{s}} n_{o}\left(\left[\overline{T_{o}^{*} X}\right]+\left(\widetilde{\varpi}_{s}^{*} \circ \widetilde{\varpi}_{s *} \circ \rho_{s}^{*}\right)\left(\left[\overline{T_{o}^{*} X}\right]\right)\right) .
\end{aligned}
$$

Thus we have only to prove that if O and O^{\prime} are distinct elements of \mathscr{C}_{v}^{s}, then $m_{s}\left(O^{\prime}, O\right)=0$ and $m_{s}(O, O)=-2$.

For $O \in \mathscr{C}_{v}^{s}$ set $O=\pi_{s}^{-1}\left(\pi_{s}(O)\right)$. If we set $\hat{K}=\langle K, P\rangle$, the decomposition of X into \hat{K}-orbit is given by $X=\coprod_{o \in \mathscr{Q}_{v}^{8}} \hat{O}$, and hence this decomposition satisfies the Whitney condition. For $O \in \mathscr{C}_{v}^{s}$ we define $\mathfrak{M}_{o} \in \mathscr{M}(\mathrm{~g}, K)$ by $\mathscr{D} \mathscr{R}\left(\mathfrak{M}_{o}\right)=\mathbf{C}_{\hat{o}}[-\operatorname{codim} O]$. Then

$$
\left.\mathbf{C h}\left(\mathfrak{M}_{o}\right) \in\left[\overline{T_{o}^{*} X}\right]+\sum_{o^{\prime}} \mathbf{Z}_{\geq 0} \overline{T_{o^{\prime}}^{*} X}\right]
$$

where O^{\prime} is running through $O^{\prime} \in \mathscr{C}_{v}^{s}$ with $O^{\prime} \subset \partial O$. Hence using induction on $\operatorname{dim} O$ we see that it is sufficient to show

$$
\operatorname{Ch}\left(L \pi_{s}^{*} \int_{\pi_{s}} \mathfrak{M}_{o}\right)=-2 \operatorname{Ch}\left(\mathfrak{M}_{o}\right)
$$

for $O \in \mathscr{C}_{v}^{s} . \quad$ By the Riemann-Hilbert correspondence we have

$$
\begin{aligned}
\mathscr{D} \mathscr{R}\left(\mathbf{L} \pi_{s}^{*} \int_{\pi_{s}} \mathfrak{M}_{o}\right) & =\pi_{s}^{-1}\left(\mathbf{R} \pi_{s *}\left(\mathscr{D} \mathscr{R}\left(\mathfrak{M}_{o}\right)\right)\right)[1] \\
& =\pi_{s}^{-1}\left(\mathbf{R} \pi_{s *}\left(\mathbf{C}_{\hat{O}}\right)\right)[-\operatorname{codim} O+1] .
\end{aligned}
$$

Since π_{s} is a \mathbf{P}^{1}-bundle, we have the following triangle

By the Riemann-Hilbert correspondence we have

Hence

$$
\mathbf{C h}\left(\mathbf{L} \pi_{s}^{*} \int_{\pi_{s}} \mathfrak{M}_{o}\right)=\mathbf{C h}\left(\mathfrak{M}_{o}[1]\right)+\mathbf{C h}\left(\mathfrak{M}_{o}[-1]\right)=-2 \mathbf{C h}\left(\mathfrak{M}_{o}\right)
$$

and we are done.

§ 4. Complements

4.1. We describe the W-module structure of $K(\mathscr{M}(\mathrm{~g}, K))$ and $\left(H_{c}^{2 d}(Z, \mathbf{Q})\right)^{*}$ more explicitly.

The following is a generalization of a result of Kazhdan-Lusztig [KL; (6.1) and (6.2)]. Since the proof is the same as that of [KL], we omit it.

Proposition 9. As a W-module, we have

$$
\left(H_{c}^{2 d}(Z, \mathbf{Q})\right)^{*} \simeq \underset{x \in K \backslash N(\mathcal{p})}{ }\left(H_{2 d_{x}}\left(X_{x}, \mathbf{Q}\right)\right)^{C_{K}(x)}
$$

where $d_{x}=\operatorname{dim} X_{x}$ and $C_{K}(x)=Z_{K}(x) /\left(Z_{K}(x)\right)_{0}$.

Hence suitable information on the K-conjugacy classes of nilpotent elements in \mathfrak{p} and the Springer correspondence of the group G give the irreducible decomposition of $\left(H_{c}^{2 d}(Z, \mathbf{Q})\right)^{*}$ as a W-module.

Next we consider $K(\mathscr{M}(\mathrm{~g}, K))$. The explicit description of the action of a simple reflection with respect to the basis $\left\{\left[\mathfrak{M}_{(0, r)}\right] \mid(O, \gamma) \in \mathscr{S}\right\}$ is given in [LV] (see also [V]). We include it here for the convenience of the readers.

Lemma 3 (Lusztig-Vogan [LV]). Fix a simple reflection $s,(O, \gamma) \in \mathscr{S}$ and $x \in O$. Set $\hat{O}=\pi_{s}^{-1}\left(\pi_{s}(O)\right)$ and $L_{x}^{s}=\pi_{s}^{-1}\left(\pi_{s}(x)\right)$.
(a) If $L_{x}^{s} \subset O$, then s. $\left[\mathfrak{M}_{(o, r)}\right]=-\left[\mathfrak{M}_{(0, r)}\right]$.
(b1) If $L_{x}^{s} \cap O=\{x\}$ and $O^{\prime}=\hat{O}-O$ is a single K-orbit, then there exists a unique locally constant extension $\hat{\gamma}$ of γ to \hat{O} and $s .\left[\mathfrak{M}_{(0, \gamma)}\right]=$ [$\left.\mathfrak{M}_{\left(0^{\prime}, r^{\prime}\right)}\right]$ with $\gamma^{\prime}=\hat{\gamma} \mid O^{\prime}$.
(b2) If $L_{x}^{s} \cap O=L_{x}^{s}-$ \{point \}, then $O^{\prime}=\hat{O}-O$ is a single K-orbit, there exists a unique locally constant extension $\hat{\gamma}$ of γ to \hat{O} and s. $\left[\mathfrak{M}_{(o, r)}\right]$ $=\left[\mathfrak{M}_{\left(0^{\prime}, r^{\prime}\right)}\right]$ with $\gamma^{\prime}=\hat{\gamma} \mid O^{\prime}$.
(c1) If $L_{x}^{s} \cap O=\{x, y\}$, then $O^{\prime}=\hat{O}-O$ is a single K-orbit, γ has two distinct extension $\hat{\gamma}_{1}, \hat{\gamma}_{2}$ to \hat{O} and $s .\left[\mathfrak{M}_{(o, r)}\right]=-\left[\mathfrak{M}_{(o, r)}\right]+\left[\mathfrak{M}_{\left(0^{\prime}, r_{1}\right)}\right]+$ $\left[M_{\left(0^{\prime}, r_{2} z^{2}\right.}\right]$ with $\gamma_{i}^{\prime}=\hat{\gamma}_{i} \mid O^{\prime}$.
(c2) If $L_{x}^{s} \cap O=L_{x}^{s}-\{$ two points in one K-orbit \}, then γ has at most one extension to \hat{O}. In the case γ has an extension $\hat{\gamma}$ to $\hat{O}, \hat{\gamma} \mid \hat{O}-O$ has a unique extension $\hat{\gamma}_{*}$ to \hat{O} different from $\hat{\gamma}$ and $s \cdot\left[\mathfrak{M}_{(0, r)}\right]=\left[\mathfrak{M}_{\left(0, \tau_{*}\right)}\right]$ with $\gamma_{*}=\hat{\gamma}_{*} \mid O$. In the case γ does not have an extension, $s .\left[M_{(0, r)}\right]=\left[M_{(0, r)}\right]$.
(d1) If $L_{x}^{s} \cap O=\{x\}$ and $O-O$ is a union of two orbits O^{\prime} and $O^{\prime \prime}$ with $\operatorname{dim} O=\operatorname{dim} O^{\prime \prime}=\operatorname{dim} O^{\prime}-1$, then γ has a unique extension $\hat{\gamma}$ to \hat{O} and $s .\left[\mathfrak{M}_{(0, r)}\right]=\left[\mathfrak{M}_{\left(O^{\prime}, \gamma^{\prime}\right)}\right]-\left[\mathfrak{M}_{\left(0^{\prime \prime}, r^{\prime \prime}\right)}\right]$ with $\gamma^{\prime}=\hat{\gamma} \mid O^{\prime}$ and $\gamma^{\prime \prime}=\hat{\gamma} \mid O^{\prime \prime}$.
(d2) If $L_{x}^{s} \cap O=L_{x}^{s}-\left\{\right.$ two points in two K-orbits\}, then $s .\left[\mathfrak{M}_{(0, r)}\right]=$ $\left[\mathfrak{M}_{(0, r)}\right]$.

Now we give an alternative description of the W-module $\left(H_{c}^{2 a}(Z, \mathbf{Q})\right)^{*}$ $\simeq(K(\mathscr{M}(\mathrm{~g}, K)) / K e r \mathbf{C h}) \otimes_{\mathrm{z}} \mathbf{Q}$ different from that of Proposition 9.

Proposition 10. Let $\left\{\left\{_{0}^{(i)}\right\}_{i \in I}\right.$ be a set of representatives of the conjugacy classes of Cartan subalgebras of \mathfrak{g}_{0} so that $\theta\left(\mathfrak{G}_{0}^{(i)}\right)=\mathfrak{h}_{0}^{(i)}$. We fix for each $i \in$ I a positive root system $\Delta^{(i)+}$ of the root system $\Delta^{(i)}$ of $\left(\mathrm{g}, \mathfrak{F}_{0}^{(i)} \otimes_{\mathbf{R}} \mathbf{C}\right)$. We identify Cartan subalgebras $\mathfrak{H}_{0}^{(i)} \otimes_{\mathbf{R}} \mathbf{C}$ via the Borel subalgebras $\mathfrak{b}\left(\mathfrak{G}_{0}^{(i)}, \Delta^{(i)+}\right)$ and regard W as its Weyl group. Then there exist linear characters $W\left(\mathfrak{F}_{0}^{(i)}, K_{\mathbb{R}}\right) \xrightarrow{\chi_{i}}\{ \pm 1\}$ so that

$$
(K(\mathscr{M}(\mathrm{~g}, K)) / \operatorname{Ker} \mathbf{C h}) \underset{\mathbf{Z}}{\otimes} \mathbf{Q} \simeq \bigoplus_{i \in I} \operatorname{Ind}_{W\left(G f_{0}^{i z}\right), K_{\mathbf{R}}}\left(\chi_{i}\right) .
$$

Remark 4. If \mathfrak{h}_{1} and \mathfrak{h}_{2} are Cartan subalgebras of \mathfrak{g} contained in Borel subalgebras \mathfrak{b}_{1} and \mathfrak{b}_{2}, respectively, then there exists $g \in G$ so that $\operatorname{Ad}(g) \mathfrak{h}_{1}=\mathfrak{K}_{2}$ and $\operatorname{Ad}(g) \mathfrak{C}_{1}=\mathfrak{b}_{2}$. Moreover $\operatorname{Ad}(g) \mid \mathfrak{h}_{1}: \mathfrak{h}_{1} \rightarrow \mathfrak{h}_{2}$ is uniquely determined by \mathfrak{b}_{1} and \mathfrak{G}_{2}.
(Sketch of the proof of Proposition 10)
For $O \in \mathscr{C}$ set $A_{o}=\sum_{(o, r) \in \mathscr{\varphi}}\left[\mathfrak{M}_{(o, r)}\right]$. Then we see from Lemma 3 that $V=\oplus_{o \in \mathscr{\ell}} \mathbf{Q} A_{o}$ is W-invariant. By Remark $3 V$ is isomorphic to

$$
(K(\mathscr{M}(\mathrm{~g}, K)) / \operatorname{Ker} \mathbf{C h}) \underset{\mathbf{Z}}{\otimes} \mathbf{Q} \simeq\left(H_{c}^{2 d}(Z, \mathbf{Q})\right)^{*} .
$$

Let \mathscr{C}_{i} be the set of $O \in \mathscr{C}$ such that $\mathfrak{G}\left(\mathfrak{G}_{0}^{(i)}, w \Delta^{+}\right) \in O$ for some $w \in W$. For $i, j \in I$ we write $i \leq j$ if $i=j$ or $\operatorname{dim}\left(\mathfrak{h}_{0}^{(j)} \cap \mathfrak{p}_{0}\right)<\operatorname{dim}\left(\mathfrak{G}_{0}^{(2)} \cap \mathfrak{p}_{0}\right)$. Then

$$
\bar{V}^{(i)}=\underset{j \leq i}{\oplus}\left(\underset{o \in \mathscr{Y}_{j}}{ } \mathbf{Z} A_{o}\right)
$$

is W-invariant and if we set

$$
V^{(i)}=\bar{V}^{(i)} / \sum_{j \leq i, j \neq i} \bar{V}^{(j)},
$$

we have $V \simeq \oplus_{i \in I} V^{(i)}$ as a W-module. We fix $i \in I$. For $w \in W$ let a_{w} be the class of A_{o} in $V^{(i)}$, where O is the K-orbit on X containing $\mathfrak{G}\left(\mathfrak{G}_{0}^{(i)}, w \Delta^{(i)+}\right)$. Then we have $V^{(i)}=\oplus_{w \in W\left(\mathfrak{g}_{0}^{(i)}, K_{\mathbf{R}}\right) \backslash W} \mathbf{Q} a_{w}$. By Lemma 3 and the arguments as in [V] we see that $s . a_{w}= \pm a_{w s}$. Thus

$$
V^{(i)} \simeq \operatorname{Ind}_{W\left(\xi_{0}, K_{\mathbf{R}}\right)}^{W}\left(\chi_{i}\right)
$$

for some χ_{i} and we are done.
Remark 5. χ_{i} is uniquely determined by $\chi_{i}(w) a_{e}=w . a_{e}$ for $w \in$ $W\left(\mathfrak{h}_{0}^{(i)}, K_{\mathbf{R}}\right)$. In particular, if $\mathfrak{H}_{0}^{(i)}$ is a fundamental Cartan subalgebra (i.e. $\operatorname{dim}\left(\mathfrak{h}_{0}^{(i)} \cap \mathfrak{f}_{0}\right)$ is maximal) we see that χ_{i} coincides with the restriction of the sign representation sgn of W to $W\left(\mathfrak{h}_{0}^{(i)}, K_{\mathrm{R}}\right)=W(K)=$ (the Weyl group of K).
4.2. As an example we treat the case when \mathfrak{g}_{0} has only one conjugacy class of Cartan subalgebras. By Propositions 9 and 10 we have the following.

Proposition 11. If \mathfrak{g}_{0} has a unique conjugacy class of Cartan subalgebras, then we have

$$
\operatorname{Ind}_{W(K)}^{W}(1) \otimes \operatorname{sgn} \simeq \bigoplus_{x \in K \backslash N(p)} H_{2 d x}\left(X_{x}, \mathbf{Q}\right)^{C_{K}(x)}
$$

In the case g_{0} is a complex semisimple Lie algebra viewed as a real semisimple Lie algebra, the above formula is just

$$
\mathbf{Q}[W] \simeq \simeq_{x \in G \backslash N}\left(H_{2 a_{x}}\left(X_{x}, \mathbf{Q}\right) \otimes H_{2 a_{x}}\left(X_{x}, \mathbf{Q}\right)\right)^{C_{G}(x)}
$$

with $C_{G}(x)=Z_{G}(x) /\left(Z_{G}(x)\right)_{0}$, from which the completeness theorem of Springer is obtained (see [KL]).

We see by [Su] that if \mathfrak{g}_{0} is a non-compact real form of a complex simple Lie algebra, g_{0} has only one conjugacy class of Cartan subalgebra if and only if the pair $(\mathfrak{g}, \mathfrak{l})$ is one of the following three types:
(I) $\mathfrak{g}=A_{2 n-1}, \mathfrak{f}=C_{n}(n \geq 2)$,
(II) $\mathrm{g}=D_{n}, \mathfrak{f}=B_{n-1}(n \geq 4)$,
(III) $\mathfrak{g}=E_{6}, \mathfrak{f}=F_{4}$.

Remark 6. Note that in the cases (I), (II) and (III) the automorphism θ of \mathfrak{g} is obtained by extending the symmetry of the Dynkin diagram of g using the usual presentation of g by generators and relations.

In order to write down the formula in Proposition 11 explicitly, we need a classification of K-conjugacy classes of nilpotent elements in \mathfrak{p}. Consider the natural map $K \backslash N(\mathfrak{p}) \xrightarrow{\Phi} G \backslash N$. Then we have the following.

Proposition 12 (see [Se]). For $e \in N$ the following conditions are equivalent.
(i) e is conjugate to an element of $N(\mathfrak{p})$ under the action of G.
(ii) Let n_{i} be the number attached to the vertex i of the weighted Dynkin diagram of $e\left(n_{i}=0,1\right.$ or 2$)$. Then in the Satake diagram of g_{0} we have:

$$
\begin{array}{ll}
n_{i}=n_{j} & \text { if } \underset{i}{\circ} \uparrow _{ }_{j}^{\circ}, \\
n_{i}=0 & \text { if } \ominus_{i}
\end{array}
$$

Proposition 13. If g_{0} has a unique conjugacy class of Cartan subalgebras, then the map Φ is injective.

Proposition 12 is stated in [Se] as a theorem of Antonyon and the proof is given for the case g_{0} is a normal real form. But the proof in [Se] for normal forms applies to the general case under some modification. Proposition 13 is shown by using the results of $[\mathrm{Ko}]$ and $[\mathrm{KR}]$ if we note Remark 6.

Remark 7. We can prove more generally that the natural maps $K \backslash \mathfrak{p} \rightarrow G \backslash \mathfrak{g}$ and $K \backslash \mathfrak{f} \rightarrow G \backslash g$ are injective if g_{0} has only one conjugacy class of Cartan subalgebras.

Using Propositions 12, 13 and the Springer correspondence (see [Sh] and [ALS]) we can write down the formula in Proposition 11 explicitly.

In the case (I) we have $\operatorname{Ind}_{W\left(C_{n}\right)}^{S_{2 n}}(1)=\oplus \chi_{\sigma}$, where σ is running through the partitions of 2 n whose parts are even and χ_{σ} is the irreducible representation corresponding to σ. A direct proof of this formula is given in [T]. I understand that this was originally conjectured by N. Iwahori.

In the case (II) we have $\operatorname{Ind}_{W\left(B_{n-1}\right)}^{W\left(D_{n}\right)}(1)=1 \oplus \chi$, where χ is the irreducible representation of $W\left(D_{n}\right)$ corresponding to the pair of partitions $((n-1>1), \emptyset)$ in the usual conventions. But this is trivial.

In the case (III) we have $\operatorname{Ind}_{W\left(F_{4}\right)}^{W\left(E_{6}\right)}(1)=1_{p} \oplus 20_{p} \oplus 24_{p}$.
Remark 8. Using the recent result of Matsuki describing the closure relations of K-orbits on X, we can construct for each K-orbit O a nonsingular variety Y with a K-action and a K-equivariant proper surjective map $Y \xrightarrow{f} \bar{O}$ which is generically finite. This is an obvious generalization of the desingularization of Schubert varieties given in [D]. If g_{0} has only one conjugacy class of Cartan subalgebras, the above f is birational and in this case we can calculate the dimension of each stalk of the intersection cohomology sheaf of the closure of any K-orbit by the method given in [Sp] (see [LV]).

References

[ALS] Alvis, D., Lusztig, G. and Spaltenstein, N., On Springer's correspondence for simple groups of type $E_{n}(n=6,7,8)$, Math. Proc. Cambridge Philos. Soc., 92 (1982), 65-78.
[BB] Beilinson, A. and Bernstein, J., Localisation de g-modules, Comptes Rendus, 292 (1981), 15-18.
[BM] Borho, W. and MacPherson, R., Representations des groupes de Weyl et homologie d'intersection pour les variétés de nilpotentes, Comptes Rendus, 292 (1981), 707-710.
[BK] Brylinski, J.-L. and Kashiwara, M., Kazhdan-Lusztig conjecture and holonomic systems, Invent. math., 64 (1981), 387-410.
[D] Demazure, M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. Ecole Norm. Sup. (4), 7 (1974), 53-88.
[H1] Hotta, R., On Joseph's construction of Weyl group representations, Tohoku Math. J., 36 (1984), 49-74.
[H2] -, A local formula for Springer's representation; this volume.
[J] Joseph, A., On the classification of primitive ideals in the enveloping algebra of a semisimple Lie algebra, Lecture Notes in Math., 1041, Springer-Verlag (1983), 30-76.
[Ka] Kashiwara, M., The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto Univ., 20 (1984), 319-365.
[KK] Kashiwara, M. and Kawai, T., On holonomic systems of microdifferential equations III -systems with regular singularities-, Publ. RIMS, Kyoto Univ., 17 (1981), 813-979.
[KT] Kashiwara, M. and Tanisaki, T., The characteristic cycles of holonomic systems on a flag manifold -related to the Weyl group algebra-, Invent.

Math., 77 (1984), 185-198.
[KL] Kazhdan, D. and Lusztig, G., A topological approach to Springer's representations; Adv. in Math., 38 (1980), 222-228.
[Ko] Kostant, B., Lie group representations on polynomial rings, Amer. J. Math., 85 (1963), 327-404.
[KR] Kostant, B. and Rallis, S., Orbits and representations associated with symmetric spaces; Amer. J. Math., 93 (1971), 753-809.
[L] Lusztig, G., Green polynomials and singularities of unipotent classes, Adv. in Math., 42 (1981), 169-178.
[LV] Lusztig, G. and Vogan, D., Singularities of closures of K-orbits on flag manifolds, Invent. math., 71 (1983), 365-379.
[M] Matsuki, T., The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, 31 (1979), 331-357.
[Sa] Sabbah, C., Quelques remarques sur la theorie des classes de Chern des espaces analytiques singuliers, preprint (1983).
[Se] Sekiguchi, J., The nilpotent subvariety of the vector space associated to a symmetric pair; Publ. RIMS, Kyoto Univ., 20 (1984), 155-212.
[Sh] Shoji, T., On the Springer representations of the Weyl groups of classical algebraic groups, Comm. Algebra, 7 (1979), 1713-1745, 20272033.
[Sp] Springer, T. A., Quelques applications de la cohomologie d'intersection, Séminaire Bourbaki, expose 589. Astérisque, (1982), 92-93, 249-273.
[Su] Sugiura, M., Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan, $\mathbf{1 1}$ (1959), 374-434.
[T] Thompson, J. G., Fixed point free involutions and finite projective planes, in: Finite simple groups II. Proc. Sympos. Univ. Durham 1978, 321337 Academic Press, 1980.
[V] Vogan, D., Irreducible characters of semisimple Lie groups III; Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. math., 71 (1983), 381-417.
[W] Warner, G., Harmonic analysis on semisimple Lie groups I, SpringerVerlag, 1972.

Mathematical Institute
Tohoku University
Sendai 980, Japan

