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§0. Introduction

Let g be a real semisimple Lie algebra and let ¢ be an involutive linear
automorphism of g. If j={Xeg; X=X} and q={X e g; cX=—X]},
we obtain a direct sum decomposition g=%-4q. The pair (g, §) is called
a (semisimple) symmetric pair. A classification of such pairs was accom-
plished by M. Berger [Be]l. Then it is important to study the fine
structure of a symmetric pair. Among other things, the restricted root
system of a symmetric pair is to be determined. One of the purpose of
this paper is this. Needless to say, the results of this paper will play a
basic role in the study of Fourier analysis on a semisimple symmetric space.
This will be treated in the subsequent papers.

This paper deals with the study on the basic structure of a symmetric
pair. The main part of this paper is the contents in Section 1-Section 6
and the results of Section 7, Section 8 are preparations of the subsequent
papers.

We explain the contents shortly. In Section 1, after giving the defi-
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nitions of the dual and associated pairs of (g, §), we examine the relation
between these pairs. Let § be a Cartan involution of g commuting with ¢
and let g=%+p be the corresponding Cartan decomposition. If a is a
maximal abelian subspace of {1 q, we can define the set X'(a) of the roots
with respect to (g, a). It is shown in Section 2 that X(a) becomes a root
system (cf. Theorem (2.11)). This is already proved by Rossmann [Ro].
We call X'(a) the restricted root system of (g, §). In Section 3, we introduce
the notion of a (@, ¢)-system of roots. As in the case of the restricted root
system of a real semisimple Lie algebra, we give a sufficient condition that
the totality of the restricted roots of the (6, ¢)-system of roots becomes a
root system. As a corollary, we obtain an alternative proof of Theorem
(2.11). The dimension of a is called the split rank of the pair (g, b).
Needless to say, symmetric pairs of split rank 1 are basic among general
ones. In Section 4, for a given 2 € X'(a), we construct the symmetric pair
(@(), H(2)) of split rank 1 which is contained in (g, §). Section 5 is devoted
to the determination of all the symmetric pairs of split rank 1 based on the
classification of Berger (cf. Table II). In the study of restricted roots of a
symmetric pair, the signatures of them are important (see Def. (2.14)).
In Section 6, we determine the restricted root system as well as the signa-
tures of simple roots of a fundamental system of X'(a) for a general sym-
metric pair. At this stage, it must be stressed that the signatures of the
simple roots depend on the choice of the order on X(a). In order to
develop Fourier analysis on the corresponding semisimple symmetric space,
we need a property of the Weyl groups for various root systems. This is
done in Section 7. Especially, Corollary (7.10) will play a fundamental
role in the definition of principal series for the semisimple symmetric
space (cf. [O]). In Section 8, we shall examine the Levi part of a parabolic
subalgebra of g which is particular to the analysis on the semisimple sym-
metric space. In Appendix A, we shall prove a lemma which is used in
the proof of Lemma (7.7). Most parts of the discussion in Section 8 is
applicable to an arbitrary parabolic subalgebra of g. By this reason, we
give a structure of the Levi part of a general parabolic subalgebra in Ap-
pendix B. The results there are rather independent of the text.

§1. Semisimple symmetric pairs

In this section, we define a semisimple symmetric pair and a semi-
simple symmetric space. Our main concern is a semisimple Lie group.
Accordingly we frequently omit the word “semisimple” and therefore we
call them a symmetric pair and a symmetric space for brevity. The dis-
cussions in this section are based on the classification of the symmetric
pairs by M. Berger [Be].
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(1.1) Let g be a real semisimple Lie algebra and let ¢ be an involu-
tion of g. Then we obtain a direct sum decomposition g="4--¢, where

h={Xeg; s(X)=X}
g={Xeg; o(X)=—X}.

We call (g, §) a (semisimple) symmetric pair in this paper.

Let (g, h) and (¢’, §’) be symmetric pairs. In this paper we define that
they are isomorphic if there exists a Lie algebra isomorphism ¢ of g to g’
such that ¢(§)=1’. We note that this definition differs from the one in
[Bel.

A symmetric pair (g, §) is irreducible if the representation of §j on g is
irreducible. If otherwise, (g, b)) is reducible.

(1.1.1)

(1.2) It follows from [Be] that there exists a Cartan involution § of g
such that fg=06. Let g=%f-p be the Cartan decomposition correspond-
ing to §. Since f¢ is also an involution of g, we obtain another direct sum
decomposition g=15+ q* with respect to fg, where
1.2.1) h*={Xe g; o(X)=X}

q*={Xeg; Oo(X)=—X}.

We here note the following relations

hr=ENDH+®Na
q*=ENa)+®NDH).

On the other hand, if g, is a complexification of g, we extend ¢ and 4 to
gc as C-linear involutions. Then we define

1.2.3) g?=ENH+V—-1END+v—1(pNBH+(®Na).

It is clear that g¢ is another real form of g.. We consider the restrictions
of § and ¢ to g% and denote them by the same letters. Then ¢ is a Cartan
involution of g?. Moreover if we put

PP=ENp++—-1(pNH)
pP=+—=1¢Ng+{®Naq)
P=ENYH+~v—-1(N0g)
a*=v=1(pND+ENa), |

then g?=1{+p? (resp. g?=4h?+q%) is a direct sum decomposition of g*
corresponding to ¢ (resp. ). We note here that {* is a maximal compact
subalgebra of g%.

(1.2.2)

(1.2.4)
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Definition (1.3) (cf. [Be]). The pair (g% §%) (resp. (g% §?)) is called the
associated (resp. dual) symmetric pair of (g, §). Here we put g*=g.

(1.4) We frequently use the notation (g, §)*=(g% §*) and (g, §)?=
(g%, 95%). Moreover (g, §)**=(g*% H**) means the dual of (g, §)* and f*¢
does a maximal compact subalgebra of g*¢ for a Cartan involution of g*¢
commuting with the involution for §*. Other notation are in proportion
to these. Then it is clear that (g, §)** and (g, §)** are isomorphic to (g, §).

In this paper we frequently identify any two symmetric pairs con-
tained in the same isomorphic class. Accordingly, for example, the dual
and associated pairs of the given one mean the pairs isomorphic to the
ones defined definitely in Definition (1.3).

We give some remarks on the relations between the associated and
dual symmetric pairs. By an easy computation, we find the following
relations

g g g=gda, gad:_gada:gdad,
p=hoed =N, pé=Nd, pe=}e
q=+v—Iq?'=y—Tq*, q'=v—1g*, "=+ —Tg*
f f f fda’ f“dzfad“—_—-fd"'d
p:p, pzpda’ padzpdadzpada‘

In particular, for any symmetric pair (g, §)), we have the relation (g, §)*¢e=
(g, H)?*¢ and the following diagram (1.4.2):

(1.4.1)

(@B <0 gy <1 ge, o)
(1.4.2) Idual Iassociated
@% 59 <05 5 <> (@4, 1)

It rarely occurs that if (g, §) is irreducible, all the six pairs in the diagram
(1.4.2) are not isomorphic to each other (cf. (1.16)).

(1.5) Next we consider the homogeneous space of a semisimple Lie
group connected with a symmetric pair.

Let G be a connected complex semisimple Lie group whose Lie
algebra is g¢ introduced in (1.1). Let G be an analytic subgroup of Gy
corresponding to g. If there exists an analytic automorphism ¢ of G such
that g(exp X)=exp (¢X) for any X ¢ g, we say that ¢ is lifted to G and call
¢ the lifting of ¢. 'We give here a simple lemma.

Lemma. If G is simply connected or is the adjoint group of gc, the
involution ¢ is lifted to the group G.
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Proof. Since ¢ is a C-linear involution of g, it suffices to show that
o is lifted to G.

First assume that G is simply connected. If g is an element of G,
there exist elements X, - - -, X, of g¢ such that g=(exp X,)- - -(exp X,).
Then we define 6(g)=(expoX,)---(expaX,). Since G, is simply con-
nected, 6(g) is uniquely determined by g and does not depend on the
choice of X, - - -, X,. Itis clear that ¢ is an analytic isomorphism of G.
The automorphism & of G is the required one. If Z is the center of Gg,
then ¢ clearly stabilizes Z. This implies that & induces an automorphism
of the adjoint group G¢/Z of g.. Hence the lemma is proved.

(1.6) In this paper we always assume that the involution ¢ of g is
lifted to G. This depends on the choice of G, and therefore does not hold
in general. We give here a counterexample.

Example. Let ¢’=3[(2, R) and put g=g'®g’. We define an involu-
tion ¢ of g by o(X, Y)=(Y, X) (VX, Ye ¢'). Let G=SL(2, R)X PSL(2, R).
Then it is clear that g is the Lie algebra of G but ¢ is not lifted to G.

(1.7) For brevity, we denote the lifting of ¢ by the same letter. We
define G’ ={g € G; 9(g)=g} and denote by (G), the identity component
of G°. 'We now take a closed subgroup H of G such that (G"), S HZSG".
Then we define a homogeneous space G/H of G.

Definition. A homogeneous space G/H defined in the above way is
called a semisimple symmetric homogeneous space of G. Unless otherwise
stated, we call this a symmetric space for brevity.

(1.8) Asin the case of Lie algebras, we can define associated and
dual symmetric spaces of the given G/H. But in this case, associated and
dual symmetric spaces are not uniquely determined because the choices of
the closed subgroups whose Lie algebras are §* and §¢ are not unique.
But as to an associated symmetric space of G/H, we can define a standard
one (cf. [Ma]). We now construct this.

Let 0 be a Cartan involution of G commuting with ¢ and let g=f-+p
be the Cartan decomposition of g corresponding to . Then we can define
the maximal compact subgroup K of G whose Lie algebra is f. It is clear
that every element of KN H stabilizes pNq. This implies that H*=
(KN H)exp(pNq) is a closed subgroup of G. By definition, H* is con-
tained in G?? and §® is the Lie algebra of H*. Hence G/H*“ is a symmetric
space.

Definition. The symmetric space G/H“ is called the associated sym-
metric space of G/H.
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(1.9) Examples.
In this paragraph, we give some examples of symmetric pairs and
symmetric spaces.

Example (1.9.1). Let g be a compact semisimple Lie algebra and let
¢ be an involution of g. Then we define a symmetric pair (g, §) for o.
Let G be a connected Lie group whose Lie algebra is g.  Assume that ¢ is
lifted to G. Then we can define a closed subgroup H of G as we did in
(1.7). The pair (g, §) is called a compact symmetric pair and G/H is called
a compact symmetric space or a Riemannian symmetric space of the com-

pact type.

Example (1.9.2). Let G be a connected linear semisimple Lie group
and let K be a maximal compact subgroup of G. If g is the Lie algebra
of G and if f is that of K, then the involution ¢ corresponding to the pair
(g, ¥) coincides with the Cartan involution for £. We call (g, f) and G/K a
Riemannian symmetric pair and a Riemannian symmetric space of the
non-compact type, respectively. As is easily seen, the dual of (g, f) coin-
cides with (g, ).

Example (1.9.3). Let (g, f) be 2 Riemannian symmetric pair and let
g=1f+4p be a corresponding direct sum decomposition of g. - We take a
maximal abelian subspace a, of p and denote by 3(a,) the root system of
(g, a,). Then we can define a symmetric pair (g, {,) for any signature ¢ of
2(a,) in the following way (cf. [O-S]).

Let ¢ be a signature of roots of X'(a,). This means that ¢ is a mapping
of X(a,) to {1, —1} with the following conditions:

(19.3.1) {s(oc+,8)—e(oz)e(ﬁ) ifea, B, a+Be (),

(—a)=¢e(a) for any « e 3(a,).

If ¢ is the Cartan involution of g for (g, ¥), we can define an involution
8. of g associated with 4 and ¢ as we did in [O-S]. Namely, 4.(X)=
e(a)0(X) for X e g{a,; ) with a e 2(a,) and 4,(X)=80(X) for X e Z(a,).
Then we obtain a direct sum decomposition g==f,-p, for §.. The pair
(g, £.) is the required one.

If G is a connected Lie group with the Lie algebra g, we can choose
a (not necessarily connected) closed subgroup K, of G whose Lie algebra
is f. in a standard manner. We have developed a deep analysis on the
symmetric space G/K, in [O-S].

Example (1.9.4). Let G’ be a connected linear semisimple Lie group
and put G=G"XG’. Then we define an involution ¢ of G'by a(g, h)=
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h,g) (g, heG). Putting H=G"={(g, g) € G; g € G'}, we obtain a sym-
metric space G/H. Needless to say, in this case G/H is isomorphic to G’
by the correspondence (g, A)H—gh~'. This means that the group G’ itself
is regarded as a symmetric homogeneous space of the product group G’ X
G

Let g’ be the Lie algebra of G’ and §) that of H. Then g=g'®g’ is
the Lie algebra of G and (g, ) is the symmetric pair corresponding to G/H.
In this case q={(X, —X); X e ¢’}. Clearly §) and g are identified with g’.

Example (1.9.5). Let G and K be as in Example (1.9.2). Let G, be
a complexification of G and let K, be a connected closed complex sub-
group of G such that GN K, coincides with K. Then we can define a
symmetric space G¢/Kq. This is a dual to the one defined in Example
(1.9.4).

(1.10) In the rest of this section, we closely discuss on the irreducible
symmetric pairs. First we give a simple lemma.

Lemma (1.10.1). Let (g, §) be a symmetric pair and let ¥ be a maximal
compact subalgebra of g. Assume that t, and Y, are isomorphic. Then
(g, 9) is self-dual. Moreover, in this case, (g*%, §*?) is self-associated.

Proof. We may take { so that the involutions for the pairs (g, §) and
(g, ¥) are commutative (cf. (1.2)). Let g=Y)-+q==I+p be the direct sum
decompositions of g. Then by definition, ¥2=(NH)++/—1(pNH) is a
maximal compact subalgebra of g°. Since {* is a compact real form of
B¢, it follows from the assumption that f~f?. Hence due to [He 2, Ch. X,
Th. 6.2], we conclude that g*~g.

Next we show that §¢~}. Since H?=(ENH++ —1(fNq), due to
the assumption we find that the maximal compact subalgebras of § and §¢
are isomorphic. This combined with [He 2, Ch. X, Th. 6.2] implies that
e ~h.

We have thus proved that (g, §)* is isomorphic to (g, §).

Last we show that (g, §)*¢ is self-associated. The above discussion
implies that (g, §)?*=(g, §)* and (g, H)***=(g, H)**. Now we remember
that (g, H)?*?~(g, §)*** (cf. (1.4)). Hence (g, H)**~=(g, §))***. This means
that (g, §)*¢ is self-associated. g.e.d.

(1.11) In [O-S], we defined a symmetric pair (g, £.) by using the no-
tation there (cf. Example (1.9.3)). Since f;~(f.)¢, Lemma (1.10.1) implies
that (g, £,) is always self-dual. We consider (g, £,)* and (g, £,)*¢*. Com-
paring the classification in [Be] with that in [O-S], we observe that a good
many symmetric pairs are obtained in this manner. We now assume that
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g is real simple. Then the properties of the three pairs (g, f.), (g, fo)%
(g, £.)*? become different according as the complexification of g is simple
or not. Taking this into account, we are going to determine the dual and
associated pairs of a given one. For this purpose, it is preferable to
decompose the symmetric pairs into some classes. First we treat the pairs
of the forms (g, £,) in (1.12). Next we do those of the forms (g, g) in
(1.13). Most pairs of the forms (g¢, g) are reduced to the previous ones.
But in this case, the dual and associated pairs are very explicitly decided.
By this reason, we distinguish those from the previous ones. Last we treat
the pairs in (1.14)-(1.16) which are not obtained from the previous two
cases.

(1.12) Type (£.): (g, §), where g is real semisimple and } is isomorphic
to a subalgebra f, of g defined as in Example (1.9.3).

We consider an irreducible symmetric pair (g, j) or Type (f.). We
first note that such a pair is completely classified (cf. [O-S, Appendix]).
As is noted in (1.11), (g, §) is self-dual in this case. Hence due to (1.4.2),
we obtain the following diagram:

@ 520 gm0 (gee, B

dual associated

Therefore if g, §), §* and g*° are given, we can easily determine the three
pairs (g, ), (g%, %), (g*%, H2?). Here we use the relations (g®%%, §¢?%)~
(@°%, h*%) and §h*?*=H. If (g, D) is a Riemannian symmetric pair of the
non-compact type, it follows from the definition that (g, §)*=(g, g) and
(@, §)** coincides with the compact dual of (g, §). As to these pairs, the
reader is refered to [He 1]. On the other hand, we will treat in (1.13) such
a pair (g, ) that g itself is complex simple. Thus let (g, §) be an irreducible
symmetric pair of Type (f.), where g is simple. For such a pair (g, §),
we shall give in Table I the complete informations on the Lie algebras g,
b, H® and g*?.

Remark. In Table I, t denotes 4/ — 1R, the Lie algebra of one di-
mensional compact torus. Other notation follow [He 1] and [O-S,
Appendix].

(1.13) Type (C, R): (g¢, ), where g is a real semisimple Lie algebra
and g is the complexification of g.
First we give a simple lemma.

Lemma (1.13.1).
(1) (ge, g) is self-dual.
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Table 1.

Symbol 8 B B2 god
AQSIED 80+LR) w0+i—j)  ELTRR L s
AL QISIHD 8@+ E(+H1—), ) WS e mel2-2),2)
criaisy  w@d MG e MGG sei-22
chl 3u(l, 1) 3l(l, C)+R ) g
By} soirm,p  FUERTLD - elEmEL D 01 m—2),2)
pieisy ey o POED L wUEEIED a0
D}, ao(l, 1) au(l, C) ai(l, R)+R 8o%(21)
chli<l) a0 (4l) 8u(2l—2j, 2j)+1 g"";(r“;[;(“j]?) so(4l—4j, 4j)
chy s0%(d) a*Ql)+ R b g
BCht sl +2)  s@l+1-2), 2+t EEISAD  soari2—j,4)
ciieish R sa-ip+t  FER om0
ol ap(l, R) 8(l, A+R b a
Bomytt  mam,p FOEETRD S SOARL D o1 m—2),2)
chieih  map LD WERIED a2
cry ap(l, ) ap(l, C) a2+ R ap2l, R)
Eg 4 €66y 8p4, R) g[(g_, @If()z’ R) €6(2)
Eip €66 3n(2,2) 30(5, 5)+R €6 (-14)
Fi:lB eg() 3u(4, 2)+3u(2) 80(6, 4)+1t eg(-14)
Fit 26(2) au(3, 3)+31(2, R) b g
BC:Y! e6¢-14) 80%(10)+1 su(5, 1)+8l2, R) €50z
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(Continued from Table I)

Symbol ) L ged
BCY%! 6(-14) 30(8,2) +t ] 8
A3 4 €6(~26) fac-20) #0(9, D+R €6e-14)
E; 4 226 8((8, R) b g
E%, D eren 34, 4 80(6, 6)+8l(2, R) ers)
E; g ern) 3u™(8) ey + R €7(-25)
F% eren) 80(8, 4)+8u(2) b 8
Fib eres) 30%(12)+-31(2, R) b g
C?,jh €7(~25) eo(—gm + R b g
C3%: €7(-25) eg(-14) 1 80(10, 2)+3((2, B) er(-s)
Eip €8(8) 30(8, 8) b 8
Ej 5 €s(8) 80%(16) et +8U2, R) eg(-24)
Fby €g(-24) er-5 13u(2) 30(12, 4) 28(8)
Fgb eg(-24) e7¢-25)+8((2, R) b g
Fi,B faw 8p(2, 1)+-3u(2) 30(5,4) fa¢-20
Fig facty 8p(3, R)+81(2, R) b g
BC?:Z{ fac-20) 30(8, 1) b g
G; G2(2) 812, B)+3l2, R) B g

(2) Let t be a maximal compact subalgebra of g and let ¥, be its com-
plexification. Then (g¢, t¢) is associated to (g¢, g).

(3 (8Dg, 9) is dual to (gc, ).
subalgebra {(X, X); X € g} of g®g.

4 (gPg, g) is self associated.

We give a real simple Lie algebra g.

Lemma (1.13.1) imply the following diagram.

Here we identify g with the diagonal

Then Lemma (1.10.1) and
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associated dual
(8¢ @) «———>(8c fe) «—>(3Dg, 9)

dual associated
As is noted in [O-S, Appendix], the pair (g, g) is reduced to the one

of Type ({.) if and only if g has a compact Cartan subalgebra.
There are a few symmetric pairs which are not obtained in the above

procedure. We now describe these pairs.

(1.14) We consider the following symmetric pairs.

Type g b
APD i a-i) 3u(p, q) su(i, )+8u(p—i, g—j+v —IR
BDELI'J,,}))(p—i, a-7) 30(p, q) 8o(i, )+30(p—i, g—))
CEBipi.q-i (P, q) ap(i, )+ap(p—i, g—1J)

(i£q=p,i,j=1,2(+)D=p+9)
If X denotes one of 4, BD or C, we find that the following relation holds:

dual associated
(t+7,p+q—i—7) (g . (2, @) .
X3 «———> X p-ig-n <———>XEL -1y

If the pair of type X% ,_; - is self-dual, then p=i+j or g=i+jand |
in this case the pair is reduced to the one of Type (¥,).

(1.15) Next we find that if />2 and if i is an odd number such that
1<i<], the following relation holds:

(80%(4), 8u(2l—i, i)++/ —TR) D dual
associated
(80*(41), 80*(4l—2i)+ 30*(2i))
dual
(80(41—2i, 2i), 8u(2l—1i, i)++—1R)D associated

We note here that the case when 7 is even, the pair (30*(4/), su(2/—i, i)+
v —1R) is reduced to the one of Type (£.) (cf. [O-S, Appendix]).

Remark ([O-S], p. 79]). Let (g, §) be an irreducible symmetric pair. |
Let f be a maximal compact subalgebra of g. Assume that g; is simple |
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and He=f,. Then (g, b)) is not of Type () if and only if (g, §) is iso-
morphic to (o*(4/), 3u(2l—1i, i)++/ — 1R) for an odd integer .

(1.16) Last we consider the following Lie algebras.

g g¢ geé ] 4 §?
3I2L R a2l aull) 3, R) 3l(l, C)+v—1R  30%2l)
¢6(6) €6(-26) e6(2) facy Bu*(6)+2u(2) 3G, 1
eren e7¢-25) e7¢-5) o+ vV—IR  20%(12)+3u(2) 3u(6, 2)

Then we find that the following relation holds. We stress that any two of
the six pairs below are not isomorphic to each other.

associated dual
@ 5 «——> (3, §") «——(g"% §%)

dual 1 associated

d d d a ad
(@%b )mgt‘e?(g » 9 )ﬁl;‘l—’(g i)}

§2. The restricted root system of a symmetric pair

(2.1) Retain the notation in Section 1. Let (g, §) be a symmetric
pair and let a be 2 maximal abelian subspace of PN q. In this section, we
define the root subspaces of g with respect to a and examine their ele-
mentary properties. In particular we shall show in Theorem (2.11) that
the totality of the roots with respect to (g, a) becomes a root system. We
call this the restricted root system of the symmetric pair (g, b).

Lemma (2.2).

(i) Ifa, is a maximal abelian subspace of p containing a, then a, is
o-stable.

(ii) If i is @ maximal abelian subspace of q containing a, then i is G-
stable and consists of only semisimple elements of g.

Proof. (i) Let X bean element of a,. Then we put X=X, 4 X,
with X, e §, X, e g. Since §j and q are §-stable, we find that X; e N p and
X; e pNgq. It follows from the assumption that [X,, Y]4-[X;, Y]=[X, Y]
=0forany Yea. But[X, Y]eqand[X,, Y]el. Thus we have [X,, Y]
=0 (/=1,2). Inparticular X, ¢ p(Nq and commutes with a. Therefore
the assumption implies that X, e a. Then X;=X—X, e a,. Hence both
X, and X, are contained in a,. Then ¢(X)=0(X)+0(X)=X,—X, € qa,.

(ii) We can prove that { is §-stable by an argument similar to the
one in the proof of (i). Hence it suffices to show that each element of {
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is semisimple. First we note that {=¥N{+pNj] is a direct sum decom-
position. Let X be an element of . Then there are X; e fN] and X, e
PN such that X=X+ X,. By definition, we find that both X, and X, are
semisimple and [X}, X,]=0. This implies that X is semisimple. g.e.d.

Remark (2.3). It is widely known that any maximal abelian subspace
of p consists of only semisimple elements of g. But the claim for q similar
to this one does not hold in general. Namely there exists a symmetric
pair (g, §) and a maximal abelian subspace b of q such that b contains an
element which is not semisimple. We give here a simple example.

Let g=23[(2, R) and define an involution ¢ of g by

w9y 3 oren

Then q={<2 )(;), x,yeR}. If we take B={<8 36), xeR}, then b is a

maximal abelian subspace of q but consists of only nilpotent elements of g.

Lemma (2.4). (i) Let a be a maximal abelian subspace of p(Nq. If
a, (resp. §) is a maximal abelian subspace of p (resp. q) containing «a, then
[a,, 1]=0.

(ii) Let | and i’ be Cartan subalgebras of g such that each of 1 and 1’
contains maximal abelian subspaces of 9, q and P\ q. Then they are conju-
gate under the action of KN (G°),.

Proof. First prove (i). It follows from Lemma (2.2) that a, is o-
stable and { is #-stable. Hence to prove the lemma, it suffices to show
that [a,NY, jN¥]=0. Let Xea,Nhand YejN{ Then it is clear that
[X, Y] is contained in pNq and commutes with a. Since a is maximal
abelian in pNgq, we find that [X, Y]ea. But for any Z e a, we have
(X, Y], Z>=<{X,[Y, Z]>=0. Hence [X, Y]=0.

Next prove (ii). For brevity, we put a,=iNp, i=iNg, a=iNpNaq,
a=1Np, '=1Ng, &’=1NpNg and L=KN(G?), Since h2=HN¥+
pNqis a Cartan decomposition and since @ and a’ are maximal abelian
subspaces of p N q, we find that a and o’ are L-conjugate. Hence we may
assume that a=a’. Let 3, be the centralizer of a in §. Then it follows
from the definition that a, N} and a; N} are maximal abelian subspaces of
3;Np. Hence we also find that a, and a; are L-conjugate. Then we may
assume that a,=q]. Let m be the centralizer of a, in f and let m=m, +
m_ be the direct sum decomposition for the involution ¢. Then it follows
that N f and {/ N { are maximal abelian subspaces of m_. Since (m, m.)
is a symmetric pair of the compact type, we find that { and j/ are L-
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conjugate. Hence we may also assume that {=j’. Last we consider the
centralizer 3 of a,+jing. Since the semisimple part of 3 is compact and
since both ] and j’ are Cartan subalgebras of 3, we easily conclude that
and 7’ are L-conjugate. q.e.d.

(2.5) We take a, and { which satisfy the conditions in Lemma (2.4).
Let | be a Cartan subalgebra of g containing both a, and j. We have
shown in Lemma (2.4) that such a Cartan subalgebra exists uniquely up to
a conjugation of KN (G?),. We fix i, a, and } from now on. It follows
from the definition that j contains a maximal abelian subspace of mNq,
where m is the centralizer of a, in f.

Using j and a, we define the rank and the split rank of the pair (g, §).

Definition (2.5.1). We call //=dim j and /=dim a the rank and the
split rank of the symmetric pair (g, §), respectively.

If ¢ is a real reductive Lie algebra, we denote by r(c) the real rank of
¢.  Then for a given symmetric pair (g, §), the rank and the split rank of
(g, §) are r(g?) and r(h*), respectively. Noting this, we can easily deter-
mine the rank and the split rank for each pair appeared in the diagram
(1.4.2). The results are summarized in the following table.

Table (2.5.2)

rank split rank
@, b r(g%) r(4%)
(g, H)* r(g*9) ()
(g, o r(g) ()
(g, pede r(g%) (%)
(g, p)ee r(g*%) r(4%)
(g, h?¢ r(g) r(h®)

Remark (2.5.3). If the pair (g, ) is the one defined as in Example
(1.9.4). Use the notation there. Then [/’ and / coincide with the rank
and the real rank of the Lie algebra g’, respectively.

(2.6) If @ is a f-stable linear subspace of i, we denote by d* the dual
of @ and by d. (resp. dF) a complexification of & (resp. @*). ~For any
element 2 of 6%, we put

8c(@; D={X e g¢; [V, X]=2Y)X (VY ¢ @)}
g(6; D=g,a; HNg.
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An element 1-40 of @ is called a root of (g, &) if and only if gq(@; )0
and we denote by 2(a) the totality of the roots of (g, @). By the Killing
form {, > on gy, we always identify dF with d,. In particular we may
regard a} as a linear subspace of j4. It is clear from the definition that
2(a,) and 2'() are the root systems of the Riemannian symmetric pairs
(g, ¥) and (g%, %), respectively.

In the following, we give some basic lemmas on the root subspaces of
@, ay).

Lemma (2.7). Let A be an element of 2(a,) and assume that 2| a=0.
Then g(a,; 2) is contained in |).

Proof. Let X be an element of g(a,; 4). Since o(2) =4, it follows
that X—¢(X) is also contained in g(a,; 2). On the other hand, Z=
(X—0o(X))—6(X—a(X)) is contained in pN q and the assumption implies
that [Z, a]=0. Therefore we find from the definition of a that Z e a.
But for any Y € a, we have that (Z, Y )=4(X, Y>=0. Then Z=0. This
implies that X—¢X e £Ng(a,; )=0, that is, X—¢X=0. Hence we con-
clude that X is contained in § and the lemma is proved.

Lemma (2.8). Let a be aroot of 3(G). If a|a=0, then a|a,=0 or
a]j=0.

Proof. Let a e 3(]) such that «|a=0. We assume that «|a,70 and
a|i#0 and lead a contradiction. For any X e jc and Y € g¢(}; @), we
have [X, Y]=a(X)Y. On the other hand, it follows from Lemma (2.7)
that g¢(3; «) is contained in Y. Hence we see that [X, Y] e qc. Then
[X, Y]=—0o([X, Y])= —a(X)Y. This implies that ¢(X)==0 for any X < j,.
We have thus a contradiction. g.e.d.

Lemma (2.9). Let 2, p € 3(a,) and assume that (2, py<<0. Then for
any X e g(a,; 2) (X=£0) and Y € g(a,; p) (Y=£0), we have [X, Y]50.

Proof. We put H= —[X, §X]. Then it is clear that H ¢ a,. Hence,
multiplying X by a non-zero constant if necessary, we may assume from
the first time that

2.9.1) [H, X]=2X, [H,0X]=-26X, [X,6X]=—H.
Then it is easy to see that
(2.9.2) (H, Y]=2<4 1y,

{4 2

Assuming that [X, Y]=0, we lead a contradiction. Let [ be a sub-
algebra of g spanned by H, X and X. Then it follows from (2.9.1) that
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[ is isomorphic to 8[(2, R). We consider the representation of [ on the
vector space g induced from the adjoint representation of g. Then due to
the assumption, we find that Y is a highest weight vector of the represen-
tation of [. This implies that [H, Y]=cY with a non-negative constant c.
But owing to (2.9.2), we see that 2((2, ¢)/{2, 2))=c=0. Hence {2, u>=0.
This contradicts the assumption. This means that X does not commute
with Y. q.e.d.

Remark. Hisayoshi Matumoto pointed out that the results of Lemma
11 (iii), (iv) in [Ma, p. 344] are true but their proofs given there are incor-
rect. Lemma (2.9) is equivalent to Lemma 11 (iii) in [Ma]. The proof of
Lemma 11 (iv) is given by an argument similar to that in Lemma (2.9).

Lemma (2.10). Let 2 be an element of 3(a,) and assume that {a(R), 2
<0. Then o(A)=—2.

Proof. Assuming that ¢(2)=# — A, we lead a contradiction. Needless
to say, if o(2)=2, then {g(2), 1)=<4, > >0 and therefore we have a
contradiction. Hence we may assume that g(1)7=+2. Let X(=0) be an
element of g(a,; 2) and put Z=[X, ¢(X)]. Then Lemma (2.9) implies that
Z=0. On the other hand, Z is obviously contained in g(a,; 2+a(2)) N q.
However, since the assumption in Lemma (2.7) holds for 14 ¢(2), Z must
be contained in Y. This is a contradiction. q.e.d.

Theorem (2.11). The set 2(a) becomes a root system of rank dim a.

Remark. This theorem is already obtained by Rossmann [Ro, Th. 5].
But for the sake of completeness, we give here a proof of it. We will treat
the related topics to Theorem (2.11) in Section 3.

Proof. Let 2 be a root of X(a,) such that 2|a=0. Then due to
Lemma (2.10), we find that 4 satisfies one of the following conditions:

(i) o1=-—12,

(ii)) <2, 02>=0,

(iii) {4, 02)>0.
Then we can prove the theorem by an argument similar to that in [W, pp.
21-22]. There X(a,) is assumed to be reduced. But this condition is not
used there. q.e.d.

Definition (2.12). We call 2(a) and its elements the restricted root
system of the symmetric pair (g, §) and the restricted roots, respectively.

(2.13) Let 2 be an element of X'(a). Since o leaves g(a; 1) invariant,
we obtain a direct sum decomposition
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(2.13.1) gla; H=g*(a; D+g~(a; 2)
by putting g*(a; )={X ¢ g(a; 2); o(X)=+X}. Moreover we put

m*(2)=dimg g*(a; 2)
m(A)=m*(A)+m~(2).

(2.13.2)

Definition (2.14). For any 2 € 2(a), we call m(2) and (m*(1), m~(2))
the multiplicity and the signature of A, respectively.

(2.15) Let (g, §) be a symmetric pair and (g%, §?) its dual. We take
a maximal abelian subspace a (resp. a®) of pNq (resp. p*Nq?). By defi-
nition, pNg=p?Nq? Hence we may assume that a=a% Let J(a)
(resp. 2(a?)) be.the restricted root system of (g, §) (resp. (g%, H%)). Then
we have the following lemma.

Lemma (2.15.1).  The root systems 2(a) and 2(a%) coincide. More-
over for any A € X(a), the signature of A coincides with that of 2 regarded as
an element of 2(a?).

Proof. Let 2 be an element of 2(a). Then by definition, g*(a; )=
5*Ngla; D=5 Ng*a; ) and g (a;D=q"Ngla; )=+ =1q*" N
g%(a; 2). These imply that 1 ¢ 3(a%) and the signatures of 1 regarded as
a root of 3(a) and that of X' (a?) coincide. The converse is also true.

g.e.d.

(2.16) We give here some remarks on the multiplicities and the sig~
natures of restricted roots.

(1) For any 2 € 3(a), we put R(a,; )={a e X(a,); «|a=2}. Then
it follows from the definition that

mQ)= >, dimgg(a,; 2).
@€ Rl )

(2) We introduce a quadratic form on the root space g(a; 1) for any

restricted root 2 € X'(a) by

0:(X)=—LX, 6X for any X e g(a; ).

Then the signature of the quadratic form Q3(X) on g(a; 2) coincides with
(m*(2), m~(2)).

(3) We have already introduced the signature of roots in [O-S] (cf.
Example (1.9.3) in § 1). The signature in Definition (2.14) is regarded as
a generalization of that in [O-S]. We now explain this. Let (g, f) be a
Riemannian symmetric pair and let 2(a,) be the root system of (g, ). We
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take a signature ¢ of 2(a,) as we did in Example (1.9.3) of Section 1. Let
8. be the corresponding involution of g. Then we define a symmetric pair
(g, £.). In this case, it follows from the definition that a coincides with a,.
By an easy computation, we find that

Qi(X)=e)05(X) forany 2e X(a,) and X eg(a,; ).

Here 4 denotes the Cartan involution for f. This means that for a root
2 € 2(a,), (A)=1 (resp. e(1) = —1) if and only if the quadratic form QJ:(X)
on g(a,; 4) is positive definite (resp. negative definite). In this sense, the
signature defined above is a generalization of that in [O-S].

(2.17) The following lemma will be useful in the determination of
m*(2) and m~(2). '

Lemma (2.17.1). Let 2 be a root of 2(a). If 22 e X(a) and m=(22)
>0, then m*(A)=m~(2).

Proof. It follows from the assumption that there exists an element
Z+0 of g(a; 22) such that ¢§Z= —Z. Using Z, we define a linear endo-
morphism ¢ of g(a; 2) by #(X)=[0X, Z] for any X e g(a; 4). Itis clear
that ¢(g*(a; 1))Sa7(a; ). Hence to prove the lemma, it suffices to show
that ¢ is injective. Assume that X e g(a;4) and ¢(X)=0. Then [Z,
[6Z, XT1=0. Since [Z, X]=0, it follows that [[Z, §Z], X]=0. On the
other hand, [Z, 0Z] e pNq and [Z, 6Z] commutes with a. These imply
that [Z,8Z]ea. Then 0=[[Z, 6Z], X]=2(Z, 6Z)X. Since A([Z, Z])
+#0, we conclude that X=0. g.e.d.

§3. The (8, o)-system of roots

Let (g, §) be a symmetric pair. We use the notation defined in the
previous sections without notice. Let X(j) be the root system with respect
to (g,]). Then # and ¢ induce involutions on 3(j). We denote them by
the same letters. Needless to say, # and ¢ commute with each other.
They may satisfy additional conditions. Hence it is natural to ask the
problem to give conditions on # and ¢ such that they are actually induced
from a symmetric pair. In this section, we treat this problem.

(3.1) Let V be a finite dimensional real vector space. Let 2 bea
root system in V (cf. [W, p.8]). There exists a positive definite non-
degenerate symmetric bilinear form (-, -» on ¥ which is invariant under
the Weyl group of 3. We fix this form. Let V* be the dual of V. Then
V* is identified with V" by the inner product (-, ->. In the sequel, we
frequently identify V and V*.
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Let 6 and ¢ be linear involutive isometry of V with 81, ¢=1. In
the sequel, we always assume that §¥=¢¥=23. That is, the pair (2, §)
(resp. (2, 0)) is a #-system of roots (resp. g-system of roots) (cf. [W, p. 21]).
In addition, if fo=0c6, we call the triple (X, 6, ¢) (or simply X) a (4, o)-
system of roots.

Weput V(@)={ve V;0v=—v}, V(e)={v e V;gv=—0} and V(0, 0)
=V(@)NV(e). Foranywv eV, we define ry(v)=3(v—0v), r,(v)=(v—0v)
and r(v)=1(v—0v—ov+0ov). Then it is clear that ry(v) € V(6), r,(v) €
V (o), r(v) € V(0, o) for any v e V. Using these notation, we define

2@ ={rya); a e T, r,(e) %0}
Z()={r(a); a e 2, r,(a)#0}
20, 0)={r(e); « e 3, r(a)=0}.
(3.2) Let X be a root system in ¥ and let ¢ be an involution of V'
such that ¥ =2%. We consider the following conditions for X and ¢:
(N,) a+oa ¢ X forany a e 3.
(GN,) TIfaisaroot of ¥ such that {, ga) <0, then oa= —a.

Lemma (3.2.1). Let X be a o-system of roots in V. If the condition
(N,) holds, so does the condition (GN,).

Proof. LetaeX. Weassume that (&, o) <<0 and g — . Then
it follows from [W, Prop. 1.1.2.1] that «+ o« is a root of 2. This contra-
dicts the condition (N,). q.e.d.

As was already shown in Lemma (2.10), involutions ¢ satisfying the
condition (GN,) naturally appear in the course of the examination of sym-
metric pairs. The classification of such involutions will be treated in

another paper.

Lemma (3.3). Let X be a g-system of roots in V. (We do not assume
that 3 is reduced). If the condition (GN,) holds, then X(o) is a root system.

Replacing Lemma (2.10) with the condition (GN,), we can prove
Lemma (3.3) by an argument similar to that in Theorem (2.11).

Theorem (3.4). Let (X, 0, 0) be a (0, o)-system of roots in V. We
assume that the conditions (N,) and (N,) hold. Moreover we assume that

(C) LetaelZ. Ifr(a)=0, then ra)=0 or r,(a)=0.

Then X(6, a) is a root system in V (8, o).
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Proof. 1t follows from (N,) and [W, Prop. 1.1.3.1] that 3(6) is a root
system in V(6). Since fo=06, we see that ¢ induces an involution on
V' (6) which we denote by the same letter. Then 3() is a g-system of
roots in ¥(6). If the condition (GN,) holds for 3(6) and ¢, it follows from
Lemma (3.2.1) that 3(6, o) is a root system in V(6, g). -

Hence it suffices to show the following.

(3.4.1) If a e X satisfies the conditions (a) r,(«)=0 and (b) {r(«),
a(ry(@))) <O, then o(ry(a))= —r,(@).

We are going to prove this statement in the cases (i) {«, fa» <0, (ii)
{a, Bary>0 and (iii) {e, fa) =0, separately.

(i) The case where {a, Gy <O0.

In this case, it follows from the condition (¥,) that fe= —«. Then
(b) is equivalent to the condition {w, ca)<{0. Hence the condition (N,)
implies the claim.

(il) The case where {a, o) >0.

It follows from (a) and [W, Prop. 1.1.2.1] that f=a — f« is also a root
of . Since B=2r,(«), the conditions (b) and (&,) imply the claim.

(iii)  The case where {a, 6oy =0.

We note that (b) is equivalent to the condition (b)) (e, oa) <
{a, Gaay. If {a, oa)<<0, then (IV,) implies that o= —a and therefore
we have nothing to prove. Hence we may assume that {@, ca)=0. On
the other hand, if fca=a, it is clear that o(r,(a))= —r,(x). Hence we
may also assume that foe=«. Then {«, foa) <{a, ). Since a, o and
fow are of the same length, the conditions 0=, ga) <{«, o) implies
that {oa, @) =0. Here we used the properties of roots explained in [W, p.
10]. Since {a, foa) >0, it follows from [W, Prop. 1.1.2.1] that f=a—fox
is a root of 3. It is clear that r(8)=8—08—cB+6sp=0. Then the
condition (C) implies that §f=p or sf=p. If 8=4, then a—Oa+ga—
f6oa=0. On the other hand, if ¢f=4, then a+ga—oga—Ooax=0. In
both cases, by taking inner product, we find that {«, a) —{a, foa) =0.
This contradicts the assumption foa .

Hence the theorem is completely proved.

Remark (3.5). Let (2, 6, o) be a (0, o)-system of roots. We assume
that the conditions (N,) and (&,) hold. Under the assumption, the con-
dition (C) is not necessary to the condition that X(6, ¢) is a root system.
We give here an example of a (4, ¢)-root system (2, 4, ¢) that (N,) and
(NV,) hold, that X'(g, ¢) is a root system but the condition (C) does not hold.

Let Zz{i(xu T, i(al‘l"az)}U{i,Bn + B, i(ﬁl'{'ﬁz)} be a root
system of type 4, X 4,. Let 6 be an involution on ¥ defined by ;= — f,,
08,= —ua, and let ¢ be that defined by oa;=—f, (i=1, 2). In this case,
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it is clear that (IV,) and (N,) hold and that X'(d, ¢) is a root system of type
A, but the condition (C) does not hold. Actually, we ses that oo, 4 ;)
= —(a,+ay) but 0o, + ) # a, + ay, oo+ ) # oy + v,

Definition (3.6). Let (2, 6, o) be a (0, o)-system of roots. If the con-
ditions (N,), (V,) and (C) hold, we call it a normal (6, ¢)-system of roots.

(3.7 We give here a remark on the role of Theorem (3.4) in the
study of the restricted root system of a symmetric pair. Let (g, §) be a
symmetric pair and let | be a Cartan subalgebra of g satisfying the con-
ditions as we introduced in (2.1). We put j,=+/—1(fNj)+a, Then
every root of 3(j) takes real values on j,, We now identify ¥ with j, and
2 with 3(j) and write the restrictions of the complex linear extensions of
the involutions @ and ¢ on g to V by the same letters. Then it follows
that X' is a normal (4, g)-system of roots in V. In fact, the conditions (V)
and (N,) are easily checked (cf. [W, Lemma 1.1.3.6]) and the condition (C)
is a direct consequence of Lemma (2.8). It is now clear that Theorem
(2.11) is a special case of Theorem (3.4).

(3.8) From now on, we introduce an order on the root system
2 which meets our purpose. First recall a g-order on 2. An order on
2 is called a g-order if g« is negative for any positive root « of X satisfying
r(a)=#0 (cf. [W, p. 23]). Similarly we can define a f-order on 2. In
general, a f-order on 2 is not a g-order. But under the condition (C),
we can define an order on X which is both a g-order and a #-order. To
define a standard one, we take elements Y_ € V (6, ¢), Y. € V()N V(o)*,
Z_eV(@)NV(@=* and Z, e V(6)-N V(e)* such that for any root e e ¥,
we have

a(Y.)=0=a|V(6)N V(o) =0,
(Y. )=0=>a|V (0, 0)=0,
AZ.)=0=>a| V(0N V() =0,
a(Z_)=0=>a| V(0)* N V(e)=0.

(3.8.1)

Here V(6)* and V(o)* denote the orthogonal complements of ¥(#) and
V(o) in V, respectively. Then we define an order on X such that a root
a of X is positive if and only if one of the following conditions holds:

(i) a(Y.)>0,
(i) «(¥Y.)=0 and a(Y,)>0,
(i) «(Y.)=0 and «(Z_)>0,
(V) a(Y.)=a(Y.)=a(Z_)=0 and a(Z.,)>O0.

(3.8.2)
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Due to the condition (C), we find that if a(Y_)=0, then «(Y,)=0 or
a(Z_)=0. Hence we can safely define an order on X in view of the con-
dition (3.8.2). We call such an order a (4, o)-order on 3. It is clear
from the definition that a (4, ¢)-order is both a f-order and a g-order.
For a given (4, o)-order on 3, let ¥ be its fundamental system of positive
roots. Then ¥ is called a (4, o)-fundamental system of 3'+.

The following lemma is a direct consequence of the definition of the

(6, o)-order on X.

Lemma (3.8.3). Let ¥V be one of the subspaces V(6, ), V(6) N\ V(o)*,
V()L NV(e) of V. Let a and B be roots of X such that «|V =8| V0.
Then o >0 if and only if f>>0.

Let ¥ be the one as in Lemma (3.8.3). For the sake of convenience,
we denote by 3(¥) the root system on ¥ induced from Y. That is, for
example if ¥V=V(6, o), then 3(7)=23(0,5). We can safely define a
compatible order on the root system 3(¥) such that a root 2 of 3(¥) is
positive if and only if there is a positive root « of I satisfying «|V=2.
We denote by I+ and J(¥)* the totality of the positive roots in ¥ and
3(V), respectively. Then we find the following.

(3.84) 37 ={a|V;a e 31 —{0}

(3.9) Let(2, 40, 0) be a normal (6, g)-system of roots in V. Let «
be a root of 2’ such that 7(«)=£0. Then « satisfies some conditions. We
now examine these conditions in detail. Let « be as above. We examine
in Lemma (3.10) the case where 6(r,(a))= —r,(«) and that where o(r,(c))
= —ry(@) and also examine in Lemma (3.11) the case where (r,(x))+~

—ro(a): O'(rﬁ(a))¢ —VH(O().

Lemma (3.10). Let « be a root of 3 such that r(a)=+0.

(i) Assume that a-+0ox—ocax—60oa=0. Then one of the conditions
(1)—(6) given below holds.

(ii) Assume that o— Qa+ca—Ooca=0. Then one of the conditions
(1))~(6") given below holds.

(1) ba=ca=—a. (1=().
2 ba=-—a, {a, ga)=0. 2) sa=—a, {a, o) =0.
B) ba=—a, {a, ga)>0. %) ga=—a, {a, foa)>0.
4 ba=ca, {a, o) =0. “@)=®4).
) ba=ca, {a,a)>0. (5)=0).

6) <a,bo)=0, {(a, ca)>0. 6) Le,00)=0, {a, fa)>0.

Proof. (i) First consider the case where {a, fa)<0. Then (N,)
implies that fo=—«. In this case, we derive (1), (2), (3) from the cases
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{a, ooy <0, {a, o) =0, (&, ga) >0, respectively.

Next assume that {«, fa) =0. If {a, ga) <0, then o= —a. This
combined with the condition a4 fa—ga—fsa =0 implies that fo= —a.
This contradicts the assumption. Hence, in this case, we have {«, ga) >0.
If (&, ) =0, by taking the inner product, we find that {«, &) — {a, fox)>
=0. Since & and fox are of the same length, it follows that foa=«.
Then (4) follows. On the other hand, if {«, gar) >0, then (6) follows.

Last consider the case when {w, ) >0. It is clear from the as-
sumption that ce = —a. Since «, o, gx and foo are of the same length,
we see that 2{«, fa) = (@, &) and the equation (&, a) +{e, oy — e, g}
—<{a, oy =0 which follows from the assumption implies that {«, ga)
>0 and foa=a. Then (5) follows.

Exchanging the roles of 4 and ¢, we can prove (ii) similarly.  q.e.d.

Lemma (3.11). Let a be a root of 2 such that r(ax)£0 and that
o(r(@))£= —ra), 0(r.(a))# —r,(«). Then a satisfies one of the following
conditions.

7 Le, 8y =0, {a, ca) >0, {a, oay=0.

(7)) (e, 0> >0, (a, o0y =0, {a, foa) =0.

®) (e, o) ={a, oy =0, {a, foa><0.

) <La, 0oy ={a, ooy =<, ooy =0.

Proof. If {a, 6y <0, then the condition (¥,) implies that for = —c.
This contradicts the assumption. Hence (&, fa) =0. By the same reason,
we find that (e, ca) 0.

We now show that {«, oy <0. If otherwise, we have {«, foa) >0.
The assumption implies that foa==«. Hence it follows from [W, Prop.
1.1.2.1] that B=a—fox € X. Then r(8)=0 and the condition (C) implies
that 8=8 or ¢f=p. We may assume §8=38. Then o(rya))=—r,(a).
This is a contradiction. Therefore {«, foa) <0. We have thus shown
that

(3.11.1) {a, 0oy =0, (o, 0a)=0, (e, foay=0.

Now assume that (&, o) >0. Then f=a—0fa e 2. Since r(a)+0,
oB+#p. On the other hand, we have that (8, o8> =2{a, sa) —2{a, foa).
If (a, ga) ={a, o) =0 does not hold, then (B, gf)>0. This implies
that 7=8—oB e 2. Then r(r)=4r(x). This contradicts the condition
that 3 is a root system. We have thus proved that if {«, fa) >0, then
{a, oy ={a, Boay =0. This combined with (3.11.1) implies the lemma.

(3.12) Let (3,8, 0) be a normal (4, a)—systém of roots and let ¥
be a (6, o)-fundamental system for X. For brevity, S(2, 7, ) denotes
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the Satake diagram for the triple (X, ¥, §). Similarly, S(2, ¥, ¢) denotes
that for (2,¥,0). Put ¥(@)={rax);xc¥}. This is a fundamental
system for the root system 2(f). Then we can define a diagram S(2(6),
(), o) for the triple (2(4), T(6), o) as the Satake diagram is done for the
above case. For the sake of convenience, we call this the Satake diagram
for (2(6), ¥(0), o).

The purpose of this paragraph is to explain a method to determine
the Satake diagram S(2'(6), ¥ (), ¢) from the information on S(Z, 7, o).
In fact, it is easy to check the following facts concerning S(2(4), ¥(6), o)
from the normality assumption for (2, 4, o).

(3.12.1) The node corresponding to A € ¥'(6) is black if and only if
there exists an « € ¥ such that r,(w)=2 and that the node of S(2, 7, o)
corresponding to « is black.

(3.12.2) Let 2, ue ¥(6) and assume that Ay Then the nodes
corresponding to 2 and p are connected by an arrow if and only if there
exist «, 8 € ¥ such that r(a) =2, ry(B) =y and that the nodes of S(Z, ¥, ¢)
corresponding to a and 8 are connected by an arrow.

We give here an example for the Satake diagram of (2(6), ¢) in the
case where (2, 0, ¢) comes from a symmetric pair.

Consider the symmetric pair (g, ) =(e;- 1, 8u(5, 1)+3[(2, R)). Re-
tain the notation of the previous sections. Let X be the root system of
gdc- Then the type of X' is E,. Take a (4, o)-fundamental system ¥ for
2. Then the Satake diagrams S(2, ¥, 6) and S(2, ¥, o) are given as
follows:

e N
S, 7, 0):

T

S(2, 7, 0): O—O—I———o—o‘

It follows from (3.12.1) and (3.12.2) that the Satake diagram S(3(6),
¥(9), o) is given as follows:

S (@), ¥(6), 6): o—e—>0——0 .

It is easy to check that the involution ¢ on 2X'(§) satisfies the condition
(GN,) but does not (N,).

We are going to give a complete list for the Satake diagrams which
are obtained by the procedure explained above but are not the ones for
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o-normal systems of roots. We may restrict our attention to the irreduci-
ble root systems which come from symmetric pairs. Then the result is
given as follows:

(I) B,;(:even) o—o—o— ..... —o0—e&—=0

(1Y BC,(:even) e—o—=a— +:-... o0

(Im ¢, (I>0n OO s U T —ec—»
(ITy BC,(I>1) o—o0— «+v.. OO senan e
11y F, ——>e—0

In fact, the symmetric pairs given below are examples with the Satake
diagrams given above.

(1) (30Qp, 4n—2p), 3u(p, 2n—p)++—1R) p<n, I=2p.
(1Y (3w(2p, 2n—2p), 3p(p, n—p)) 2p<n, I=2p.

(1) (30*(4nm), 30*(2p)+30*(dn—2p)) p<nm, I=n.

(IIY (80*(4n+2), 80*(2p)+80%(4n—2p+2) p<n, =n.
(D) (&g 1, 3u(5, D482, R)).

§4. A reduction to the case of split rank 1

(4.1) Let (g, 5) be a symmetric pair. Retain the notation in the
previous sections without notice.

First collect here some notation which will be used in this and the
subsequent sections.

I(Dy={a e 3()); «|a,=0}
(), ={o € 3(); |1 =0}
2(Ds,o={er € 2(}); | a=0}
(o), ={a e 2(a,); a|a=0}
2({)s={a € 2(}); a|a=0}
It is clear from the definition that each of these sets is a root system.

As to 2(7),,,, we have the following lemma which is a direct consequence
of the condition (C).

_Lemma (4.1.1). Z(i),,,,i is the_disjoint union of (3()— 2D, N 23,
EMD—2(0)) N 2G)e and 2(1), N 2(), -
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Let 2 € X(a) and let @ be one of , a, and j. Then we define the
following sets.

R@; D)={a e 2(@); a|a=1}
R(@; 2)=the union of R(&; m2) such that m ¢ R and mi ¢ (a).

For any a e X(3), we define ry(«), r,(e) and r(a) as we did in (3.1).

A subset M of 3(j) is said to be connected if M is not decomposed
into two mutually orthogonal parts. Similarly we define the notion of
6-connected, o-connected and (6, o)-connected subsets of (j). A subset
M of 3(3) is said to be f-connected (resp. o-connected, (6, )-connected) if
and only if 0M =M (resp. oM =M, M =oM=M) and M is not decom-
posed into mutually orthogonal #-invariant (resp. o-invariant, (6, o)-
invariant) subsets. Since ¢ acts on 3(a,) and @ acts on 3(3), we can simi-
larly define connected and o-connected subsets of 2(a,) and connected and
6-connected subsets of X(j).

Lemma (4.2). Let 2 be a root of 3(a). Then R(j; 2) is (8, o)-con-
nected.

Proof. It is clear that 0(R(j; )= a(R(I M =R(G; 2.

We first consider R(a,; 2) instead of R(j; 2). For any g, v ¢ R(a,; 2),
we show that {g, v>#0 or (g, ov)#0. In fact, it follows from the defini-
tion that {p—oap, v—ov)=mn{A, 1)=+0. (Here m, n are the integers
defined by pg—ou=mal, y—ov=ni.) This implies that {g, v)=+{y, ov)
and therefore {y,v)=#0 or (g, ov)s0. Now we take an element y e
R(a,; 2) and fix it once for all. Putting N={v & R(a,; 2); (g, v) #0}, we
find that R(a,; )=NUcN. We take an element « ¢ R(j;2) such that
ala,=p. If 8 is an element of R(j; 1), then §|a, is contained in N or in
oN. If Bla, e N, it follows that {o—fa, —6B)>+~0. This implies that
{e, B> =0 or {a, 88> #0. On the other hand, if 8|a, € ¢, by an argument
similar to the above, we find that {«, ¢8)+0 or {«, fc8)+0. Putting
M={B e R(; 2; <{a, )0}, we eventually conclude that

RG; H)=MU6OM UsM U6bsM. q.e.d.

(4.3) It is clear that 3'=R(j; 2)U 2(}),,, is a closed subsystem of
3(1). Namely, 3 is a root system and satisfies that 1) if « € 3/, then
—a e X and that 2) if &, B ¢ 2" and o+ B € 2, then a+p € 27 (cf. [Ar, p.
7). Let 3(3;2) be the (6, o)-connected component of 3’ containing
R(;2). Then there exists an irreducible closed subsystem Y of 3(}) such
that 3(3; )= U0XUe3 Uba3.



Restricted Root System 459

(4.4) Similar to (4.3), we see that R(a,; 2)U 2(a,), is a closed sub-
system of 2(a,). Denote by 2(a,; 1) the o¢-connected component of
ﬁ(a»; AU 2(a,), containing R(a,; 2) (for the definition of the g-component,
see [Ar]).

We note here the following well-known statement (cf. [Ar]).

(4.4.1) If R is a closed subsystem of 3(j) such that §R=R, then
roR—2(3),) is a closed subsystem of 2(a,). Furthermore if R is #-con-
nected, then r ,(R— 2(1),) is connected.

Lemma (4.5). r,(3(G; )—2(1)s)=2(a,; A).
Proof. For any « € 3(1; ) — 2(}),, we see that
ro(@) € R(a,; DU 2(a,),.
Hence it follows that
(205 H— 20 S Riay; DU 2(a,),

Since (4.4.1) implies that r,(X(3; 2)— 2(3),) is a closed subsystem of 3(a,),
it is clear that

2(ay; DEr(2(G; D= 2.

Hence if we show that r,(3(f; 2) — 2(j),) is o-connected, the lemma follows.

We are going to prove that r(2(j; 2)— 2(j),) is o-connected. We
use the notation in (4.3) without notice. Then 3({; )=YU0XUeX Ubs3
and Y is an irreducible closed subsystem of (j). First assume that 63 =
3. It follows from (4.4.1) that o(3 — 2(j),) =03 — 2(}); Then we find
that 1,03 —3() ) =0(ry(Z—2()s). Hence r(ZG; )—2(),) is o-con-
nected. Next assume that 63N Y =0. Since 8(3—2(§)y)=02—2(®1)»
it also follows from (4.4.1) that r, (X — 2(j),) is an irreducible closed sub-
system of X(a,). Then by an argument similar to that in the previous
case, we conclude that r,(X(j; 2)— 2(7),) is o-connected. g.e.d.

(4.6) Denote by 3(j; 2) the g-connected component of R(j; )U2(),
containing R(j; 2) (cf. (4.4)). Then the following lemma is shown by an
argument similar to that in the proof of Lemma (4.5).

Lemma. 7,(X(1; )—2(1).)=2(; 2.

Theorem (4.7). For any 4 € 2(a), we denote by g(2) the subalgebra of.
g generated by {g(a,; 11); p € R(a,; A)}.  Then we have the following.
(i) g¢(2) is a semisimple Lie algebra of the non-compact type and
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0(g(2) =a(g(2)) = g(2).

(i) 0()=019(2) is a Cartan involution of g(1). Let g(2)=1()+p(2)
be the corresponding Cartan decomposition.

(iii) (A =0lg(d) is an involution of g(2). And o(2) is non-trivial on
each simple factors of q(2). Let g(Q)=8H5A)+q(2) be the corresponding
direct sum decomposition.

(iv) a(@=aNg(R) is a maximal abelian subspace of P(A) N q(A). And
dimza(2)=1.

(v) a,(D)=a,NgA) is a maximal abelian subspace of p(R) containing
a(2).

vi) M)=iNg() is a maximal abelian subspace of () containing
c(d).

(vi) J()=1Ng(R) is a Cartan subalgebra of g(2) containing both a,(2)
and §(2).

Proof. Let ¥(a,) be the fundamental system of 2(a,). (Needless to
say, we may assume that the orders on 3(3), 2(a,), 2(7) and 3(a) are so
taken that they are compatible.) Then we see that ¥(a) N 2(a,; 2) is
a fundamental system of X(a,; ). Hence it follows from [W, Lemma
1.2.3.14] that g(2) is semisimple of the non-compact type and 0(2) is a
Cartan involution of g(2). Moreover [W, Lemma 1.2.3.15] implies that
a,(D)=a,Ng(d) is a maximal abelian subspace of p(1). Since ¢ leaves
2(a,; 2) invariant, we find that ¢(g(2))=g(2). These show (i) and (ii).

By definition, g(a; 1) is contained in g(2). Since fo leaves g(a; 2)
invariant, we can take an element X e g(a; 1) (X=0) such that e X=X or
goX=—X. Then it is clear that Y=[X, 0X] (3£0) is contained in
aNp(A) Na@)y=a(d). In particular this implies that ¢(2) is not trivial on
g(2). By multiplying ¥ by a non-zero constant if necessary, we may
assume that A(Y)=1. We now show that a(1)=RY. Let Z e a(2) such
that 2(Z)=0. Fixa pge 3(a,; ). If op=p, then y(Z)=4%(p+0op)(Z)=0.
On the other hand, if ousp, we have that p—op==22. Then w(Z)=
3 (u—op)(Z)=A(Z)=0. Accordingly, we find that x(Z)=0 for any p e
2(a,; ). This implies that Z=0 and therefore a(1)=RY. We have thus
shown (iv). Now (V) is clear.

Let g(2)¢ be the complexification of g() in g.. For any a € 3({; ),
let X, (s=0) be an element of g¢(j; ). It follows from Lemma (4.5) that
a()¢ is generated by {X,; @ € 2(}; 2)}. Then it is clear that the subspace
(D¢ of ()¢ spanned by {[X,, X_,]; @ € Z(j; 1)} is a Cartan subalgebra
of g(A)¢. Since 7'(A)¢ is contained in g, we find that J(2)¢Sj(Q)¢. Since
i) is abelian, this implies that j’()¢=i(A)e. Hence j(2) is a Cartan
subalgebra of g(4). This proves (vii).

We have proved that X(j; 2) is the root system of (g(A)¢, {(R)e). It



Restricted Root System 461

follows from the arguments in (4.3) that 3(i; 2) is (6, o)-irreducible. We
use the notation there. First assume that ¢X=23. If ¢ is trivial on %, it
follows that ¢ is trivial on (3 —3(}),). This implies that ¢ |g(2) is trivial.
But we have already remarked that there exists ¥ € p(2) (Y==0) such that
oY= —Y. Thisis a contradiction. Hence ¢ is not trivial on 3. In this
case it is clear that g(2)¢ is simple. Hence we conclude that ¢(2) is non-
trivial on the simple Lie algebra g(2). Next assume that ¢3 N 3=f. Let
/() be the subalgebra of g() generated by {g(a,; p); 1 € ro(Z — 2 (1))}
Then it follows that g(2)=g’(2) +0g’(2) is a direct sum decomposition and
clearly ¢ is not trivial on each simple factor of g(1). Hence (iii) is proved.

Finally we show (vi). Let (g% §%) be the dual of (g, }) defined in
(1.2). Let g%) be the subalgebra of g¢ generated by

{a%(a; p); p e X(ad; D).

Here we put a?=a-++/—1(fN}). By definition, (a?)¢=1c and therefore
2(ag; )=2(j; 2). Then by an argument similar to the above one, we
find that a?Ng%2) is a maximal abelian subspace of p?Ng*%(2). Since
iD= Ng%A))¢, we conclude that j(2) is a maximal abelian subspace
of q(2). Thus (vi) is proved. q.e.d.

(4.8) 1In the above discussions, we have shown the following state-
ments.

(4.8.1) Use the notation in Theorem (4.7). Assume that g is of the
non-compact type. Then g is generated by {g(a;2); 2 € 2(a)}. In par-
ticular, if (g, §) is of split rank 1, then g is generated by g(2) and g(—2),
where 2 is the simple root of X'(a).

(4.8.2) Let (g, §) be a symmetric pair. Assume that (g, §) is irre-
ducible. Then the restricted root system X'(a) is irreducible.

§ 5. The irreducible symmetric pairs of split rank 1

Needless to say, the irreducible symmetric pairs of split rank 1 are
basic among general symmetric pairs. By this reason, it is preferable to
study them. This will be done in this section.

(5.1) The irreducible symmetric pairs of split rank 1 are enumerated
in Table II. (We follow the notation in [He 1].) We can prove this claim
by deciding the split ranks of all the irreducible symmetric pairs. As was
noted in (2.4), for a given symmetric pair (g, ), its split rank is identified
with the real rank of 5=

Let (g, }) be an irreducible symmetric pair of split rank 1 and let
(g%, 5%) be its dual. In Table II, we always take so that r(g®)<r(g). Then
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Table II. Irreducible symmetric pairs of split rank 1

Ii: Go(p+1, g+1), 30(p+1, 9))
I @o(p+g+1, 1), 3o(p+1D+80(g, 1)
L: @Gup+1, g+1), sup+1, 9+v—1R)
12 @u(p+g+1, 1), su(p+1)+8u(g, D+ —1R)
Ts: @p(p+1, g+1), sp(p+1, @)-+3p(1)
Ig: @p(p+g-+1, 1), s(p+1)+3p(g, 1)
I (acan, 80(9))
Ii: (ecans 30(8, 1)
,: (((m+2, R), 8l(n+1, R)+R)
I¢: Guim+1, 1), so(m+1, 1))
IL,: (8p(m+-2, R), 8p(m+1, R)+3n(1, R))
IZ: @pm+1, 1), su(m+1, H+vV—1R)
Is: (s, 80(5, 4)
Hgf;l U (facenoys 892, D+3u(2)
L : Bo(m+2, C), 8o(m+1, C))
I¢:  (o(m+1, D)+8o(n+1, 1), 8o(m+1, 1))
UL: @(m+2, C), 8lm+1, C)+C)
IM2:  @uen-+1, D+su(m+1, 1), suim+1, 1)
II;: @pm+2, C), sp(n+1, C)+8p(1, C))
I:  @pim-+-1, D+spim+1, 1), sp(m+1, 1))
M,:  (fs, 309, C))
IIISZ; (Faccz0y+ 1200 Tac20)
IVy: (80Q2(m+2)), 80%QR(m-+1)+50%(2))
IV¢: (BoR(m+1),2), auim+1, H)++v~1R)
IVy:  Gu*Q(m-2)), su*Q(m-+1)+8u*2)+ R)
IVy:  (Bu2(m+1), 2), 3p(m+1, 1)
IVs: (s(-28, 80(9, N+ R)
IVE:  (eac-10)s Ficoam)
Vi: @G, C), 83, R)
Va: (8u(3, 3), 3p(3, R))
V‘zit (Bu*(6), 8((3, C)++v —1IR)
Va: (s, fswy)
Vit (esc-a, BU¥(6)+8u(2)

we observe that r(g%)<2. If r(g%) =1, then (g, ) is contained in one of
the classes I and II. On the other hand, if r(g%) =2, then (g, §) is contained
in one of the classes III, IV and V. If X denotes one of I-V, X?¢ denotes
the class of the dual pairs to those in X,

Let (g, b) be an irreducible symmetric pair of split rank 1. We use
the notation in the previous sections. By the assumption, the restricted
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root system 3(a) coincides with {+2} or {#2, +-22}. Here 2 denotes a
unique positive simple root of X(a). We always fix it in this ssction.

(5.2) The irreducible symmetric pairs of split rank 1 and of Type (f.)
are contained in I, —1,. We give here concrete correspondences. Needless
to say, a symmetric pair of Type (£,) is self-dual.

G2i)  Lg=0=X(g=0): (50(p+1, 1), 3a(p+1))
G2 L(p=0=T(p=0): (5o(l, g+1), 50(1, 9))

G2i)  Lg=0=T(g=0): Gu(p+1, 1, su(p+D+v—1R)
(2i)  T(p=0=T(p=0): Gu(l, ¢+1), 3u(l, )+v—1R)
(2il) Lg=0=T(g=0): (p(p+1, 1), 3p(p+1)+3p(1)
(2l I(p=0=T(p=0): (p(1, g+1), 3p(1)+3p(1, 9))
(5.24v) 1§ (acezn» 30(9)

(5.24v)Y  Ii (Guoa» 30(8, 1))

(5.3) Special isomorphisms.

Because of the isomorphisms in [He 2, p. 519], there are some overlaps
in Table II in addition to those described in (5.2). We derive the follow-
ing isomorphisms.

(630  Lp=1,q=0)=Ii(p=1, ¢=0)=1(p=¢g=0)=1(p=4=0)

(6.31) ILi=(p=0,g9=1)=I{(p=0, g=1)=1I(m=0)=II{(m=0)
=1V, (m=0)=1IV¥{m=0)

(5.3.i)) I(p=3,9=0)=I(p=g=0)

(5.3.iv) I(p=3,9=0)=L(p=¢=0)

G3v) I(p=1,g=2)=I(m=0)

(5.3vi) I(p=1, ¢g=2)=II4m=0)

(5.3.vil)) IV,(m=2)=1IVi{(m=2)

(5.3.viil) IV,(m=0)=I{(p=3, q=1)

(5.3.viii)’ IVi(m=0)=1(p=3,9=1)

(5.4) We consider the sets R(j; 2) and R(j; 22). If ais a root of 2(j)
contained in R({; 1) U R(j; 22), then we have already shown that « satisfies
one of the conditions (1)-(9) and (1")~(9") in Lemmas (3.10) and (3.11).
Hereafter we frequently use this notation without any comments. By

definition, we find that if « satisfies one of the conditions (2)—(5), then
—oa is different from a but —fa or faa coincides with . On the other
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hand, if « satisfies one of the conditions (6)—(9) in Lemmas (3.10) and
(3.11), then any two of the quartet («, — 6, —oe, foc) are mutually dif-
ferent. Even if « satisfies one of the conditions (1')-(9’) instead of (1)-(9),
the situation is not changed.

We give in Table III the number of roots satisfying the condition (1),
that of pairs satisfying one of (2)~(5), and that of quartet satisfying one of
the conditions (6)—(9) for each irreducible symmetric pair of split rank 1.

Table III. Classification of roots

Class m(l) m@2) m@B) m@ m5) m@6) n() n(2)
L (p+q:odd) 1 min(pq) O '—”fg‘il 0 0 0o 0
: ~ 1p—ql
I; (p+q: even) 0 min(p,q) O 5 0 0 0 0
I, 0 0 0 0 lp—q| min(p,q) 1 0
I 0 0 0 0 2|p—q| 2min(p,q) 1 1
L 0 0 0 0 4 0 1 3
11 0 0 m 0 0 0 1 0
I, 0 0 2m 0 0 0 1 1
11, 0 0 4 0 0 0 1 3
Class m2) m@6) m(@ m® m®O nl) n?2 n4 n®
M (n:odd) 1 0 0 0 ﬂ;—l o o o0 0
" m
1§ (m: even) 0 0 0 0 ) 0 0 0 0
1154 0 0 m 0 0 0 1 0 0
1114 0 0 2m 0 0 0 1 0 1
¢ 0 0 4 0 0 0 1 0 3
V¢ (m: odd) 0 1 0 0 m—1 1 0 0 0
IVE (m: even) 0 0 0 0 m 1 0 0 0
e 0 0 2m 0 0 0 1 1 0
¢ 0 0 4 0 0 0 1 3 0
Vi 0 0 0 1 0 0 0 1 0
) V. 0 0 0 2 0 0 1 1 0
Vs .0 0 0 0 0 3 1 0




Restricted Root System 465

There we pay attention mainly to the symmetric pairs contained in the
classes I, II, III¢, IV?, V. We give here comments on the notation used
there. The number m(i) (1<i<9) means that of the roots, the pairs or
the quartets of roots contained in R(j; 1) and satisfying the condition (i).
Similarly n(i) means that of the roots, the pairs or the quartets contained
in R(j: 22) and satisfying the condition (i). Hence the multiplicity m(1)
of 1 and that of m(22) are obtained from the following formulas:

m(2)=m(1)+2 25; m(i)+4 Zgé m(i)
m(22) =n(1) +2n(2) + 2n(4) +4n(9).

As to the dual of the given symmetric pair, these informations are
obtained by replacing m(7), n(j) with m(i’), n(j’), respectively. Here m(i’)
and n(j’) are the numbers defined similarly as m(7) and n(j).

(5.5) We give here some observations which are obtained from
Table III.

(5.5.0) Let (g, ) be a symmetric pair of split rank 1 satisfying the
condition: fa =g« for any « € R(j; 7). Then (g, h) is one of the pairs in
I, (p=0or ¢g=0) (=1, 2,3) and I{ (=1, 2). In these cases, §=0¢ and
the pairs are of Type (£.).

(5.5.1) The pairsin I, and I¢ (i=1, 2, 3, 4) are characterized by the
condition: There exists a root & of 3(f) contained in R(j; 2) such that fer
=ga.

(56.5.2) Thepairsin I, (p—g| L), I, (i=1, 2, 3) are characterized
by the condition: fa= —a for any « € X(j). This is clear from the reason
that g is a normal real form in this case.

(5.5.3) The pairs in III, (=1, 2, 3) are characterized by the condi-
tion: e, fa) = e, faay =0 for any & € Z(}). This follows from the reason
that g is a complex semisimple Lie algebra.

(5.5.4) The pairs in I¢ (p=¢g=2), IV, (i=1, 2, 3) are characterized
by the condition: (e, fa)={a, foa) for any @ € R(j; 2) and 2(j) is con-
nected.

(5.5.5) The pairs in I, I¢ (p+q: even) and V,, VI (i=1, 2, 3) are
characterized by the condition: (a, fa) = (e, sty =0 for any « € R(}; 2).

Lemma (5.6). Let a be a root of 3(3) such that p=a|a+0.
(i) Assume that Qa+ca and ca= —a. Then the subspace

gN(gc(; @) +gc(; —0a))

of g(a; p) is two dimensional and is spanned by such vectors X and Y that
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G0X=X and GgY=—Y.
(ii) Assume that any two of the quartet (o, —Oa;, —oa, foct) are
mutually different. Then the subspace

8N @c(i; @) +8c(i; —00)+8c(i; —oa)+ac(i; Goa))

of glos ) is four dimensional and is spanned by such vectors X, Y, (i=1, 2)
that X, =X, and 06Y, = — Y, (i=1, 2).

Proof. (i) Assume that « € 3(j) satisfies fa#oa and ga= —a.
Let Z € g¢(j; @), Z#0. Then its complex conjugate with respect to g is
contained in g.(f; —fx). In this case, ga=—a and therefore 6oZ e
gc(i; —6a). Hence by multiplying Z by a constant if necessary, we may
assume that §¢Z is the conjugate of Z. Then X=Z+40¢Z and Y=
v —1(Z—66Z) are a required basis of g N (go(i; @) +gc(i; — ).

Next prove (ii). As in the case of (i), there exist X e go(f; ) and
Yeguj; —0a) such that X+Y and v —1(X—Y) form a basis of

gN(@c(; @)+8c(j; —0a). Then
Xi=X+Y+00(X+Y), X,=V—1(X—Y+0o(X—Y)),
Yi=X—Y—0o(X—Y), Y,=v/—-1(X—Y—60(X—7Y))

are required ones. q.e.d.

Proposition (5.7). Let (g, 5) be a_symmetric pair of split rank 1 and
let pe 3(a). If Qa+oa for any e € R(3; pr), then m*(pu)=m"(y).

Proof. This is a direct consequence of Lemma (5.6).

(5.8) Last we explain Table IV. Let (g, §) be an irreducible sym-
metric pair of split rank one. Let Z(j) (resp. ¥'(a,)) be the fo-funda-
mental system of 2(j) (resp. 3(a,)) for the given order. Then we can
define a diagram for the pair (2(a,), ) similar to the Satake diagram

Table IV
+(2 +(24
(i), 90) (@), 00) (m® me3R)
PR 'Y
o (p+4q) o
L o o (p=g=1) (Z 0)

(p='q.>'1)“<:
2p 1

I, o o—e— : + + —E—T>0 (Zq 0)




Restricted Root System 467

(Continued from Table 1IV)

(2(), 69) (Z(ay), 60) (%jgg migg)

I o O - . —ae (25 (3))
" 6 9
i ° 69
IN, o S e Y (m (1))
I, o o0 o --- _ac—2 @Z %)
11, o > &6 o (2 3)

i m:oddy © o
I, e 8::23) (m o)
I, o . (%ﬁ !
T e .
11, % (§ 7
AT >0 (m: 0dd) y @ﬁ o)

(m: even)

Vs e=—>0 e . —e—% (ﬁ% D
IV 0 0 (§ D
L G 9
b o o= (« 3)
B I e )

for a real form of a complex semisimple Lie algebra. We give this one in
Table IV. Similarly we can define a diagram for the pair (2(j), fo). This
is given in the left-hand side of that for (2(a,), fs). Accordingly, to
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obtain these informations on the dual (g%, §%), it is sufficient to look at the
one whose ¢ and ¢, { and «a, are changed into ¢ and 4, a, and j, respec-
tively. We also collect the signatures of 1 and 22 in Table IV.

§ 6. Determination of the restricted root system

This section is devoted to a determination of the restricted root system
of a general symmetric pair.

(6.1) Let (g, ) be a symmetric pair. As usual, let ¢ be the involu-
tion for (g, §) and let § be a Cartan involution of g commuting with ¢.
Let a be a maximal abelian subspace of p N q and let 2'(a) be the restricted
root system of (g, §). For a signature ¢ of X(a), we define an involution
a. from ¢ by

a(X) for X e Z(a)

o (X)= {
e(Da(X) for X egla; 2), e 2(a)

where Z(a)={X e g; [X, a]=0} (cf. Example (1.9.3)). Let g=0.+q. be
the direct sum decomposition of g corresponding to ¢.. By definition, ¢,
commutes with # and a is also a maximal abelian subspace of P q..
This implies that 2(a) is also the restricted root system of (g, §.). However,
the signatures of the restricted roots are changed in general. Namely, if
(m*(4, ¢), m~(4, ¢)) denotes the signature of 2 e 3(a) as a root of (g, §.),
then (m*(4, ¢), m~(4, e))=(m*(2), m~(1)) in the case where ¢(2)=1 and
(m*(2, ¢), m~(4, &))=(m~(2), m*(2)) in the case where ()= —1. We note
here that the complexifications of §) and Y, are isomorphic (cf. [O-S,
Lemma 1.3]).

For a symmetric pair (g, ), we denote by F((g, ))) the totality of
symmetric pairs (g, §,.) for all signatures ¢ of 2(a) and call it an e-family of
symmetric pairs (obtained from (g, §)).

It is clear from the definition that if (g, §) is irreducible, so is each
member of F((g, §)).

(6.2) 1t is not clear whether for different signatures ¢, ¢ of 2(q), the
pairs (g, ) and (g, §.) are isomorphic or not. If (g, §) is a Riemannian
symmetric pair, then F((g, §)) consists of those pairs defined in Example
(1.9.3). On the other hand, we find from the classification that if m*(2)
=m~(2) for any 2 € 2(), all the pairs of F((g, §))) are isomorphic to cach
other. For example, this is actually the case when (g, H)=(6l(2/+2, R),
8p(/+1, R)) (cf. Table V). In general, § is a reductive Lie algebra and
let h=0.+5,+3(0) be the direct decomposition, where §, (resp. §,)is a
semisimple Lie algebra of the compact (resp. non-compact) type and
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3() is the center of §. Then for the sake of convenience, we call §,, the
non-compact part of §.

Lemma (6.3). Let (g,Y) be a symmetric pair and let 2(a) be its
restricted root system as above. Let W be a fundamental system for X(q)
and let W(a) be the Weyl group of 3(a). Assume that m*(A)>m~(R) for
any 2e¥. Then m*(wl)=m*(2) for any 2eX(a) and we W(a). In
particular, m*(2)>m~(2) for any 2 € X(a) such that 14 ¢ 2(a).

Proof. Let (g, §®) be the associated pair of (g, §j), namely, §j*=tNYH
+pNq(cf. §1, (1.2.1)). Let b2 be the non-compact part of §2 Then ¢
and @ stabilize % Let §2=%,+p, be the Cartan decomposition for 4. By
definition, a is also a maximal abelian subspace of p,. The assumption
implies that m*(2)>0 for any 1€ ¥. On the other hand, it follows
that for any 2 € 2 (a), m*(2) is the multiplicity of 1 as a restricted root of
b2, Then we find that m*(wl)=m*(2) for any 2 e X(a) and w e W(a).
But it is clear that m(w2)=m(2) for any 1 € 2(a) and w € W(a) (cf. Lemma
(7.2) (ii)). Hence we also find that m~(wi)=m~(4). Since for any 1€
(@), with 32 ¢ 2(a), there exists a w e X(a) such that wi e ¥, the claim
follows. q.e.d.

Definition (6.4). A symmetric pair (g, §) is called basic if m*(2)>
m~(2) for any 2 € 2(a) such that 11 ¢ 3().

It is clear from the definition that any Riemannian symmetric pair is
basic.

Propesition (6.5). Let F be an e-family of symmetric pairs. Then
there exists a basic symmetric pair of F unique up to isomorphisms.

Proof. Tt suffices to prove the claim when each symmetric pair of F
is irreducible. Hence we may assume that F contains only irreducible
symmetric pairs and show the existence and the uniqueness.

(Existence) Let (g, ) € F and let 3(a) be the restricted root system of
(g, 5). Take a fundamental system ¥'={2,, ---, 2,} of 2(a). We may
assume that m*(2,)>m~(1,) if i<k and m*(2,)<m~-(Q2,) if i >k. Let e be
a mapping of ¥ to {1, —1} defined by e(2,)=1if i<k and ¢(2,)=—1 if
i>k. By definition, ¢ is uniquely extended to a signature of 3(a) (cf.
[O-S, Def. 1.1]). Denote it by the same letter. Then it is clear from
the definition and Lemma (6.3) that (g, §.) is basic.

(Uniqueness) Uniqueness of a basic symmetric pair contained in F
follows from the classification of irreducible symmetric pairs. q.e.d.

(6.6) Let (g, §) be a basic irreducible symmetric pair and let F be
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the e-family obtained from (g, §). Let 2(a) be as above. Here we recall
the following (cf. [O-S, Appendix]).

(6.6.1) Let ¢ be any non-trivial signature of 3(a). Then there exist
a fundamental system ¥ of positive roots of X(a) and a unique 1 € ¥ such
that e(2)= —1 and e(u)=1 for e T —{2}.

Let ¥'={2,, - - -, 2,} be a fundamental system for 3(a) and fix it once
for all. Noting that (g, §) is basic, we may assume that m*(2,) >m(1,)
(i<l and m*(2,)=m~(2;) (>1"). Then we have the following observa-
tion.

(6.6.2) Put 3'(a)=(2'_; R2,)N 2(a). Then 2’(a) is an irreducible
root system and its fundamental system is ¥/(a)={2;, - - -, A.}.

For 1<<i </, let ¢, be the signature of X(a) such that ¢,(2;)=1if j£7
and ¢,(2,)=—1. Then (6.6.1) implies the following.

(6.6.3) Let (g, ') be any symmetric pair contained in F. Then
there exists an 7 (1 <i<{/) such that (g, §’) is isomorphic to (g, §.,).

In the case where the e-family F contains a Riemannian symmetric
pair, namely, each of Fis of Type (f.), the mutually non-isomorphic pairs
contained in F is determined in [O-S, Appendix]. In the general case,
by the choice of simple roots, we have the following observation.

(6.6.4) If I’<<i<lI, then (g, }.,) is isomorphic to (g, j). On the other
hand, if i <</’, then (g, §.,) is not basic. Furthermore, it frequently occurs
that (g, b.,) and (g, f).,) are isomorphic to each other even if i+ ; and
ij<l.

(6.7) We consider a pair (g, §) of Type (f,) in the sense of (1.12).
In this case, as is noted in (2.16) (3), the restricted root system of (g, §)
coincides with that of the Riemannian symmetric pair (g, ), where f is a
maximal compact subalgebra of g. It is also noted there that the signature
of each restricted root of the system is easily determined (cf. (2.16) (3)).

(6.8) Next we consider a symmetric pair in Example (1.9.4) of
Section 1. Let (g, §) be such a pair. In this case, there is a real semisimple
Lie algebra g’ such that g=¢’'®¢’ and h~¢g’. Let ¢’=¥ -+ be a Cartan
decomposition of ¢’ and let #” be the corresponding Cartan involution of
g’. Then putting =¥ ®¥ and p=p'@y’, we have a Cartan decomposi-
tion g=f+p of g. If a, is a maximal abelian subspace of §’, then a=
{X, —X); X ea,} is that of pNgq. It is clear that the restricted root
system X(a) of the pair (g, §) coincides with the restricted root system
2(a,) of ¢’. For any root 2 of 3(a,), we denote by g’(a,; 2) the root
space of 4in g’. Then it follows that g*(a; )={(X, +6'X); X e g'(a,; D}
Hence we find that if m’(Q)=dimp g¢’(a,; 2), then m*Q)=m-Q)=m'(2).
As is noted before, (g7, f¢) is dual to (g, §). Hence Lemma (2.15.1) implies
that the restricted root system of (g, ;) coincides with that of (g, §).
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(6.9) We collect in Table V the restricted root systems of all the
irreducible symmetric pairs such that they are neither of the compact type
nor of Type (f;). The arguments in (3.12) play a fundamental role in the
course of the determination of the restricted root system of a given sym-
metric pair. In Table V, we also collect the signatures of the simple roots
and those of their multiples. Let (g, §) be an irreducible symmetric pair
and let 3(a) be its restricted root system. Then as is already remarked
in (6.6.1), there exist a fundamental system Z(a) for 2(a) and a simple
root 2 € ¥'(a) such that m*(g)>m~(y) for any p € ¥(a)—{2}. In Table V,
we take such ¥'(a) and 2. The choices of (a) and 2 are not unique (cf.
[0-S, Appendix] and (6.6)). The results of Sections 4 and 5 play funda-
mental roles in the course of the determination of the signatures.

We give here some remarks on Table V. It follows from Lemma
(2.15.1) that for a given symmetric pair (g, §), the restricted root system of
(g, §)? coincides with that of (g, §). Hence we set them in the same row
in Table V. It is useful to know §* from (g, §) and (g, )¢ (cf. Table (2.5.2)).
In some cases, one of (g, §) and (g, )¢ is self-associated. In this case we
always write the self-associated pair in the lower part of the frame. On the
other hand, in some cases, each of (g, §) and (g, §)?¢ is not self-associated.
It is preferable to give an information on §° in these cases. First if (g, §)
is of Type (C, R), then §* is a complexification of a maximal compact

Table V

@b m*(2;) m*(21;)

(8% 5% 7@ -G a1
@u*(214-2), 30*(214-2)) 1 1 20
@2l R), i!(l, C)+Vv=IR) + ({ 8) ((1) -8)
®ud, 1), 30%2D) (1)__ L Coe—s G<l) (=)
@l R), 30, R)+8l(, R)+R) - G g) (‘1’ 8)
sl(l+1, R), 8l(p, R O0— «« . —a—>0 /1 0\ [I—2p O
((+SI(1—)p+ll7, R))+R) 1 p—1 p (1 0) (1—217 1)
®Bu(p, I—p+1), 8o(p, I—p+1)) r<i/2) (i<p) @i=p)
@utdl), su*l)+au*2l)+ R) (j 8) G 8)

®u(2l, 21y, 8pd, D)) o o i< (=D

- 1 -1 1
(3u*@dD), 8121, C)+ ~—1R) ¥ (ﬁ 8) (% 8)
(8u(2l, 21), #p(2l, R)) <l G
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(Continued from Table V)

(m"(li) m+(22i))
m=(2;) m~(22;)

@®
(g%, 1%
@D, 3w Qp)+e Q-2+ R) |

. ;:?:Dpo (4 0) (4(!——21)) 3)

4 0) \4i-2p) 1
@i<p) @(i=p)

@ur(4l+2),8121+1, O+~ —1R) T o . .

Bu2l+1, 2141y, 8p(2l+1, R)) 1

o0 (3 0) (G 3)

=1 I G<p (=D

(gu(l’ [)y 511(1’)‘!‘3“(1, l"'p)
+v—~1R) (1=p<D %
@u(p, 21— p), zu(l)+3u(p, [—p)
++=1IR)

@u(l, D, sutk, p—k)
+au(l—k,l—p+k)+vV—IR) %

@u(p,21—p), su(k, k)
+8u(p—k,I—p+k)+~v=1R)

1

(60 G=p o)
@i<p) (=p)
—O0—>0

p—1 p
39 @9 Gi=p Y
(i<p,i#k) (i=Fk) (i=p)

Bu(r, p+g—r), 8u(p)+3u(r, g—r)
+Vv—=1R) ¢
®Bu(p, q), 3u(r)+3u(p, g—r)
++v~=1R)
(Qu(r, P‘I“I"r), gu(k’ p_k)
+8u(r—k,q—r+k)++v—IR)

@u(p, ), su(k, r—k) o— - -

+au(p—k,g—r+b)+v=TR) } 1
@u(r, p+q—r), su(r, p—rz__
+8u(g)+ v —1R) #

. —a—/>0

(60 GE=2 o
@<n  G=n)

(80) 30 GE=30)
(i<r,i#k) (i=k) (i=r)

(6o G5-7 o

r—1 r

@u(p, g), su(r)+3u(p ) 0<k<r<q<p)
P, q), sulr —r,q ) P
+v—=1R) i<r) (@(i=r
@p(l, D, 3u*2D)+R) (% 8) @ 8)
®@p2l, R), 3p(1, C)) 2 9o
?——— o e . ._l 01@1 -
(p(2!, R), 80, R)+3p(, R)) - @ 8) ( % 0)
@o, D, sul, )+ v —1R) A

@p(, R), 8(p, R)+8n(—p, R))

. —a—>0 (% 8) (2(1—21;) 1)

p—1 p 2(1-2p) 2

(p<+1)/2) @i<p) (=p)

@p(p, 21— p), #p(D)+30(p, [—p))

(Bp(ly l)’ ép(k, p_'k)
+&p(l—k,l—p+k)) §

(QP(P» 2l_p)’ ﬁp(k, l_k)
+8p(p—k,l—p+k))

T

« —QO—>0

(6 o) (i=5) 9)
(<p)  (=p

—1
TRy @

(<p,i#k) (i=Fk) (i=p)
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{Continued from Table V)

@b m*(d) m+(2%)
@, 59 7e (-G8 23
@00, p+a—1), 3Hp)+30(r, 1) § @ 9 (323 73)
@p(p, @), 30(r)+20(p, —r)) (i<r (i=r)
®v(r, p+q—n), 8p(k, p—k)
Har—kg—rtk) & o— - - - —o=0 (50) () (4527 0)
(GP(P, q)5 épU‘; r'_k) F—= r H : J— -
| 't 8p(p—k, g—r-+ k) (i<r,ik) (i=k) (i=r)
@p(r, p+g—r), 8p(r, p—1) 4 0\ (4g—r) 3
+3p(q)) ¢ 0<k<r<g<p) <0 0) (4(p—r) 0>
@02, @), 3(r)+36(p—r, 0)) (i<ry (=0
(3o(L, ), 80(p)-+30(l—p, 1) 4 6 8 (=59
(QO(P’ 2I—P), 50(1”1—?)'1-530(1)) O— « + + —QO=>0 (l<p) (1=p)
1 p—1
(@D(l, l)’ %0(k9 p—k)
1 O\ /0 O\ (i—p O
+ool—k,l=p+k) & (rep<h (o o) (1 o) (z-g 0)

(SU(P: Zl_p): 6o(k’ l—k)

+80(p—Fk, I—p+k)) (i<p,i#k) (i=k) (i=p)

(Bo*(d]), 80*(2D) +80*(2]) (% 8) ((1) 8)

®@o(21,2D), au(l, D+ v —1R) e N () IR ()
1 -1 1

(80(21, 20, 8121, R)+ R) (% 8) ((1) 8)

(30*(4l), 8o(2], C)) a<h =D

GoQI+1,21+1), SIQI+ L R)+R) O « - - —a==>0 (3 0) (3 9)

Bo*(41+2), 302141, C)) 1 N

" (8o*(41+-2), 30*(2p)
2 0\ [2Qi—2p+1) 1
TR0 —2p+2) ' 2 0) \(2021—2p+1) 0
(Bo(2p, 41—2p+-2), ( > < ( p+1) )

su(p,20—p+1)+v_"IR) o— + - - ___0120 i<p) (i=p)
(80*(4l), 30™(2p)+80*(4l—2p)) (2 0) <4(l-—p) 1>
(80(2p, 41—2p), 8u(p,21—p) (o<h 2 0/ \4l-p) O
+vZ1R) = @i<p) (i=p) (p=)
@o(r, p+q—r), Bo(p)+80(r, g—1)) ¥ 1 0y (p—r O
@(p, 0), () +50(p, 4—1)) ((?<‘r))) <‘1(i‘=’r) 0
(BD(V, P+q—r)» @D(k, p_k)
+8o(r—k, g—r+k)) % (;__ R ((1) 8) <(1> 8) <Z:£ 8)
,q), 8ok, r—k ~1 SR
O o= a1+ ' G<nizh) G=h (=n)

@o(r, p+a—1), Bo(r, p—P)+50(q) § (0 0 (221 0)
o¥, D q—r), 20(F, p—¥ 0<k p—r
(83(p, 9), Bo(r)+80(p—r, q)) O<k<r<a<n i< @=r)
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(Continued from Table V)

@9 () m*Qa
@, 1) e -y m-o1)
Bo*@1+4), au(l, 21+ 1)+ V—IR 4 (8 8) (2 (1))
self-dual (<h (=)
O— o o o)
(Bo*(4l+4), au(2p+1,21—-2p+1) 1 -1 1 (4 0) (0 0) (4 1)
+vZIR) ## 0 0' 4‘0 4 0
self-dual  (2p<)) (i<l i#p) (i=p) (i=)

(es(s)» Bu*(6)+2u(2)) +
(es2)5 30(3, 1))

(esr» 26, R)+31(2, R))
(es2)> 30(4, R))

(09 (i o)

(i=1,2) (i=3,4)

@0 @0 a

(i=1) (@(=2) (=3,49

(esey» 80(5,5)+ R)

Go G

a—>0
(es¢-10>5 302, 2)) 12 (=l (=2
Cowys o) T o——0 (4 0)
(esc-209» 393, 1)) 12 40
(sacc10n u(S, D+512, R)) 39 &)
(escay» 20*(10)+ v —1R) (i=1) (=2
— 1 ; 2 0 4 1
(36(2): 30(6,4)"')\/ IR) <4 0) (4 0)
(esc-14), B1(4, 2)+3u(2)) i=1) (@(=2)
(o> facw) T <8 3)
(Esc-a» BH(6)+31(2)) ° 85
(esc-26)5 30(9, 1)+ R) 8 7
(es¢-14)> fac-20)) ° (8 1)
(eres 80%(12)+5u(D) 09 G9
(er¢-5), 31(6,2)) (i=1,2) (i=3,4)
o—aT>0—0
Erans (6, 6)+3((2, R)) 1273 4 0GB
(e7¢-5), 8u(4, 4)) (=1 (=2 (=349
s sy +V—1R) T ((1) 8) (2 8)
(erc-259, 3u(6,2)) (=1 (=2,3)
—>0—0
1 2 3

(ereny» sy + R)
(e7(-25)> Bu*(8))

(o G o

(=1) (=2,3)
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+ +
@ ) U(a) (m (A) m (22,:))

(8% 1% m=(;) m=(24;)
(e7¢-2m, 80(10,2)4-81(2, R)) (g 8) (g (1))
(ere5r» -1+ V' —1R) =1 (=2
a—>0
(er-5r oy +V—1R) 1 2 % g) (g (1))
(er(-25)> 80*(12)+3u(2)) (=1 (=2
(es(-201, 80(12,4)) ((1) g) (2 8)
(esay» e7¢-5) +8u(2)) (i=1,2) (i=3,4)
O——T——>0—0
4 0
(es@» ern +381(2, R)) 1 2 3 4 ((1) 8) ((1) 8) (4 0)
(es(-20), 80%(16)) (i=1) (@(=2) (i=3,9)
(faco» 9(5,4) 4 3)
(fac-205 39(2, 1)+3u(2)) @
®1(21, C), su*(2l) O— + + + —O—DO 2 ) ( )
self dual 1 -1 1 (i<l (=D
@11, ©), 3121, R)) (2 ) ( )
self dual i<h (=)
o— . —a—>0
@l2l+1, C), 31(21+1, R)) 1 -1 1 (2 ) ( )
self dual i< (=D
(80(21+2, C), 80(21+1, 1)) (2 ) (% 8)
self dual o U<h =D
O o o o —O—>
(@0Q21+2, C), 302p+1,21—2p+1)) 1 -1 1 (% 8) ((2) 8) (% 8)
self dual (i<Li#p) (i=p) (=)
(s, t6(-26)) ((2) 8) (% 8)
self dual . i=1,2) (i=3,4)
1 0 0\ /2 0\ /2 C
(es» es6) 2 3 4 (2 0) (0 0) (2 0
self dual (i=1) (@=2) (i=3,4)

subalgebra of § (cf. (1.13)). The remaining cases are those treated in
(1.12), (1.14)—(1.16). We give a mark # (resp. ##, 1) in the first column
for the case (1.14) (resp. (1.15), (1.16)). Hence we can determine the Lie
algebra j* by referring to Table I, (1.14)-(1.16) in these cases.

(6.10) Finally we give a remark on the restricted root systems.
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Let g be a real semisimple Lie algebra of the non-compact type.
Then its restricted root system and the multiplicity of a given restricted
root are defined. Accordingly, for a given real semisimple Lie algebra,
we can uniquely define a root system each root of which has a multiplicity.
Moreover it is known that if g and g’ are real semisimple Lie algebras
whose restricted root systems coincide with the given one including their
multiplicities of roots, then g and g’ are isomorphic.

However the claim analogous to the above one does not hold for the
restricted root systems of the symmetric pairs. That is, for a given sym-
metric pair, we can define its restricted root system and each restricted
root has the signature defined as in Definition (2.14). But these do not
characterize the symmetric pairs. More precisely, it is clear from Lemma
(2.15.1) that the restricted root system of a symmetric pair coincides with
that of its dual pair including their signatures of roots. Moreover there
exist symmetric pairs such that they are not isomorphic and are not dual
to each other and that not only their restricted root systems but also the
signatures of the corresponding restricted roots coincide. We give here
such examples. For brevity, we only consider the symmetric pairs of
split rank 1. By comparing the signatures of roots in Table IV, we find
that the signatures of the roots of the pairs in (6.10.1) coincide.

(Bo(p-+1, 1), 80(p+1, p)) N dual
(20@2p+1, 1), 80(p+1)+350(p, 1)) <

(8o(p+2, ), 30(p+1, C)) ' N dua
@o(p41, D+580(p+1, 1), so(p+1, 1)). ¥

(6.10.1)

The claim also holds for the pairs in (6.10.2).

Gu(p+1, p+1), 3u(p+1, p)++v—1R) " dual
(Gu@p+1, 1), su(p+1)+3u(p, D+v/—1R) ¥
(80*(2(p+2)), 80*(2(p-+1)+30%(2) N dual
(3o(2(p+1), 2), su(p+1, D+ —1R). i

(6.10.2)

§7. The Weyl group of a symmetric pair

(7.1) We have introduced some root systems. We next study the
Weyl groups of these root systems and in particular discuss on the relations
between them. To begin with, we introduce some notation.

(7.1.1)  Notation.
W(a,)=Ng(a,)/Z(a,): The Weyl group of 2(a,).
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W(a,),=The Weyl group of 2(a,),.
We(a,)={we W(a,); w(a)=a}.
W(a,; H)=Ngqu(0,)/Zxn H(ap)-
W(a): The Weyl group of X(a).
W({),: The Weyl group of 2(§),.
Wi ={w e W(; w(a)=a}.

Under the above notation, we obtain the following lemma.

Lemma (7.2).
(i) W), &S Wia,; HYSW°(w,).
() We(a)/W(a), = WG W (i)~ W(a).

Proof. (i) We first show that W(a,),E W(a,; H). Take an element
2 of X(a,),. Then it follows from [W, Lemma 1.1.3.9] that there exists an
element X of g(a,; 2) such that exp (X4 60X) is contained in N(a,) and it
is a representative of the reflection s; with respect to 2. On the other
hand, combining Lemma (2.7) with the assumption on A, we find that
a(a,; 2) is contained in Y. This implies that s; € W(a,; H).

Next we show that W(a,; HYCW(a,). Let w be an element of
W(a,; H). For any X e a, we express wX=X,+X, (X;ea, X,ea,NY).
Then we see that

OwX)=w(lX)=—wX.
X+ X)=—X,+ X,

These imply that X,—=0. Hence we conclude that wa=a.

(i) It follows from Lemma (2.10) and [W, Prop. 1.1.2.1] that for
any element 2 of X(a,)—2(q,),; we have one of the following conditions:
(1) o2=2, (2) {Ba2, 2>=0, (3) foA+2 e X(a,). If s, and s,,, represent
the reflections of 2 and 62, respectively, we find that the reflection on a
with respect to u=2|a coincides with s;|a (resp. (585,00, S14g02|0) In
the case (1) (resp. the case (2), (3)). Hence it follows that the map W(a,)
—W(a) defined by w—w|a is surjective. The kernel of this map is
obviously {we W(a,); wla=id}. We can show that this set coincides
with W(a,), by an argument similar to that of [W, Lemma 1.1.3.4]. q.e.d.

Lemma (7.3). We assume that 3(a) satisfies the following condition:
For any 2 € 2(a) (32 ¢ 2(a)), we have m*(2) >0 or m*(22) >0.
Then W(a,; H)=W*(a,).

Proof. Any element of W(a) has a representative g in Ngzx(a)
because the assumption implies that W(a) is the Weyl group of the root
system of (§%, a). Since Ad(g)(a,NY) is a maximal abelian subspace in
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Z(a)Np, there exists g’ e Z.,x(a) with Ad(g’g)(e,NY)=a,NY. This
implies that W(a,; H)/W(a,),DW(ax). Now the lemma follows from
Lemma (7.2). g.e.d.

Remark (7.4). Let (g, §) be an irreducible symmetric pair of split
rank one and let 2 be the positive simple root of 3(a). Then it follows
from Table II that if m*(2)=m*(22)=0, (g, b) is isomorphic to the pair
(3o(/ 41, 1), 80(l, 1)) for some /.

Lemma (7.5). Let « be a root of 3(3) and let X, Y(+0) be an element
of gc(i; @) and that of ac(i; —«), respectively. Then for any Aei, we
have

a(A)(X—Y).

Ad (exp (X+ Y))A= A+ (cosh C——I)Ha_‘smé1 ¢
Here H, is the element of j¢ such that a(H)={H,, H) for any H ¢ i, and
C=Qa(H){X, Y))”".

Proof. Easy. (Cf. [He 2, p. 286].)

Lemma (7.6). Let a be an element of X(5) such that ga=a and 2=
ala,#0. Then there exists an element g of K N{G°), such that

(7.6.1) Ad(9)i=1, Ad(®a,=a, Ad(gi=]

and that Ad(g)|a,=s(1; a,), where for any pe 2(a,), s(u; a,) denotes the
reflection on a, with respect to p.

Proof. We prove the lemma in the cases (i) <, fa) <0, (ii) {«, fa)>
=0 and (iii) {a, fa) >0, separately.

First consider the case (i). It follows that fa= —a«. Hence g(f; )
(#0) is contained in g(a,; ). We take an element X (+0) of g(j; @) and
put g=exp (X+60X) e G. Multiplying X by a non-zero constant if neces-
sary, we may assume that 2{a, a){X, 0X)>=—=". Then in virtue of
Lemma (7.5), we find that

(1.6.2) Ad(9)Y =Y — 2“((Y))H forany Ye].
a(H,

It follows from (7.6.2) that Ad(g)|a,=s(1; a,). By definition, it is clear
that g € K. On the other hand, the assumption ce=« combined with
Lemma (2.7) implies that ¢X=X. Hence g is contained in (G°),. Then
we find that Ad(g)j=4. We have thus proved the lemma in this case.
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Next consider the case (ii). Then it follows from the condition (¥,)
that e+6« ¢ X(j). In this case, we take non-zero X ¢ go(j; @) and Ye
go(1; —6) such that X+ Y e g. Then by virtue of the remark above, we
find that [X, Y]=0, [X, §Y]=0. Since

we see that (X4 7, 0X4-0Y)=2(X, 0Y). Then (X, 0Y»<0. Noting
this, we may take X and Y so that —2{a, a)<{X, 8Y)=z". Now we put .
g=g'0(g’), where g’=exp (X +6Y). Lemma (7.5) implies that Ad(g)j =1
and Ad(g)|j=s(a;]). Since g=exp (X+Y+0X+0Y), it also follows
from Lemma (7.5) that Ad(g)a,=a, and Ad(g)|a,=s(2;a,). On the
other hand, the assumption se =« and Lemma (2.7) imply that ¢(X--Y)
=X+7Y. Thenitis clear that Ad(g)i=j. Hence the claim follows in
this case.

Last we consider the case (iii). It follows from [W, Prop. 1.1.2.1] that
B=a—~06a e 2(j). Since ¢8=j and 8= —pB, we reduce this case to (i)
by replacing & with 8. Hence the claim follows in this case. q.e.d.

Lemma (7.7). Let (g, §) be a symmetric pair of split rank 1. Then
there exists g € K satisfying the following three conditions (1)—(iii):

(i) g normalizess, a, and i.

(i) Put w=Ad(g)|]e W(Q) and

M@, 0)* ={8 e 2()*; 98=4B, aB+B}.

Then w leaves M(0, ¢)* invariant.
(i) Ad(g)|a is the reflection on o with respect to the simple root.
(We note that dim a =1 in this case.)

Proof. We prove the lemma in the following five cases, separately.
It should be noted here that for any symmetric pair of split rank 1, one of
the following conditions occurs (cf. Table III).

Case (2): Aa e 2(§)* s.t. fa=oa=—a.
Case (b): 3a e J()*s.t.0a=—a and {a, ca) =0.
Case (¢): Fa e 3(G)* s.t. {a, fa) =0 and fa=oa.
Case (d): 3a e 3()* s.t. {a, fa) =0 and ga = —a.
Case (e): Aa e 2())* s.t. {a, ba) ={a, o) ={a, foa) =0.
In the subsequent discussions, we use the results in Section 6 without any

comments. If g is a linear form on a, we define ¥, e a by (¥, Y)=wu(Y)
forany Yea.
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Case (a). A symmetric pair satisfying this condition is contained in
one of the following classes.

I,(p+q:0dd), If(p+gq:odd), I, I{(@=2,3),1,1]
I, I (i=1,2,3), IV, IVZ

Let « € 2(}) be a root satisfying the condition. We put g=a|a. In
this case g(j; @) (£0) is contained in g(a; ). We take X e g(j; &) and
put g=exp(X+6X)e K. We may assume that {a, a)<{X, X)>=—nz"
Then it follows from Lemma (7.5) that Ad (g)j=]. In particular Ad(g)|]
=5,, the reflection on f with respect to «. It also follows that Ad (g)a,=
a,. We now show that Ad(g)j=j. By definition, we find that o X =+ X.
If goX=2X, then o(g)=g and we have nothing to prove. On the other
hand, if 66X =—X, then o(g)=g~'. But in this case, Ad(g® clearly
centralizes j and therefore we conclude that Ad(g)i=j. Hence (i) is
proved. Next we show (ii). Take e M(4,0)*. Since fax=—a and
08=p, it follows that (&, §>=0. Hence s5,(5)=p and therefore (ii)
follows. The claim (iii) is clear in this case.

Case (b). A symmetric pair satisfying this condition but not treated
in Case (a) is contained in one of the following classes.

I, (p+gq:even, p, ¢ >0), III¢(m: odd), III¢ (i=2,3,4),
IVe, IVE, VI, Ve,

As in Case (a), we define an element g’ =exp (X4-6X) € K for some X ¢
a(j; @) satisfying that Ad(g’)|] is the reflection with respect to . We
put g’=g’a(g’). In this case, it follows that e+ ¢ 3(}). This implies
that g’ and ¢(g’) commute with each other. Hence we see that g normalizes
both a, and j. We can also prove that both s, and s,, leave each element
of M(6, 6)* invariant by the same reason as in Case (a). Hence (ii)
follows. Last we show (iii). We put g=(a—oga)/2. Itis contained in
2(a). Then it follows that {u, p> =% <{a, ). For any Y e a, we find that

5.5, (V=Y —2 %) g _p0e¥) g
{a, ay {at, ety

—v—2D (x,_m,)

{a,

—y—2¢D)
<w py

Hence Ad(g)|a=s,s,, is a reflection on a with respect to x. This proves

(i).
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Case (c). A symmetric pair satisfying this condition but not treated
in Cases (a)~(b) is contained in one of the following classes.

L(p+yg:even and p=0 or g=0), I¢(p-+q:even and p+£q),
v, 1V, V, (i=1,2, 3).

We now prove in this case. Let X € g¢(i; ) (X+£0) and ¥ e go(j; —Oa)
(Y+0) be so taken that X+ Y eg and that fo(X+Y)=+(X4-Y). It
follows from the assumption and (N,) that a+60c ¢ X(5). This implies.
that [X, Y]=[X, 6X]=[Y, 8Y]=0. In this case, we find that

(X+ Y, 0X +0Y>=2(X, 7.

Hence <X, 6Y><{0. We put g’=exp (X+6Y). Multiplying X+ 7Y by a
constant if necessary, we may take X and Y so that Ad(g”)|{ is a reflection
with respect to &e. It follows that g’ and 6(g’) commute with each other.
We now put g=g’6(g"). Then it is clear that g e K and Ad(g)a,=a,.
Since fa(X+Y)=+(X+Y) and since Ad(g~")|i=Ad(g)|], it follows
that Ad(g)j=1. Hence (i) is shown. The proof of (ii) is based on the
classification. In the cases I,(p=0 or ¢=0), IV,, V,(i =1, 2, 3), we easily
see that fa=a for any «e X(j) satisfying gwsa. This implies the
M0, 0)* =0. Hence in these cases, we have nothing to prove. On the
other hand, we will give in Lemma (A. 2) of Appendix A a proof of the
existence of « ¢ 3(j) satisfying both (ii) and the assumption for a pair
contained in the classes I¢(p4-¢q: even and p=~¢q) and IV,. Last we show
@iii). Put p=(a—0a)/2. Clearly p is contained in X(a). Then {y, p)=
2{a, ay. Asin Case (b), we see that 5,5, (Y)=Y—2(u(Y)/{y, )Y, for
Y ea. Hence we conclude that Ad(g)|a=s,5,, |0 is the reflection on a
with respect to p and therefore (iii) is proved.

Case (d). A symmetric pair satisfying this condition but not con-
tained in Cases (a)—(c) is contained in one of the following classes.

¥ (p=q), I,(m:odd), UI, ({=2,3,4).

As in Case (c), we take X € g¢(f; @) and Y e g¢(j; —6a) so that X+ Y
eg. Due to Lemma (5.6), we may assume that fo(X+Y)=X+4Y.
Then it follows that Y =0¢X. Put g'=exp (X +0¢X). Multiplying X by
a constant if necessary, we may also assume that Ad(g’)|] is the reflection
with respect to «. On the other hand, it follows from the assumption
{a, oy =0 that g’ and 6(g’) commute with each other. We put g=
=g’6(g"). Then it follows that g e K and that g normalizes i, a, and .
We have thus shown (i). Next we prove (ii). In the case III, (m: odd),
III, (i =2, 3, 4), it follows that fa#« for any a € 3(5). Hence we have
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nothing to prove. In the case I¢(p=g), we will give a proof of (ii) in
Lemma (A. 2) of Appendix. On the other hand, we can show (iii) by an
argument similar to that in Case (c).

Case (). A symmetric pair satisfying this condition but not treated
in Cases (a)—(d) is contained in one of the following classes.

III, (m: even), III¢ (m: even).

From now on we restrict our attention to the pairs contained in these
classes. As in Case (c), we take X € go(j; @) and Y e go(j; —6a) so that
X+Yeg. Put g =exp(X+60Y). Multiplying X+ Y by a constant if
necessary, we may assume that Ad(g’)|j is the reflection with respect to
«. Under the assumption, we find that a4 6, a+oa, a+foa ¢ 2(}).
This implies that any two of g/, 0(g’), ¢(g’) and fo(g’) commute with
each other. We put g=g’6(g)a(g")bs(g’). Then it is easy to see that
g € K and g normalizes j, a, and j. Hence (i) is shown. Next we prove
(ii). In the case III(m:even), itis clear that fa~« for any « e 3(j).
This implies that 3(j),=@ and therefore we have nothing to prove. In
the case III¢ (m: even), we will give a proof of (ii) in Lemma (A.2) of
Appendix. Last we show (ili). Put pg=1i(a—6fa—osa+ fox) e X(a).
Then {u, p)=%{a, ay. Noting this, we see from the assumption that
58008, a850a(¥) =Y —2(p(Y)/{pt, )Y, for any Y ea. Hence Ad(g)|a=
SSpaS.4504¢ | 0 1S the reflection on a with respect to p.

Let (g, ) be an irreducible symmetric pair of split rank 1. Then by
the classification given in Section 6, we find that (g, §) is contained in one
of the classes given in Cases (a)-(¢). Hence the lemma is completely
proved.

(7.8). Let (g, §) be a symmetric pair of general rank. Let ¥(a) be a
fundamental system of roots in X(a). For each fundamental root 2 ¢ ¥F(q),
we consider the symmetric pair (g(4), H(2)) (cf. § 4). This is of split rank 1.
Then it follows from Lemma (7.6) that there exists an element g € K such
that Ad(g) normalizes (1), a,(2) and {(2), that Ad(g)|a(2) is the reflection
with respect to 2 and that Ad(g)|(2) leaves M, (@, ¢)* invariant. Here
M (6, 0)* is the set defined for the pair (g(2), H(2)) similar to M (4, o)* for
(g, b). For this g ¢ K, we have the following lemma.

Lemma (7.8.1). (i) Ad(g) normalizes i, a, and i.
(ii) Ad(g)|a is the reflection with respect to A.
(i) Ad(g)|j leaves the set 3(3); =2 (1), N X(H)* invariant.

Proof. (i) and (ii) follow from the remark before the lemma. In
fact, for example, we show that Ad(g)j=]. Let {()* be the orthogonal
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complement of j(2) in j. Then it follows from the definition of g that
Ad(g) leaves each element of j(2)* invariant. Hence Ad(g)j=j.
We are going to prove (iii). Let x e X(f); and put

m={pe 3 P78 —pl.

Since fp =y, 0(B—opf)=p—ap for any B e M. This combined with the
condition (C) implies that #3=8. Hence M C3(j);. Let R,(1<i<p)
be the connected components of 3(j), which intersect with M. On the
other hand, let R, (p<<i<r) be the connected components of X(j), which
do not intersect with M. Put 3,={J?_, R, and 3,=J;>, R;. Then it
follows from the definition that 3,NX(j; )=@ or 3, c3(j; 1), First
assume that 3,N3(j; A)=0. Then it is clear that w(g)=g. Here w=
Ad(g)|i. On the other hand if X', 3(j; 1), it follows that M C M(, 0)*.
Hence we see from the discussion before the lemma that w(g8) € M,(4, o)*
for any 8 e M. Here w=Ad(g)|j. This implies that w(g) € 3(});. We
have thus proved that w(2'(});)=2();. g.e.d.

Let ¥'(a)={A4;, - - -, 4,} and for each i (1<i</), we take an element
g, € K satisfying the conditions (i)-(iii) in Lemma (7.8.1) for 1=21,. We
now consider the subgroup W(a) of K generated by g,, - - -, g,. Then it
is clear that W{(a) is a finite group. Moreover we put

Z(a)={g € W(a); Ad(g)|a=id}.

Then it follows that W(a)/Z(a)=~ W(a).

We next consider the group W(a,),. Clearly W(a,), is generated by
the reflections with respect to the roots of 2'(a,),. Let {, ---, y,} bea
fundamental system of X(a,),. Then by definition, oy, =p, (1Zi < p).
For any p,, there exists 8, € 3(j) such that o8, =p, and 8, —08,=2p,.
Then it follows from Lemma (7.6) that there exists 4, € K N (G”), satisfying
the conditions described there. Let W(a,), be the subgroup of K generated
by &, - - -, h,. Then W(a,), is clearly contained in H. We put Z(a,), =
{g e W(a,),; Ad(g)|a,=id}. Then W(a,),/Z(a,), = W(a,),.

Theorem (7.9). For any we W°(a,), there exist g e W(a) and he
W(a,), such that Ad(hg)|a,=w.

Proof. By definition, w normalizes a. Hence w|a € W(a). Then
there exists g € W(a) such that Ad(g)|la=w|a. We now put w’=Ad(g)|a,.
Clearly w’ is contained in W(a,). Since ww'~! leaves each element of a
fixed, there exists # € W(a,), such that Ad(h)|a,=ww’~’. Then Ad(hg)|a,
=w and the theorem is proved. q.e.d.
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Corollary (7.10). Let w,=e, w,, - -+, W, form a complete system of
the representatives of the coset W(a,; H)\W°(a,). Here we put

r=[W(a,): W(a,; H)]

Then for any i, there exists a representative W, € Nx(a,) of w, such that the
Jollowing conditions hold:

Adw)i=1, Ad@)i=} wEON=20;.

This is a direct consequence of Theorem (7.9) and the definition of
W (a,). |

(7.11) In the course of the discussions in the paragraph (7.8), we
have shown by considering the case where §=g¢ the following claim which
seems to be known.

Proposition (7.11.1).  There exists a finite subgroup W of K satisfying
the following conditions:

(i) Each element of W normalizes both ] and a,.

(i) IfZ={ge W;Ad(g)|a,=id}, then W|Z coincides with the Weyl
group W(a,).

§ 8. A parabolic subalgebra connected with a symmetric pair

In this section, we introduce a standard parabolic subalgebra p, of g
which plays a basic role in Fourier analysis on the symmetric space as a
minimal parabolic subalgebra does a role in Fourier analysis on a Rieman-
nian symmetric space.

(8.1) First we recall a minimal parabolic subalgebra of g. A
standard one is given by m+a,+n, where

m=Z(x), n=_>; aa;d.
1€ 2 (ay)+

In the study of a symmetric pair, we frequently need another parabolic
subalgebra of g. A standard one is defined by p, =Z(a)+1n,, where we
put n,=> esw+8(a; 2). It is clear that p, is actually a parabolic sub-
algebra of g. Let p,=m,+a,-+1n, be a Langlands decomposition of §,.
‘We may assume without loss of generality that a, Ca, and m, is generated
by m and {g(a,; 2); 2 € 2(a,),}-

In this section, we closely study the structure of the reductive sub-
algebra m,. In particular we will show in Theorem (8.8) that [m,, m,]=
g(e)+u(e)+m° is a direct sum decomposition, where g(o) is a semisimple
Lie algebra of the non-compact type and 1(¢) and m’ are semisimple Lie
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algebras of the compact type with some additional conditions. Moreover
we shall show in (8.9) that there is a duality between g(s) and u(o).

(8.2) We fix a (6, ¢)-order on X(j) and compatible orders on 3(a,),
() and X(a) as we introduced in Section 2. Let ¥(j) be the (6, ¢)-fun-
damental system of 3(j).

It follows from the argument in [W, p. 23] that 3(j), is a root system
and T(§) N 2(j), is a fundamental system of X(j),. It is clear that 4(2(j),)
=3(),. LetZ,, ---,3, be the totality of the irreducible components of
2({),. We divide 3, (1<i<r) into two sets by the condition whether
a|a,=0 for some « € ¥; or not. For the sake of convenience, we may
assume that if 1 <i<p, then «|a,=:0 for some « € X'; and if p<<i <r, then
a|a,=0 for any @ € ;. Then we put (f)=\J?_, ¥, and [0]=T () N 6).
It is clear from the definition that [6] is a fundamental system of the root
system {f). We denote by g({f>), the subalgebra of g, generated by

{8c(; @); a € <6)}.

Lemma (8.3). We put g(6)=g({0))¢Ng. Then g(o) is generated by
{a(a,; D); 2 € 2(a,),} and is semisimple of the non-compact type. Further-
more §(o) is contained in .

Proof. First recall that
7' (E()) ={x € 3(); @] a,7#0, a|a=0}.
Then it follows from Lemma (2.8) that
(8.3.1) ri'(E@))=CEMH—2MD) N 20,

Comparing this equality with the definition of (§), we conclude that g(o)
contains the subalgebra g(¢)’ of g generated by {ga(a,; 2); 2 € 2(q,),}. It
follows from [W, Lemma 1.2.3.14] that g(¢)’ is semisimple of the non-
compact type. Let g(o); be the complexification of g(o)’ in gc. Then we
find from the definition that the root system of g(o); coincides with (6).
Hence g(¢)’ must coincide with g(g). It follows from Lemma (2.7) and
the equality (8.3.1) that g(¢) is contained in §j. Hence the lemma is com-
pletely proved.

(8.4) By exchanging the roles of a, and j, and those of § and ¢, we
define [g], (o) and g({c))¢ similar to [4], () and g({f)).

Lemma (8.5). (i) The Lie algebra g({o))¢ is generated by
{aG; @); a € 2(), a| @, =0, a| j0}.
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(i) We put wWo)=0g((o))cNg. Then u(o) is semisimple of the com-
pact type and is contained in m.

Proof. First remark that if « is a root of X(1),, then g¢(j; ) is
contained in nm,. Noting this, we can prove the lemma by an argument
quite similar to that of Lemma (8.3). Hence we do not enter into its
proof. q.e.d.

(8.6) 1Itis clear that X(5),N 3(]), is a root system and Z(}) N 2(),
N 2(j), is its fundamental system of roots. Let X(8, o),, - - -, 3(6, 0);, be
the irreducible components of 3(}), N 2(5),. We may assume that 3(4, o),
(1<i<j) are orthogonal to both [d] and [¢] but X(8, o), (j <i<k) are
not to [f] and [¢]. Then we put

(6, 0> =Cj S0, 0) [0, d1=<6, &> NTE).

It follows that [4, ¢] is a fundamental system of {4, c)>. We denote by
(m")¢ the subalgebra of g, generated by {g¢(j; @); @ € {4, o)} and put
m? =g N (m)e.

Lemma (8.7). ° is semisimple of the compact type and is contained

inmNY.

Proof. 1t is clear that m° is contained in m and is semisimple.
Hence to prove the lemma, it suffices to show that m° is contained in §.
If @ € [8, o], then a(0X)=a(eX)=a(X) for any X e {. This in particular
implies that o(go(J; @))=ge(j; ). If there exists an element X(3£0) of
ac(i; @) such that ¢X=—X, then X is in q, and commutes with the
maximal abelian subspace j; of qc. This implies that X e j,, which is a
contradiction. Since dimgg(j; @)=1, we find that ¢X=X for any X ¢
ac(i; @). Hence m°Ch. g.e.d.

Theorem (8.8). (i) If Z(m,) is the center of m,, then
Zm)={YeiNE;a(Y)=0 for any a ¢ X(3),.}.

(i) [m,, m,J=g(e)+u(e)+m° is a direct sum decomposition and §(c),
u(e) and m° commute with each other.

Proof. It is easy to check (i). We are now going to prove (ii). By
definition, Z,(a) is generated by { and {g¢(i; @); @ € 3(1),,,}. Then due to
the definition of g(s), u(s) and m°, we find that (imn,)¢=(g{e) +u(e)+m°
+Z(m,))e. (Cf. Lemma (4.1.1) and the proof of Theorem (B.6).) Hence
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if we show that g(e¢), u(s) and m° commute with each other, the claim in
(ii) follows. By definition, it is clear that m” commutes with both g(o)
and u(¢). We now prove that g(¢) and u(e) commute with each other.
It follows from Lemmas (8.3) and (8.5) that g(a)¢c=a({6>)¢ (resp. u(o)¢
=g((0))e) is generated by {ge(f; a); a € (X(G) — 2(1)y) N 2(),} (resp.
{8c(; @); @ e (Z()—2(3),) N 2(),}). This implies that if we show that

CEH-2OINZE., and  EH—2G.) N0,
are orthogonal, then [g(o), u(¢)]=0. If not so, there exist
ae(CH-2DINZGH, and e EH—2()) N0,

such that (@, f>0. We may assume that <{a, 8> >0. Then it follows
from [W, Prop. 1.1.2.1] that «—§ is a root of 2(j). Moreover we have
(x—Pp)|a,=a|a,#0, (@—p)|i=—pB|i#0, (x—p)|a=0. This contradicts
Lemma (4.1.1). Hence (X()—2(}),) N 2(), and (X(G)—2().) N 2(), are
orthogonal and therefore [g(s), u(¢)]=0. We have thus proved the theo-
rem completely.

(8.9) We recall the symmetric pair (g% §%) dual to (g, ). Then
there is a kind of duality between Z(a) and Z «(a). From now on, we
explain this duality. First we put

a’=a,NY, t"=Zm,)Ng, 3" =Z(m,)Ny.
Then due to Theorem (8.8), we have a direct sum decomposition
(8.9.1) Z(@)=g(0)+u(e)+m’+3 +t" +a’+a.

Here we used that a is contained in a,. In fact, it follows from the defini-
tion that a,={Y € a,; A(Y)=0 for any 2 € 3(a,),}. Putting

g(0)* =u(0)cNg* (=8 Ng({0>)c)
u(0)* =g(0)cNg* (=g*Ng({o>)c)
(ao)d _ F o
ta)d [ a s
we obtain a direct sum decomposition of Z(a):
(8.9.2) Z (@) =g(0)* +u(@)* +m’+3°+ () + (@) +a.
Moreover we have that

(8.9.3) g(0)? is of the non-compact type,
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8.9.4) u(o)? is compact,
(8.9.5) (meNgt=mo,
(8.9.6) @)eNg*=3".

There exists a duality between the decompositions (8.9.1) and (8.9.2). We
now explain this duality.

Proposition (8.9.7).  If we decompose Z,.(a) as we did for Z{a) of the
Jorm (8.9.1), we obtain the decomposition (8.9.2) and the correspondence
of the factors are given by

a(e)—g(0)?, u(e)—u(e)?, m’—m’,
37—, =174, a’—(a7)¢, a—a.

Proof. It is easy to check the correspondence relations between
g(0), a(0)%, u(o), u(s)* and m".

The center 3 of Z(a) coincides with Z(m,)+a,. Since a, is contained
in p and since it follows from Theorem (8.8) that Z(m,)Cf, we find that
3NENY=3’, 3NENg=1’, 3NHNp=a’, 3NpNg=a. These imply the
rest of the claim. g.e.d.

Owing to the duality between g(¢) and u(e) given in Proposition
(8.9.7) and the argument before in this section, we find the following.

Proposition (8.9.8). (i) The restriction of 8 to (o) is a Cartan in-
volution of g(o).

(ii) The restriction of o to (o) is non trivial on each simple factors
of u(o).

1ii e restrictions of 8 and o to m’ are trivial.
Th trict 6 and ¢ to m° t /

Proof. The claim (i) follows from the definition of g(¢) and [W,
Lemma 1.2.3.14]. Due to the duality between g(¢) and u(s), we see that
(ii) is reduced to (i). The claim (iii) follows from Lemma (8.7). q.e.d.

(8.10) In Table VI, we collect all the informations on the sub-
algebras g(o), u(o), etc. for all the symmetric pairs of split rank 1. There
we use the notation mZ=m’+3° for short. (In Table VI, we omit the
symmetric pairs of Type (f.).)

(8.11) We take a connected Lie group G and its closed subgroup H
as we did in Section 1. We put fi=6(n). Let 4,, N and N be analytic
subgroups of G corresponding to a,, 1t and i, respectively. Moreover we
take the maximal compact subgroup K of G whose Lie algebra is f. Then
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Table VI

g(0) (o) —;&—w dimts dim '(; i
L &o(p, q) 0 0 0 0
I 0 30(p+q) 0 0 0
I au(p, q) 0 v —1R 0 0
¢ 0 3u(p+q) v—1R 0 0
I 20(p, 9) 0 2p(1) 0 0
E 0 sp(p+9) s 0 0
I 3l(m, R) 0 0 0 1
w0 sum) 0 1 0
I, &m, R)+sp(l, R) O 0 0 0
m o 8p(m)-+3p(1) 0 0 0
Il 30(4, 3) 0 0 0 0
m o 30(7) 0 0 0
L sum, C) 0 0 1 0
g 0 so(m)+so(m) 0 o 1
oL  s(m, C) 0  v-IR 1 1
o o Bu(m)+8u(m) v=IR 1 1
I, 8p(m, C)+39(1,C) O 0 1 0
o o 2pm)+28p(1) 0 0 1
M, 87, C) 0 0 1 0
me o 80(7)+-80(7) 0 0o 1
IV,  80*(m) o a2 0 0 0
V¢ 82, R) s0(2m) 0 o o
IVs  sui(2m) 3u(2)+ 8u(2) 00 1
v - 82, 0) Bu(2m) 0 1 0
IV 0 %0(8) 0 0 1
IVE 87, 1) 0 0 1 0o
Vi 0 0 vZiR 1 1
Va 812, C)+3l2, R) 0 0 1 0
vi 0 38u(2) 00 1
Vi (5,3) 0 0 1 0
vi 0 50(8) 0 0 1




490 T. Oshima and J. Sekiguchi

G=KA,N is an Iwasawa decomposition of G. As usual, we put M=
Z(A,), M*=N,(4,). Clearly m is the Lie algebra of M. The P=MAN
is a minimal parabolic subgroup of G. Now we define a parabolic sub-
group P, by

P,= |J PwP.

wWEW (ap)g

Here w denotes a representative of w in M*. Let P,=M_,A,N, be the
Langlands decomposition of P, with 4,CA4,. It follows from the defi-
nition that p,, m,, a, and n, are the Lie algebras of P,, M,, 4, and N,,
respectively. We put N, =6(V,) and denote by G(¢), U(o),, M, T° and
Z° the analytic subgroups of G corresponding to g(e), u(s), m°, t° and 3°,
respectively. Moreover we put U(s) = U(0)(K Nexp (v — La,)).

Lemma (8.12).
(i) GlSH, Ulo)sM, M'S M.
@iy M,=U(e)G(e)M°TZ".

Proof. Since Z(m,) is contained in m, the claim (i) follows from
Lemma (8.3), Lemma (8.5) and Theorem (8.8), and (ii) does from (i), the
definition of U(¢) and [W, Lemma 1.2.4.5]. g.e.d.

Lemma (8.13). For any we W<(a,), we take an element w of M*
such that w=wM. Then HwP,=HWwP.

Proof. It follows from the assumption that Ad(w)(a(s))=ga(s).
Hence due to Lemma (8.12), we find that

HwP,Z HwG(¢)P = HG(¢)wP=HWwP.
The converse inclusion relation is obvious. g.e.d.

Remark (8.14). Since the set HwP, only depends on w € W°(a,), we
frequently write HwP, or HwP instead of this set.

Lemma (8.15). We take representatives w,, - - -, w, of the set
Wia,; H)\W*(a,)
as in Corollary (7.10). Then for each i (1<i<r), Hw, P, is an open subset

of G and
Hw,P,NHw,P,=0 (i#J).

Moreover the union \ J;_, Hw,P, is dense in G.
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Proof. 'This follows from Lemma (8.13) and [Ma, Prop. 1].
Lemma (8.16). If A, =exp (a,N), we have
HOP,=M,NH)A4,NH)
=Zynu(@)AxZy(a).

Proof. By definition, we have that HNP,=HNP,Na(P,). On the
other hand, o(M,)=M,, ¢(4,)=A,. Hence we find that

HNP,Na(P)=(M,NHYA,NH)N,Na(N,)N H).

Since 2(a,)* is fo-compatible, it follows that N, Na(N,)={e}. Therefore
we have

HNP,=(M,NH)A4, NH)=Z(a) N H.

Noting that H=(KN H)A5;(NN H) is an Iwasawa decomposition of H,
we find that

Z()NH=Z¢,g(0)AzZy z(0).

On the other hand, since Lemma (2.7) implies that Z . (a)=Z,(a), it
follows that

HNP,=Zy~u(@)A4Z(a). q.e.d.

Proposition (8.17).
(i) G=KAH=HAK.
(i) Let k;eK, a,e A, h,e H (i=1,2) and assume that k.ah, =
k.ah,.  Then we have
kitk,=hh;*e KN H,
a,=(ki'k)a (ki k)

Proof. (i) follows from [F-J] and (ii) is shown by an argument
similar to that in [O-S].

Appendix A. A lemma on the root systems

In this Appendix, we show a lemma which is used in the proof of
Lemma (7.7).

(A.1) Let (g, b) be an irreducible symmetric pair. Retain the nota-
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tion in the text. Let X(j) be the root system of g. We introduce a (6, ¢)-
compatible order on 3(j) and fix it. For any a ¢ X(j), we denote by s,
the reflection with respect to «. We now put

M0, o) ={B € 3(1)*; 68=p, of+p}
as in Section 7.

Lemma (A. 2). (i) If (g, ) is contained in the class 1i (p+q: even,
PF4q, p, 4 >0), there exists a € (1) satisfying the conditions:

i.1) foe=ga, <{a,fay=0.
(i.2) s (M@, 0)*)=M(®, 0)*.

(ii) If (g, §) is contained in the class 1¢ (p=q), there exists a ¢ 3(j)
satisfying the conditions:

@ii.1) {at, Gy =0, oa=—a.
(ii.2) $,85,(M(8, 0)")=M(8, a)*.

(i) If (g, b) is contained in the class 11I{ (m:even), there exists o &
2(3) satisfving the conditions:

(iii.1) Lat, Bory ={a, ooy == (e, fgar) =O0.
(iii.2) 848 0a854S00a(M (6, 0) ") = M(6, 0)*.

(v) If (g, §) is contained in the class IV,, there exists o € 3(3) satisfy-
ing the conditions:

@iv.1) o =gc, {a,fa)=0.
(iv.2) 8,8,(M(8, 0)*)=M(0, 0)*.

Proof. (i). In this case, g=80(p+g+1,1) and Hh=3o(p+1)+
30(q, 1). Putl=(p-+q-2)/2 and r=min(p, g)+1. By the assumption,
1<r<I. Then the root system 3(j) is of type D,. Let T={a,, ---, &}
be a fundamental positive system of 3(j). Let j,=+ —1(fN])+a, Then
as was already remarked in (3.7), every root of 3(j) is real-valued on j,.
By taking a suitable orthonormal basis {e,, -- -, e;} on the dual vector
space 1 of §,, we may put @, =e; —e,,; (1<i<l) and a;=e,_,+¢,. We
may assume that ¥ is a (4, ¢)-fundamental system. Then it is clear from
the definition that the Satake diagram of (3(]), (—6)) and that of (2(}),
(—0)) are given by
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3 -1
(Z(I)s ('—0)) O * s+ @ s s s
a0 Oy Opyy o2 ay
3 o1
H —_ ¢ OO 4 8 8 e s e e
). (—o): g2 e e

Then it is clear that M(0, 0)* ={+k(e; te,); 1<i<j,i<r}. In particular,
if r =1, then M (6, ¢)* =0 and therefore we have nothing to prove. Hence
assume that r >1. We take a=e,—e,. Then it is clear that fo=¢a=
—e,—e; and {a, o) =0. Moreover, by direct computation we find that
s(M(8, 0)*)=M(6, 0)*.

Proof of (ii). The proof of (ii) is quite similar to that of (i). Hence
we omit it.

Proof of (iii). Let (g, §) be a symmetric pair contained in the class
III (m: even). Then g=3o(m+1, )+30(m—+1,1) and H=38o(m+1, 1).
In this case 3(}) has two irreducible components and each of them is of
type D,, where /=(m-+2)/2. Let X be one of the irreducible components
of 3(j). Retain the notation in the proof of (i). Let ¥={a,, -+, a;}
be a fundamental system for ». Then we may assume without loss of
generality that ¥ U ¢¥ is a (0, o)-fundamental system of 3(j). If we denote
the restriction of 4 to 2 by the same letter, the Satake diagram of (2, (—6))

is given by
L1881
O——0— =+ - - —<:
(25 4 xp-2 oy

In this case, M0, 0)* =M UoM, where M={+e,+e;; 1<i<j}. Put
a=e,—e;. Then it is clear that (w, fa) =<a, o) ={a, foay=0. On
the other hand, we find by direct computation that s,5,,(M)=M and this
implies (iii.2).

Proof of (iv). Let (g, §) be a symmetric pair contained in the class
1V,. Then g=3u*(2(m+2)) and h=3u*2(m+1))+3u*(2)+R. In this
case X(j) is of type 4,, where  =2m--3. By taking a suitable choice of
a basis, we may take ¥ ={a, =e;, —e¢,,, (1 £i £I)} as a fundamental system
for 3(f). We may assume that this is (6, ¢)-compatible. Then the Satake
diagram of (2(7), (—6)) and that of (3(}), (—o)) are given by

(@), (—o):

- v e —
0 az O3 Oy Cp-2 Q-1 Q1
EO),(—a): £ T N

@ @ a3 oy ap-2 011 O
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From this, it is clear that M(0, 0)* ={e,—e,, e,—e,,,}. Wetake a=e,—e¢,.
Since fa =g = —e,+e,.,, it follows that (&, o) =0. On the other hand,
we see that s,5,,(e,—e,)=¢,—e,,;. Hence 5,5,.(M(8, 0)*)=M(6, o)*.

We have thus proved the lemma completely.

Appendix B. A decomposition of the Levi part of a parabolic subalgebra

(B.1) Let g be a semisimple Lie algebra. As usual, G denotes a
connected linear semisimple Lie group with its Lic algebra g. Let g=f-+
a,~+n be its Iwasawa decomposition. Let § be the Cartan involution of
g corresponding to f. In this appendix, we study a fine structure of
the Levi part of a parabolic subalgebra of g. We already studied such
a fine structure of the parabolic subalgebra p, in Section 8. The result of
this section is weaker than this but as a corollary, we obtain a procedure
to determine the Satake diagram of the Levi part of an arbitrary parabolic
subalgebra. The result of this appendix seems to be known (cf. [Mm]).

(B.2) Let ] be a Cartan subalgebra of g containing a,. Let 3(j) and
3(a,) be the root systems of j and a,, respectively. We fix compatible
orders on 3(j) and X(a,) and denote by X(j)* and 3(a,)* the sets of
positive roots with respect to these orders. Let ¥'(j) and ¥(a,) be the
fundamental systems for 3(}) and 3(a,), respectively. Let W be the Weyl

group of (g, a,).
(B.3) Let O be a subset of ¥'(a,). We denote by W, the subgroup

of W generated by the reflections with respect to the rootsin ©. Let g(®)
be the subalgebra of g generated by {g(a,; 2); 1 € (@)}, where

(6)=(@ Ra)N 3(a,).

It follows from [W, Lemma 1.12.3.14] that g(®) is semisimple. We note
that (®) is the root system of the pair (g(0), a, N g(O)).

(B.4) We define

ap={Y e a,; a(¥Y)=0 for any « e 6},
g =g(6)+m,
Mg = Z g(av; 2)
PR ACHERNCN
Let A,, (Mg)s, N} be the analytic subgroups of G corresponding to ag,
My, g, respectively. Moreover put My=(M,),Z(a,), where Z(a)=
exp (v —1a,)N K (K is the maximal compact subgroup of G' with its Lie
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algebra f). If Po=PW,P, where P is the parabolic subgroup of G with
its Lie algebra m+a,+n*, then Pa=MyA4A N} is its Langlands decom-
position.

(B.5) We define

Z(Mo={x € 2G); 1] a,=0},
3(Ma,e={rr € 20); ptlae=0}={u € 2(); 1|, € <B) U{0}},
Z(i; O)={ne 26)0,9; {4, /1> =0 for any 1 ¢ Z(i)o,e"‘z(i)a}'

It is clear that 3(f; ©) is a root system. We define subalgebras m(0) and
3¢ of g by
m@=gn<{ 3 gl )
rEZX(j; )

go={Y € IN¥; x(Y)=0 for any p € 3(j),,6}.

Theorem (B.6). (1) 34 is the center of m,.
Q) 1me=g(O)+m(O)+3e is a direct sum decomposition.

Proof. 1t is easy to see that 3, is the center of ni,.
We are going to prove (2). It follows from the definition that
me=m+ >, g(a,; 2)+a,Ng®).

2€(6)
Now let g e 3(7), and 2 € 2(})5,6 — 2(j), be such that (2, ) #0. We may
assume that (2, x> <0 without loss of generality. Then it follows from
[W, Prop. 1.12.1] that 2+p e Sy Since [ge(i; —2), goi; 2+ )=
ac¢(3; 1), we see from the definition that gu(j; p) is contained in g(@),, the
complexification of g(@). This implies that

> e CeO)c+m(O)

resMg,0

and therefore that
(Me)e =(a(0)+m(0)+36)c-

Hence to prove the theorem, it suffices to show that g(@) and () com-
mute with each other. For this purpose, take « € 3(5; 0) and B e 2(}),.6
—23(),. By definition, (&, §>=0. Assume now that [g¢(}; @), gc(i; B)]
#{0}. Then a+B e 2(})se— 2(j), and therefore {a, a+ ) ={a, ay+0.
This contradicts the definition of 3(j; ©). Accordingly, g(8)¢ and m(6)¢
commute with each other. Therefore the theorem is completely proved.

(B.7) From now on, we discuss on the Satake diagram of
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[m(6), m(6)]=¢(6)+m(6)

and the dimension of 3,. For this purpose, we give the indices of the
simple roots in the following manner.

?p(‘i)z{al, ] aR}’
THNZ@)e={x: e T(); RO)<I<R},
THNZG06={a, e ¥(); RO, O)<i<R}.

Here R(O) are R(f, ©) are certain numbers such that R(9, O)<R(BG)ZR.
Then

THNIE; 0)={a, e ¥(); (1) ROIKIZR,
(2) «, is contained in the connected component of the Dynkin
diagram of {a,; R(4, ©)<j<R}}.

Let S(T(}); —6) be the Satake diagram of the (—6@)-system of the
roots (2(1), (—6)). We erase all the white circles corresponding to the
roots &, € ¥'(}) such that &, | a, ¢ O and also erase the lines and arrows con-
nected with the vanished circles. Then we obtain a new Satake diagram.
It is easy to prove the followings.

I. dim 3,=The number of arrows which are erased in the procedure
above.

II. The Satake diagram of the semisimple Lie algebra [ni(®), m(6)]
is the one obtained in the procedure above.

(B.8) We give here an example.
We consider the simple Lie algebra e;_,,,. The Satake diagram and
the Dynkin diagram for the restricted root system are given by

5 o -
ST®; —6): S(a): oo
oy % ) [
Here g, =« |a, (=1, 2).
2] dim 36 The Dynkin diagram of [ute, tg] [mg, o]
1] 1 e———o 3u(4)
{8} 1 I 80(7, 1)
{82} 0 S 8u(5, 1)
Vg Y

{B1, fa} 0 o—'—__I_——.'_O €5(~14)
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Remark (B.9). Let (g, §) be a symmetric pair and let ¢ be the in-
volution for it. Take a Cartan involution @ of ¢ commuting with ¢ and
use the notation in the text without notice.

If we take O=2(a,),N¥(a,), then P,=Pq, 3(a,),=<O), 2(1)s.,=
ZDs6> 8(0)=8(0), u(0)+m’=m(6), 3°+1°=3,. Needless to say, we
find that in this case, Theorem (8.7) give a finer structure than Theorem

(B.6).
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