Advanced Studies in Pure Mathematics 4, 1984
Group Representations and Systems of Differential Equations
PD. 391-432

Boundary Value Problems for Systems of Linear Partial
Differential Equations with Regular Singularities

Toshio Oshima

A concept of systems of linear partial differential equations with
regular singularities and their boundary value problems were introduced
by [K-O]. A typical example is the Laplacian 4=(1—|z[)%3*/9z0z on the
unit disc in the complex plane C, which has regular singularity along the
boundary of the disc. In this case S. Helgason proved that any eigenfunc-
tion of 4 can be obtained by the Poisson integral of a hyperfunction on
the boundary. The inverse correspondence is given by the map of taking
the boundary value of the solution, which was defined in [K-O]. In
general any simultaneous eigenfunction of the invariant differential opera-
tors on a Riemannian symmetric space of the non-compact type can be
given by the Poisson integral of a hyperfunction on a boundary of the
symmetric space. The main purpose of [K—O] was to prove this state-
ment and in fact it was solved in [K—-K-].

When we consider a realization of a Riemannian (or semisimple)
symmetric space in a nice compact manifold (cf. [O 2] and [O-S]), the
invariant differential operator has regular singularities along the bounda-
ries. Hence for a deeper analysis on a symmetric space, we need a deeper
study on systems of differential equations with regular singularities. This
is a main motivation to write this paper and several applications of this
paper to this subject will appear in subsequent papers. One of them will
be found in [MaO].

We will mention some differences between [K—O] and this paper. In
this paper we discuss a system of differential equations which has not
necessarily one unknown function but finitely many. This enables us to
study a system of differential equations defined in a vector bundle over a
symmetric space. Moreover in [K-O] we only consider a system of
differential equations whose number equals just the codimension of the
boundary. But here we remove this restriction and we can consider more
equations that the solution satisfies. - Then the boundary value of the
solution may satisfy some equations. These induced equations will be
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392 T. Oshima

discussed in Section 6. As another result of the removal of this restriction,
we will see that the definition of the boundary value of a function does
not depend on equations that the function satisfies.

The most important difference is the following: In [K-O], to define
boundary value of a solution of a system of differential equation with
regular singularities, we needed a some restriction on the characteristic
exponents of the system. Here we also remove the restriction but define
the boundary value in a coordinate neighborhood. After that we will
consider when the definition of the boundary value has nice properties
with respect to coordinate transformations. Let us consider the equation

9 f, 0
(r 2 2)(1+Ct) (z S l)u(t, X)=0,
where 2 is a complex number and C is a non-negative number. This
equation has regular singularities along the hypersurface defined by ¢=0.
The indicial equation equals (s—A)(s—A—1)=0 and the characteristic
exponents are 1 and A-+1. The solution u(?, x) of the system on the
domain defined by ¢ >0 is of the form

u(t, x)=p(x)t*(1 — Ct log t)+p,(x)t*+1.

In this paper we call ¢,(x) and §,(x) the boundary values of u(z, x) with
respect to the characteristic exponents 4 and 21, respectively. If we use
a coordinate system (¢, x) with ¢’ =at(a>>0), then

u(t, x)=y(X)or (1 — = Ct’ log ')+ (6,(x) — y(x) C log @)er=4-1#/3+1,

Under the coordinate system (¢, x), the pair of the boundary values
{po(x), ¢(x)) changes into (gy(x)ex~%, (P(x) — Fo(x)Clog a)a=*-"). In [K-O]
we defined only the boundary value ¢y(x)&(dt)* because its definition does
not depend on the choice of local coordinate systems. We remark here
that if ¢g(x)=0, then @,(x)@(dz)*** has the same property. This important
phenomenon will be discussed in Section 4.

In the first two sections we give preliminary results concerned with
micro-differential operators. In Section 3 we define a system of differential
equations with regular singularities and study its micro-local structure.
In Section 4 we define boundary values of solutions of the system and give
elementary properties of the boundary values. In Section 5 we study the
solutions whose boundary values are all analytic. These solutions are
called ideally analytic and were studied by [K-O] in a simple case. In the
last section we discuss the induced equations that the boundary values
satisfy. These equations are especially important to consider boundary
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value problems for several boundary components of a symmetric space.

§1. Micro-differential operators

In this section we define some notation used in this paper and give
some properties of micro-differential operators.

We denote by N, N., Z, R, R, and C the set of non-negative integers,
positive integers, integers, real numbers, positive real numbers and complex
numbers, respectively. For a ring R and positive integers m,, m, and m,
M(m,, m,; R) denotes the set of matrices of size m, X m, with components
in R, (r;;) denotes an element of M(m,, m,; R) whose (i, j)-component is
r(1<i<m;, 1<j<m,) and R™ denotes M(1,m; R). Then we can
naturally define the map of M(m,, m,; R) X M (m,, m,; R) to M(m,, m,; R).
Moreover R[X] denotes the ring of polynomials of [-variables X=(X, X,,
-+, X;) with coefficients in R (/ € N) and R[X]™ denotes the set of
polynomials in R[X] of degree at most m.

For a sheaf # on a manifold we denote by %, and & (U) the stalk
of & at a point p and the set of sections of & over an open subset U,
respectively.

Let X be a complex manifold of dimension 7i=/-+n with a local
coordinate systems z=(z,, - - -, z;), 7*X the cotangent vector bundle of X
with a local coordinate system

(29 77)'—_(21’ Ty Zp 771a D) vﬁ):(za ; ﬂidzi)

and Oy (resp. Or+y) the sheaf of holomorphic functions on X (resp. T*X).
The projection of T*X onto X will be denoted by 7. Let Dy (resp. £x)
be the sheaf of differential (resp. micro-differential) operators on X (resp.
T*X) of finite order (cf. Chap. II in [S-K-K]). Then @y=r,E. For
any m in Z we denote by &% the sheaf of micro-differential operators of
order at most m and by 0y, the sheaf of homogeneous holomorphic
functions of degree m with respect to » on T*X. For an open subset U
of T*X every section P(z, D,) of £°(U) is of the form

P(Z> Dz): Z Pj(Z> Dz)

where P,(z, 1) € 052(U) for all j ¢ Z and satisfy
(L.1) lim /[ P_(z, 7) /i 1< 0

i—oco

for any compact subset K of U. In general for a subset B of U and an
element f=(f;,) € M(m,, my; Or.x(U)), we put
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|fle=" sup  |fi,(z D]
(z,9)€B

2,7
1gismy,1sj<me

The map ¢,, of taking the principal symbols of £ onto 0%} is defined
by ¢,.(P)=P,(z, ) and for any section (Q,,) of M(m,, m,; &;) we define
ord @=max {ord Q,;; 1<i<my, 1<j<m,} and o(Q)=(0,r2¢(Q:7))- If
U =r3'(V) with an open subset V of X, P,(z, ) are polynomials of » and
P,=0 for any j <0. In this case P,(z, 7) is of the form

Pz, )= 2 _pln”
laj=j,0a€N

with p, e Ox(V) and P is the differential operator 3, .ywp.(2)D;. Here
pr=n. - -pp, D,=0/0z, - - -, 8/0z;), Di=0"/9z5*- - -3°3/0z5 and |a|=a,
+ -+« +a, forany a=(a, - -, a;) € Z%. Let £¢® be the sheaf of formal
micro-differential operators of order at most m, i.e., £¢ =lim &¢/EY.
Therefore the growth condition (1.1) is omitted for #¢. We put &=
Umezé$. Then we have the following algebraic properties of micro-
differential operators:

Proposition 1.1 (§ 3 Chap. II in [S-K~K]).

(1) Dy, 64 6P, &y and &9 are coherent Rings and their stalks are
noetherian rings from the both sides.

(i) &y is faithfully flat over &5 and &y is flat over n7'D .

(i) Let A li///f?w// s be a complex of coherent & y-Modules and let

M be a sub-&Q-Modules of M ; such that $(MO) ML, V(MDY M
and Ex MP =M, (j=1,2,3). If the induced complex MP|EGV MO —
MP|ETO MO MP[ETV M s an exact sequence, then MO — M —
A and M~ M ,— M, are also exact.

A coherent left &x-Module . is called a system of micro-differential
equations and its support is called its characteristic variety. Assume that
A has N unknown functions uy, - - -, uy, i.e., A4 is generated by u,, -- -,
uy. Let u be the column vector of length N whose i-th component is ,
and £ a left sub-&y-Module of (£5)” which annihilates u. Then u is
isomorphic to (£5)"/ #. The symbol Module 7 of u is a sub-0..y-Module
of (Or+x)" generated by principal symbols o(P) of sections P of # and a
system {P,, - - -, Py} of sections of # is called an involutive base if o(P)),

-+, o(P,) generate 7. '

Let U be an open subset of T*X, m and m’ integers and m, positive
integers (=1, 2,3). For a P in M(m,, m,; £5(U)) and a subset B of U
we define

2 Plas= S [Pzl (ke 2)
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by denoting P =3 ;. ,P,(z, D,) with Py(z, n) € M(m,, m,; 03%(U)). Then
M(m,, m,; &(U)) is a Fréchet space with the semi-norms | [ , where
K runs through the compact subsets of U and k runs through Z.
Under the topology the map (P, Q)— PQ of M(m, m,; &m(U)) X
M (my, my; E¢(0)) to M(my, my; E¢-+™(U)) is continuous.

Lemma 1.2. Let ¢ be a coherent left sub-& ,-Module of (£5)". We
put F(m)y=_¢ N (G for every m in Z and F(0)=_£(0)/#(—1). Let
Q., - -+, Qy be sections of #(0) such that ¢,(Q,), - - -, 0(Qx) generate the
OR-Module 7(0) in a neighborhood of a point p of T*X—X. Then there
exist an open neighborhood U of p and C-linear maps ¢; (j=1, ---, M) of
F(U) to &,(U) such that >3 ¢(P)Q,=P for any P in #(U) and that the
restrictions ¢;| ;o define continuous maps of F(m)(U) to £ (U).

Proof. Itis known (cf. p. 82 in [G—R]) that there exist a neighborhood
U of p and continuous C-linear maps z; of _Z(0)(U) to OQx(U) satisfying
i (Ne@)=1f (fe F(0)U)). Here 0§2(U) is a Fréchet space with
the semi-norms | |, and Z(0)(U) is endowed with the topology induced
by the Fréchet space (08 (U))Y. We fix a non-vanishing section r of 0X,
defined on a neighborhood of p. For a P in #(m)(U) we put ¢,(P)=
> wenRy(z, D)) with R, (z,7) € 052z”(U). Here R,, are inductively de-
fined by

(13 Rz p=rr(r o, (P=3] 3 Rz DIQ,)).

k

The lemma is clear by this definition. Q.E.D.

The following lemma will be used in Section 2. Here and in the
sequel we identify X with the zero section of T*X.

Lemma 1.3. Let ¢ be a coherent left sub-& -Module of (€)Y (resp.
sub-& y-Module of (£x)) and U an open subset of T*X—X. Then
I () =(F N(E)NU) is closed in (£ (U))Y (resp. (E(U))Y under
the topology induced by (&(U))Y).

Proof. Let {P,},.y be a sequence in #(m)(U) which converges to
an element P of (£ (U))Y. To prove Pe #(m)(U) it is sufficient to
show that at any point p of U the germ P, defined by Pisin #,. Under
the notation in Lemma 1.2 we put R;=lim ¢(P,). Then >, R;Q;=
lim 37, ¢,(P,)Q,=lim P,= P, which proves P, € (£;®_#),. Hence also in
the case when ¢ is a coherent & ,-Module and P, € (65)}, we have P, e
F » because & is faithfully flat over &5. - Q.E.D.
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Let V be an involutory submanifold of T'*X invariant under the
action of C and &, the sub-Ring of & generated by the sheaf {P e £9;
a(P)|,=0}. Then in [K-O] we prove that &, is coherent and its stalks
are noetherian and we say that a coherent left &,-Module # has regular
singularity along V if .4 satisfies the following equivalent conditions:

(RS) Every coherent sub-&,-Module M' of M defined on any open set U
is coherent over &Q.

(RSY  For every point p there exist a neighborhood U of p and a coherent
sub-&,-Module MA® of M|, which is coherent over &9 and satisfy &y M
=My

Moreover if the degenerate locus A={pe V—X; (¢7' > 7, 9.dz,)(p) =0}
of V'is holonomic (i.e. dim 4=dim X at every non-singular point of A),
V is said to be maximally degenerate. Here ¢, is the inclusion map of V
into T*X. Itis shown in [O 1] that in this case 4 is non-singular and V'
is locally equivalent to {(z, 9); z,=7,= - - - =9,=0} with d =codim V" by
a homogeneous canonical transformation. And we have the following
proposition, which is a generalization of the fact that every formal solution
of an ordinary differential equation with regular singularity converges.

Proposition 1.4 (Theorem 3.13 in [K-O]). Let 4 and A’ be systems
of micro-differential equations which have regular singularities along the
maximally degenerate involutory manifold V with the degenerate locus A.
Then

Rv%ﬂomgx(-///u -//{z) IAL)R%OMQX(gX@MD @%X®'/”2) 1/1-

Let Y be an n-dimensional submanifold of the (/+r)-dimensional
complex manifold X, let Y, ---, ¥, be non-singular hypersurfaces nor-
mally crossing at Y and let (¢, x)=(t, - - -, ,, X5, - - -, X,) be a local coor-
dinate system of X such that Y, is defined by 7,=0( =1, -- -, ). Weput

V=nz'(Y)— Ui T# 0, X— X,
A=T¥XNV,
where

Y(i):Ylﬂ enNY, o NYN--eNY.

Using the local coordinate system (2, x, 7, &) =(t, x; >}, 7,dt, + > 2., &,dx;)
of T*Af) Vz{(t, X5 T S); ty=—.-- =tl=0: 1'1:#0, Y Tlrlbo} and
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A:{(t5 X, T, 5); t1= ctt :tl':sl'—_‘— te IE":(), Tlioa D) TL#:O}‘

We remark that 7 is a maximally degenerate involutory submanifold with
the degenerate locus 4. We denote by 9;, 9, D,, D, and tD, the (vectors
of) operators t,0/0t;, (&, - - -, 9,), (@/ot,, ---, 8/dt,), (8/ox,, - - -, 8/0x,)
and (#,0/0x;, 1,0/0x,, - - -, t,0/dx,). For any m in Z the sheaf £ on Y is
introduced in [K-O] whose sections consist of sections P of wx(&% )
satisfying the following equivalent conditions:

(1.4) Each P is of the form

P—= P, ,(x, D,)tD:"".

a,BEN!

(1.5) Let v be the generator of the system of micro-differential equations:

(191——2,;)U:O (l—__ls "',l),
ov ov

0x, 0x,

Then if 2, € C—{—1, =2, - - -} for i=1, - - -, | and ¢(t, x) is a holomorphic
function, there exists a holomorphic function (t, x) defined in a neigh-
borhood of Y such that P(t, x)v=1(t, x)v.

We put &4 =nez6% and denote by &, the sub-Ring of &% gener-
ated by {P e Q; 0:(P)|,=0}, i.e. E4.=EP[I]. Moreover we put 4=
DylyNEL and Dy =D4|, N Ey. Then any section P of &P (resp. &)
satisfies ord P,,<|B|—|«| (resp. <|B]) in the expression (1.4) and therefore
if a section P of &, is of order 0, we can regard ¢,(P)|, as a section of
0y. Hence we can define a Ring homomorphism ¢, of &, onto Oyfs]=
Oylsy, - - -, 5,] so that

(1.6) {”*(191)=S1 for i=1, ---,1,

04(P)=0,(P)|, if ord P=0.
In [K-O] we say that the system of differential equations
M: Pu=---=Pu=0

on X has regular singularities along the set of walls {Y}, - - -, Y} if the
following conditions are satisfied:

(RS-0) There are differential operators G%, of order less than r,+r,—r,;
such that
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i

[Pj, Pk]:Z Gi‘kPi

i=1
holds for any j, k, where r,=ord P,.
RS-1) P, eD,(Y)fori=1,---,1L

(RS-2) Let a,(x, s) be homogeneous part of o,(P,) of degree r, (=ord P,).
Then the solution of a,(x, s)=---=a,(x, s)=0 is only the origin s=0 for
any x in Y.

To study a more general system of differential equations with regular
singularities we will weaken these conditions in Section 3.

Finally in this section we will define micro-differential operators with
holomorphic parameters. We assume that the manifolds X, Y and Y, are
of the forms X' X Z, Y'XZ and Y;XZ (i=1, - - -, ]), respectively. Here
X’ and Z are manifolds of dimensions /+n’ and n—#’, respectively, with
an »’ in N and therefore Y’ and Y7 are submanifolds of X’ of codimension
l and 1, respectively. We always choose the local coordinate system (z, x)
=(t, x’, x””) such that x'=(x,, - - -, x,,) and x”"=(x,.,, - - -, X,,) are local
coordinate systems of Y’ and Z, respectively, and Y, is defined by ¢,=0.
We put D,.==(0/ox,, - - -,0/0x,) and &=(&,, - - -, &,) and denote by 75_,
the natural projection of X onto Z. Let &,, be the subsheaf of &,
consisting of micro-differential operators P such that

a.7 [P, pomy_ ]=0
for every holomorphic function ¢ on Z. Since (1.7) equals
[P> xj]=0 (jZn,+1a "'5”):

P are of the forms P=>, P{t,x’,x"”, D,, D,) with P,(t,x,x", 1, &) e
0}y and called micro-differential operators on X’ with a holomorphic
parameter x”/ in Z. Moreover we put

Dx1z=7x(E x/2)

zéa{k :5; N ﬁX(gX/Z I/l)a 29 =9§< NPz I/b
28 =2ELNEL, 2D =28 N D gz
Zg*zzéaéﬂg*’ z@*'—'@*m@mzlm
®EéJx’/z =lm (Ex,z N EN/(Ex,z N EP),

4>

and

AP =1lim 60,69,
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§2. Several Lemmas

In this section every situation is local. Therefore we fix a point in Y,
denote it by 0 and put 4,=ANzz'(0). The local coordinate system (¢, x)
is chosen so that the point corresponds to (0, 0). For an m=(m,, - - -, m,)

€ R' and an a=(ay, -, a;) € Z' we put mI=m9,+- - - +m,9, and
{mol=mo;+ - - - +m;,. And for a ¢ € R and a matrix S with compo-
nents in (&5 |0 we put

@1 St= 3 S.4x D)9D;?

aCENL, imfl=0
by the expression

S= 3>, 8, 4x, D)Y9D;".
«€Ni,pez!

Lemma 2.1 ([K-O]). Letme R, Ne N, and Ae M(N;(;6),). We
put g, (A)=(2,;(x)). Assume that [3]dt,, A]=0 for v=1, - - -, | and that if
i>], then 2,,=0, the real part of 2,,(0)— A,;(0) is non-negative and moreover
the number of the elements of the set {& e N*; |mo|=2;,0)—2,;(0)} is O or
1. Then there exists an invertible matrix U € M(N; (;&9),) with ¢,(U)
=1I, such that [3/3t,,U]=0 for v=1, - - -, [ and the matrix

(B;))=m3—U(mI—A)U*

is of the form: ¢,((B;;)) =0,(A) and if there exists an (i, j) € N* satisfying
2;,(0)—2;,(0)=|ma(, j)|, then B,;=R,,(x, D, )D;*"" with a differential
operator R, (x, D,) of order <|a(i, )| and otherwise B, ;=0.

The above lemma is given in the proof of Theorem 5.3 in [K-O].
We assume there that m,, - - -, m, are linearly independent over the field
of rational numbers. But concerning the statement in Lemma 2.1 we do
not use this assumption.

Lemma 2.2. Ifme N, the Uin Lemma 2.1 belongs to M(N; (;E%),)-

Proof. Let W be a (1+!+n)-dimensional complex manifold with
the coordinate system (¢, ---, %, X5, -+, X,). Put g=(0;dt,)e T*W
and 9,=1,0/0t,, For P e (,&), with [9/dt,, P]=0 (v=1, - - -, [), we put

B(or P~)=3" P, (x)DzD{m-v#. .. Dim-bai Dy imsl

by the expression P=>", ¢ yn+:Pa (X)D%D;?. Then P e (&), [m9, PI~
=[9,, P1 and (PP’)~=PP’. Therefore in Lemma 2.1, 4 and Be

M(N; (&9),) and U(9,— A)T~-*=9,— B, where A=(4,,) etc. This means
that the systems .#: (9,— A)u=0 and 4": (3,— B)v=0 with column vec-
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tors u and v of N-unknown functions are isomorphic by the correspondence
u=Uv. Since these systems have regular singularities along the maximally
degenerate involutory submanifold defined by 7,=0 and since g belongs to
the degenerate locus, Proposition 1.4 says Tv= Vv with a Ve M(N;(&P),)-
The Spith type theorem for micro-differential operators (cf. [S-K-KI,
Chap. II) shows that any section of 4~ over a neighborhood of ¢ has the
unique expression Cv with a Ce M(1, N; &%) satisfying [8/d¢,, C]=0.
This means U e M(N; (6§),) because [3/d%,, U]=0. Hence Ue M(N;
(z6),) because in general P e (&), if and only if P e (,6L), which
follows from (1.1). Q.E.D.

We will give other two lemmas for our purpose.

Lemma23. Let L, N and ReN,,a,e C'—Z' and let b,e C®
(=1, .-+, L;v=1, ---,N). Then there exists a e N such that for
any p and v

2 |aBl¢Z and |bp|#|ch| if ce Z'N(—R, ) —{b}.

Proof. Put I,={ae Z';|a,a|e Z} and I={«;; there exists a (0,
<o, 0, a5, a4y - -+, ;) € L}, Then I=Zk] with some kj e N. Put k=
[Teioki (Lif all k] are 0) and V={re R%; >75_, (b,,;—c;)t;#0 for any
ce Z'N(—R, ©)'—{b,} and v=1, ---, N}/R,. Since V is open dense
in R,/R,, we can choose a e N such that R, e V and ;=1 mod k
(=1, ---,1). Then « ¢ I, because (k}, - - -, K})==(1, ---, 1). Q.E.D.

Lemma 24. Letme N', Nand N' e N,,
A=(4;)e M(N; (Zx,z)) and A'=(4;;))e M(N';(Dx,z2))-
We assume that A and A’ are of the forms:

Aij=A§j=0 ifi>j,

Ay=A,(x,D,), A=Al x,D,) ifi<j,
2.3) Ay=2,("), A=2"),

20)=20), 240)—20)¢Z

Al=0 if Z(0)—2(0) ¢ Z.

Let ¢ be a coherent left sub-& x-Module of
, N N’
E)¥Y ='Z1 & xU; +Zl‘gxu;
i= Ji=

which is defined in a neighborhood of A, and satisfies
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2.4 mu=Au and m9u'=A"W mod £.

Here u (resp. u') is the column vector of length N (resp. N') whose i-th com-
ponent equals u; (resp. ul).

(i) Suppose ¢ contains Pu+P'v’ witha P& (xx(Ex,71)) and a P’ e
@x(Ex/21))Y". Then for any $(x”,s) e O4s) and any o e Z, PT¢(x", Au
is a section of ¢ over a neighborhood of A,.

(ii) Let Qe M(N; (wx(E2/:|0)0) and Q' € M(N'; (wx(Ex/z]0))0) such
that

2.5 mI—A(Qu+Q'vw)=0 mod £.

Then Qu+ Q'v'=07u mod #. Moreover if £ satisfies the following
condition (2.6) and if (QF),;=0 in the case 2,=2;, we have Qru=0
mod 7.

2.6) if ¢(x")Pe ¢ with a non-zero ¢ Oy and a Pe (&))", then
Pe g

(iii) The statements (i) and (ii) hold even if we replace & by &.

Proof. (i) We may assume ¢=0 by considering (D:P, D;P’) in
place of (P, P’) with a suitable z € Z*. We choose an open neighborhood
V of 0 in Z such that 2, and 2; are bounded and holomorphic in V,
[2,(x")—2,0)| £1/3 for any x” ¢ V and inf,.cp rez|2:,(x")—25(x" )+ k|>0.
We put C,=max {|,;|, [2];} and W={se C;|s|<C,+1} and define a
polynomial B,(s) € (0,(V))[s] by

[ C=Abe=t=DV" (1 ff G X6 L=D)

,
=0 j=1 —i*—1

B(s)={

v
i=1 j=1 —1

for every v € N,. Then by the relations

mIP fu* =[mQ, P¥lu* + P fmIu*
=P¥A*+kw* mod £

and
N* N*

we obtain
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0=B,mI(3, PHu-+(T, (P} mod
={2, PEB(A+Iu+{2, (PB4 + Kk’ mod 7
=PrB(A)u+J, mod #
with

J={ 3 PrB(A+Rut+( 3 (PORBA R

Here (P}, u*, N*, --.) denotes (P™, u, N, ---) or (P, v/, N',---).
Putting

N* N*
B(s+k)= Z‘ b (x")s'~! mod @Z(V)[s](n (s—z;!<))
j=1
with b%, ¢ 0,(V), we have

B(A*+k)= Z b (X" )(A*) !
and
|63,y S G| BAs+K) psw

with a suitable number C, e R, which does not depend on i, & and v.
Moreover if (x”, s) € V X C, we have

|B,(s)|§{n< +(ISI+C1)2)} {,Do( qﬂ%;_“)}

<@+(s+eN™ 1T {”w}w

=Q+(ls|+ €)™ {Sir;fazl(lil;r i;)L 1)}N?+w'

Hence there exists a C, ¢ R, such that
|bE., 1, S ClFi+t for i=1,---,(N*, ke Zandve N,.

On the other hand since the sequence {B,(s)},c 5. converges to a holomor-
phic function B(s) of (x”/, s} on ¥V X C and the convergence is uniform on
V X W, the sequence {b,y,},cn, uniformly converges to an element b, of
O,(V)fori=1, ---, N* and we have

N2
inf {3 b,(x")2,(x")"!| = inf |BQ,(x")|>0
eV |i=1 zeV
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forj=1, --., N. Therefore we can choose an F(s) € 0,(V)[s] satisfying
N2 X N N
F(s)(z bis“‘)zl mod 0Z(V)[s](ﬂ (s—lj)) .

i=1 J

=1

Hence F(A)(Q b, A" =1,.

Let p=(0; >__, z}dt,) be an arbitrary point in 4, We choose com-
pact neighborhoods K. of the points (0; > i , (2C,)*™iz{dt;) in T*X, res-
pectively, satisfying that z(K.)C X’ X V and that #, P, P/, A and A’ are
defined in a neighborhood of K, UK_. Then there exist M; and M ¢ R,
such that

|Plf]Kt,j§Mj for je Z
and
[(A%) o= M for i=1, -+, (N*?

Hence if we put K.={(, x, z, &) e T*X|(2C,)™™1,, - - -, 2C)™™4¢,, X,
QC)*™zy, - - -, (2Cy)*™z,, &) € K.}, respectively, and K=K/ N K/, then K
is a neighborhood of p and

|P¥ e, =QCY**| Pk, ., =QC)**M;  for any (k,j) e Z*

Let U be an open neighborhood of p contained in K. Then we can choose
re Nand L; € R, so that

|PEA®) |, <L, PEle,,  for i=1,---,(N*Fand ke Z.

Hence for each v € NV the above consideration proves

|(Ps"Bv(A)u+J,)—Ps"(f;j b Ju

U,j

N2 _ N2 .
= Py Zi (biof‘bi)Az_lu‘l'( >, Py ; bik,Az_l)u

1k >»

N2
+( 3, @ S bl

1] >v

U, J

N2 N2
ng(;[biOy_bi ]V'IPgL‘K,j—r“’ %v;Ibikle'IPkm!K,]'-r

|

N2
+ 5 zwghl-l(P')mK,,-,)
EI>v i=1
Ne
§L,Mj_,(; [bwu*bi IV+N2 IHZ; CiE1(2C,)~1#

+N/z Z C;’“'“(ZCE,)‘”“')
|

E|>»
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N2
—LM, (3 1bo=blly+ (VP N2C),

which converges tc 0 when vy becomes infinity. Since PIB(Au-+J, is a
section of _#, Lemma 1.3 shows that PJ(> b,4* "u is also a section of
FZ over the neighborhood U of p. Moreover since p is an arbitrary point
of A, and 0=¢(x", mDFmPHPF(Z b, A" W=PrH(x"’, AF(AC b, A u
=Pré(x’, Au mod #, Pré(x", Ayu defines a section of # over a neigh-
borhood of 4,.

(ii) The statement (i) and the equation (2.5) entail (m3— A)Q™u
=0 mod _#, which equals

.7 OMA+ou=AQ™u mod ¢ (o e Z).

We put Q, ;=01 - - -, (@7):x) and we shall prove @, ,u=0 mod #
for each ¢70 by the induction whose hypothesis is Q, ,#=0 mod # if
y>i.. Then by the i-th components of (2.7) we have

QU,i(A'J’_O')uEZiQﬂ,iu—l_ Z Aiqu,yu mOd j
I<vEN
=2,0, ,umod 7.

If 00, we can choose a G(s) € O,[s] satisfying (4+o—2,)G(4)=1, as in
the proof of (i) because A-+o—1, is invertible. Hence we have 0=
0..AdA+c—2)u=0, (A+c—2,)G(ADHu=Q,,,u mod £ from (i). Thus
Oru=0mod # forany c e Z—{0}. ‘

Putting 7(j)={v|1=v= N, 2(0)=20)} and 09=(Q)izizrercr
and u=(,),e;, and considering Q“u in place of Qu, we have
Q)" uN=0mod ¢ forany o e Z and j=1, - - -, N’ by the same argu-
ment as above because g+ A(0)— 2,(0)==0. Then Q“¥u?=0and Q'v'=0.
Thus we have Qu+ Q'v/ =0Qru mod #.

We shall prove the last claim in (ii) by the same induction as above.
The hypothesis of the induction implies Q, ;Au=2,0, ;u mod #. Let E
be the diagonal matrix whose v-th diagonal component equals 1 if 2,=2,
and 0 if 4,92, Then Q, ,(A+E—2,)u=0 mod # because (@), =0 if
A,=2A;. Since A-+E—J, is invertible for a generic x”/, there exists a poly-
nomial H(s) with coefficients in the field of meromorphic functions of x'/
such that (4+E—2,)H(A)=1,. Since H(s)=¢ 'L(s) with a ¢ e @, and
an L(s) e O,[s], we have 0=0Q, (A+E—2,)u=0Q, (A-+E—2,)L{A)u=
$0, umod #. Hence we have Q,,u=0 from (2.6) and thus Qfu=0
mod _# by the induction.

(iii) This is clear by the above argument and Lemma 1.3. Q.E.D.
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§ 3. Systems of differential equations with regular singularities

Let 4 be a system of differential equations on X’ with a holomorphic
parameter in Z, i.e. .# is a coherent left 24, ,-Module on X=X’ X Z.
We suppose .# has N unknown functions u,, - - -, uy. Let u denote the
column vector formed by u,, - -, uy and # the left sub-@4,,-Module of
(@x,2)" which annihilates u. Then # is isomorphic to (PDx,7)"/.2.
Recall that Y7 (j=1, - - -, ) are nonsingular hypersurfaces of X’ normally
crossing at Y.

Definition 3.1. The system .# is said to have regular singularities
along the set of walls {Y7, ---, Y7} with the edge Y’ if there exists a
positive integer m such that the following condition holds:

(Oy[s]™)" ={0:(P); P € (:2,)" N(F |y) and ord P<m}

G-D +(OIs)mDY".

In this sequel we study the system .# which has regular singularities
along the set of walls {Y7, - - -, Y7}. Then there exists a positive integer
M such that for any point in Y there exist a neighborhood ¥ in Y of the
point and sections Py, - -+, Py in (;24,) N #Z)V) (i.e. P,u=0 and P, are
of the form P,(¢, x, 9, tD_.)) and the following condition holds in ¥: Put
m;=ord P, p¥=0,(P,) (=P,0, x, 5, 0) by definition), £ =>%, O,[s]p}
and A =(0y[s)"/#. Then .7 is a free O,-Module of rank r with an
re N. We call .Z an indicial equation of .

The definition also implies that replacing M and P, - - -, P, if neces-
sary, we may assume

M
(3.2) F N(OAs] ) =37 Ols]*-m0p¥  for ke N,

but in general we don’t assume (3.2) for P,, - - -, P, in this sequel.

Let {0, - - -, U,} be a basis of the ¢,-Module .# and U the column
vector formed by U, - - -, U,. Then there exist 0,(x) e M(r; 0y(V)) such
that s,0=0,(x)v (j=1, ---, ). The above condition implies that
[0, O,]=0for i, j=1, ---,r and that the system of the equations for
s=(8y, -+, 8,)

(3.3) det (]le C,(s,— Qj(x))) —0 (C,eC)

has r roots including their multiplicity, which we denote by

AX)=(4,(x), -+, 2,(0) (=1, ---,7)
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and call the characteristic exponents of # with respect to .#. For sim-
plicity we assume that 4, do not depend on x’ € Y’ but holomorphically
depend on x”’ € Z, that is,

.9 ALe0,(VNZ) (=1, ---,r).

Moreover we assume the existence of other M and P, - .-, P, (which
will be denoted by M’ and P7, - - -, P/, respectively) such that they satisfy
(3.2) and that the corresponding 2, also satisfy (3.4).

In this section we fix a point 0 in Y and study the system . in a
neighborhood of 0. Putting 27 =2,(0), we may assume

3.5 A, —2 ¢ N'—{0} if p>v.
Moreover, choosing {T,, - - -, U,} suitably, we may assume

Qj(x)wzzv,j(x,/) (]:l’ "'91;"':1} ""r),

(3.6) {_ :
0,(x),,=0 if y>v or 20 #1.

We can choose A(x) ¢ M(N, r; 0,) and B(x, s) € M(r, N; 0,[s]) such that
3.7 u=A(x)v and -v=B(x, s)u.

Here u denotes the column vector of length N whose i-th component is
the residue class of (d,;, - - -, 6,y) in 4 and §,; denotes Kronecker’s delta.
Hence (3.7) gives the isomorphim @ between the two @,[s]-Modules

A pfa=0 (=1, ---,M)
and
/17: (Sj—"Q_j(x))v___O (_]=1, ° 51)

Theorem 3.2. Retain the above notation and assume (3.4), (3.5) and
(3.6).

(i) &ExQM is a system of micro-differential equations with regular
singularity along V in a neighborhood of A.

(i) There exists a surjective homomorphism @ of a system

N2 (95— 0y(x, Dy, DYv=0 (j=1, -+, 1)

of micro-differential equations with the column vector v formed by r unknown
functions vy, - - -, v, onto the system &yQ.# in a neighborhood of A,=
757 (0) N A where
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0.(Q)=0,,
l(Qj),w-_—O if 2, —2, ¢ N'or p>v,
(99, =05,,(x, D;)D¥ % with some Q7 ,., € Dy,;z
if 2, —2, € N

JQj e M(r; zéa;g))a
3.9)

Moreover the homomorphism is given by the correspondence
3.9 v=B(t,x, D, D,)u

witha Be M(r, N; ;&) satisfying

(3.10) 0.(B)=B(x, s)

and there exists an A e M(N, r; &) such that

3.11) u=ABu and ¢.(A)=A(x).

(iii) Assume

(3.12) 2, —2) ¢ N'—{0} Sor any p and v
or both

(3.13) A,—2, ¢ N'—{0}  forany pandy
and

(3.14) the equation $Pu=0 with a non-zero ¢pe O, and a Pe (x/,)"
implies Pu=0.

Then if we fix a system N in (ii), the homomorphism @ of N to M is
uniquely determined by the condition (3.10) or (3.11).

First we assume that P, satisfy (3.2). Let p;(s) denote the homoge-
neous part of p¥(0, s) of degree m; and let {c,(s); 1 <v<r} be a subset of
C[s]” such that .

(.15) iC[s]m-m“pH > Co,=(Clsl™)

ey € (CLs](m)N

for any m e N. The existence of ¢, follows from (3.2).

Lemma 3.3. Let W be a neighborhood of the origin of C*, where L
is a positive integer. Let p;(w, s) be vectors in Oyx[s]¥ satisfying p,(0, s)=



408 T. Oshima

p(s) (i=1, ---, M). Then in a neighborhood of the origin we have

M
(3.16) 22 OylsI™mop,+ 51 Oge,=(Ogls]™)".

=1 cy€(CLs](m)N

Proof. By the assumption we have linear maps T, of (C[s]"™)" to

CI[s]™-™2 and R, of (C[s]™)" to C such that f=> T,(f)pi + 2>, R.(f)c,
for f € (C[s]"™)" and that R,=0 if deg c,>m. Let T, and R, denote the
Oy-linear extensions of T; and R,, respectively. For any ge ((DW[i]("")N
we inductively define g,(j € N) by g,=g and g,..=> (p.—p:)T:(g)).
In a small neighborhood of the origin, > 7,g; converges into an ke
(Oyls1™)", so g=3 T \(Wp: + 2 R(B)e,. QE.D.

Proof of Theorem 3.2 under the assumption (3.2). Let C(s) denote
the matrix in M(r, N; C[s]) whose v-th row equals c¢,(s). Put w=C(Pu.
First we want to prove

3.17) (6 ) u=(2ELYw.

Put p,=a(P,), s;=t7;, t;;=t;cc;t and &;=&,c7' (=1, -- -, M;j,j'=
1, .-, l;k=1,...,n). Let W be a neighborhood of the origin of
Cr+#+m'L with the coordinate system (x, ¢;;, &;;). Since P; € (;94)", Ps
are of the form p; =3, —m,Ps,:5* With some p, ; € (O)". Let me N.
For any Qe (;&, NE™)Y we use the similar expression ¢,(Q)=> 4 =ng.5"
with some g, € (Oy)". Since 3 uj-m;Pa,8*=p;(s), Lemma 3.3 assures
the existence of f; € Oy [s]"~" and g, € 0 such that > f,p,+ > 8.c,=
0.(Q). Let F; and G, be sections of &, with the principal symbols f;
and g,, respectively. Then Q— > F,P,—> ,G,c(P e (6. NEF V)Y, so
Oue (;E:NEF N u+(EP)w. Moreover, if m=0 and Q e (07, we
can choose f; and g, in Oy such that Q=>_ f,P,+ > g,c,(J). This implies
(Ox)"uc (Ox)w and therefore

(€Y u=7EL(O0) " uC ,EL(O) W= (2EL) W.

Hence by the induction on m we have Qu e (;&L)'w. Since Ui, (264 N
EMy=,& ., we obtain (3.17).

Since €L, Q@x]|) ' (z64) =67, and P |, ®@x|) (26N =EP |1, We
have (&) u=(&Q)"w by (3.17) and therefore (&,)'w= (&) C(Du (&) u
=(&Y)w in a neighborhood of 4. This proves Theorem 3.2 (i) by defini-
tion.

By (3.17) we have (§;—R;)w=0 for j=1, ---,/ with some R; e
M(r; ;6%). Put w=C(s)r. The proof of (3.17) shows (s;—a.(R))w=
0, u=Fw and i=0,(F)w with an Fe M(N, r; 0y). Then the assumption
implies the existence of an invertible matrix H € M(r; Oy) such that =
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Hw and H'Q;H=0,(R,)). Now we put v'=Hw and S}=HR,H"".
Then (9—S})v=0 and ¢,(S})=0,. By the Spith type theorem for
micro-differential operators we can choose S,=M(r; &) such that

(318) (9j_Sj)v,:0 (]=15 Tt l):
(3.19) 0x(S)=0, and [9/3t,, S]=0 (,j=1, .-, D).

Since #=0,(F)H'0 and 0=HC(s)a, we have 4 =0 (F)H " and there
exists K;(x,s5)e M(r, N; Oyfs]) such that B=HC(s)+ > K,(x, $)o4(P,).
Put A’'=FH-" and B’=HC(9+ > K,(x, HP,. Then

(3.20) ' u=Av, V=Bu
and
(3.21) 0.(A)=4, ¢,B)=B.

By Lemma 2.3 we can choose an m € N, such that

#|ma| forany e N'—{1; — 4}
i
(3.22) 2md. — 25 5) if ;-2 ¢Z',
j=1
! ¢Z  if22—2°¢Z
Put S=3>m;S;. Then by Lemma 2.2 we have an invertible matrix U e

M(r; z6P) with o,(U)=1I, such that [3/¢;, U]=0 for j=1, --.,/ and
that the matrix 7T=m3— U(mI—S)U ' is of the form

o, (T)=2.m,0;,
(3.23) T,=T ,j’,y(x,. Dx;)DQ;"‘Fl with some 7', € Dy,
if 2, —2) e N,

T,=0  if 22—2° ¢ N

Now we want to show that the matrix B=UB’ gives the desired
correspondence (3.9). Let ¢ be a map of the set {17, ---, 47} to itself
such that 2] —«(2)) e Z* for v=1, - - -, r and that ¢«(2;)=c()) if 2, — 2]
e Z'. Let D denote the diagonal matrix of size r whose v-th diagonal
component equals Dp=—®. We put v=Uv, T;,=9,—U@I,—S)U,
9=Dv, T,=9,—D@;—T)D"* and T=m9—DmI—T)D-'. Then
04(T;)=0; and T are of the form

(3‘24) (Tj)p»: EZJ:VL T‘L;‘,,U,»(xs Dz’)D;a

with some T, € @y,r and
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I

T’JV
(3.25) T,

Z mj(zv,j(x”)_zvcij + [(2:))]‘)’
T°(x, D,) if 22—20¢ Z",
0 if 2°—2° ¢ Z".

I

R

Il

7y
Here we remark
=0 if 2;,—-4 €Z,

3.26 T.0—T,0
(3.26) A0) (){¢Z it 10—20 ¢ 7.

Since (m9—T)o=(9,—T)7=0, Lemma 2.4 (i), (3.25) and (3.26) show
(9;,— 0,)U=0, where (9,—Q,),, equals 0 if 2, — 2 ¢ Z* and (&, —T)){)
if ;-2 eZ'. Put Q;=8,—D"'(9;—Q,)D. Then (9,—Q,;)v=0 and
if 2;—2 ¢ Z', (Q;),,=0. On the other hand, if 2; — 2, ¢ Z*,
(95— Q) =D 349, — 0 ), DF 1
= D30 (D (9, — T,), Dy ) D=
”—"19j5p,v— ((Tj)Tnmu;‘—/I;)l)yu-
Thus by (3.22) and (3.24) we have (Q,),,=0if 1; —2; ¢ N* and
(Q)w=TJa 3(x, D)DE~%  if 2;—2 e N,

so Q, satisfy (3.8). Moreover, putting B=UB’ and A=U"'A’, we have
U=Bu, u=Av=ABu, ¢, (A)=0,(U "o (4)=4 and ¢,(B)=0,(U)o(B’)
=B (cf. (3.20) and (3.21)). Hence we have Theorem 3.2 (ii) because Bu
satisfies A",

To prove (iii) we assume (3.12) or both (3.13) and (3.14). We more-
over assume that the correspondence v=Bu with a B e M(r, N; ;&)
also given a homomorphism @, of 4" to 4. Put

T :m&—D(m&——Zl] ijj)D‘l.
7=1

This 7' may be different from the 7' defined before but has the form (3.25)
with some T¢ (x, D,) € 9y,, and satisfies (m9—T)DBu=(m9—T)DBu
=0. Hence Lemma 2.4 (ii) and (3.26) show

DBu— DBu=(D(B— B)AD~*)DBu=LDBu,
where L e M(r; ,6%) and L,,=0if 2; —2] ¢ Z', and
L,,=((D(B—B)AD™"),);'=Djjs~*“((B— B)A) 0, 30 ) Di® 5

if 2;—27 e Z'. Therefore if 2; —2 ¢ N', we have L,,=0 by (3.22)
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and if 2; =247 and 0,(B)=04(B,), we have also L,,=0. Thus if ¢,(B)=
c.(B)=B, the assumption and Theorem 2.4 (ii) prove LDBu=0, so
Bu=Bu and ®=0,. Next assume the existence of an 4, ¢ M(N, r; ;&)
satisfying 4,Bju=u and ¢,(4,)=A. Since BAv=0, there exists H,(x, s)
e M(r; Oyls]) such that BA+37}_, H/(x, s)(s;—Q)=1,. Put J=BA,+
St Hy(x, H&;—0,)—1I,. Then

04(J)=0 and DBu—DBu=D(BA,—1,)Bu=(DJD"")DByu.

Hence the same argument as above proves @=@,. Thus we have proved
Theorem 3.2 under the assumption (3.2). Q.E.D.

Now we will examine the kernel of the map @ in Theorem 3.2.

Theorem 3.4. Retain the notation M, u, A, Q, 4, etc. in Theorem 3.2.
Let

P:( ,Q;Nl Pa,ﬁ,l(x’ Dz')taD?_ﬁ5 St Z Pa,ﬁ,N(x: Dz’)taDla_ﬂ)

afEN?
be a section of (;Z%L)" defined in a neighborhood of 0 such that Pu=0 for
the generator u of #. Put PA=R=(R, ---,R,) and

(3'27) R#: Z Ra,ﬂ,p(x’ l)ac')"ngL“'9 (/,lzl, Tt r)'

a,BENL

Fixave{l,---,r}and a7 e N and a polynomial

¢(x”a S): Z ¢z(x”)sr € 0Z[S]

reNT

defined in a neighborhood of 0. Then for every pef{l, ---,r} put o=
Y—A, + 4, and define a micro-differential operator S,(s) € n(&x,|)Is] by

0 _ if ¢ N,
(3.28) S,= o e .
20 (X VRyu, (x, D) (st )" If we N,
a,r€N
and moreover put (Sy, - - -, S)=> 5en1Gs5* (G € (@(Ex/z|))" and
(3.29) G(t, x, D, D)= >, G9*- .-
BENT

Then @(Gv)=0. Especially when 2] —2; ¢ N* for pe{l, ---,r}—{v},
we have

(3.30) (D(Z 20 Pao, X Dx')d*(Aiy)Zu,x(x”)”-~'2y,z(x”)”vy)=0-

i=1 a€N!

[
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Proof under the assumption (3.2). Define the map ¢, me N', De
M(r; 6x,2) and TeM(; Dyx,z) as in the proof of Theorem 3.2. Here
we can assume ¢(1°)=21°. Since PABu=Pu=0, we have @(PAv)=0
and ®(PAD-'%)=0 with =Dv. Here we remark (m9—T)J=0 and that
D is a diagonal matrix whose u-th diagonal component equals Dj~¢¥»,
Now applying Lemma 2.4 (i) with ¢=0 to the kernel of @ and its element
DiPAD~'U, we have S’=0, where S"=(S7, - - -, S,) are defined by

(3.31) o 0 if w¢N?,
' 130 Ry (x, D)DWD;T if we N,
ag N
for y=1, ---,r. Since ¢(x"’, 3+7) commutes with §’, we have Ker @ >
S’¢(x", 9+71)Dv. Here we note that S'¢(x”’, 3+7)D=(S,(), - - -, S,(I).
Thus we have @(Gv)=0. Since 9,v=0Q,v, the last statement in the theo-
rem is clear if we put 7=0and ¢=1.

Proof of Theorem 3.2 and Theorem 3.4. Definition 3.1 implies the
existence of sections Pi, - - -, Py, of (;24,)¥ N _# on a neighborhood of
0 such that the following condition holds: Put m,=ord P} and #'=

I Oy[sles(P)). Then 4" =(0,[s)¥/ 7’ is a free O,-module of rank r’
with an #’ ¢ N and

(3.32) ' N(O[5]%) = Z O, s1%™g,(P))  for ke N.

Moreover we may assume .# is a quotient @ [s]-Module of .#’. Let p be
the natural projection of .#’ onto .#. Then we can choose a system of
generators {0}, - - -, 0.} of the @,-Module .#’ such that the following
conditions hold: Let ¥’ be the column vector of length r’ formed by the
generators and let Qj(x) € M(r; 0y) with (s,— Q}(x))v’'=0 for j=1, - - -, L.
Then there exists a subset I of {1, - - -, #’} such that the number of the
elements of 7 equals r’ —r and

(3.33) o(T)=0 for pel,
(3.34) 05(x),, =2 ;(x") with 2 ,(x") e O,

(]:]’ .. ,l’ IJZI, . .’r/)’
(3.35) O, =0  if u>v or ZOELO)

or (w,v)eIX{l, --,r}—1).

and

(3.36) 2O)—XO0) ¢ N'—{0}  if p>v,
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where 2, denote the column vector of length / formed by 2., - -+, 2 ;.

Then we can apply Theorem 3.2 to # and .#Z’. To avoid confusion
in this case, we denote by 4’, B/, 47/, 4", 0}, V', A’, B’ etc. in place of 4,
B, A, A, Q;, v, 4, Betc. in Theorem 3.2, respectively, and we will prove
Theorem 3.2 for # and 7.

Then condition (3.33) says the existence of R, ;(x, s) € @.[s] such that
M —_ —
(3.37) U,=>, R, [(x, o (P)x, s)A'(x)0’ for pe I
=1

We put R,=3> 7", R, ;(x, 9P, and apply Theorem 3.4 to R, with =0
and ¢=1. Then we have

(3.38)  V,—318,.(x D,)DEO %O ¢ Ker &  for pel,
v=1

where S, , € Dy, and S, ,=0 if 2,(0)—(0) ¢ N*—{0}. Let v” be the
column vector of length r formed by {v,; 2 ¢ I} and arranged by the same
order of the components of v/. Let Ge M(r, r’; Z) with v/ =Guv’. Then
by using (3.38) we can define F e M(r/, r; ,&L) so that

&'V —Fv")=0, Gy (F)V'=v",
and then

F,,=F, (x, D,)D¥®-2® with some F,, € Dy,
if 2,(0)—2/0)e N*.

Since $;v"" =GQjV =GQjFv"” mod Ker ¢/, we put Q,=GQ’F. Then
it is clear that Q, satisfy (3.8). Moreover putting B=GB’ and A=A'F,
we have Theorem 3.2 (ii).

Theorem 3.2 (i) is clear, and Theorem 3.2 (iii) and Theorem 3.4 are
proved in the same way as with the assumption (3.2). Q.E.D.

§ 4. Definition of boundary values

We will define boundary values of hyperfunction solutions of systems
of differential equations with regular singularities. We remark that
Definition 3.1 contains a wider class of systems of differential equations
than the definition in [K-O] (cf. § 1).

In this section and the next, we denote by X an (/4 n)-dimensional
real analytic manifold, by Y an n-dimensional real analytic submanifold
of X. We fix [ hypersurfaces Y,, ---, Y, normally crossing at Y. We
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choose a local coordinate system (¢, x)=(¢,, - - -, t;, X5, - -+, X,) of X such
that Y, is defined by #,=0. We denote by X, the open subset of X
defined by #,>0, - - -, £,>0. We call Y, the wall and Y the edge. We
denote by Z an n’-dimensional complex manifold with a local coordinate
system z=(z, - --, z,.). We denote by 2, the sheaf of differential
operators on X with holomorphic parameter z in Z. If we denote a com-
plex neighborhood of X by X, then ;23 =Dy z/2|X X Z. Let V18X
denote the conormal spherical bundle over X in X, Let &, denote the
sheaf of micro-differential operators which are defined on v/ —1S*X and
have holomorphic parameter z in Z. So any section of ,&, is naturally
identified with a section of €y xz/z | %xgxz(X X Z). To avoid using many
symbols, hereafter we use the same symbol X for X, if there exists no
confusion.

Let %, (resp. ;2% and ,<7 ;) be the sheaf of hyperfunctions (resp.
distributions and real analytic functions) on X with the holomorphic
parameter zin Z. If & is one of &, @’ or &/ and if U is an open subset
of X, then we denote by ,% (U) the space of sections of ,% y over ZX U
and by (;F(U))” the space of all the column vectors of length N whose
components are in ;. (U). Also let ;€5 denote the sheaf of microfunc-
tions on 4/ — 1 $*X with the holomorphic parameter. For a section f of
2% x, the corresponding microfunction is denoted by sp(f) and then sp(f)
is a section ,%,. If Z is a point, which means that we don’t consider
the holomorphic parameter, then we usually don’t write Z such as %y,
% x, etc.

Now we consider a system of differential equations

N
4.1) MYV P (X, 2, D, DJu; =0 (=1, .-, M)
=1

with N unknown functions u, which is defined on X and has the holo-
morphic parameter z ¢ Z. That is, .# is a coherent ,2 .-Module (;25)"/ %,
where #=3; ,2,P}; with P;=(Pi,, ---, Py, ). We assume that .#
has regular singularities in the sense of Definition 3.1. Moreover we
assume the condition (3.4) and the assumption after (3.4). Hence the
characteristic exponents A, - - -, 4, of .# with respect to .# are holomor-
phic functions of z. In a typical case, ¢,(P;) which are used to define the
indicial equation .# do not depend on x. In this case we usually choose
A and B so that they also do not depend on x. As in Section 3 we fix a
point 0 in Y X Z and discuss the system .# in a neighborhood of 0.

To define the boundary value B(u) of a solution u e (B(X, X Z))¥ of
# as in the way in [K~O], we will discuss solutions of the system .4/ intro-
duced in Theorem 3.2. Put
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IV)={peN;v<p<r, 37 —2; e N},
4.2) 2 (D=2, (D)= 20 1+ 2 5
R,z 9)= [ &—2,,2)
rEI(y)
and define the system of equations

4.3) N R, (z, 9)w=0 G=1---,D.

Then the v-th component v, of every microfunction solution v of /" satisfies
A, We assume moreover that

4.9 Rel, (z2)eR, foranyzeZ (=1, --,r;j=1,---,1),

where for a C e C, Re C means the real part of C. We remark here that
this assumption is always satisfied if we consider #’=t¢¥- - - t¥u in place of
u with a sufficiently large number k£ € IV because any component of char-
acteristic exponents of the system satisfied by #’ is larger by k than the
corresponding one of .#. For anyjand v we define a set of hyperfunc-
tion solutions {w,,, ;(¢,, 2); ¢ € I(v)} of the single equation

“4.5) Nt R, (z, 3w =0

such that w, , ; are hyperfunctions of ¢; with the holomorphic parameter
z and

(4.6) W, (t;, 2)=1t3® if ¢,>0,
4.7 W, i(t5, 2)=0 if +;<0and pe I()

and that for any z(0) € Z, the solutions w,, ;(¢;, 2(0)) (¢ € I(v)) of A7,
with z=2z(0) are linearly independent over C. For example we may define

v tj v
(4.8) Wy () 2)= t;w<z>(1 + J TR G, z)ds)

if 27 —2; e N' and x> and there exists no element w in I(v) with x>
o>/, Then for « € I(v)}, we define

(4’9) wa,u(ta Z)= wal,v,l(tl’ Z) ttt waz,v,l(tz! Z)'

Then putting W)=, - - -,v) € I(v)*, we have

j=1

l
(4.10) Wt =11 (=TI ).
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Let (¢, x, z) be any hyperfunction solution of the system .# with
support contained in C1,(X,) X Z, where Cl,(X,) denotes the closure of
X, in X. Then using the Be ,&, in Theorem 3.2, we uniquely define
Gu(X, 2) € Byyz (@ e Iv),v=1, - -, r)such that

4.11) B(t, x,z, D, D) sp()=sp(v(z, x, 2))

with

(4.12) ut, x, 2),= B, (X, 2IW, (1, 2)
a€I(v)!

in a neighborhood of /1:{(0, x,2; (W—12 z,dt)oo) e v —1S¥(XXZ);
z,#0 for i=1, - . -, [} because the y-th component of the left hand side of
(4.11) is a solution of A7. This is equivalent to say

4.13) sp(@)y=A(t, x, z, D,, D) sp (u(t, x, z))

with the 4 ¢ M(N, r; ;&) in Theorem 3.5. Then we define the boundary
value (1) € (Byxz)" of il ou the edge Y by

4.14) B, =dw,, for y=1, ---,r.

; We remark that the condition 5()=0 means 7#=0 in a neighborhood
of YXZ. This is proved as follows: Suppose p(#)=0 and sp(@)=+0.
Let v the largest number satisfying sp(v),#0. Since Q, in Theorem 3.2
are upper triangular matrices, we have (3;—A2, ;(z))sp(v),=0 for j=1,

-+, 1. Hence sp(v),=sp(Y(x, 2)t*»®) with a e #y,, and therefore
Yy=¢,,=0. This contradicts the assumption. Thus if f(#)=0, then
sp(#)=0 and hence #i=0 in a neighborhood of ¥ X Z because of Holm-
gren’s theorem for hyperfunctions.

Let ,%(X,, #) denote the space of all solutions of .# which are
functions in (;Z,(X,))". Let €.(X, X Z) denote the space of all distribu-
tions on X, X Z which can be extended to distributions on XX Z and we
put ;€W X, M)=,BX ., £)N(FL(X.XZ)". Letube an element of
zBX,, #). To define the boundary value f(x) of u, we use an extension
theorem for u to a function # mentioned above. Then we require the
following assumption

(4.15)  For any wall Y, there exist an m; € N and a matrix R;e M(N; ;D)
such that every component of R; is of order <m; and R; is of the form

R,=R(t,x,29)+t,S,t,x,2,9,D,)

with [9/0t;, R;]=0 and moreover det R,(t, x, z, s) is a polynomial of just
degree m,N for any (t,x,z) e Y, X Z. '
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The condition (4.15) means that the equation Ru=0 has regular
singularity along the wall ¥;. Then we have

Lemma 4.1. Assume (4.15) and moreover

(4.16) det R,(t, x, z, k)0 for any (t,x,z) e Y, X Z and any negative in-
teger k.

We put X;=1{(t,x)e X; t,>0 for v£j}. Then for any ue ,B(X,, .//)
there exists a unique i € (; B (X))~ such that

| X, XZ=u,
4.17) supp #Cthe closure of X, X Z in X; X Z,
R,ii=0.

The extension #i has the following property:

(4.18) If Pu=0 with a Pe M(1, N; ;%) (ie. P=P(t, x, z, 9, D,)), then
Pii=0.

(4.19) If ue ;€ (X., M), then ii € (,2'(X,)".

Proof. If N=1, the theorem is proved in Corollary 4.7 and Corollary
5.11 in [K-O] and Lemma 2.18 in [O-S] and Theorem 3.1 in [O 2]. We put

mj k
R;=3 378, (t, x, 2, D,)t* 9~
k=0 =0

= 3 Sult; %2 DID(T1 04997
it+tks=mj v=

with matrices of differential operators S, , of order <i. The assumption
says that S, , e M(N; ;7 5) is invertible. Hence there exists an invertible
matrix ¥V e M(N; ,8%2) defined in a neighborhood of (0; dt;) e T*(X X Z)
and satisfies R,=V(9p/— > 74T, 9%) with suitable T, e M(N; ,69).
Hence by the same argument in the proof of Theorem 4.5 in [K-O], we
can prove that the map

(4.20) R (% jx s B xx ) —>(Hy 5 s B x5 )"

is bijective, which corresponds to Corollary 4.6 in [K-O]. Then owing to
the flabbyness of the sheaf of hyperfunction, we have a unique # e
(B(X; X Z)¥ satisfying (4.17) (cf. Corollary 4.7 [K-O]). Since R,(3,,#)=
9, R,i=0 and supp 0,,#C Y, XZ and since the map (4.20) is injective,

2=

we see that @ e (;Z(X))".
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The above is proved also in an elementary way as in the proof of
Theorem 3.1 in [O 2] by using Theorem 2.1 in [O 2], which mentions a
property of the operation of the adjoint of R; on the space of holomorphic
functions.

The proof of (4.18) is the same as that of Proposition 5.10 and Corol-
lary 5.11 in [K-O]. On the other hand (4.20) holds even if we replace
Bxyz BY D%z, Which is easily obtained by the same way as in the proof
of Lemma 2.18 in [O-S] (or Theorem 3.1 and Lemma 3.2 in [O 2] if we
use the fact that R,(¢, x, z, k) is invertible for any negative integer k). This
assures (4.19). ' Q.E.D.

This lemma immediately implies the following (cf. the proof of
Theorem 5.12 in [K-O] and the argument before the Proposition 2.20 in
[O-S]):

Theorem 4.2. Assume (4.15) and (4.16) for j=1, ---,1. Then for
any u e ;B(X,, M) there exists a unique & e ,B(X) such that

| X, X Z=u,
“.21) supp #C Clx(X,) X Z,
Q=0 for any Q € (,24)" with Qu=0.

Moreover if i e ;€(X., M), then ii € (;2/(X))".

Now we will define the boundary value B(u) of u € ,#(X,, #) when
A satisfies the condition (4.15). Considering ¢¥- - - t¥u with a large positive
integer k if necessary, we can assume the both conditions (4.4) and (4.16).
Then we have a unique extension # satisfying (4.21). Then by (4.11)
and (4.12) and (4.14), we define pu)=p@)( € (;#(Y))"). Moreover if u e
265X, M), then Bu) € (;2(Y))" because of Lemma 2.19 in [O-S] (cf.
Proposition 2.20 in [O-S]).

Definition 4.3. Assume that the system M with regular singularities
along the set of walls {Y,, - - -, Y,} satisfies the condition (4.15). Then we
can define the map of taking the boundary values

| B: 2B, M)—> (B Y)Y
(4.22) U U
SE Ky M)—>(D (Y)Y

in the way mentioned above. ~The v-th boundary value p(u),, which will be
denoted by B,(u), is called the boundary value of u with respect to the char-
acteristic exponent 2,(2). »
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If a function u e (,# )" satisfies R;u=0 with the R; in (4.15), then
supp sp(») is contained in the set {(, x, z; ¥/ — 1(3] &,dx,+ > r,dt;)o0) €
N —1T*XX Z; det (0, (RN, X, z, 7, £)=0}. Hence by the argument in
Proposition 2.15 in [O-S] proves

Theorem 4.4. We fix a z(0) e Z. Then there exists a neighborhood
V of Y in X which has the following property: If a function u e ,8(X., M#)
satisfies B(u(t, x, z(0))) =0, then u(t, x, z(0)) is identically zero in VN X ..

Now we consider the coordinate dependence of the definition of
boundary values. We only consider the coordinate transformation (#/, x")
—(t, x) of the form #)=c,(t, x)t; with c,(t, x) e o satisfying c;>0.
Hence Y, (resp. X,) are also defined by t}=0 (resp. t;>0, - - -, t;>0).
Define the line bundle over Y X Z

(4.23) L, =(T%,,,(XXZ)®1OR . . . Q(T¥,x (XX Z))®w12,
Y Y

Then the following theorem gives a sufficient condition for 8,(u) to
be a hyperfunction section of L, (,, (cf. Theorem 5.8 in [K-O]):

Theorem 4.5. We fixave{l, -- -, r} and define

1) ={p e N;v<pu<rand 2; —2; e N'—{0}}
Ufre N;v<pu<r, 22=2; and O, ,,(2)+0 with a suitable j}

and
VAKX, M), =Tu & B, M); 5,(0)=0 for pe 10}

Jfor a small neighborhood V of 0 in Z.
(i) The definition ,%(X ., M), does not depend on the choice of local

coordinate systems.
(ii) For any u e ,B(X., M),, the hyperfunction valued section

“4.24) B u)(dt )@ - . - (dt )@

of L,, depends neither on the choice of local coordinate system nor on gen-
erators P, - - -, P, to define . It depends only on the ,</ ,[s-Module .4
and its basis Uy, -+ -, U,

(i) Let a(t, x, z) be a non-vanishing function in ,/ x. For any P e
2Dy and any f € ,B(X,, M),, we put P*=aPa~" and denote by BXaf) the
v-th boundary value of af which is defined by replacing P, and P/, by P¢ and
P’s, respectively. If we do not change .4 and 0, - - -, U,, then

(4.25) BAaf)=a(0, x, 2)B,(f).
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We remark here that .# is defined by (; ¢ [sD)Y/> K, o v[sla(P;)
with suitable P,, - - -, Py € ;9 satisfying P,u=0 and that .# is a locally
free ,/,-Module of rank r (¢f § 3).

Define the ;.27 ;[s]-Module

(4.26) N (s,—2,,@)w,=0 (=1,---,1)
with a free basis w, over ./, and put
(4'27) '/V”: ("9J'_—zv,j(z))wv=0 (j= 1’ St l)

with one unknown w,. Let .#Z, be the quotient s/ ;[s]-Module of .7
defined by

(4.28) 7,=0 for pe Iy
and let ./, be the quotient ;& ,-Module of &, @A =(,&,)"u defined by
(4.29) O(v,)=0 for peI(vy

with @ and v, in Theorem 3.2. Let 7 (resp. 7) denote the natural projec-
tion of &, QM (resp. .#) onto M, (resp. .#,). We note that ,Z(X,, A),
={fe,BX,, M); sp(f) is a solution of .#,}. To prove Theorem 4.5
we prepare the following

Lemma 4.6. (i) The definition of M, depends neither the choice of
local coordinate system nor the choice of A in Theorem 3.2

(ii) There exists a homomorphism of N, to M, which is defined by
w,=C[t, x,z, D,, D Yu witha C,e M(1, N; ;&) and uniquely determined
by the condition

(4.30) 7(0)=0.(C)raa.

(i) Assume (4.4) and (4.16). For any f ¢ ,B(X,, M),, let f be the
extension in Theorem 4.2. Then sp(f) is a solution of M, and

(4.31) sp (BN, 2)t2@)=C(t, x, z, D,, D,) sp(f).

Proof. Put I(vY’={v+1,v+42,-.-,r}. Only in the proof of (i) and
(ii), we denote by .#, and .#, the corresponding ones which are obtained
when we replace I(v)’ by I(v)” in the definition. Then we will prove (i)
and (ii) by the induction on the number of the elements of I(v)”’. We
remark that without changing the condition (3.8) for Q,, we can assume
I(vY =1(v)” by changing the order of the basis {v,, - - -, v,}.

Assume y=r. Then .#Z,=.4 and M,= ,& XA and therefore (i) is
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trivial. Put C, the last row of B in Theorem 3.2. Then C, satisfies (4.30)
and the correspondence w,— C,u clearly defines a ,&,-homomorphism of
AN, to M, Moreover the same argument as in the proof of Theorem 3.2
(iii), which is based on Theorem 2.4, proves the uniqueness assertion in
the lemma.

Assume v<r. Then by the hypothesis of the induction, we see that
the definition of .#, ., and the image of the homomorphism do not depend
on the choice of coordinate systems. This proves (i) because .#, is
naturally isomorphic to the quotient of .#,,, by the image. Define Q¢
M@; 26Q) by @%,,=0;,.» for p,p/=1,---,v. Let v(v) denote the
column vector formed by the residue classes of @(v), - - -, O(v,) in A,.
Then 9;u() =Q;v() for j=1, - - -, . Since Q satisfy the same property
as (3.8), we can prove (ii) by the same argument as in the case when yv=r.

The statement in (iii) clearly follows from (i) and the definition of
the boundary value 8,(f). Q.E.D.

Proof of Theorem 4.5. Lemma 4.6 (i) clearly implies Theorem 4.5
(i).

First assume the conditions (4.4) and (4.16). Then Lemma 5.9 in
[K-O] and Lemma 4.6 prove Theorem 4.5 (ii) (cf. the proof of Theorem
5.8 in [K—0]). On the other hand it is clear that 5” =af in (iii). Then if
we put C*=a(0, x, z)C,a~! with the C, in Lemma 4.6 (ii), then

sp(Bi(af)t2®)=Cysp(af).
This follows from Lemma 4.6 (ii). Since

Cy Sp (le~) =a(07 X, Z)C,,a'l sp (af):a(O, X, Z) Sp (ﬁv(f)t?(z)),

we have (ii).

Now we consider the general case. For a k e Z, we put t*=t¢%...¢%,
Let k be a sufficient large positive integer so that wu(k)=1t"u satisfies the
conditions (4.4) and (4.16). Then P,, P}, R, and s; change into P,(k)=
t*P;t-%, Pi(k)=t*P,t %, R(k)=t*R;t~* and s,(k)=s;—k, respectively.
Let (#/, x’) be another coordinate system. Then #;=c,(?, x)t; with ¢; >0.
Hence under the coordinate system (¢, x’), u(k) changes into u(k) = au(k).
Here we put a=c(t, x)*- - -¢,(¢, x)*. Moreover P;, P}, R; and s; change
into P,(kY =aP,(k)a', Pi(kY=aP;(k)a* and R,(k)Y=aR,(k)a™' and
s,(k) =s,(k), respectively. Hence under the coordinate system (¢, x) we
have g2(t"*u) =a(0, x)B,(t*u) owing to what we have just proved. Let §;
denote the map of taking the y-th boundary value under the coordmate
system (¢/, x’). Then we have

Bt )= B 1)e,(0, o k- (0, Xy,
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Since Bl(w)=p.*(t'*u) and B,(u)=p4,(t*u) by definition, we have the state-
ment in (ii). Moreover the same argument as in Lemma 5.13 in [K-O]
assures that the definition of 8,(x) does not depend on the choice of k.
The statement in (iii) is clear from (ii) and the same statement under
the conditions (4.4) and (4.16). Q.E.D.

Corollary 4.7. Let A" : P/u’"=0 (i=1, ---, M) be another system
of differential equations with regular singularities along {Y,, - - -, Y.}, where
P! are in (;23)" and v is a vector of N unknown functions. Suppose M"'
has the same indicial equation .4 and also satisfies the conditions to be able
to define the boundary values of the solutions. For any f ¢ ,%(X,, M#),, the
y-th boundary value of f defined by using M", A and ©,, - - -, U, coincides
with B,(f) if f is also a solution of M".

In fact, to prove this we may assume M"’>M and P;=P} for i=1,

-+, M’ (cf. (4.1)). Then the corollary is clear from Lemma 4.6.

§ 5. Ideally analytic solutions

The concept of ideally analytic solutions is introduced by [K-O].
We will generalize this in our situation. We will use the same notation
and consider the same system .# with regular singularities as in Section 4.

Definition 5.1. A solution u(t, x,z) e ;B(X., M) is called ideally
analytic if and only if )= (L v)".

Let = denote the natural projection of (v —1S*X)X Z (or (T*X)
XZ) to XxZ. We identify (v —1S¥X)XZ and (T#X)XZ with
N =18%,,(XXZ) and T¥%,,(XXZ), respectively. For a coherent left
29%-Module 4’ we put

.1 SSM'={p e (T*X)XZ; (56 x),Qn "M #0},
where (;6x), is the stalk of ;& at p. Then we have
Theorem 5.2. For the system M =(;D)"] ¢, we put

M =2 (I N (2.
Then if

(5.2 SS M |a (YXZ)T(TEX)X Z,
all the solutions in ,#(X,, M) are ideally analytic.

Proof. 1t follows from the definition of the boundary value that
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ue ,B(X,, #) is ideally analytic if and only if
(5.3) supp (sp (F"u)) |7 (Y X Z)C (W — 1 SEX) X Z,

where k is a non-negative integer and 7*u is the extension which is used
to define the boundary value. On the other hand it follows from Sato’s
fundamental theorem (Chapter II, Theorem 2.1.1 in [S—-K-K]) that (5.2)
implies (5.3). Q.E.D.

For simplicity we assume hercafter that Z is a point, which means
that we do not consider holomorphic parameters. Hence the character-
istic exponents are elements of C*. Put {3,}U --- U{2,}={2}, ---, 2/} so
that the condition i+ j implies ;2.

Theorem 5.3. (i) Assume a solution u(t, x) € (X, A) is locally of
the form

(5.4) u(t, x)=72 a,(t, x)t*q,(log 1)

near the edge Y, where the sum is finite and a; e M(N, 1; /), ¢, e C,

g; € Cllog t] and log t =(log t,, - -+, log t,). Then u is ideally analytic.
(ii) There exist finite number of polynomials g, (log t) e C[log t]

such that any ideally analytic solution u e B(X ., M) has the expression

(5.5) u(t, )= a,, (t, )t*q, ,(log 1)

with suitable a, ; € M(N, 1; of 1) near the edge.

Let u(t, x) be the ideally analytic solution of the form (5.5). Fix a
vell,---,r}andalso fixake{l, ---,r'} so that 2,=2,. If B(u)=0 for
any p with 2,—2, € N, then a, ;=0 for any i and j satisfying 2;,—2; € N*.
On the other hand, if B,(u)#0 and B (u)=0 for any pe{l, ---,r} with
A,—2, € N*—{0}, then 33, a,, 0, X)q,, ,(log t) is not identically zero. More
precisely, ifu e (X, M), (¢f. Theorem 4.5), we have

(5.6) B.)(x)= Z_] B(x, 9+ )ax, 50, )q5, ;(10g 1).

To prove the theorem we prepare

Lemma 5.4. Let L be a positive integer and let C; be upper triangular
matrices in M(L; C) (j=1, ---,1). Suppose any diagonal component of
C; is not any negative integer. Put

iu(,=0 for i=1, ---,n,

(5.7 No: 0%,
9u,=Cju, for j=1, - L
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Then for any P e (L), we have
(5.8) Puy= p(t, x)u,

with a suitable p € (< y)*. Moreover if P=P’ mod 3, (§4)"0/ox; with a
P’ e &, then we can choose p so that p(0, X) =73 et PX)Cs* - - C* with
0P =Yecrt PLD)s".

Proof. By Spath’s theorem for micro-differential operators, we have
Y Sp

P=3 S.0/ox.+ 3 51(9,— C)+R(x, D)

with S;, §7 and Re(64)* Since Re (L)% R is of the form R=
> et RAx)D; = with the locally uniform estimate in a complex neighbor-
hood of Y:

Tim '[RG all<oo.

This shows that > ,cx: 2°Ro(x) [152: []52:(C,+ k)" converges to an cle-
ment p(z, x) of (& )%, which implies the lemma. In fact, by the equation

Dty =Kt o159 0y =(C; +R)t e
we have D;'t% 'u,=(C,+k) 't*u, and therefore Ru,=p(t, x)u,, ~ Q.E.D.
5 bi f

Proof of Theorem 5.3. Considering ¢ *u if necessary, we may assume
(4.4) and (4.16).

(i) We may moreover assume Rec; € R,. Then u(t, x)Y(¢) (=
> sa,;t%q(log t)) is well-defined, where Y(¢) is the product of Heviside’s
functions Y(t,), - - -, Y(¢,). Since 9,¢%=c;t%, Pu(t, x) has the similar
expression 3., a/(t, x)t¢q’(log t) for any P € 9%. Here {¢/}={c;}. Hence
if Pu=0fora P e M(1, N; 2%), then P(uY(¢))=0, which means uY(¢) is
the extension # used to define the boundary value. Since supp sp(uY(?))
C+/—18%X, we see that u is ideally analytic.

(ii) Let Pe&,. Then for any a(t, x) ¢ oy and « ¢ N!, we can
find a,(t, x) € o/ ; such that

14 ag

(59 Pspla(t, x)log )12 =37 > a(t, x)9%:- - -9 sp((log 1)°t%)
=1 p7=0

and

(5.10) ; a0, x)9%(log t)Pt% =g (P)(x, Da(0, x)(log t)°t%.

In fact, sp((log ¢)*t*) satisfies the system
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——w(a) =0 for i=vl, ~e.,m,
(5.11) ox;

('91—2,,,j)a1+1w(a)=0 for ]::l, cee I

Using the matrix equation for {#w(e); B e N!, 08, <, forj=1,.--,1},
we have

G.12) Pa(t, x)w(oz):Zl_,; ﬁi:;o ayt, )9 w(a)

by Lemma 5.4 with suitable a, € .o ; satisfying (5.10). This means (5.9).
In the definition of f(x) we may assume w, (¢) (cf. (4.9)) are con-
tained in {(log #)?#%; e N'}. Then

(5.13) (B(t, x, Dy, D) sp (@), = 2 vra,(x) sp ((log £)°1%).

Here the sum is finite and we remark that +, , € &/ because u is ideally
analytic. Since sp (@) =4A4Bsp(@i) with the 4 e M(N, r; &) in Theorem
3.2 and since for an L € N the space spanned by {sp((log ¢)*t%); 1<, <L,
1<i<lI} over C is invariant by the maps 9,, the above argument proves

(514 sp (@) = Zj} a,5(t, ) sp((log t)°t%)

with suitable a,, e M(N,1; «/5). Then by Holmgren’s theorem for
hyperfunctions we have (5.5) in the intersection of X, and a neighborhood
of the edge Y. Moreover the above argument also proves Theorem 5.3
(ii) except for (5.6).

We note that the systems of the equations .#’: ¢.(P,)(x, Hu=0
(=1, ---,M) and 4 : (9;—0.(Q,)(x, NNv=0 (j=1, -.-,]) are equi-
valent by the correspondence #=04(4)(x, U and T=0.(B)(x, Na. We
fixave{l,--.,r} and assume u € Z(X,, #), and define v(, x) € (€x)
by

{ if 2,%#2,
B(sp (), if 2,=2,

for ¢/ e{l,---,r}. Then the condition (3.8) assures that u(t, x),=
B.()(x) sp(¢*) and v(t, x) is a solution of the system .4, which implies
0. (B),(x, Na(A)(x, Nv(t, x)=B,(u)(x) sp(t%). Combining this with (5.9),
(5.10), (5.13), (5.15) and the equation sp (&) = A(¢, x, D, D,)(Bsp(&)), we
have (5.6) because a.(4)(x, u(t, x)=>; a, ;(0, x)t¥q, (log t) under the
notation in the last part of Theorem 5.3. Q.E.D.

(5.15) u(t, x), =
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Now we will review the definition of boundary values in a simple
case. Hence suppose Z is a point and

(5.16) L,—2, ¢ N'—{0}  for gu=1,---,r
and
(5.17) 0, are diagonal matrices.

Moreover suppose that ¢,(P;) do not depend on x. Here P, are the
operators used to define the indicial equation. Consider the system of
differential equations

(5.18) 5 (P)(Pu=0 =1, -, M).

We remark that (5.17) is equivalent to say that there exist r independent
solutions of the form

(5.19) u(v)=S21"

with suitable SO € M(N, 1; C). We arbitrarily fix u(v) and define 4 e
M(N, r; C) so that the y-th column of A4 coincides with S, (v=1, -- -, r).
We can find a Be M(N, r; C[s]) so that AB(9) > c,u(v)=> c,u(v) for
any c=(c, - -+, ¢,) € C". By using these 4 and B, we can define the map

(5.20) B,: #(X ., #)—>{hyperfunction sections of L, }
which has the following property: If 8,(w)=0 for any v=1, - - -, r, then

u=0 in a neighborhood of the edge. Put{a, ---,2}={1}, ---, 2.} so
that 2{=2} if i=j. If uis ideally analytic (i.e. all 3,(u) are analytic), then

(5.21) u=> Sit, V)t
i=1
with suitable S; e M(N, 1; .o/ ;) which satisfies
(5.22) 38,0, X)ti=3" B(u)SCtb.
i=1 v=1

We remark last that for each i, the equation S;(0, x)=0 implies that
S;(2, x) is identically zero.

§ 6. Induced equations

In this last sectibon, we will discuss differential equations which are
satisfied by the boundary values defined in Section 4. We use the same
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notation and the system .# with regular singularities as in Section 4.
Especially we use the same notation 7, .4, 4, 4, B, Q; and A", 4, B, Q;
and the characteristic exponents 4, - - -, 4,.

For example, for any solution of .#, we can define its boundary value
on every wall. Then the boundary value satisfies many differential equa-
tions and the system of the equations also has regular singularities. It is
very important to consider such induced equations. One of the applica-
tion of the result here will be found in [MaO].

Theorem 6.1. Fix a solution u(t, x,z) e ,%B(X., #) and an index
ve{l,---,r}. Denoting by G e M(r; Z) the diagonal matrix whose i-th
component equals 1 if 27 =2, and 0 otherwise, put B, (u)=GpW). Suppose

6.1 B:w)=0 foranyiec{l, ..., r} with 2] —2 e N'—{0}.
(i) Let P(t,x,2, 9, D,)e (,2L)" with Pu=0. Then B (u) is a

solution of the system

(6.2) {P(()’ X, Z, S, Dz)A(X, Z)SaWZO (C( e Nl),

sw=0,(x, Z)w =1 ---,1).

Especially when 2 #2; for any i e {1, - - -, r}—{v}, we have

(6.3) P(0, x, z, A,(2), D,)A(x, z)B,(u)=0.

(ii) Let P(t, x,z, 9, D,)e M(N; ,21%). Suppose Pu=0 and
P, x, z, 5, D,)=0(x, z, 5, D)

with a scalar Q € ;P ,[s] and moreover suppose B does not depend on x.
Then

(6.4) O(x, 2, 1(2), D;)B.(u)=0.

Proof. We may assume (4.4) and (4.16). Then the statement in
(i) immediately follows from the definition of the boundary value and
Theorem 3.4 with ¥=0 and ¢$=s".

Since B(z, s)A(x, z)=1, mod 3, ;o7 [s](s;— O,), we have (6.4) by
considering B(z, 9); P in place of P satisfying the condition 27 =2;. Here
B(z, 5), denotes the i-th row of B(z, s). Q.E.D.

To define boundary values we assumed (4.15), which assures that the
system .# has regular singularities along any subset of the walls (at least
after the coordinate transformation #;—¢% with a suitable k € IV,). Hence
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it is natural to discuss the boundary value problem corresponding to this
subset of the original walls and the induced equations for the boundary
values.

Fixan l’ e Nsothat 0<{l’<l and put t=(/, t"") with t'=(t,, - - -, t;.)
and t”=(t;.p - -+, 1). In the same way, we put 9=(¢,9”) and s=
(s, 5"). We assume that there exist P} € (£ N(;Z2,)") such that the
system of differential equations

6.5) M:Plu=0 (=1, -, M")

has regular singularities along the set of walls {Y}, - - -, Y.} with the edge
Y=Y,N---NY, Let.# be the indicial equation defined by P; and
let 47, - - -, 4, be the characteristic exponents. Then we moreover assume
the following: ¢,(P}) € 7, any characteristic exponent does not depend
on (¢”, x) but holomorphically depends on z and there exists a similar
system which satisfies (3.2) together with the above conditions.

For example, the system R,u=0 (j=1, - - -, ') satisfies all the above
conditions if the following hold: Any R, belongs to M(N; ;9,), 645(P)
belongs to _# for any row P of R,, and any root of det R,(¢, x, 2, $)|y/xz
=0 does not depend on (¢”, x) € Y’ but holomorphically depends on z
forj=1,...,7I.

Using the system .#’, we can define the map of taking the boundary
values

(6.6) B2 B(X,, M)—>(B(Y)),

where Y7, is an open subset of Y’ defined by ¢,.,,>0, ---,#,>0. Fix a
characteristic exponent 1, and put

6.7 %X, M),={ue,BX., #); Bi(w)=0 in the intersection of a
neighborhood of Y and Y7, for any i e {1, - - -, r'} satisfying 1,(0)—
2(0) € NV —{0}).

Let G' e M(r'; Z) be a diagonal matrix whose i~th diagonal com-
ponent equals 1 if 2/(0)=2,(0) and O otherwise, and put g4(u)=G"g'(u).
Then Theorem 6.1 proves that

63 {P(O, t7,x,2,5,9",0,1"D)s A", x, 2)B)=0 (a & N¥),
V@~ 68w =0

with

(6.9) i) =05(t", x, 2 w) (=1, -+, 1)
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for any P(¢/,t", x,2, 9,9, ¢'D,, t"D,) e (£ N(z2,)"). The equations
(6.8) and (6.9) assure that g (u) satisfies a system of differential equations
with regular singularities along the set of walls {Y,,,NY’, ---, Y, NY"}
with the edge Y. We will determine its indicial equation.

We remark that in a neighborhood of 0 we have the following direct
sum decomposition as ;.7 ;[s]-Modules

(6.10) M= MBM*
where
Me={wed; T (s;,—2 ) w=0fori=1,...,1I}
B0 =123,0)

and
A¥={we H;we ﬁ 2 [s1(s; — 2,(0),)w }.
i=1

Then it follows from the definition of ' that the map induced by @~
A'G’B'u defines the projection map of .Z onto .7 .

Now consider the system of differential equations (6.8) for P, (i=1,
..+, M) which are used to define .Z. Then its indicial equation, which
is a coherent ,.7,[s”]-Module and will be denoted by .#”/, also has a
structure of a C[s’-Module. So we consider it as a ,.7,[s]-Module.
Then .#" is naturally isomorphic to .# as ;.27 ,[s]-Modules.

Put

2 B(Y,, M)={u(t", x,2) € (;B(Y,))"; uy is a solution of
(6.8) and (6.9) for any P e (£ N(;2:)")}

and I,={ve{l, - --,r}; (A1 - -, 4,,)=2/0)} and let r”” be the number
of the elements of I,,. Then we can define the map of taking the bound-
ary values

B": 2B, My)—> (B (X))

because the desired extension of the solution is assured by the induced
equations corresponding to R,(j=1I1"+1, ---,I). On the other hand, we
can also define the map

Bx: 2 BX ., M)y—>(zB(Y))™
v u ——>(8.()),e1,

Here we denote by A’, B’, A’ and B’ (resp. A, B”, A” and B") the
matrices which are used to define g’ (resp. §”), corresponding to the
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matrices 4, B, A and B used to define . Fix a matrix G, e M(r", r; Z)
so that 8, =G,S. Then we have

Theorem 6.2. For given B and f’, we can define B so that
(6.1 B.=p"G'B

on ;B(X,, #), More precisely, we have the following:
Given B and B’ corresponding to B and ', respectively, we can define

B’ so that
6.12)  Guo(BYu=04(B"YG'04(BYa and G,Bu=B"G By,

Jfor all microfunction solutions u of ,& QM satisfying Bju=0 for anyi e
{1, - -, r'} with 2,(0)—2/(0) e N¥ —{0}.

Proof. We remark that A4’ and B’ are originally defined in a neigh-
borhood of

A ={(t, x,z; > v,dt,+ 2 &dx) e (T*X)XZ; t,=0, - - -, t,,=0, r,#0,
o0 #0,7,,,=0, - -+, 7,=0,&=0, ---,£,=0,(t,x,2) e V},
where ¥V is a small neighborhood of 0 in XX Z. Since P;’ are of the forms
P, ", x,2, 9,9, t'D,, t"D,) e (;9,)",
our construction of 4’ and B’ in Theorem 3.2 shows that A’ is of the form

A,(ts X, Z, Dt'a 19”9 Dz): Z A;(l, X, Z, ‘9”3 Dx)Dt_’a

e NV
and B’ is of the form

B/(ta x; Zy Dt’s "99 Dx): Z Z B;,ﬂ(t: X, Z: "9U’ Dz)Dt_’a"g/ﬁ

{Bl<ord B/, NI ae NV

with matrices 4, and B, , of differential operators of order <|«| which are
of the above forms. Let

6.13)  (9,—QUt", x, 2,9, t"D,, D)W =0  for i=1,---,1'

be the system which is obtained by applying Theorem 3.2 to define 5.
Then the estimate (1.1) assures that 4’, B’ and Q] are defined in a neigh-
borhood of

M=, x, z; 3, r,dt; + >, E,dx;) e (T*X)X Z; t,=0, - - -, t,=0,
TI;éO’ Y} Tl'ioy 51:09 DY Enzo, (ts X, Z) € V}
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Applying Spéth’s theorem of micro-differential operators to BA’, we define
CeM(r,r'; ;8,) by

v
C(t”a X, Z, D.m Dt):BA,+Z Rz("gz '—Q:)
=1

with suitable matrices R; of micro-differential operators. Put

C(t/,s x9 Z9 D:w Dt)z Z Ca(tl,a x’ Za D:m Dt“)Dt_’a'

€NV

Let .7 = ,& i be the direct sum of the system satisfied by Bu and that
by B’u with the vector u of the generators of ,&,&.#, and put

C= (8 g) e M(r+r’, ;6 4).

Then the correspondence ii—Cii gives a ,& ,-endomorphism of .Z. Hence
by the same argument as in the proof of Theorem 3.2 (iii), we have

~ 0 CN\. .
Cu:(o 0 )u by putting

CaD‘—,a f = }f Syt e, 2:3 ; __2: 0 NV,
(6.14) C:i———{ if a=(Z, ) —X(0) €

0 otherwise.
This means Bu= BA’B’u=CB’u=C’B’u. On the other hand, if u(z, x, z)

€ ;#(X,, M), then B’sp(i(t, x,z));=0 for ie{l,---,r'} satisfying
2,(0)—2/(0) e N¥—{0}. Hence by putting B” =G, C’G’, we have

B”G’B’ sp ()= G,.C'G’B’ sp (&))= G B sp (i) if ue ,4X,, MA),.

Moreover (6.14) proves B’ is of the form B”(¢”, x, z, D, D). Thus we
obtain the desired B’ and by using B” we can define 8’ so that (6.11)
holds. Q.E.D.

Theorem 6.2 immediately implies

Corollary 6.3. Under the notation in Theorem 6.2, we have

2BX,, M),={uec , BX,, M); Bw)=0 for any v e{l, ---,r}
which satisfies 2/(0)— (254, - - -, 22,) € NV —{0}}.

Especially, if 2,0)#(A, - -+, 4,,) for v=1, ---,r, then B(u)=0 in a
neighborhood of the edge Y for any u e ,B(X., M),. On the other hand,
Jor a given ve {1, ---,r}, if (A1, -+, 22,)#2(0) for i=1, ---, 1, then
B.(u)=0 for any u e ,B(X ., M),.
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In fact, the first statement is clear from Theorem 6.2 with Theorem
4.5, and the second and last follow from Theorem 6.2 with Theorem 4.4.
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