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§ 1. Introduction

Let G be a connected real semisimple Lie group, ¢ an involution of
G, and H the connected component of the fixed-point group G’ containing
the identity. Then G/H is called a semisimple symmetric space ([1], [5]).
We assume in this paper that G is a real form of a complex Lie group G,.
When G/H satisfies the condition

1.1 rank (G/H)=rank (K/KN H),

Flensted-Jensen [5] constructed countably many discrete series for G/H.
Here K is a og-stable maximal compact subgroup of G and “discrete series
for G/H” are equivalence classes of the representations of G on minimal
closed G-invariant subspaces in L*(G/H). In this paper we give a theorem
that describes all the discrete series for G/H. Especially there is no dis-
crete series when rank (G/H)+rank(K/KN H). :

The result of this paper can be described as follows.

Let g be a semisimple Lie algebra and ¢ an involution (¢*=identity)
of g. Fix a Cartan involution 6 such that ¢6=60s. Let g=§+q (resp.
g=t+4p) be the decomposition of g into the +1 and —1 eigenspaces for
o (resp. ). Let g, be the complexification of g and let g%, £ and §¢ be
subalgebras in g, defined by

g’=tNH+v—-1EN++v—1(pNH+prNa,
F=INh++/—1(pNG),  H'=tNhH++/—1(Nq.

Extend ¢ and 6 to complex linear involutions of g.. The restrictions
of ¢ and 0 to g¢ are denoted by the same letters. Then (g% % 5% g, 6)
satisfies the same condition as (g, £, 9, 4, o).

Let G, be a connected complex Lie group with Lie algebra g,, and
let G, K, H, G°, K*, H%, H, and K, be the analytic subgroups of G, cor-
responding to g, £, 5, g%, % 5%, §, and f,, respectively. Let K (resp. H?)
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denote the set of equivalence classes of finite-dimensional irreducible
representations of K (resp. H?) and let H?(K) denote the subset of H¢
formed by restrictions of holomorphic representations of K,. Then K
and A%(K) are in one-to-one correspondence via holomorphic representa-
tions of K,. Thus two corresponding elements of K and H*(K) will be
denoted by the same letter in the following argument.

Let D(G/H) and D(G?/K?) be the algebras of invariant differential
operators on G/H and G¢/K*, respectively. Then D(G/H) and D(G%/K?)
are naturally isomorphic via holomorphic differential operators on G./H..
Fix a maximal abelian subspace a? of p?=+—1(fNq)+pNq and a
positive system '(af)* of the root system 3(af) of the pair (g% af). Let
2 be an element of (af)¥ (i.e. 2 is a linear map of a? into C). Then the
algebra homomorphisms %¢: D(G%/K%)—C and X;: D(G/H)—C are defined
by the Harish-Chandra isomorphism D(G?/K?%)~S(ad)”, where S(af) is
the complex symmetric algebra on af, W is the Weyl group of 3(a?) and
S(a?)” is the set of W-invariant elements in S(ay).

Now we define the following subspaces in «/(G/H) and &/(G%/K?)
where /(X)) denotes the space of analytic functions on a manifold X.
Fora § e K~H%K) and 2 ¢ (a9)¥, we put

A(G/H; M)={f € &(G/H)| f transforms according to & under the
action of K and Df =2(D)f for all D ¢ D(G/H)}

and

A (GYKE; AD={f e L(G*|K?)|f transforms according to § under
the action of H® and Df =x¥(D)f for all D e D(G*/K*%)}.

Moreover we put
o (G/H,; %z)za@zdﬁ(c/lﬂ M)
and
A y(GYIK; M= D A(GK?; M)
seHA(K)
Here the above sums are algebraic direct sums. Then the spaces
A (G/H; M;) and of 1o(GYK?; MY) have the structure of g.-modules.

Flensted-Jensen has proved (Theorem 2.3 in [5]) that there is a g,-isomor-
phism

1.2 7 L (GIH; M)—>5f qo(GT[K?; MY)

which is obtained by the analytic continuation in G,/H..
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Let P¢=M"®AIN** be the minimal parabolic subgroup of G¢ deter-
mined by the pair (af, 3(a?)*) and p be the element of (ag)* defined by
o(Y)=4trace (ad(Y)|,+a) for Y eal. For 6 e HYK) and 2 e (ad)¥, we
put

B(G*[P*; L)={fis a hyperfunction on G*|f transforms according
to § under the action of H¢ and f(xman)=a*-*f(x) for x e G¢,
meM? ae A} and ne N*%}

where a*~¢ =eS-06 @ Moreover we put

Bna(GYPY; L)= @D H(GYP*; Ly).
scHA(K)

Then we define the Poisson transform
(1.3) P By G P L)—> 4o(GYK®; MT)

by the formula

@D@=] | ecrrmem o

for xe G* and f e #,4G°/P?; L;,). Here H(x)=Y, if x=k,exp Yn,
ke K% Y,ealand n,e N*°.

Remark 1. (i) Let (r, V) be a discrete series for G/H and V. the
subspace of K-finite elements in V. Then it is clear that there exists a 2
in (aD)F such that V,C o (G/H; A4;)NL*(G/H) and that Re (1, @a)>0
for all @ € X(a?)*. (See Remark in § 4).

(ii) If Re {2, @>>0 for all & e X(a¥)*, then it follows from the
result in [7] that &, is a g,-isomorphism.

(iii) For every function fin #,.(G%/P%; L,), it is clear that the sup-
port of fis a union of H?-orbits on G?/P*°.

Here we prepare notation in the case of rank (G/H)=rank(K/KN H).
Let a; be a maximal abelian subspace of p?N§?. Then aj is a maximal
abelian subspace in p?, which is equivalent to rank (G/H)=rank(K/KN H).
By Section 3 Proposition 2 in [9] we can choose elements x;, - - -, x,, of
G? such that Ad(x)al=qa] and that {H%x,P?%|j=1, - - -, m} is the set of
all the closed H¢-orbits in G¢/P%(H*x,P®+Hx;P*ifi+j). For each
J(1<j<m), we define 2(a));, n*!, 2 e (a))¥, o’ € (a))* and p] € (a))* by

S(a));={aoAd(x;)" e 2(a))| @ e Z(ad)*),
nH=Ad(xn*?, F=20Ad(x,)!, p'=poAd(x,)""
and  p{(Y)=}trace (ad(¥)],+/nge) for ¥ e al,
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respectively.
Now we can state the theorem of this paper as follows.

Theorem. Let 2 be an element of (a%)F such that
(1.9 Re (2, ay>0 Sfor all & e 2(ad)*.

(i) If o (G/H; M)NLHG/H)#{0}, then

(1.5 rank (G/H)=rank(K/KN H)
and
(1.6) Re{2,a)>0 Sfor any & e 3(a?)*.

In the following we assume the condition (1.5).
(ii) Put
BLG P LYy={f € B«G*P%; L)|supp fC Hx,;P}.
Then under the condition (1.6) we have the surjective g .-isomorphism

770 Pt @ Bhu(GUIPY; L) (GIH; M) (" LXG/H)
=1

by Flensted-Jensen’s isomorphism and the Poisson transform.

(iii) If the space B4(Ge/P¢; L)) is non-trivial, then the following two
conditions are satisfied.

(a) Let o be a compact simple root in X(ay); (i.e. g*(ay; )ChH?).
Then

(A —p!, ay>0.

(b) Put pj=a"4p'—2p]. Then pj belongs to the lattice in (ay)*
generated by the highest weights of all the finite-dimensional irreducible
representations of K with K\ H-fixed vectors. (Note that ¥/ —1q) is a
maximal abelian subspace of ¥ q=+/—1(p? N §%).)

(iv) Suppose that B4.(G%/P%; L)#{0}. Then the g.,-module

#5G[P*; Ly)

is irreducible under the following condition (1.7).

Let of be a maximal abelian subspace of m* and put ol =af+aj. Let
2(ad) be the root system of the pair (g., a%). For every a e 3(af) let @
denote the restriction of a to al. Choose a positive system 2(a%)* of 3(aj)
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so that 2(aj)* is compatible with X(a))* (i.e. the condition a e X(a%)* and
a=0 implies @ e X(a®)*). Put p,=% >, a where the sum is taken over all
a e 3(ad)* such that w=0. Then — (24 p,) parametrizes the infinitesimal
character of the g,-module #.G*/P%; L)).

(.7 (A4 Py ) >0 Sor all a e J(a%)*.

This theorem is divided into three theorems. Theorem 1 is proved
in Section 4-Section 7, Theorem 2 in Section 8 and Theorem 3 in Section
9 and Section 10.

Remark 2. (i) Suppose the condition

(1.8) g is equal to the highest weight of a finite dimensional representa-
tion = of K with KN H-fixed vectors.

Let 77 be the distribution on K?/M? defined by

(T, @:I o(kx,)dke
KNH

for p e C*(K?/M?). Then T’ can be naturally identified with an element
T in #(G*/P*; L;) with support in H%,;P? When (1.8) is satisfied, it
is proved in [5], Section 3 that T transforms according to the representa-
tion contragredient to ¢ under the action of H?. Thus we have

Bu(GOP*; L)#{0}.

Put =50 P(T{). (This is the generating function of discrete series
constructed by Flensted-Jensen [5].) If (2, &>>0 for all & € 2(a?)*, then it
follows from Theorem (ii) that - e L*(G/H). Hence we have proved the
conjecture “C=0" in [5], p. 274. (This conjecture was already proved by
the first author. C.f. [21].)

(ii) Suppose the condition (1.7). Then it is proved in Section 10,
Lemma 11 that the pair of conditions (a) and (b) in Theorem (iii) is equi-
valent to the condition (1.8). Hence it follows from Theorem (iii) and
the above remark in (i) that #%.(G%/P*; L,)+{0} (which is an irreducible
g.-module by Theorem (iv)) if and only if the conditions (a) and (b) in
Theorem (iii) are satisfied.

(iii) If M? is abelian, for instance when G/H is a group (ie.
G=G,X G, for some connected real semisimple Lie group G, and H=
{(g,8) € G|g € G,}) or when g? is a normal real form, then the condition
(1.7) is equivalent to the condition {2, @>>0 for all & € 2(a%)* which we
always assume. (4 is real-valued on a? by Theorem (iii) (b).) Hence by
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the above remark in (i), £%«(G%/P%; L,)+{0} if and only if the conditions
(a) and (b) are satisfied. When G/H is a group, we have therefore given
another proof of main results in [6].

(iv) Suppose that all the irreducible components of the root system
X(ag) are of type A,, D, or E, (n>2). Then it is proved in Section 10,
Lemma 10 that the pair of the conditions (a) and (b) is equivalent to the
condition (1.8). Hence it follows from the remark in (ii) and Theorem
(ii) that #4.(G%/P?; L)={0} if and only if the conditions (a) and (b) in
Theorem (iii) are satisfied.

(v) 1In general, there are discrete series which cannot be obtained
by the argument in (i) (c.f. [5], Section 8 when dim (af)=1).

(vi) When (X, a)=0 for some noncompact (i.e. g’(a;; @) Z 5%
simple root & in ()}, n~" o P, BL4(G*[P?; L;) are the K-finite functions
in a “limit of discrete series” for G/H.

(vii) The condition (1.4) is not necessary in the proof of Theorem
(iii).

In a subsequent paper we will give a proof of the following.

Proposition.  Suppose the condition (1.4). Then #4G*/P¢; L)+{0}
if and only if the condition (b) in Theorem (iii) and the following condition
(@’) hold. ‘ .
(@) Let{B, ---, B} be a sequence of roots in 3(a})} satisfying the
Sfollowing (i) and (ii).

(i) B, is asimple root in the set {« € 2(a})} |{a, Biy="+-={et, Bi-1)y

=0} for i=1, - - -, k.

1) {Bi, 20l —p"><Gmpg,Amyp )iy iy for i=1, -+, k—1 and
(Bus 200 — 07y = (b g+ oy ) Bos B> Where m,—dim (X e g¢|[¥, X]=
a(Y)X for all Y e a;} for a € 2(a}).

Then {4, Bxy=>0.

(Note that the condition (a) in Theorem (iii) is equal to the condition for
k=11in (a’).)

§ 2. Flensted-Jenser’s isomorphism

We will use the standard notation Z, R and C for the ring of integers,
the field of real numbers and the field of complex numbers, respectively.
The set of nonnegative integers and nonnegative real numbers are denoted
by Z, and R, respectively. For a real vector space F, let E* denote the
dual of E and E} the complexification of E*.

Let g be a real semisimple Lie algebra and ¢ an involutive (¢*=
identity) automorphism of g. Fix a Cartan involution § of g such that
g0=0o. (See[l],[9]etc.) Let g=YH+q (resp. g=F£-+p) be the decomposi-
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tion of g into the +1 and —1 eigenspaces for ¢ (resp. §). Then we have
a direct sum decomposition

g=tNH+fNa+pNh+pNq

of g. ’
Let g, be the complexification of g and let g%, %, p%, §%, g% and §* be
subspaces of g, defined by

g?=tNh++/—1¢NQ++V/=1(pNH+pNg,
F=fNh+v/—1(pNY),  p*=vV—-1ENY+pNa,
p=tNH+V—1(¢Nq), q’=+v—1(pNH+pNg,
e =fNH+pNaq.

Then g¢, ¢, §? and §* are subalgebras in g.. Extend involutions ¢ and &
to complex linear involutions of g,. The restrictions of ¢ and 8 to g¢ are
denoted by the same letters. Then (g% % 59 g, §) satisfies the same
condition as (g, £, b, 6, 0).

Let G, be a connected complex Lie group with Lie algebra g,., and
let G, K, H, G%, K¢, H%, K, H, and H* be the analytic subgroups of G,
corresponding to g, £, 5, g%, £, §%, £, §. and 5%, respectively. Let K (resp.
H9) denote the set of equivalence classes of finite-dimensional irreducible
representations of K (resp. H?) and let H%K) denote the subset of H*?
formed by restrictions of holomorphic representations of K,. Then K
and H%(K) are in one-to-one correspondence via holomorphic representa-
tions of K,. Thus two corresponding elements in K and H%(K) will be
denoted by the same letter in the following argument.

Let &/(G/H) and «/(G?/K?) be the spaces of analytic functions on
G/H and G%/K?, respectively. For a 6 ¢ K(~H%(K)) we put

A(G/H)={f e /(G/H)|f transforms according to ¢ under the
action of K}

and

(G K)={f e #(G*/K?)| f transforms according to § under the
action of H?}.

Moreover we put
o (GIH)= @ £ (G|H)

and
A y(GK)= D A(GK)
SeHA(K)
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where the right hand sides are algebraic direct sums in &/(G/H) and
/(G%/K*?), respectively.

Let U(g)=U(g?) be the universal enveloping algebra of g, and
U(g)'=U(g%)" be the subalgebra of U(g) consisting of § -invariant ele-
ments. Then we have the following result by Flensted-Jensen.

Proposition 1 ([5], Theorem 2.3). There exists a linear isomorphism
: o (G H)—>o 11(G*|K?)

satisfying the following two conditions.

(1) fUx)=f(x) forf e o (G/H) and x e H

(i) 7 commutes with the left U(g)-actions and with the right U(g)"-
actions.

Let D(G/H) and D(G?/K*) be the algebras of invariant differential
operators on G/H and G¢/K?¢, respectively. Clearly D(G/H) and D(G?/K?)
are isomorphic via holomorphic differential operators on G./H.,.

Let a be a maximal abelian subspace of p*Nq?=pNgq and af a
maximal abelian subspace of p¢ containing o. Let 3(a?) be the root
system of the pair (g% a?). Namely for an & e (a®)* we put g*(a?; @)=
{X e g?|[Y, X]=&(Y)X for all Y ¢ a?} and we put

2(af)={a e (a)*\{0}g"(a7; @) #{0}}.

Let 2(a?)* be a positive system of 3(af) which is compatible with a. (i.e.
If @ e Y(a9* and @|,50, then ofa € 2(a?)*.) Let 2(a) be the root system
of the pair (g%, a). (It can be easily proved that X'(a) satisfies the axioms of
root systems by the arguments in [17], p. 21 and p. 22. Another proof is
given in [12]). Put n*?=>,g%a¢; &) where the sum is taken over all
& e 2(a?)* and put p(Y)=1% trace(@ad(Y)|,+a) for ¥ e a?.

Using the direct sum decomposition U(g9)=({?U(g®)+ UgHn*9)P
U(a?) of U(g®), we define a projection p of U(g?) onto U(ad). Let W=
W(a?) be the Weyl group of X(a?) and U(af)” be the subalgebra of U(a?) -
consisting of W-invariant elements in U(af). Then it is known that the
restriction of the map D—se” o p(D) o e~ to U(g®)" defines an isomorphism

U@g)"/U@H)"* NUEH->U@)".

It is clear that the left hand side is isomorphic to D(G/H)=D(G*/K%).
For a 2¢(a)¥, we can define algebra homomorphisms 2;: D(G/H)—C
and X¢: D(G%/K%)—C by the above isomorphism. Here we note that
X=X, (resp. X7=2%) if and only if g=w2 for some we W. Now we
define following subspaces in «7(G/H) and /(G¢/K*?).
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A (GIH; M)={f ¢ & (G/H)|Df =x(D)f for all D e D(G/H)},
A gl GHK®; MD={f € o 7(GP|K?)| Df =214(D)f for all D ¢ D(G/K}.
Then we have a g, -isomorphism
7 A (GIH; M)—>5 q(G[K?; MT)

by Proposition .

§3. Boundary values and L’-estimates

In this section, manifolds always mean real analytic manifolds and
differential operators always mean linear partial differential operators of
finite order whose coefficients are real analytic functions. A differential
operator P(x, D,) defined on an n-dimensional manifold X is of the form

P(x, D)= 2, px)Ds,
acN7»

where x=(x,, - - -, x,,) 1s a local coordinate system and
D ()2
ax, 0x,
with a=(a;, - - -, @,). The largest integer m which satisfies p, 0 for at

least one « with m=a,+ ---+a, is called the order of P(x, D,) and
denoted by ord P. Then the principal symbol

APYx, D= T pErEr
defines a function on the cotangent bundle 7*X of X, where (x; >, &.dx,)
is a local coordinate system of 7%#X. We denote by .«/(X) (resp. #(X))
the vector space of all real analytic functions (resp. all hyperfunctions)
defined on X.

In this section we will prove a proposition and two lemmas. The
proposition reduces the question of the characterization of discrete series
to a boundary value problem and secondly the two lemmas reduce the
boundary value problem to a relation between the H?%-orbits structure on
a boundary of the symmetric space G?/K? and a structure of the roots
space for the symmetric pair.

For any function f in o/ .(G/H; #,), we can associate a function f7
in o,G%K?%; #%) by Flensted-Jensen’s isomorphism. Since X¢=12,
for any w e W, we will fix 2 € (af)¥ so that

3.D Re {2, a)>0 for any @ e J(ad)*.
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Let P2 be the minimal parabolic subgroup of G* determined by the pair
(a?, Z(@?*) and let P =M°AIN+* be the corresponding Langlands
decomposition. Then the Lie algebras of A7 and N+*? equal af and n*?,
respectively, and M ¢ is the centralizer of a? in K°.

For a pe (aD¥, we define the space of hyperfunction sections of
class 1 principal series for G¢:

B(GYPY L)={f € (G| f(xman)=a** f(x)
forxe G, meM® aec A’ and ne N+%},
where ag#~?=e%~2182  Then we have the Poisson transform
P, B(GYPY; L)y—>H(G /KT

by the formula
(gzsﬂf)(x[{d) :f PaSats —p,H(x—lk))f(k)dk
Kd

for x e G* and f e #(G*/P?; L,). Here H(x)=Y,if x=k,exp Yin,, k, €
K% Y,eqaf and n, e N*%. Then &, is a G%equivariant map and the
image is contained in the following eigenspace of D(G¢/K?):

A(GYK®; MY ={f € o/(G*|K?)| Df =X4D)f for any D ¢ D(G*/K%).

Now the main result in [7] says that the condition (3.1) for 2 assures
that the Poisson transform &, induces the G%-isomorphism:

P2 B(G[P; L)—">(G[K?; M)

and the inverse of &, is given (up to a constant multiple) by the map B,
of taking the boundary values. Hence for pe(af)} and 6e¢ HYK),
denoting
BAGP*; L)Y={f € #(G*/P*; L,)| f transforms according to 4}
and
BulG[P*;L)= @ H(G/P?;L,),

e HI(K)

we have the (U(g), H?%)-isomorphisms

P B G P LY~">f y(GY K ; MY
and

Bt A g GO[KT 5 M—>F 1 G[P?; Ly)
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and #,8, and B,#, are non-zero constant multiples of identity maps.

Fix a G-invariant measure dy on G/H and let L*G/H) denote the
Hilbert space formed by the square integrable functions on G/H with
respect the measure. Our theorem characterizes the subspace

Bro (st (GIH; MYNLXGIH))  of B,dG*/P*; L.

Hence the first step toward the theorem is to characterize the image of
o (G/H; A )N\ L}(G/H) under the map 7.

Let A denote the analytic subgroup of G, with the Lie algebra a and
let f e o/ (G/H; #;). The condition that the function f belongs to
I*(G/H) is determined by its behavior at infinity. Owing to the decom-
position G=KA4H, the restriction /|, controls the behavior because f is
K-finite. More precisely, the growth condition of f at infinity is deter-
mined by the restrictions on A4 of the translations of f under the action of
K. Here we remark that 4 is contained in both G and G?, and therefore
f lA:f K IA'

To examine the asymptotic behavior of the function
fla for fe o ylGPKE; M),

we use a realization of G¢/K? in a compact manifold X which is construc-
ted in [11]. Then the asymptotic behavior of f|, at infinity is translated
into the local behavior of f|, at some boundary points of G¢/K¢ in X.

Let ¥'=V(al)={a,, - - -, @} be the set of simple roots in J(af)* and
{@y, - - -, @} the dual basis of . We recall that we defined the order of
X(a?) so that the following condition holds:

3.2 If & e (@9 and &|,#0, then of e X(af)*.
Hence we can define a compatible order on X(a). That is,
3(@)* ={#; & € 2(a)* and @|,+0}.

Then similarly, we denote by ¥'(a)={a;, - - -, ;} the set of simple roots in
Z(@)* and {w,, - - -, o} the dual basis of ¥(a). We will identify 47 and
A with (0, c0)” and (0, oo)* by the maps

0, o) ————> Al
(3-3) w w
t=(t, - - -, t)——>a,=exp (— 2 log (1)@
and
0, ©)} ——> A
(3.4 w w
=y -, y)—>a(y)=exp (— ; log (y)w,),
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respectively.

Let O be a subset of ¥'(af) and W, the subgroup of W generated by
the reflections w, with respect to the roots @ in @. Put P¢=P* W P?. Then
P¢is a parabolic subgroup of G?. Let P§=MEALN;® be the Langlands
decomposition of PZ such that AZC A% Furthermore, put MYK)=
MEN K? and define a closed subgroup PYK)=MHK)AINS® of G°.

The structure of the manifold X plays a crucial role in our analysis
of asymptotic behavior of functions in & 7o(G*/K*; #7). We will review
the construction of X. For any 7 € RY, we put

sgn t=(sgnt, ---,sgnt,) e {—1,0, 1},
0,={a, e ¥ |t,+0}
and
a,=exp (—&gt log|t;|@,).

We note that if ¢ € (0, oo)?, then a, is the corresponding element of A¢
under the map (3.3). Define the following equivalence relation on the
product manifold G* X R":

Two elements (g, ) and (g’, ¢') in G* X R" are equivalent if and only
if sgn t =sgnt’ and ga,P¢(K)=g'a,P§,(K).

Then the space X is defined as the quotient space (G? X R*)/ ~ by the
equivalence relation ~. Let z be the natural projection of G¢ X RY onto
X. The action of G* by the left translation on the first factor of G*X R”
defines an action of G? on X through the projection 7. We can define a
real analytic structure on X so that the following properties hold (c.f.
(11]):

The space X is a simply connected compact real analytic manifold
where G? acts analytically. For any g € G%. the map

N-9XR'—>X
(3.5) @ w
(nt)y —— =((gn, 1)

defines a diffeomorphism onto an open dense subset of X, where N-¢=
a(N+%) with the Cartan involution ¢ of G? For elements (g, t) and
(g’,t) of G*XRY, two points =((g, ¢)) and =((g’, t")) in X belong to a
same G%-orbit if and only if sgnt=sgnt’. Moreover, the G%-orbit con-
taining n((g, t)) is naturally difffomorphic to the homogeneous space
G/PE(K).

We identify G?/K?¢ with the open orbit G?z(1, (1, - - -, 1)) of £. The
G-orbits appeared in the boundary of G%/K? are called the boundary
components of G?/K? The compact boundary component of G?/K?,
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which is diffeomorphic to G?/P¢ and only one compact G%orbit in X, is
called the distinguished boundary of G%/K¢. Thus we identify G¢/P?
with this boundary component.

Another important feature of X is concerned with the G“-invariant
differential operators (c.f. [11]): Any invariant differential operator in
D(G?/K?) has an analytic extension on X. Since G%/K* is open in X, we
can naturally identify D(G?/K?) with the ring of G%invariant differential
operators on X. We fix homogeneous elements

D@y, - @), s, @y s D) € U(af)W

so that C[py, ---,p/]1=U@H". Let D, ---, D, be the elements of
D(G?/K?) which correspond to py, - - -, p,, respectively, by the Harish-
Chandra isomorphism. Foreachi e {1, ---, '}, let ¥, be the hypersurface
of X defined by 7,=0 through the map (3.5). Then the system of differ-
ential equations on X

My (D —=2{DPu=0 (=1, ---,1)
has regular singularities along the set of walls {Y, - - -, ¥,,} with the edge
G¢/Pe,
In general, under a local coordinate system (x;, - -, X, tp, - - +5 £,),
the system of differential equations of the form

M: Py(x,t,tD,, tD)u=0 G(i=1,---,r)

is said to have regular singularities along the set of walls {Y;, - - -, ¥,} if
the following conditions hold (c.f. [8]), where

tD:vz(tla/axb tla/axza Tt tra/axn): tDt':(tla/atla tza/atza ] tra/atr)

and each Y, is defined by #,=0: _

Put m;=ord p;,, m=m; X - - - Xm, and a,=Py(x, 0,0, s). Then there
exist differential operators R} ; of order <m;,+m;—m, so that [P, P;]=
> RE Py (i, j=1, ---,r). Moreover, for each fixed x, the indicial
equation

A ax,s)=0 i=1,---,r)

for s € C” has just m roots including their multiplicities. These roots are
called characteristic exponents of .#.
In our case, the indicial equation is given by

AL afs)=0  (i=1,---,1)
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where a(s)=p{p, @y—58y, ¢ -+, Kp, Gy —5,)—23(D;). Hence the indi-
cial equation is constant on the edge G%/P? and there exist | W | character-
istic exponents

(3.6) Ao=o—W2, @), - - -, {p— WA, &)

parametrized by the elements w e W. Moreover, the following statement

holds:
For any point p of each wall Y, there exist differential operators S
defined in a neighborhood of p such that the differential equation

M Su=0  with S,=>" S{(D,—14D,))
J

has regular singularities along the hypersurface Y, in the weak sense.
Here “in the weak sense’ means that by a coordinate transformation ¢,—
t¥ with a sufficiently large k ¢ N, 4, changes into a differential equation
with regular singularities along Y, in the original sense.

In fact, this is proved as follows: Fix an element g of G so that
gp € n({1} X(—1, 1)¥). Then Proposition 11 in [11] assures that the map

KM x(—1, 1)) — X
w

(k]uljl, ) ——> =n((gk, 1)

defines a local coordinate system in a neighborhood of p in X. Now it
follows from Lemma 3.5 in [7] that there exist polynomials S%, - - -, S¥ of
t,0/0t, such that the equation

My Su=0  with S,=3 Si{(D,—14D,))
7
has regular singularities in the weak sense along the hypersurface defined

Under the following condition for a given w e W (c.f. (3.6))

3.7 A=Ay ¢ NV —{0} for any w' e W,
we can define the map j,,; of taking the boundary value
(3.8) Burt (G[K®; M——>FB(G*[P?; L(4,))

by the method in [8]. Here for a c=(c, - -+, ¢;) e C¥, B(G*/P?; L(c))
is the space of all hyperfunction valued global sections of the line bundle

3.9 L(C)=(T§‘1f)®”‘a® e @ (T§,X)%

a/pd Ge/pd
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over G¢/P? and N={n e Z|n>0}.

Let V=SP? be an open subset of G¢/P? and let Z(V; L(c)) be the
space of all hyperfunction sections of L(c) over the open set V. On the
other hand, for any p ¢ (a9)¥* we put

AV; L)={f € Z(SP*)|f(xman)=f(x)a"~*

(3.10)
forxe SP*, me M*, ae A* and ne N+4}.

Then the proof of Proposition 4.3 in [7] assures that %(V; L(1,)) and
#(V; L,,) are naturally isomorphic as local G*-modules, which means the
. following. The isomorphism, say p, is given by their restrictions on
K®N SP* and if an element g € G? and an open subset ¥, of G¢/P¢ satisfy
gV, CV, then pg(fly,)=gp(fy,) for all f € B(V; L(2.,)).

Hence under the assumption (3.7), we have a G?%-equivariant map

(3.11) Bus: (GYK®; MH—>B(G[P; L,).

When w=1, the condition (3.7) is always valid in view of (3.1) and the
map S, mentioned before is obtained in this way. On the other hand, the
condition (3.7) is too restrictive to define boundary values for our purpose
and it is relaxed in [19] as in the following way.

Fix any point p in' G?/P* and a coordinate neighborhood U of p in
X. Put V=UNG*P? Then we can define | W| maps

(3.12) By: L(GYK; MYy—>B(V) weWw)

under the fixed coordinate system (Definition 4.3 in [19]), where each ¢
corresponds to the characteristic exponent 1,, and if w satisfies (3.7), then
Buily=pY with a suitable w’ e W satisfying wAi=w’2. Fix a function u
in &/(G%/K%; MAY). If B¥(u)=0 for all we W, then u=0 in a neighbor-
hood of ¥V (Theorem 4.3 in [19]) and therefore u=0 because u is real
analytic. For a fixed 2 e (a?)¥, there exists a semi-order <, on W satisfy-
ing the following conditions (3.13), (3.14) and (3.15) (cf. Theorem 4.5 in

[19D:

(3.13) If2,—2, ¢ N”and 2, —2, ¢ NY, then there exists no order be-
tween w and w'.

(3.149) If 2,— 2, e N¥—{0}, then w" <,w.
(3.15) For any w € W, putting
AV, GIK?; M= {f € L(G[K*; M| 7 (@)=0 on V
for all w’ e W with w' <, w},
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the map By induces the following map
(3.16) LV, G/K?; M) y—>B(V; L(1,))

whose definition does not depend on the choice of local coordinate
systems.
Hence we have a linear map

which commutes with the local action of G*.

The above consideration says the following: For any non-zero
function u € #/(G*/K?; #$) and for any open subset V of G%/P¢, we can
find at least one w ¢ W so that u belongs to the domain of the above map
By and moreover 8, (u)70. Furthermore assume u € & 5o(G*/K*; MAY)
and assume u corresponds to a discrete series for G/H. Then it is an
important problem to find such w by putting V an open H %-orbit in
G¢/P?, This corresponds to an imbedding of the discrete series into a
principal series for G/H, which will be discussed in a subsequent paper.

On the contrary, for any function u e &/(G*/K?; #%) and for any
we W, if we put

V={xe G*P*| pY(u)=0 in a neighborhood of x
for all w e W with w’ <, w},

then V is well-defined and u ¢ V is in the domain of g}
Now for u e /(G%/K?; #%) and w, € W, we define

SUPD Byt ={x € G¢/P?|there exists w ¢ W such that the function
(3.18) B¥(u) is not identically zero in any neighborhood of x and that
wad=wyd or w <, w,}.

Then supp B.(gu)=g(supp B,u) forany g € G*and any y € WA. Weremark
that if there exists a non-trivial w e W with wi=24, then the support of
B(u) is contained in supp Bu defined above, but may differ supp fu. In
this paper, we always use the notation supp S in the above meaning.

Another important feature concerning boundary values is the concept
of ideally analytic solutions. For an open subset V of G¢/P¢ and a func-
tion u € &£ (G%/K?; ME), we say u is ideally analytic in a neighborhood of
V if B¥(u) |y is real analytic for any we W. Then in a neighborhood of
V, u is of the following form (Theorem 5.3 in [19]):

m

(3.19) ulx, )= >, a,.(x, )re-rq, (logt).

LEW 4=
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Here m is a certain positive integer and (x, ?) is a local coordinate system
such that each Y, is defined by #,=0 and G?% K% is defined by #,>0,
-+, t,>0. The functions a, ; are real analytic in a neighborhood of V'
and

(3.20) S (LR + by

and g, (logt) are polynomials of (logt, ---,log#,). We can show that
m=|W,|, where W,={w e W|4(1,—21,) € N}, and that g, ; are harmonic
polynomials corresponding to W, but we will not use this.

We will use the following fact for the above ideally analytic solution
u, which is the result in Theorem 5.3 in [19]: Fix a v ¢ W2 and assume

a,;=0 fori=1, ..., mand all 4 e W2 satisfying
o=y, @), - -+, {p—v, @) € N"—{0}.

Then the three conditions (3.22), (3.23) and (3.24) are equivalent:

(3.21)

(3.22) S a, (x, 0)te g, (log 1)=0.
i=1
(3.23) > a, (x, )t*~q, (log 1)=0.
i=1
(3.24) B(u)=0 for any w e W with wi=v.

Especially in the case when {(2—w2, @,y ¢ Z for all we W —{1} and
i=1, ---, ', we have m=1, q, ;=1 and gy(u)=a,,,.(x, 0) with the expres-
sion (3.19) and the condition a, 4|;,-...—;,,-,=0 implies a, ,=0.

Now we return to our problem to characterize y(f ((G/H; A4 ;)N
L¥G/H)). For ae X(a), we put g(a; a)={X e g|[Y, X]=a(Y)X for all
Y e al, p,=dim (g(a; )N H*) and ¢,=dim g(a; ) — p,, and define a func-
tion D(p) on (0, c0)* by

D)= T[] |y*—y =Py 4y
a€ X(a)+

Here we use the notatoin

(325) y”:y§“v"’1>. .. y§v1w1>

for any vea¥ (or e(a®)¥). Then the invariant measure dp on G/H
satisfies

[ edu=c| stkaympae®s... 2
G/H Kx(0,00) ¥y

1 ag
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for all continuous functions ¢ on G/H with compact support (c.f. p. 263
in [5]), where C is a positive constant, dk is the normalized Haar measure
on K and a(y) € A is the one given by (3.4). Let W(a) denote the Weyl
group of the root system X(a) and fix a representative w € K for every
we W(a) (c.f. [18], Lemma 7.2 in [20]). Then the above integral can be
written in the following form

olka(y)wH)D()dk V.. D,

(3.26) J odu=C 3" I
G/H wEW (a) b2 Vi

Kx(0,1)
We remark that there exist positive constants C, and C, so that
3.27) Cy~*<14+D()LC,y2 for all y e (0, 2)%

By the map
AlXA —> A}

w

(3.28) v
(a,, a(y))—>a,a(y),

any function f on A? can be lifted to a function f on 4¢x 4. We will
express it by using the identifications (3.3) and (3.4). If a,=a(y), then
t,;=exp (—<{a;, log a(y)))=exp ({&;, 2; (logy)w;») =11,y “*». There-
fore we have

3.29) fN(t, ) =f(t1ij§&"‘”j>, cee, tzﬂjyﬁ-&""’”)-
We remark that

1 if &)=y,

0 otherwise,

{au, coj>={

and that
=ty for all v e (a®)F.

Let p be any boundary point of the subset AK? of G¢/K%in X. Then
any u € of z(G%/K*%; A9) is ideally analytic in a neighborhood of p, which
will be proved later, and thus we have an expression for u as is given in
(3.19). Especially, the point ¢,K ¢ in G¢/K¢ converges to a point in G¢/P*
when 7—0, which belongs to an open H%orbit in G?/P¢. Hence it is
expected that if ~'u € L(G/H), then some terms in the expression (3.19)
should vanish. This means the vanishing of the corresponding boundary
values on the open H¢-orbit. In fact, we have

Proposition 2. Let f be an element of o/ ((G/H; MA;). Then f belongs
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to L(G/H) if and only if supp B,f" contains no inner points in G*/P? for
any p € W2 which satisfies the condition

(330) (Re </l, CD;>, Tt Re <4u7 wl>) ¢ (‘-Ooa O)l

Proof. Let{f, ---,f,} be a basis of the linear span of {z .(f)|k € K}.
In general, we will denote by x, an action of an element ge G, on a
function space. The induced action by the Lie algebra is also denoted by
ryx(Xeg,). Here (z,.f)(x)=f(k"'x). Let u be the column vector formed
by f7, - -+, f7 and put supp Bu= U, supp B.f7. Since f7 is H%-finite,
supp B.f? is a union of H?-orbits in G?/P? and supp Bu=supp B,f".
Moreover we remark that if f € L*(G/H), then

fie L(G/H) for i=1,---,r.

First suppose there exist an open H?-orbit V' in G%/P%, an element
pe W2 and an index i, e {1, - - -, /} such that Re{y, w;,»>0 and supp
BuDV. We want to prove that f ¢ L*(G/H), which means the condition
in Proposition 2 is necessary for f to be in L*(G/H). We may assume
without loss of generality that i,=1 and that if v ¢ W 2satisfies Re(v — 1, ;)
>0, then supp BuNV=4¢.

The H¢%-orbits in G¢/P¢ are completely parametrized by [9] (c.f. § 4).
It follows from the condition (3.2) that there exists a representative w € G
of an element w of W such that V=H*wP*and wAw '=A. We put p=
wPe.

We note that u satisfies
3.31) j:{nx(u)zA(X)u for a‘tny X e e,

D,u=21%D,)u for i=1, ---, 7,
where A(X) is an r X r-matrix and z, is the differential operator corres-
ponding to the vector field v, by the action of exp (—tX) on X(z ¢ R).
Since p belongs to an open H %-orbit in G*/P?, T,(G*/P*)={(vx),| X € §%}
and hence the equation (3.31) satisfies the condition SS .7 |z~(G%/P%)C
T#.pX in Theorem 5.2 in [19]. Therefore u is ideally analytic in a

neighborhood of p.
Let X, - - -, X, be elements of §? so that n=dim G¢/P? and

Ty(G°[P*) =2 R(vx.),

and moreover the map (—1, 1)* > x—>exp (O x, X, )WP? e G¢/P¢ defines an
into diffeomorphism. Then for an ¢>>0 the map
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(—e )" V> X
w

(3.32) w
(x, 1) ——a((exp (2] x: X)W, 1))

defines a local coordinate system and we have the expression

(3.33) uCr, )= 33 37 a,.(x, 0)1*g,, (log 1)

vEWAi=1
for (x, t) € (0, &)"*¥. By the assumption we have a, ;=0 if Re{v—p, o,)
>0 and

> 4, x, 0 =g, (log 1) #0.
Re{v—p,01>=0 =1
Here the vectors a, ; are analytic in a neighborhood of wP? and g,,; are
certain polynomials. Put c=Re (p—u, w,), which is not larger than
{p, w1y, and I={{p—v, w,y|ve W2 and Re {(p—v, wy>c} and [,=
{£eI|Re&=c}. Then it follows from (3.29) that

u(exp (2 x,X;)wa, exp (yla)l)):e[; Z; b, i(x, t, y)yi(log y)),
=

where 7’ is a suitable non-negative integer and b, ,(x, ¢, y,) are vectors of
functions which are analytic in (0, 3e,)"**" X (—e,, 2¢,) with a small positive
number ¢, and the function

m’

2o 2o b s(x, 8, O)pi(log yy)?
§€lo j=0

is not identically zero. Let 4 be the smallest integer so that b, ,},,.,=0

forall £e [,and j=h-1, ..., m’. Then for a suitable positive number

C, we have the following uniform estimate

|u(exp (2 x;X,)Wwa, exp (y,0,)) — eeZI: b, .(x, t, 0)yi(log y)"|
<Cyillog y "~

for all (x, 7, yy) € (61, 2¢,)" "' X (0, ¢). Here for a vector u, ju| means the
maximum of the absolute values of the components of u. Choose
(x(0), £(0)) € (&5, 2e))"** so that b, ,(x(0), #(0), 0)==0 for a suitable & € I,
Put a,,=da(y(0)) with an a’ € AN H? and moreover put &,=(0),
and hy=(exp(3] x(0), X ))wa'w~'. We remark that h,e H® because
Adm(GH?Nad=4h*Naf. Then we can choose a positive number C’, an
open neighborhood ¥V, of (¥(0),, - - -, ¥(0),) in (0, co)*~! and vectors of
analytic functions 5;(y’) on ¥, such that
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(3.34) Iu(howa(y))— Z bi(y)yi(log y)"|<C'ylog y,|*~'

for all y=(y,, ') € (0, ;) XV, and moreover > ..., b:()")¥f is not identi-
cally zero.

Since 7,-«(u)=Tu with an invertible matrix 7, we have the same
estimate for u with #,=1 if we replace b; and C’ by other analytic func-
tions and a positive number, respectively. Hence we may assume ;=1
in the estimate (3.34). Moreover we remark that > .., bi())y is still
not identically zero.

Let f be the column vector formed by f;, - - -, f,. Since we K¢ and
wAwW~'=A, we have the estimate

| Fkwa(y)yw="H)— T (k") Z bi(y)yillog y)" < C’yillog y,|*~*

forall ke K, (y,, ¥ /) € (0, sg) X V,. Here T(k~") are the invertible matrices
determined by z,(f)=T(k)f. Moreover we remark the following: There
exists a w’ e W(a) so that waw' ~'=waw~' for all e A. There exists a
point »(0) e V, so that > .., bi((0)yi(log y)"-£0. Moreover, T'(k~")
and b{()’) are real analytic functions, and Re é=c<{p, ;).

Combining the above estimate with (3.26) and (3.27), we can conclude
that at least one of f; does not belong to L*(G/H). Since f; belongs to
the linear span of {z,f|k e K}, this means f ¢ L*(G/H). Thus we have
proved that if f e L{G/H)N o (G/H; A}), then supp B,f? contains no
inner points in G*/P? for all y ¢ W2 which satisfy (3.30).

Next we will prove the inverse part of Proposition 2. Fix w, e W(a)
arbitrarily and fix a representative w ¢ K* of an element w of W(af) so
that waw™'=wg'aw, for all a € 4 (c.f. [10] or Lemma 7.2 in [21]). Choose
o € o so that supp 8, f7 2 H*wP? for all 4 ¢ W2 which satisfy

(3.35) Re{p—ptor 01, - - -5 Re{pt— o, 1)) ¢ (— o0, 0"

In fact the best possible g, is given by g,=7, C,a, with
C,=max {Re{y, ;> | ¢ W2and supp B,./"DH*wP.

Then we will prove that there exist C >0 and m e N such that

(3.36) | fka(y)w,H)|< Cy*~*(1—log y)™

forally e (0,2]'and k e K. Here(1—logy)~=(1—logy)™- --(1—logy,)™

If supp B.f7 contains no inner points in G¢/P* for all pe W2 which
satisfy (3.30), then we can choose p,=—¢ >, a,; for a suitable positive
number ¢ and therefore it follows from (3.26), (3.27) and (3.36) that fe
LXG/H).
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We will show
(3.37) lu(wa(y))|< Cy*#(1—log y)™

for all ye (0, 2]* with certain positive numbers C and m, which implies
(3.36) because f(kwy 'a(y)w,H)=T(k~Yu(wa(y)). Since [0, 2]* is compact,
it is sufficient to show that for any point p € [0, 2]%, there exists a neigh-
borhood U(p) of p such that (3.37) holds for all y e U(p)N (0, 2]°.

Consider in a small neighborhood of wP? Then as we have seen,
the expression (3.33) holds under the local coordinate system (3.32). The
condition for y, shows that a, ;=0 for all e W2 which satisfy (3.35).
From (3.28) and (3.29) we have

u(exp (O x, X;)wa,a(y)) = ) eZv:m Z;l a, (x, t, ey g, (log (1), log ()

where g/, are polynomials and a, are real analytic in (—e;, 2¢)"+¥*?
with a certain positive number ¢;. Therefore by the same argument as
before (c.f. (3.34)), we can find A, € H% C>0, ¢,>>0 and m’ € N such that
|u(hywa(y)) | < Cyr#(1—logy)™ for all ye (0,¢)". Since u(hwa(y))=
Tu(wa(y)) with an invertible matrix 7, we have the estimate (3.37) in a
neighborhood of p=(0, - - -, 0) € [0, 2]".

For any y € R', we define y*=(y¥, - - -, y¥) e R by yf=1if a,,=0,
and yf=¢, if there exists an «; € ¥(q) such that &;|,=«;. Then it is easy
to see that a,.=a(y) for any y e (0, 0)* (c.f. (3.3) and (3.4)).

Let V, be the set of all y e [0, 2]* such that (3.37) holds in a neigh-
borhood of y with suitable positive numbers C and m. It is clear that ¥
is open. Suppose V,#[0, 2]* and choose p=(p,, « - -, p;) € [0, 2]* so that
p¢V, Putp*=(pf, ---,pf). We may assume without loss of generality
that p,=---=p;=0, pi.1%#0, Ppr#0, - -+, p;#0, p¥=-..=piE=0,
D0, <+, pE#0. Put Y(k)={ye[0,2]'|y;=---=y,=0} and g=
z((w, p*)) e X. Then as we have seen before, there exist differential
operators .S; defined in a neighborhood of ¢ such that each S, has regular
singularities (in the weak sense) along the hypersurface ¥, (i=1, - - -, k).
Then the system S,u=0 (i=1, --., k') has regular singularities (in the
weak sense) along the set of walls {Y}, - - -, Y,,}. Moreover the following
statement is valid:

(3.38) u is ideally analytic in a neighborhood of z((w, p¥*)).
We will continue the proof of Proposition 2 and the proof of (3.38) is

given after that. By the expression of the ideally analytic solution u in a
neighborhood of ¢, we have an expression
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k m
ua(y))= le 25 2L a (- -yitlogy)*- - - (log yo'™,
=145
where y=(y,, - - -, y,) runs through a finite subset of C* and a4’ are analytic
in a neighborhood U(p) of p. It follows from this expression that the
assumption p ¢ V, implies p’ ¢ ¥, for all p’ ¢ U(p) N Y(k), which means
Vo Y(k) is closed and not equal to Y(k). Since ¥V, is open in [0, 2]* and
contains (0, - - -, 0) € [0, 2%, ¥, N Y(k) is also open in Y(k) and not empty,
which leads a contradiction because Y(k) is connected. Thus we can
conclude V,=[0, 2]*.

Now we will prove (3.38). Put a=a,.and ©=06,.. Thenae 4and
Gez((w, p*)~=G?/P¥K). Identify the tangent space of G* at a point
with g? by means of the right translation. Also identify the dual space
of g% with itself by the Killing form { , >. Put g=waP¥K). Letmg,
myK), al, ng¢ and pHK) be Lie algebras of ME, MYK), A%, Ni* and
PYK), respectively, and put ng%=g(n?. Then the cotangent vector
space TF(G*/PYK)) at ¢ is identified with V(g)={X e g*|<{X, Y>=0 for
all Y e p¥(K)}. By the direct sum decomposition g?=1y°@(p* N mHD
mAK)PalPng? we have V(g)=n@(Hp?Nmd). We will prove that the
system (3.31) satisfies the condition
(3.39) SS A N T¥ 500X C Tariman X
which implies u is ideally analytic by Theorem 5.2 in [19]. Let S(g) be
the symmetric algebra of g,. Then the principal symbol of any differential
operator on G* is regarded as a S(g)-valued function on G¢. Considering
the system (3.31), if the system of the equation for v* € V{(q)

(Ad(wa)'X, v*>=0 for all X ¢ 59,
{v¥, v*¥>=0

means v¥=0, then (3.39) holds. (The second equation comes from the
Casimir operator of U(g?).) Since { , }|,se=0and { , }|ugn,e is positive
definite and (X, Y)>=0 for any X e n{? and Y e m¢ p¢, we have only to
prove that if v* e ng* satisfies (Ad(wa)~'X, v*>=0 for all X ¢ §¢, then
v¥*=0. On the other hand waP? belongs to an open H%-orbit in G?/P?%,
which means Ad(wa) 5%+ p?=g% Since v* ¢ (pI)L N (Ad(wa)-H9)LC
(BN (Ad(wa) hH) Lt C (v + Ad (wa) - H9) L C(g¥)-={0}, we have v*=0.
Thus we have completed the proof of Proposition 2. Q.E.D.

Thus we have replaced the L*estimate by the vanishing of certain
boundary values. On the other hand, the map 3, is bijective. Therefore
in principle, if we know B(f7), we can know supp g,/ for all pe Wa.
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The following lemmas estimate supp 8,f” in terms of supp 8,f":

Lemma 1. Suppose f € L(G°/K?®; M%), pe W2 and xP? e supp 8,1
Let O be a subset of U(a%). Then for every yP* e xMIP®, there exists a
v € W2 satisfying the following two conditions.

() —p,a,>ei0,1,2, -} for alli satisfying &, € ¥ (@) —0.

(i) »Pesupp Bf.

Lemma 2. Let 2 be an element of (ad)F satisfying {2, @)>0 for all
@& € 2(af)* and let f be an element of o (G*[K*; MT) which satisfies supp B.f
C SP*? with a subset S in G°. Let p be an element of W2. For each w ¢
W, we fix an expression w=w,, ---w, as aproduct of reflections with
respect to simple roots in ¥ (a}) and put SWw)y=SM¢,,---M¢{,  P% For
any pe W2, we put

W(wy={we W|{wi—p,@;7€{0,1,2, -- -} fori=1, ---, I'}.
Then we have

(3.40) supp ‘Byfcwek%(#) S(w).

Before we prove these lemmas we give a rather general statement for
solutions of differential equations:

(3.41) Let t: X—Y be a smooth map between real analytic manifolds (i.e.
the tangent map (cvy),: ToX —>T.,Y is surjective for any point p in X).
Then a system of differential equations on X

M Pu=0 (i=1,---,r)
is called elliptic along the fiber of < if

(3.42) SSACTx, X  foranypointqinY.

Then the support of any hyperfunction solution of M defined on X is a union
of connected components of fibres of .

Let u be a hyperfunction solution of .#. For any ge Y, we will
show that supp u],-.,, is open in z7'(g), which clearly implies (3.41).
Taking a local coordinate system it is sufficient to prove the following:

(343) Put X={(x,»)e R™"; > x3<1,>.)4<1} and Y={yeR";
>3)4<1} and let z: X—Y be the natural projection. Let ue #(X)
be a solution of a system .# which is elliptic along the fibre of z. If
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supp u 3 (0, 0), then supp u 3 (x, 0) for any (x, 0) e X.

To prove (3.43), we suppose supp u 3 (0, 0) and supp uNz~'(0)+~¢.
We choose a positive number ¢<1 so that

supp uN{(x, ») € X; > xi+ > 12 <2e}=4¢.

Define polynomials /,=¢ 3 x4+ > > —e for t € R and put H,={(x, y) €
X;h,=0}. Then the assumption implies the existence of C>0 such
that H,CX, H,Nsupp us=¢ and H,Nsupp u=¢if t >C. Fix a point
p=(x*,y¥)e HyNsupp u. Since x*=£0, the set TH X NTX.(  XNT}X
equals {0}. Then by Holmgren’s theorem for hyperfunctions and Sato’s
fundamental theorem for the solution u of .#, we conclude supp u % p
because u=0 on the set defined by #,<0. This is a contradiction.

For a subset © of ¥ we defined a subgroup P¥K). We may assume
O={a, - --,a,}. We identify the homogeneous space G?/P4K) with a
boundary component of G?/K¢ in X by the map G%/PYK) > gP4K)—
7((g, ¢)) € X, where we put e=(e,, - -+, ¢,) and g = - - =¢,=0, g, ;== -
=¢,=1. Fix a point pe GY/PYK)cX and a non-zero function fe
o (GY/K®; M%). Since the system Su=0 (j=1, - - -, k) has regular
singularities (in the weak sense) along the set of walls {Y, - - -, Y.}, as we
have proved, we can define boundary values S;(f) of f on a neighborhood
Vof pin G*/PHK). These B} correspond to the characteristic exponents
vi=(} 1 -, ) € C* (including their multiplicities) of the system
(=1, .-, N). Fix a characteristic exponent g’ € {3}, - - -, vy} satisfying
M) BUfH)=0 if p/—v;e N*—{0} and (2) Bi(f)+0 for a suitable { with
¢/ =v}, Then at least one of 8j(f) with v;=/, which may be assumed to
be Bi(f), is non-zero and defines a hyperfunction valued section of a line
bundle (T#,X)®:®), - - - @, (T X)®4x Tts definition does not depend
on the choice of local coordinate systems.

Let 4 be the Laplace-Beltrami operator on G%/K?. We claim that
the equation for Bi(f) induced by the equation (4—2%(4))f=0 is elliptic
along the fibre of the natural projection z: G%/PYK)—G*/P¢. In fact
the induced equation is given by Theorem 6.1 ii) in [19]. It follows from
the theorem that the principal symbol of the induced equation equals that
of the operator 4 on G%/P¢ induced by the Casimir operator of U(g%).
Then as in the last part of the proof of Proposition 2, we identify
T#(G*/PYK)) with ng*@(mgN p?). Hence

T (G [PYEK) N TG/ PYK))

is identified with nj¢ because TpPg:: méPaipngs®. On the other hand,
the zeros of the principal symbol of 4 in T¥(G*/P¥K)) are given by
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{v* e nd?@(mgN p*) [{v*, v*)=0}

Since ¢ , > is positive definite on (mgNp?) and since (ng?)* contains
ng? and mgN p¢, the condition (3.42) is clear in this case.

Applying (3.41) to our situation, we get the following: Let p and p’
be points in G¢/PYK)c X which satisfy (p)=v(p’). Fix a characteristic
exponent v’ € {v], - - -, vy} of the system S;,=0 (i=1, - - -, k) so that (1)
p ¢ supp Bi(f) if v/ —v); e N*—{0} and (2) p e supp B;(f) for at least one
Jj satisfying »=1'. Then the same statements (1) and (2) also hold for p’.

Proof of Lemma 1. Retain the above notation and suppose supp
8.f > xP?®. Fix a sufficiently small neighborhood U of p in X. Then
Corollary 6.3 in [19] says the following. There exists a v/ & {f, - - -, vy}
so that (0) {p—p, @1, - -+, {p—, ®xy)—V € N* and (1) Bi(f)=0 on
UNGEPYK) for all i satistying v/ —y; e N*—{0} and (2) the closure of
supp Bj(f) in X contains xP? for at least one j with v'=y,. We may
assume that we can choose the above j equals 1 and that () is defined
coordinate free.

Let ¢ be a sufficiently small positive number so that z((x, s¢)) ¢ U for
all se [0, c]. We remark that supp Bi(f) contains z((x, ce)). In fact, if
supp Bi(f) ? z((x, ce)), there exists a neighborhood ¥ of x in G? satisfying
supp Bi() N {(=((g, ce)) | g € V'}=¢ and therefore it follows from the unique
continuation property of pi(f) along the fibre of ¢ that

supp i(/)N{x((g, se))|g € V and s ¢ (0, c]}=4,

which contradicts the fact that the closure of supp gj(f) in X contains
xP® The unique continuation property also shows that supp Bi(f)D
xMEPYK) and Bi(f)=0 on a neighborhood of xMEPYK) in G¢/PYK) if
v —yje N*—{0}. Choose any y € G* so that yP*CxM¥K)P? and fix a
sufficiently small neighborhood U, of z((»,0)) in X. We remark that
supp BI(f) > (3, 59) for all s>0 and B(f)=0 on U,NGYPYK) if
v —yv, e N*—{0}.

Let f” be the column vector formed by {8)(f)lrence/rgum ;=
Then Theorem 6.2 and Corollary 6.3 in [19] say the following: The vector
S/ satisfies a system of differential equations with regular singularities
along the set of walls {Y,,,NG*PYK), ---, Y, NG*/PYK)} with the
edge Y. Put W/ )={we W|(p—wA &), - - -, {p—w,d;))=1}. Then
cotresponding to any we W(Y), we can define a boundary value 8%(f”)
of 7 so that BY(f)=pF(f") (cf. (3.12)). Moreover if BX(f)=0 for all
we W(), then /=0 in a neighborhood of U,N G¢/P¢. This means
especially W(v")s=¢. Since the point z((y, s¢)) converges into yP¢ when
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s—0, we can conclude supp ¥(f) > yP? with at least one w in W (),
from which Lemma 1 follows. Q.E.D.

Proof of Lemma 2. We may assume SP? is compact in G%/P¢
because supp Bu is compact.
First we will prove Lemma 2 under the different assumption

(B44) <wl—2A,a,)¢Z forallwe W—{l}andi=1, ---, 1"

In this case, W(y)={w} with the element w ¢ W satisfying p=w2 and it is
clear that it is sufficient to prove Lemma 2 when L(w)=1. So we assume
w=w,,. Now we use Proposition 6.1 in [7], which says

(3'45) cw,—lﬁwlglzcwl fva

where ¢, _; and c¢,; are non-zero constants and J % is the normalized
intertwining operator from %#(G%/P¢; L) to %(G%/P¢; L,)). Since
ZABf)) is a non-zero multiple of f, we see that B,.(f)=CIT i)
with a constant number C. Now we recall the intertwining operator. It
is an integral transformation

T HG[P4; L)—>H(G[P*; L)
(3.46) w w
Vo o= WOTLk g

with a kernel function T}, € #(G¢/P?; L,;). We will use the identification
(3.47) HB(GP%; L)-—=>HB(K*M*?)

by the restriction. Then T,=9%(5) with the Dirac’s delta function § on
- K?/M* whose support is M?. The function 77, is meromorphic with
respect to the parameter v € (a9 and if Re (v, a><0 for all @ ¢ X(ad)*,
then

(Tp@=[ __, Wenwdn  for all 4 €*(G*/P* L),

Here N ¢=N**NwN ?w'and dn is a Haar measure on N;¢ Hence
it is clear that supp T7 is contained in the closure of PwP? which we
denote by PZ. Then Pi{=P%,=M%,P% Suppose supp B,fCSP?.
Then it follows from (3.46) that if xP¢ e supp B,/ there exists k € K such
that ke SP? and k~'x e PZ. Therefore x € SP*PL=SM,,P* and we
have (3.40).

Now we will consider the original lemma. Choose ¢>0 so that

{v—+zp), @,) ¢ Z
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for all ve W(2+2zp), i=1, ---,!’ and z e C which satisfy vy==2-zp and
0<z| <.

We put Z={ze C; |z|<e}. Identifying #(K*/M*?*) with Z(G*/P*;
L., we put fz=C@1+ZP‘BZ( f). We determine the constant C so that
fo=f. Then f, defines a function on ZX(G?/K%) and the function is
holomorphic with respect to z. Moreover Df~,=X3’+,p(D) 7. forall De D
(G¢/K?%). Then for a small open set ¥ of G%/P¢% we can define linear
maps (c.f. Definition 4.3 in [19]):

Bu: 2 (GK?; MP)—>,B(V) we W)

which correspond to characteristic exponents ((o—w(2-+zp), @;), - - -,
{p—w(2+2z2p), @,.)), respectively. We denote by ,.2/(G*/K?) the space of
real analytic functions on G%/K? with the holomorphic parameter z e Z
and by ,%(V) the space of hyperfunctions on V with the holomorphic
parameter z € Z. Then ,/(G?/K?; M*)={ii € ,/(G*/K?)| Dii=2L,,,(D)ii
for all D e D(G%/K%)}. The maps f, have the following property (c.f.
Theorem 4.5 and Lemma 4.6 in [19]): Fix a w”e W. If B,(@#)=0 for
all w e W satisfying ((WA—w"2, @,), - - -, {WA—w"2, @,,)) e N"'—{0}, then
A, is @ non-zero constant multiple of gy ,.,(if|,-..) for any z” ¢ Z.

Let xP? be any point in G?/P ¢ which is not contained in the compact
subset U()=yewwS(W) of G*/P%. Choose a neighborhood ¥ of xP¢
in G4/P?® so that U(y) N V=¢. Then we have B, q..mpy(f|.-.)|,=0 for
all z”7e Z—{0} and all we W(y) because 1+ 2z"p satisfies the condition
(3.44) if z” ¢ Z—{0}. Hence for all we W(y), we obtain §,(f)|;-1=0
and therefore f,,( 7)=0 by the analytic continuation, which means BY(OIr
equal identically zero because they are constant multiples of F,(f)],o,
respectively. Thus we can conclude supp 8,/ NV =¢ and we finish the
proof of Lemma 2. Q.E.D.

§ 4. Proof of Theorem 1 (First reduction)

First we review the results on H?-orbits on G¢/P? according to [9].
Let 3 (af) denote the subset in X(af) defined by

@) ={ax e 2(a)|{e, a;y={0}}

where a;=afN§% Put q**=£Nq°+p?NH% Then a normalized q¢%-
orthogonal system Q of X(a}) is a set of root vectors {Xj, ---, X,}
satisfying the following three conditions.

(i) Bie 3D and X,, € g%ad; BN fori=1, - - -, k.

(i) [Xp, X, 1=[X;, 0X,,]=0 for i .

(i) 2{Bi, Bi)B(X;, 0X,)=—1fori=1, .-,k
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where B( , ) is the Killing form on g% and { , ) is the bilinear form on a@*
induced from B( , ).

Let S denote the set of normalized q*“-orthogonal systems of 3,(a%)
and S’ the subset of S consisting of Q={Xj, ---, X,,} such that k</
(/=dima). Fora Q={X,, ---, X;,} e S, we put

c(Q)=exp g—(Xﬁl—'—OXﬂx)' - -exp %(Xﬁk‘l‘oXﬁk)

Put W,=W(aH)={we W|0w=nb}.

Proposition 3 ([9]). (i) For every x e G there exist Qe S and
w e W such that

HxP®*=H"(Q)wP?.

(ii) Ifrank (G/H)>rank (K/K N H), then S'=S.

Gii) Let Q and w be elements of S and W, respectively. Then
Hec(Q)wP* is open in G* if and only if Q=¢ and w e W,.

(iv) Let Q and w be elements of S and W, respectively, and suppose
that rank (G/H)=rank (K/K N\ H). Then H%(Q)WP? is closed in G° if
and only if Qe S\S’. Moreover let Qy={X;, ---, X,} be an element of
S\S’.  Then every closed H?-orbit on G*/|P® can be written as H*c(Qy)wP*
with some we W.

Proposition 3 is an easy consequence of Theorem 2, Theorem 3,
Proposition 1 and Proposition 2 in [9].

Now we prepare notations in the case of rank (G/H) =rank (K/K N H).
Let Q, be an element of S\S’ and put a/=Ad (c(Q,))af. Then aj is a
maximal abelian subspace of p¢ contained in p*NHh* ([9], Theorem 2).
By Proposition 3 (iv), we can choose a complete set of representatives
{xy, -+ -, x,} of closed H‘-orbits on G*/P¢ such that Ad(x;)aj=aq; for
j=1,--.,m. Fora pe (ad)¥ and for j=1, - - -, m, we define an element
pe(@)F by p'=poAd(x;)"". For each j=1, ---, m, we put 2(a;); =
{a?|ae 2(ah)*} and n*I=Ad(x;)n*?. A root a in J(a;) is said to be a
compact (resp. noncompact) root if g%(a;; &) C§? (resp. g%(ay; &) ZH%).

Theorem 1. Let 2 be an element of (a)¥ satisfying Re{2, ay>0 for
all @ e 2(af)*. Suppose that there exists a nonzero function f in

oL (G/H; M) LG/ H).

Then
(i) rank(G/H)=rank(K/KNH) and
(ii) supp B.f7 is contained in the union of closed H *-orbits on G*/P*.



360 T. Oshima and T. Matsuki

Now we suppose a further condition that supp B,f"CH®%x;,P%. Then
we have
(iiiy Re A, a)>0 for every noncompact simple root « in 2(a});.

Remark. (i) Let (z, V) be a discrete series for G/H. By [18] p.
463, every formally selfadjoint operator in D(G/H) extends to a selfadjoint
operator. Thus L*(G/H) has a spectral decomposition for D(G/H). It
follows from the irreducibility of (z, V) that V is realized in a simultaneous
eigenspace for D(G/H) in L*(G/H).

Let V. be the subspace of K-finite elements in V. Let fbe an element
in V.. Realizing f as a function on G, fis proved to be analytic on G by
[17], Vol. 11, p. 177, Appendix. Thus Vy is realized in

A (G/H; M) L(G/H)

for some 2 € (a?)F such that Re (1, #>>0 for all @ € J(af)* (since X%,=
x¢ for we W).

(ii) The regularity of 2/ for compact simple roots will be proved in
Theorem 3.

The proof of this theorem is reduced to Lemma 1 in Section 3 and
to the following lemma which is proved in the following sections.

Lemma 3. Let 2 be an element of (al)} satisfying Re (2, @)>0 for
all & e 2(a%)* and let x be an element of G®. Suppose that one of the
Sfollowing three conditions is satisfied.

(i) rank(G/H)=rank (K/KN H).

(ii) H®xP? is not closed in G°.

(iii) rank(G/H)=rank (K/KN H) and there is a j (1<j<m) such
that H°xP*=H*x;P® and that Re{2?, a>=0 for a noncompact simple
root « in 2(ay)}.

Then there exist subsets 0y, - - -, 0y in ¥ satisfying the following two
conditions.

(@) The set H*xM - - - M P® contains inner points in G°.

(b) Define subsets Ay, ---, Ay in W2 inductively by A,={2} and
A;={v e W2|There exists a pe A,_, such that Re (v, @,y >Re {y, &;) for
all j witha; e ¥\0,} (i=1, ---,N). Then

Relp, 0., -+ -, Rep, ,)) ¢ (— o0, 0)?
Jorall pe Ay.

Proof of Theorem 1. Since 5 and B, are bijective (Remark in § 3),
we have §5,f7£0. Suppose first that (i) is not true. Then we will get a
contradiction. Let xP¢ be a point in supp §,f7. Since the assumption
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(i) in Lemma 3 holds, there exist @, - .-, 8, C¥ satisfying (a) and (b) in
Lemma 3. By (a), there exist m, e Mg, (i=1, - - -, N) such that H%m,
-« -myP?is open in G°. Applying Lemma 1, we see that there exists a
pe A, such that

xmy- -« -m;P? e supp B.f7

for every i=0, ---, N. Thus there exists a g€ 4, such that supp 3,/
contains inner points in G*/P¢. By (b) and Proposition 2, f is not con-
tained in L*(G/H). Thus we have a contradiction to f ¢ L*(G/H) and we
have proved (i).

Next suppose that (ii) is not true. Then there is an x e supp §,f”
such that H%xP? is not closed in G*/P? Since the assumption (ii) in
Lemma 3 holds, we can easily get a contradiction by the same argument
as in the proof of (i).

The proof of (iii) is similar to the above ones. Q.E.D.

§5. Proof of Lemma 3 (Second reduction)

An orthogonal system QO in 2 (af) is by definition a subset {8, - - -, 8;}
in X (a?) such that {8,, B,>=0 for i=*=j. Let S denote the set of ortho-
gonal systems in Y (af) and S’ the subset in S consisting of orthogonal
systems with less than / elements. If Q={X,, ---, X} is a normalized
q?e-orthogonal system of Y,(af), then O={8,, - - -, B;} is an element of S.

Lemma 4. Let 2 be an element of af* such that {2, &y>0 for all
ae X(a)*. Then for every Qe S and we W, there exist a w,e W,, an
integer N >1 and subsets Oy, O, - - -, 0y _, in ¥ satisfying the following three
conditions.

(i) wOe 0.

(i) wiwile W, - W, ..

(i) Put ©0y=06, Then i, O ---, 0y satisfy the condition (b) in
Lemma 3.

Here O, is the subspace in a®* spanned by ©,.

This lemma is proved in the following sections. So in the rest of
this section we will prove Lemma 3 assuming Lemma 4.

Proof of Lemma 3. Let 1 be an element of (¢f)¥. Then we can
write uniquely that A=Re 2+4-Im 2 where Re A(resp. Im 1) is an element in
(e} which is real-valued (resp. pure imaginary-valued) on ay. Since
Im 2 has no contribution to the statement of Lemma 3, we may assume
that 2 e af*.
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(I) The cases of (i) and (ii). Assume the condition (i) in Lemma 3.
Then by Proposition 3 (i) and (ii), we can write

G.D HoxP?=H%(QwP® with some Qe S’ and we W.

‘When the condition (ii) in Lemma 3 holds, we also have (5.1) by Proposi-
tion 3 (i) and (iv).

Applying Lemma 4 to 2, Q and w, we have w,, ,, - - -, O _, satisfying
the three conditions in Lemma 4. We have only to prove (a) in Lemma
3(Gy=06,. We have

HexM¢, - - - M& Pi=H*xP*M¢,- - - M3 P?
=H(QWwM¢,- - -M§ P
DH*(Qww 'wy ML, P*  (by Lemma 4 (ii))
=Hwq (woc(Q)wi )M §, P?
D Hwy'Pe (by Lemma 4 (i)).

Since wy, e W,, Hw;'P? is open in G? by Proposition 3 (iii).

(II) The case of (iii). Let &; be the root in ¥ given by &,=
aoAd(x;). Since the Lie algebra of x;M{;,x;" contains g*(a,; —a) and
since g%oay; —a)ZH%, we have dim H%;M¢{;,P*> dim Hx,P?. Now
we can apply the result obtained in (I) to an element y € H%x,M§;,P°
not contained in H%x,P? and obtain 8, - - -, 0, C¥ satisfying conditions
(a) and (b) for y and 4. It is clear that (a) is satisfied for x, if ©,, - - -, Oy
are replaced by {&,}, ©,, - - -, 0. Thus we have only to prove (b) for the
sequence {&;}, @y, -+, 0y Put A'={ue W2|{y, 6,)>{2, @, for k=~i}.
Then we have only to prove that A'=/,. Let x be an element in A’
Then g can be written as p=21—> 1t c,&, with some nonnegative real
numbers ¢, -+, ¢ Since (g, @) ={A— D 4.1 Cxlty, @p)={4, @y —Cs
for h=1, --.,I’, it follows from the definition of A’ that p=21—c,&,.
Since {4, @, »=0, we have (g, p>={A—c,@;, A—c,&,>=L_2, Ay +c¥a,,a,.
Since {g, p£y=<4, 4y, we have ¢,=0 and therefore we have proved that
A=A, Q.E.D.

§ 6. Proof of Lemma 4 (Third reduction)

Since af is §-stable, § acts on 2(a%). We call such a pair (2(af), 6)
a f-system. A f-system (2(af), 4) is decomposed to irreducible ones and
it is clear that we have only to prove Lemma 4 for an irreducible #-system
(3, 0).

In order to classify irreducible #-systems, we can use (generalized)
Satake diagrams as in [17], Vol. 1, p. 30. A list of root systems for all
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the irreduciblé semisimple symmetric spaces is given in [13] (c.f. [20]).
Following the list, we can write the Satake diagrams for all the irreducible
6-systems corresponding to semisimple symmetric spaces as follows.

(1) Al O—O— ssss0s —O—0
(2) All O @ — sosses —9—O—®
(3) Al & e T e Y
A e N
(4) BI O— s eeeensee OB et —a—De
CI O— o e s e 0000 —O—@— oo 0589000 _.éﬂ [N
—o—o— . (B3]
(5) CII @ —O—@— v 2esve —O—@— ss0sce —O—®
@O ——@—— * o0 0000 __o_.;o
BII[* e—o—e—

(6) DI O— o 060000 O @— e e e e e ‘.<:

(7) DIII ——O0—@— s A@<;

(8) G >o
(9) FI oO—O=20—0
FII o—e& —>06—O
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(10) EI

EIV

(11) EII

ElI

O_O_I_«»—o
H—I—a—@
P e
(12) EV o——o—o—I——H
EVI ._o—._T_H
O_O—.—I—H
H——o—o—l»—w—o
o—o——o——o——I—4—O

EVII

(13) EVIII

EIX

(14) 2(aH=2,]] 62, (2, is a connected Dynkin diagram)

Here the diagrams with asterisks do not exist in the original Satake
diagrams.

Let w* be the unique element in W satisfying w*3(a%)* = — 2(af)*.
Then w*@ is an involutive automorphism of 2(af) such that w*§3(a)*=
2(m)*. We will first give a proof of Lemma 4 in the cases of (1) with
I=2 and (14).

(@) Proof of Lemma 4 in the case of (1) with [=2. Put ¥ ={a,, &}
When w'0=4¢, {&}, {—a}, {&} or {—a&,}, we put wy=w~! and N=1.
Then it is clear that &, and w, satisfy the conditions (i), (ii) and (iii) in
Lemma 4 if we put 6,={&,} or {&,}.

Thus we may assume that w='Q={&,+a&,} or {—a&,—a,}. Since w*g
is an automorphism of X(a?) satisfying w*da&, =&, and w*0a,=a&,, we may
assume that (1, 0, )>{4, w,). Put wi'=ww,,, O,={a}, O,={&,} and N=
2. Then (i) and (ii) in Lemma 4 are clear. (iii) is proved as follows. If
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ve A, then (v, wy)={Way, Wg,0,) =Wz, ®;—,). Since wyve 4, and
since 2 is dominant for 3(af)*, we have (W, 0,>>{2, 0,» and (W, ,>
<{2, w,). Hence we have

v, 05 ={Way, @0, — ;) > {2, @) — {4, w,» >0.

On the other hand if p € 4,, then (g, @,> ><{v, v, for some v ¢ 4, by the
definition of 4,. Thus we have {g, w,) >0 for every p € 4, and therefore
we have proved (iii). Q.E.D.

() Proof of Lemma 4 in the case of (14). Let & be an element in
{@,, - - -, @,} which is orthogonal to §2,. Then w=d&—60ad is an eclement
in {0, - -+, ®}. Since w*@ is an involutive automorphism of X(af) com-
muting with 4, We may assume that

(2, &5>(2, whOd.

Since 3, (af)=¢, we have S'={g}. For a we W, we put N=2, O,=¢
and ©,=¥N0H,. wye W, is defined as follows. There exists a unique
pair (4, v) of elements in W such that w=wuv and that u(resp. v) acts
trivially on 6, (resp. 2)). Put wy'=u(6uf). Then (i) and (ii) in Lemma
4 is clear. Lety be an element in 4,. Then we have (v, d)>{1, @) by
the definition of 4, and we have (v, —8&)>{(w*2, —0&) since —0&
{®y, -+ -, @,} and since —w*1 is dominant for X(af)*. Thus we have

(v, 0y ={v, ®—00)>{2, @) —{ A, w¥0d)>0,
proving (iii) in Lemma 4 (4,=4,). Q.E.D.

Put af, ={Y e af{a(Y)>0 for all ae J(aH*} and R.=—R,=
{te R|t<0}.

Lemma 5. Suppose that (2(a?), §) is irreducible and is neither of type
(1) with 1 =2 nor of type (14). Let A be an element of al* such that {2, &)
>0 for all 3(a?)*. Then for every Q e S’ there exists an o € {w,, + -+, @;}
satisfying the following two conditions.

(i) Put O={ac¥|{(a,v)= <a, W*0w)=0}. Then there exists a
w) e W, such that

wiQ@ {0
(ii) For every w' e W satisfying {w'o, a>.>ZR_ and {(Ww, 21)>0,
there exist an integer N >1, subsets 0@, «--,0y_, of ¥ and elements
o®, -« -, 0™ in Wo satisfying the following four conditions.
(@ oM=wando® e Weo®" fori=1,.--,N-—1.
by <2, 0">>0.
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(¢c) There exists a sequence of simple roots T, - -+, T, € ¥ satisfying
Wy, - WwWo=o0® and

Wiy oW Wo—w, - - wwae=cT,;

for some ¢, >0 (i=1, ---, k).
(d) Foreveryi=1,.---,N—landj=1, ...,

i Ly, 0®©>>0, then &, ¢ 0,;
if (&, 0M><0, then &, ¢6,U - UO,_,.

This lemma is proved in Section 7. Assuming this lemma, we prove
Lemma 4 in the rest of this section.

Now we review two well-known facts about the Bruhat ordering in
the Weyl group W. These facts will be also used in Section 8. For a w
in W, let w=w,---w, be a reduced (minimal) expression of w by the
reflections w,, - - -, w, with respect to simple roots in 3(a?)*. Then we
put I(w)=n.

Proposition 4 ([3]). Let w and w’ be two elements in W. Then the
Jfollowing two conditions are equivalent. ‘

(i) Let w=w,---w, be a reduced expression of w by the reflections
Wiy, -« -, W, With respect to simple roots in 2(a?)*. Then w' can be written
as

/

we=w, ---w, (<< - -<i,<n).

r

(ii) There exist elements w®, - .. w® jn W satisfying the following
three conditions.

@ wO=w, wH=w,

(b) wBW=D)"1is a reflection with respect to some root in 2(a?) for
i=1,---, k.

© Iw)Y<Iwe»)fori=1, ---, k.

Proposition 5 ([4], p. 250, 7.7.2 Lemme). Let yn be an element in af
satisfying {u, &)=>0 for all & € X(a?)* and let w and w' be elements in W.
Suppose that ww'=! is a reflection with respect to a root B in 2(a?)* and
that I(w)<I(w). Then wu—wue R,B.

Proof of Lemma 4. By the first part of this section, we may assume
that (2 (a?), 6) is irreducible and is neither of type (1) with / =2 nor of type
14).

Let O and w be arbitrary elements in S’ and W, respectively. By
Lemma 5 (i), there are a wy in W, and an o in {w,, - - -, 0} satisfying w;Q
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O, Ifiw'wi o, al.>Z R_ and {w'w;~'w, 2> >0, then we put w'=
wolwg™! and wy=w;. Otherwise we put w'=w-'wi~'w* and w,=w*w{.
Then we have w,0C<{60;>. It is clear that the condition (W', a%>Z R_
and (W, 2>>0 or the condition (We', a’.>ZR_ and (Wa', 2>>0 is
satisfied. Here o’ =w*0w= —w*w is an element in {o,, - - -, ®;}. Since
there is an involutive automorphism —w* of (2'(a?), §) such that —w*w=
', we may assume that (w'o, a%.>Z R_ and {(Wae, 1>>0.

Put O,={@ e T|<{& w)=0}. Then (i) in Lemma 4 is clear from the
above argument. By Lemma 5 (ii) (a), there exist w® e Wy, - -, w1
€ W,_, such that @@ =w®...w¥Vg. Put w’'=w,---w,w as in (c).
Then w”o=0®. Clearly there is a w® in W, such that w”/=w®. ..
w¥-Dy® - Since a reduced expression of w” can be obtained as a sub-
expression from an arbitrary expression of w”, it follows from (c), Proposi-
tion 4 and Proposition 5 that w’ can be expressed by a subexpression of
w”. Thus we have w’ € W, - - - W, We, and (ii) in Lemma 4 is proved.

Lastly we will prove (iii) in Lemma 4. We have only to prove for
i=1, ..., Nthat

(6.1) For every p e /,, there exists a v € 4,_; such that
{tr @125 2w, 00).
Here we put ¥+ =w. If (6.1) is proved, then for every x € A, we have
gy 0y=_{k, ®¥*V>>{2, @P>>0

and we have proved (iii).

We will prove (6.1). Since w¢*"=w®e®, we have {u, 0%*)=
{y WDy ={(WP) 'y, 0. Since (WD) 'pe A,, there is a ve 4,
such that {(W®) 'y, @,>>(v, @,y for @&; e ¥\O, by the definition of 4,.
On the other hand, since {(W®) 'y, —@;y>{q, —d;,) and (v, —@,>=
{2, —a@y) for @, e T\(O,U - -- UBO,_,), we have

WD)y, =@y >y, —dgy if @, e ¥\O,U---UB,_)).
Since 0¥ =371, {@;, ®?)@;, we have
(0 Y= (), 00) 2 (3, 0

by (d) in Lemma 5fori=1, .-+, N—1. When i =N, (6.1) is clear from
the definition of 4, since O, =0,. Q.E.D.

§7. Proof of Lemma 5

In the following lemma a part of Lemma 5 is proved.
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Lemma 6. Suppose (2(a?), 6) is irreducible and is not of the type (1),
(2), (6), (10) nor (14). Then we have the followings.

(i) Let ¢ denote the restriction of 6 to af. Then ¢’ ¢ W,.

(ii) Let B be aroot in 3 (af). Then the maximum root « in W with
respect to the order 2(af)* is contained in W,p(C 2 (af)) and —w*a=q.

(iii) Let a be as in (il). Then there is an i (1<<i <I) such that o= c,w,.
Here c, is a constant given by c,=%<{a, o) if o, ey =Ly, a;), c,={a, &)
if o, ad>=3%{ay, a0,y and c,=%{a, o) if {a, ay=%a;, ;).

(iv) For every Q € S’, there is an « given in (ii) satisfying wy(Q)CT (B>
Sfor some wy e W, where Oy={a ¢ ¥ |{&, a)=0}.

Proof. (i) If (2(a?), 6) is the same root system with an involution
as that of a real simple Lie algebra, then there is a strongly orthogonal
system {7y, - - -, 7,} in 2 (af) (/{ =dim &) when (3(ag), 6) is not of the type
(1), ), (6), (10) nor (14). Thus &=w,,---w,, € W,. When (Z(a?), §) is
of type BIII or CI, (i) is clear from the cases of CII or BI, respectively.
The proof in the case of FIII is easy.

(ii) Put a,={Y ea]a(¥Y)>0 for all ¢ e J(a)*}. Then there is a
unique root & in W,AN @, since &, is a fundamental domain for W(a)==
W,l.. Since a, Ca?., « is the maximum root in Wg. Since —w*a has
the same length as a, we have —w*ae Wa. Thus —w*a=a since
—w*a e a,.

(iii) First we will prove that there exists a O={8,, - - -, f;_.} € S
such that (&, 8;>=0fori=1, ---,/—1. Let O={By, - - -, B:} be a max-
imal element in S satisfying (e, 8;>=0 for i=1, ---, k. Suppose that
k<I—1. Then w=w,wg,---w; 0 e W, fixes the subspace E of a* which
is generated by «, 8i, -+ -, f, and a,. Put Wy={we W|wu=y for all
pe E}. Since w is not the identity and since W is generated by the
reflections contained in W, there is a root g e 3 (af) which is orthogonal
to @, By, -+ -, Bx- Thus we have a contradiction to the maximality of O
and therefore k=17—1.

Since « is dominant for 2'(a)*, the subgroup

W(a),={w e W(a)|wa=a}

of W(a) is generated by simple reflections (i.e. reflections with respect to
simple roots) contained in W{(a),. Since wy,|, - - -, Ws_, |, is contained in
W(a)., the roots B, - - -, 8;_; can be written as linear combinations of the
simple roots contained in W(a),. Thus the number of such simple roots
must be /—1 and so there is an i (1<{i</) such that « is a constant
multiple of w,. (The constant can be easily calculated.)

(iv) Let O={B;, -+, B:} be an element in S’. Then there is a
B e 2 (af) which is orthogonal to 8, - - -, 8; by the same argument in (iii).



Discrete Series for Symmetric Spaces 369

By (ii), there is a w, € W, such that «=w,f is maximum in Wp. Then it
is clear that & and w, satisfy (iv). Q.E.D.

Proof of Lemma 5. Suppose (2(ag), ) is not of type (1), (2), (6) nor
(10). Then we put w=w, which is a constant multiple of @ in Lemma 6
(ii). Hence Lemma 5 (i) is proved in Lemma 6 (iv). Let w’ be an element
in W satisfying {wo, al+) ZR_. Then it is clear that ww e c;'3(ad)*
and therefore (Ww, 2)>0. It is easy to show that the condition (c) in
Lemma 5 (ii) is satisfied for some o e ¢;'¥. Hence we have only to give
forevery o® e ¥ alistof N, 0, - -+, 0, 1, 0@, -+ -, 0¥~V satisfying the
conditions (a) and (d) in Lemma 5 (ii) in these cases. (The constant ¢,
has no effect on the proof.)

In the following we will prove Lemma 5 for each (2'(a?), 6) of type

from (1) to (13).

In the cases of (1), (2) and (3), we take an orthonormal basis {e,, - - -,
€y.1} in RY** and represent ¥ as &, =e,;—e,, - -+, A =€, —€p 4.
(1) AT (=I'#2) o—o0— «re--: —o—0

a @ dy oy @

Suppose that />3. Put o=a@,=e,+e, (mod R(e;+ - - -+e,.,,). Then
o' =@y =—(eyteu.y) (mod Rle+ - - - +eyiy)).

Proof of (). Let O={B,, - -, B} be an element in S'=S. Since
W,=W is the group of all the permutations of {1, - - -, /4 1}, there is a
w, € W, such that wy8,=@&; and w,8,=a&,.. Then it is clear that w,0 C{O,».

Proof of (il). Wo={e,+e;|1<i<j<I'+1}. fww=e,+e; (<)),
then we put N =3,

@1‘:{&13 ] &i-—l}, @22{&29 Tt &j—l},

oV =wao=e;,+e,, o®=e +e;.
If / =1, then we put o=0'=%@&,, ,=¢ and N=1.

(2) Al O—O—@— s csece —8—O0—@
@y dy ay-y ar

S={¢4} and the others are the same as (1).

P ~ \

s e e 0 00 e e s e 0 0P 0s 0000 o—0)

(3) Al & —&—e— X
& a  dpy G-y @ -141 ay
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w=e,—e,,;. Forevery i (1<i<l’), weput N=2,
~ ~ ~ ~ 1 ~
@12{6(1, e, Oy (g "':al'}s w():ai'

In the cases of (4) and (5), we take an orthonormal basis {e,, - - -, e,.} in
RY and represent ¥ as &, =e,—e,, + -+, @po1=€,_1—e,, &.=e, if J(af)
is of type B,.. (@&, =2¢,- if 2(a?) is of type C,..)

(4) BI ?_ ...... —‘c')-——.'o——— ...... —?a:>:
ay ay  apyy ay.yp v
Cl O o s s oo O @ — et e e —ei—w

(a) If w=e, then we put N =2, o®=¢,, O,={d, - - -, @-1}.
(b) Suppose that o =e;+e,. Then for every o® =a, (1<i<l'—1),
we put N =3,

~ ~ ~ ~ 2
@1:{6(1: oy Uiy Kgpny t 0ty al'}) w():el+ei+ls
@2:{&2') Tt &i}'
( 5) CII @ —O—@—— o+ o+ 35000 —O—@— s e s e —-—.@.
a & oy dar41 day-y @y
@O @— v o e o —O——e<—D
BIII [ o e L R —O——&——>0

w=e;+e, and the others are the same as (4) (b).

In the cases of (6) and (7), we put &, —e,—e,, - -+, &p_y=€,_1—€,
&, =e,_,+e, where {e;, - - -, ¢,} is an orthonormal basis in R".

(6) DI o e o e e, _.<: e
7 & G-z e v

Proof of (). (a) If /is odd, then we put w=a’=¢, and it is easy to
show (i).

(b) Suppose that [ is even. Since there is a strongly orthogonal
system with / elements in 2,(a%), Lemma 6 holds in this case.

Proof of (i). (a) Since {al, —e,)CR_ for i=1, ---,I'—1, we
have waw=e, for some i=1, ---,l” or Wao=-—e,. We put o¥’=e, if
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{2, ,,y>0 and we put 0= —e,, otherwise.

Then it is easy to see that
Lemma¥4 (ii) (c) is satisfied. Put N=2.

If w(l) =€, then we put @1={5(1, s, 5(11_1}.
If 0= —e,, then we put O,={@,, ++ -, &y, &}
b)) w=e¢te,. Ifo®=a, (1<i<l’—2), then we put N =3,

~ ~ ~ 5 2
@12{(11’ ety Wy gy, 20t C(;/}, o®=ete;.,

@2:{&2, Tt 07;'}-

If o =a,._,, then we put N =2, &,={a,, -
If o =«,, then we put N=2, 0,={a,, -

Ty &l'~2a &l’}'
s &l'—l}-

&y -y
(7) DII H+_o<:
dy Ay dyr g O dy

(8) G

@ N ®

@

Suppose {&;, &y =3 and {&, a,y=1. Put N=3.
(a) If w=a®,, then we put

oW =2a&, 0,={a},

0® =3@,—@,, O,={a,}.
(b) If w=a;, then we put
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o® =‘§‘ by, @1 - {552},
0O =@y — @y, O,={a}.

(9) FI O 0——0

FII *—e—>8—0
FIIT1 o >80

We put & =e,—e, dy=e,—e;, G;=¢;, &, =% (e,—e,—e,—e;) where
{e), e, s, €,} is an orthonormal basis in R*. Put N=3.
(@ w=d,=2e, ‘
If 0™ =2a,, then we put O, ={@,, &, &}, 0@ =e-+e, - e;+e,=d;—ad,,
0, ={a}.
If 0V =2a,, then we put 0, ={@,, @}, ®® =2¢,=20;—ad,, O,={, @,
@)
b) w=a,=e+e, (if 2(a?, §) is of type FI or FIII).
If o® =@, then we put O, ={d@,, @, @}, o® =e,+e,=@,—@;, O,={@}.
If 0™ =@,, then we put 0,={a,, @}, 0® =¢,—e,=d,—d,, O,={ay, @,
AR

(10) EI

EIV

P{Qz
)

Put w=a, and ' =@;. Then (i) is clear from [14], p. 417 and p. 419.
If (&, ;) =2 (1<i <6), then
g =4+ Qa4 4d, + 6a;+ 3d,+ Sat; +4d).
For every w ¢ W, we write wag, as
a,a,a,a.4,
a,
for the sake of simplicity if wa,=4(a:@;+ aut,+ asity+ a,8, + ayde; + agdy).

Using this notation, Wa, is described as Fig. 1 wheregdenotes the
reflection with respect to &,.

By Lemma 5 (ii) (c), we have only to consider the case of w® =21821
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24654 (6) 24651 (5) 24621
3 — 3 — 33

o 23
(2)
24(3)21‘(/) E‘mgm -
2 >(1)
?21(3)21 ‘/{’ \(\4)‘—11221
. ////(1)
- 210216’/ \—11321/
60 B0
@ 201 (5 102!
0N - ~2)
210-1-2 e o) (5)—1-2821
~0) 0~ 0N 5
ez (631—2 o1
NZNE I
120127 S1-2-3-11
ERNCY \‘\(\f)/ EANCY
-1-2-3-127~ -1-2-3-11
B - 0\ ™83
~1-2-3-4-2 -1-2-3-1-2
EIENC) (5)- -3 T
~1-2-3-4-2
-3
3)
4-5-6-4-2 (1) ~1-5-6-4-2 (2) -1-2-6-4-2
3 v 3 e 3
Fig. 1.
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and the cases that w® is contained in the middle domain of Fig. 1. In

the followings we use the abbreviation such as

Ge) (234 . 21021

W3 — Wy >@; A+ @y — Dy = 0

@

which means that we put N =3,

‘0@):@3—@5, 0)(1):@1+@5—d)3:%(25(1‘*“&2‘{"2&5‘*‘076),
@z:{d’m &6}: @1:{5% &, 5‘4}-
(560 (@234 . 21021

B> @y — B>+ B — Dy =" )
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o ® (2345 210-11
@ @y — D @1+ @y — Oy = 0
@ . _110-11
———>@y Dy — D — D5 = 0
az - _1-20-11
———> D3+ g — Dy — B = 0
a3 - _12-3-11
—— @, F Oy — D= 0
(1234) 12311
————>@y— = _3
_(23456) 210-1-2
Dg—> D — D= 0
®» . Z110-1-2
> Wy — D — W = 0
. (12356 _11321
Dy—> W, — D= 3
(CON ~11321
Wy — W — Wy = 0
GH . -11021
— @+ O — B — Dy = 0
234 12021
> Wy — Dy = 0
¥ .\
(11) EII H—I—o—o
dy Qg dg ds dg
@y

EIIT HT’_—O

w=a, In this case we use the abbreviation such as

12321 (4) 12321 (12356) 00000
2 > 1 1
I I l

@y ——> Dy— @y ——> 20, — @y

which means that we put N =3,
0® =@, — @, =a,+ 20, + 3, -+ &, + 2d, -+ &,
0N =20, —d;=d,

@2:{&4}9 @1:{5(1, @y gy A, d’e}-
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12321 (4) 12321 (12356) 00000
2 > 1 > 1
I I i

By ——> Dy— @, ———> 20, — @,

12321 (2345) 11111 (2356) 10000

2 —> 0 ——> 0

I I Il

By @y @y — B, >20,— &,
(1356) 01000
.___—9 0

\2(2)2'—’6)1 e (Dg

(1256) 00100
e 0

Il
>2J)3_W2*‘w4—w5

(1236) 00010

(12) EV

EVI M—*—T—-«y—o
EVIIL o—o_’—I_._o

w=a, and we use the same abbreviation as in (11).

123432 (7) 123431 (1-6) 000001
2 —— 2 > 0
I

I |

By —————> g — @y ————> 26, —

375
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123432 (2-7) 100000
7 —

! H

Oy——> 20, — @,

123432 (3-7) 122210 ) 112210 (13456) 010000
2 ———
I u n ]
Wy

> @Dy~ By >+ Dy — By — Dy—>2@y— D — Dy

(23) 111210 (12456) 001000
— 1 —> 0

I I

>@y+ Dy — By — Oy—> 2@, — By — @,

(234) 111110 (12356) 000100
—> 1 —> 0

I Il

> @y @5+ D — By — Dy—> 20, — By — @ — B

(12346) 000000
_._____) 1

Il

> 20—,
(12345) 000010
I

—> 2‘;}6 —@4—'(1.}1

(13) EVHI

EIX o—o-——o»—a——I——b—o

o=@, and we use the same abbreviation as in (11).

2345642 (1) 1345642 (2-8) 1000000
3 — 3 — 0

| I I

By ———> @y @y ———> 263, — @,
2345642 (1-7) 0123432 (3-8) 0100000

3 —™> 2 —> 0

| | I

@y ————> y— @y ————> 2Dy— @, — B
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2345642 (1-7) 0123432 (4-8) 0122210
3 —> 2 —> 1
I Il I

(51_“—"—) @3—@1'—)(?)3—-(7)1 —'d)s
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(3) 0112210 (24567) 0010000
> 1T — 0

I I

> @yt Gy — @y — By _ 20y — @y — @y
—CBB

(34) 0111210 (23567) 0001000
— 1] —> 0
I I

>J)2+(D§—(Dl_d')4__)2(b4_(b3“@5
_@8

(345 0111110 (23467) 0000100
> 1] ———mm 0
| I

\I’z'{'d’s'f'd)-z_(bl__)zd’s_(m—@e
— @5 — Dy —a,

(23457) 0000000

.—_) 1

I

> 2(66‘_‘665

(23456) 0000010
_—H 0

L 06, — @ — g

2345642 (1-7) 0123432 (8) 0123431 (2-7) 0000001
3 — 2 — 2 — 0

I |

By ————> Wg— D——> @ — D — Dg—> 2Dy — @y

Thus we have proved Lemma 5.

§8. Proof of Theorem 2

Q.E.D.

Theorem 2. Suppose that rank (G/H)=rank (K/K N H) and let 2 be

an element of (ad¥ satisfying Re {4, @) >0 for all & e J(ad)*.

have the following g -isomorphism

Then we

7o Pi: & BuGHIPY; L)t ((GIH; A) N LHGIH)

by Flensted-Jensen’s isomorphism 3 and the Poisson transform 2,.

The proof of Theorem 2 is reduced to Lemma 2 in Section 3 and to

the following lemma.
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Lemma 7. Let 2 be an element of at* satisfying {2, ay>0 for all
@ e ¥ and suppose that H®xP*® is a closed subset in G°. Suppose that w €
W satisfies (W, 0,)>0 for some k (1<k<l). Let w=w,,---w, be a
reduced expression of w by the reflections with respect to roots in ¥.  Then
the subset

d a a a
HxM¢G - M, P
has no inner points in G%,

Using these lemmas we will first prove Theorem 2. By Theorem 1
(ii) and by the fact that g,=cZ#;' with some constant ¢ (§ 3), we have
only to prove the following.

8.1) If ge #4G%/P%; L), then 37'oP(g) e L(G/H).

(8.1) is proved as follows. Put f=z"'oZ,(g). Then g=c~'8,f"
By Proposition 2 in Section 3, we have only to prove that supp §,.f” has
no inner points if Re (w2, w;> >0 for some k (1<<k<{/). Letw be an
element of W(w2) (§ 3, Lemma 2). Then it is clear from the definition of
W(w2) that Re (w4, > >0. Let w=w,,---w,, be a reduced expression
of w and put S =H%x,. Then by Lemma 7, SW)=H’x;M¢,- - - M, ,P*
has no inner points in G¢. (We may assume that Re 1=2.) On the other
hand, we have supp B,./"C U wewwnS (W) by Lemma 2. Thus we have
proved the theorem. Q.E.D.

Though the following fact seems to be well-known, we will give a
proof for the sake of completeness.

Lemma 8. Let P’ be a minimal parabolic subgroup of G* and A,=
exp a; a split component of P’. Let 2(a})* be the positive system of 2(a;
corresponding to P’. LetT], - - -, T, be simple roots in 2(a})* and wy, - - -, w},
be reflections with respect to 71, - - -, T, respectively. Put W;={1, w}} and
P;=P'W;}P’'. Let P;=M.A;N{ be a Langlands decomposition of P} (1<
i<n). Then for every xe P’M7---MP’, there exist i,, - - -, i, satisfying
1<i<---<i,<nand

xeP'w---wjP.

Proof. We will prove it by induction on n.. Since P'M;- - - M P'=
P'M{...-M!_P'M], there is a ye P'M/---M,_,P’ such that x e yM,.
By the assumption of induction, there exist 7, - - -, 7, satisfying 1 <i,<- - -

<i,<n—1and y e P'wP’ with w=w/,- - -wj,.. Hence

xe P'wP' M, =ww'P'w)M,P’.
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By the Bruhat decomposition M,=Ww 'P'wN M)W/ (P'NM.) of M],
we have

xeww 'P'wWyW P =P wW,P’,
proving the lemma. Q.E.D.

Proof of Lemma 7. We write w,,=w, and M$,,=M}{ for the sake
of simplicity. Since H*xM$¢---M%&P*=H®,M¢---M%4P® if HexP?=
H%x;P¢, we may assume that x=x; for some 1<j<m.

Suppose that HxM¢---M%P? has inner points in G?. Then we
will get a contradiction. By Proposition 3 (iii) in Section 4, there is a
Wy € Nga(af) such that Ad (W) € W, and that W,=hxm,- - -myp for some
heH, m,e M (i=1, ---, N) and pe P% Put mi=xmx"', M,=
xMéx~', p’=xpx~' and P'=xP°x~'. Then Wwyx'=hmj- - -myp’. We
have

OWox~D=ho(my)- - -0(my)6(p’) € KM} - - M P’
since M {=M7 and §P'=P’. (Note that a;C}*) Thus we have
W7 O(W)0(xY) € P'M'y- - - MM/ - - M/yP’.
For every Y e a;, we have

Ad (x5 0(0)0(x ) Y = Ad (xw; '0(%,))0(Ad (x~ 1Y)

(8.2)
=(Ad(x)o 0o Ad (x~ )Y

since Ad (W) Z)=6 Ad (W, )(Z) and since Ad (6(W)(Z)=6 Ad (W,)6~(Z)
=Ad(W)(Z) for Z e aZ. Thus we have
XWe ' 0(Wo)0(x") € Nxala).

Applying Lemma 8 to xW;'@(W)8(x~"), there are iy, -+ -, i, ji, + +» Js
(1<i,<.--<i, <N, 1<j,<---<j,<N) such that

Ad (x5 0RO Do, =Wy, - - Wi, - W],

where w/ is the reflection with respect to 7, =7, o Ad(x)~". Hence we have
by (8.2)

HZ)=w,,- - -w;wy, -+ -w;(Z) for Z e af.
Since w, € a, we have 6w, = —o, and therefore we have

(8.3) Wiy e W )o=—(W,, - - - W; ).
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Since 2 is regular, we may assume that {wi, ;) >0 by taking a small
shift of . By Proposition 4 and Proposition 5 in Section 6, we have

v
Wiy =W o —w o, € 3 R,
=
and
v
Wy, W0 —w o, € Zl R.&,.
=

Hence we have
Qs Wy o W )0y >, wle) =W, @) >0
and
QA Wy, - ;)05 >0,

But these contradict to (8.3). Thus the lemma is proved. Q.E.D.

§9. Theorem 3

In this section we assume that rank (G/H)=rank (K/KN H) and fix
J(1<j<m). Let L_ denote the semilattice in a;* generated by the roots
a e 2(a)); satisfying g%(aj; @)z 9%  Let Lg/cnn (tesp. Lg, ) denote the
semilattice in a,* consisting of highest weights with respect to the order
2(ay); of finite-dimensional representations of K (resp. holomorphic
representations of G,) with KN H-fixed vectors (resp. H -fixed vectors).
(Note that 4/ — 1 o/ is a maximal abelian subspace of £ q=+— 1(p?N§?)
and of q. Let p/ be an element in a;* defined by

pl(¥) =} trace @d (¥)]sn50)

for Y e a}. Fora 2e (a)f, we put pf =274 p’—2p].

Let af be a maximal abelian subspace of m? and put a?=af-+af.
Let 2'(a?) be the root system of the pair (g,, a%). For every a e 2(a?) let
@ denote the restriction of « to a?. Choose a positive system 2(a?)* of
2(ad) so that J(a?)* is compatible with J(af)* (i.e. the condition a € X(af)*
and @0 implies @ e 2(af)*). Put p,=% >« where the sum is taken
over all @ e X(a)* such that @=0.

Theorem 3. Suppose that rank (G/H)=rank(K/KN H) and let 2 be
an element of (a2)¥ such that Re {2, &) >0 for all & € 3(a%)*. Suppose that
RBi(GP?; L)=={0}. Then we have the followings.
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(i) Suppose that BL(G%/P%; L))~ contains a H-type (z, E) with
lowest weight v e aj*. (i.e. There exists a vector v e E such that =(Y)v=
w(Y)v for Y e a; and that «(Z)v=0 for Ze n='NH%) Then —ve p]—L_.
Especially 2 is real-valued on af.

(i) If QA+ pw @) >0 for all o e 2(al)*, then B4(G*/P%; L) is an
irreducible g .-module.

(iil) g is contained in the lattice in a, generated by Ly xq g-

(iv) Let a be a compact simple root in 2(a}));. Then (A’ —p?, a) >0.

Put P!=x,P%;', N-9=x,N-%x;!, A,=exp ajand G=A[(N-I N H?)
X P!. Then G acts on G on the right by
z-(y,P)=y"'zp

for ze G4 ye AN-'NH% and pe P’. Let V be the G-orbit on G*
containing the identity. Then V is an open dense subset of the closed set
V=H?P because of the Bruhat decomposition

Hé=\J (N~ NHYw(P N H)

where w is taken over N H,z(a,’,)/% wa(ay). Let v be a character of 4. Then
we can define a character X of G by '

(CAY)] x(any, myan,)= aal’- ol

for a,e Aj,n,e N-"NH* mye M’, a,e A, and n,e N*/ where ai-*'=
exp (A’ —p’,loga,y. Put
AV, N)={ve Z(G?|supp vCV and v(y~'zp)
=Xy, p)u(z) for (y,p) e Gand z e G%
and
BV, )=V, D[ZTV\V)N BV, %)

where Z(V'\V) is the set of all hyperfunctions on G* with supports in
V\V. Consider the following two conditions.

(C)) There exists a Y in ay such that 8(Y)>0 for all e 3(a}); and
that

— 1Y)+ 2(p — p)(Y) +d1(Y)#0

forall pe L_.
(C) The condition (C,) holds except for the case y=0. Then the
following proposition is an easy consequence of Lemma in [7] Appendix I.
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Proposition 6. If the condition (C,) holds, then B(V,x)={0}. If the
condition (C,) holds, then the dimension of the vector space Z#(V,X) is at
most one and BV, ) consists of elements of the form ¢d, with a real
analytic function ¢ on V and a delta function 5, with support V. (Note
that the quotient of tangent spaces T,G*|/T\V is naturally identified with

n-?Ng®)

Proof of Theorem 3 (i). Suppose that #}.(G%/P?%; L)#+{0}. Then
we may assume that there is an f£0 in Z(G?) satisfying

f(niar xman) = aya*~* f(x)

for xe G% nye N"NH? a,e A, me M*, ac A’andne N**. Herey
is a lowest weight of an H4type in #4.(G%/P?%; L;) and f is a lowest
weight function in the Htype. Put v(x)=f(xx,) (x € G?). Then it is
clear that v e #(V, X) where X is defined by (9.1) and that v ¢ Z(V\V).
Thus Z(V, 2)+1{0}.

We claim that

—p+2p’ —p)+dx=0

on a) for some pe L_. Infact, if —pu+2(p’—p!)+dx+0 on a; for all
pe L_, then we can choose Y e a; such that f(¥)>0 for all e 2(a});
and that — u(Y)+2(p? — p{)(¥Y)+dx(¥Y)70 for all 4 e L_ since

— 2’ —p]) +d1=0

defines a hyperplane in a, for every e L_. Then by Proposition 6 we
have Z(V,2)={0}, a contradiction to H(V,x)#{0}. Since dX(¥)=
@+ —p)(Y) for Y e a;, we have — p+p’ —2p]+v+2’=0 and therefore
we have p] — p= —v, proving Theorem 3 (i). Q.E.D.

§ 10. An application of Vogan’s result and the proof of Theorem 3

Let t be a maximal abelian subalgebra of ¥ containing v/ — la
(Cv/=19p*NH¢=ENgq) and a, a Cartan subalgebra of g containing t.
Fix a positive system 2'(a;)* of the root system 3(a}) of the pair (g., aj.
such that §3(a})* =23(a})* and that X(a))* is compatible with 2(a;);. (i.e.
The condition « e X(a))* and a]ap,;&O implies that a],,{1 e X(oy);.) Let
2(t)* be the restriction of 2(a))* to t and let R denote the subset in
= 11t* defined by
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Let 2(%, 1) be the root system of the pair (f,, t,) and Z(£, £)* be the positive
system of X(f, 1) defined by 3 (f, 1)* =2(f, YN I()*. Put =41 ,crpn+@
and p,=%> scsun+fB- For every pe t¥, the real part Re p is defined by
Re p=y, if p=p,++— 1y, and p,, p, are real-valued on v/ —1t.

We will first prove a lemma which is an application of Vogan’s lowest
f-type theory ([15]).

Lemma 9. Let X be an irreducible Harish-Chandra module of g with
an infinitesimal character parametrized by v e (a})¥ such that Re (v, a) >0
for ae 3(a)*. Let pe s —11* be the highest weight with respect to
2, D) of a lowest t-type (in the sense of [15]) in X. Then

p+2p.—p € Re(v| /=) —R.

Proof. Let W(t) and W(a]) be the Weyl groups of 2(t) and 3(a)),
respectively, and W,(a) the subgroup in W(a;) defined by

Wiap)={w e W(a})|wb=0w}.

Then W(1) is the restriction of Wy(a]) to . Thus we can choose we
W(ay) so that p+-2p, is dominant for w2(t)*. According to Proposition
4.1 in [15], we can choose roots §,, - - -, B, in w3(a;)* and real numbers
¢, -+, 0, (0<c; <1 for all i) so that

(10.1) j=p+20,—wi+35c;f; is dominant for wi(a)*, By, - - -, B, are
orthogonal to each other and ¢, = —2{u+20,—wg, 8:>/{B:> B:)-

Let I be the subalgebra of g, defined by [=3, (1) + > j.c 5. 09.(t, @) where
20 )={ae 2®)|{#, a)=0}. Putt*=1tN(center of [) and t-=tN][L, {].
Then t=1*+41- is a direct sum. By Proposition 5.8 in [15], there is a
w; € W(a}) such that

Al =wi )]s+

(Note that g;},+ =0 fori=1, - - -, r by (10.1).)

It is clear that ji|,- =0 and we can choose an element w, in the Weyl
group of 2({, t) such that Re (w,w,(v}|.-) is dominant for 2({, )N w(H)*.
Then it is clear that

(10.2) Re (ww,(v)], =) € Z+wR.
On the other hand, we have

(10.3) Re(ww,(v)) e Re(w()—w >, R.x

’y+
EZ‘(ag)
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since Re(w(v)) is dominant for wX(a)*. It follows from (10.1), (10.2)
and (10.3) that

p+20.—wp € Re(w()| =) —wR.
Thus we have
w(u+2p.)—5 € Re®] ;) —R.

On the other hand, we have w='(z+2p,)—(+2p.) € R since w=(z+2p,)
is dominant for 3(a})*. Thus we have

Iu+2‘0c_ﬁ € Re(”'JT:lt)—R’
proving the lemma. Q.E.D.

Proof of Theorem 3 (ii). Put pf =% >~ « where the sum is taken over
« e 2(a))* such that «, lu_O Then the infinitesimal character of the

Harish-Chandra module X = %44(G?%/P?; L,) is parametrized by — 2’/ +p},

e t¥. Then it is clear from the assumption on 2 that — 4’ + p} is dominant
for Z(a?)*. Let pe+/—11* be the highest weight with respect to 2(t)*
of a lowest f-type in an irreducible component of X. Then by Lemma 9
we have

p+20.—pe —¥+pi—R
Taking its restriction to aj, we have
#ly—20l+p' e =2 —R|;
since 2(1)* is compatible with 3(a;);. Thus we have
+pl=2+p'—20l+pl,; € — Rl
On the other hand, we have
pi+plye Lo
by (i). Since ——R].,‘; N L_={0}, we have
1+l =0.

Then it follows from Proposition 6 that dim #(V, X) (X is defined for ,a]a,
and 2Y) is at most one and therefore the multiplicity of the f-type with

highest weight g is at most one in X. Thus the g,-module X is irreducible.
Q.E.D.
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Proof of (iii). Suppose first that 2 satisfies the assumption in (ii).
Let e «/ —11* be as in the proof of (ii). Then by Proposition 6 there
exists a function f in %#4(G%P?; L,) which is unique up to constant
multiple such that f(n-'a~'x)=a*f(x) for ne N-'"NH? and ac A].
Furthermore f'is of the form ¢§(X,) with some constant ¢ on an open set
exp(m'NhNexp(m7Nq9x,;P? if we take a coordinate

(X, Xp)—>exp X, exp X,x,P¢ for X;en'Np% X,en'Nq®
i q

by Proposition 6. Here §(X,) is the Dirac delta function on n-N g%
with support {0}. We claim that f is M’ Hé-invariant. For let m be
an elementin M'NH¢. If

x=exp X, exp Xpx;(X, e n7'NYH%, X, e n=Nq9,
then

S(mx)= f(exp (Ad (m) X)) exp (Ad(m)X,)x,;x; 'mx,)
= f(exp X, exp X,x,) = f(x)

since M’ N H? is compact, Adm(n='NHH=n""NH% Ad@m)(n-’'Nq%
=n"'Nq* and x;'mx; e M*. Hence fis M’ H*invariant in a neigh-
borhood of x,P¢ Since dim Z(V, X)=1, f must be M’ N H%invariant.
Then it follows from [17], Vol. I, p. 211 that y € — Ly, Thus we have
pi=—pe€ Lyxqn

Next suppose that 2 does not satisfy the assumption in (ii). Let
(z, E) be an irreducible finite-dimensional holomorphic representation of
G, with H_ fixed vectors. Then there exists a vector ve E such that
t(man)v=a'vforme M?, a e A%, n e N*¢ where / is the highest weight of
(z, E). We choose (z, E) so that 14 A satisfies the assumption in (ii).
(2 is replaced by 24 4.) Consider an analytic function ¢ on G* given by
#(x)=<u, r(x)v) for some ue E*. Then ¢ satisfies @(xman)=a"¢(x)
(meM? ae A, ne N*%) and is H*finite of type in K.

Let f be a nontrivial function in #L(G%P%; L). Considering the
left G°-action to ¢, if necessary, we may assume that ¢(x)==0 for some
point x in supp f. Then the product ¢ f of functions is a nonzero element
in #4{G*P%; L,, ). Thus #4(G*/P¢; L,,,)7{0}, so we have

wi+A7 e Lygan (A=40Ad(x)™)

by the preceding argument. Since A7e& Ly xqz, 47 is contained in the
lattice in a) generated by L xq -

Proof of (iv). Let ¥(a}) be the set of simple roots in 3(a))* and let
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¥, be the subset in ¥'(a}) consisting of « € ¥(a}) such that oc!‘,é:O or that
a]aé is a compact simple root in 2(a;);. Let W(¥',) be the subgroup in
W(a}) generated by the reflections with respect to the roots in ¥',. Then
there exists a w in W(¥',) such that w(— 27+ p}) is dominant for ¥,.

Suppose first that w(— 2+ p}) is dominant for ¥(a;). - Let ¢ be the
highest weight of a lowest f-type in X = %%.G%/P?; L;). Then by Lemma
9, we have

10.4) p+20.—p e w(—a+pl)—R.

Let a, be the subspace in aj consisting of elements orthogonal to ¥..
Restricting (10.4) to a,, we have

/"lao_ng Iaa"]‘Pij € _Zj]ao_“Rlao'
On the other hand, we have
/,L|aé———2p{—|—pj e — A+ L_

by (i). Since every nonzero element in L_ has nonzero restriction to q,
we have

1ty —2pi+p'=— 2.
Hence if « is a compact simple root in 3(a;);, then

(W', @y =¥+ o'~ 20l, @)
= <_P‘!a£’ a’>20

When w(— 2+ p{) is not dominant for ¥(af), we proceed as follows.
Choose an element 47 in L, 5, such that {47, «) =0 for compact simple
roots « in X(a;); and that w(— 2’4 p{)+ A4’ is dominant for ¥(a;). Let
e #i(G*P?; L)) and ¢ € o zo(G*/P%; Ly, ,) be as in the proof of (ii).
Then the product ¢ f of functions is a nonzero element in #Z4.(G*/P*; L;. ,).
Hence by the preceding argument, we have

V—p%, a) =+ A —p?, ) >0
for all compact simple roots « in 2(a})7. Q.E.D.

Lemma 10. Suppose that all the irreducible components of the root
system 2(ay) are of type A,, D, or B, (n>2). Let 2 be an element of al*
such that {2, a) >0 for all @ € 2(a®)* and that p] is contained in the lattice
in a;* generated by Ly k. Then the following two conditions are equiva-
lent..
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(i) <y, ap >0 for all compact simple roots o in 2(a})}.

(i) pieLgxna
(We have {pi, a) =<2 —p’, a) for all compact simple roots o in X(a});
o, ey =<pi, )

Proof. Clearly (ii) implies (). Thus we have only to prove that (i)
since implies (ii). - We may assume that 2(af) is irreducible. Then it is
easy to see that either of the following two conditions holds.

(& dim(g%(a;; )N HD)=dim(g%(a}; )N q) for all @ e X(a}).

(b) For every a € 2(a}), g%(a;; &) H? or g%(a;; @) q.

Let 2(5%, a;) denote the root system of the pair (9, af) and put 2 (9%, al)*
=2(9% a;)N 2(a;)7. If the condition (a) holds, then pf =2174-2pf —p’ =27
is dominant for 2(§%, a;)*. Consider the case (b). Let 8 be a simple
root in 2(§¢, ay)*. If B is a simple root in 2(a;)}, then it follows from (i)
that

(i, B> =0.

Thus we may assume that f=«,+ - - - 4«, where «,, - - -, @, are simple
roots in 2(a))} and k>2. Then we have

{pd, By =X +p'—2p], B>
=, B+l ap+ - -+, a) —2{pl, B)-

Since the multiplicities of the roots in 2(a;) are the same, we have {p’, ;)
=...={p’, a,y={p{, ) and therefore we have (g, g>>(4’, B>>0.
Since yf is contained in the lattice generated by Ly, ., We have proved
e Lgcnn- Q.E.D.

Lemma 11. Let 2 be an element of at* such that {(A+p,, a) >0 for
all ae 3(a?)* and that pf is contained in the lattice in o,* generated by

Ly,xnz-  Then the conditions (i) and (ii) in Lemma 10 are equivalent.

Proof. Clearly we have only to prove that (i) implies (ii). Lett,
M), 2, 17, 5, p. and pj, be as in the first part of this section. Let
2(m’) and Z(m’ N H%) be the root systems of the pair (m/, t,) and (m,N ¥,
t,), respectively. Put I(m)*=Z(m)NI(1)*, Z(m'NH)*=2(m N )N
I()* and pl, =% .csamnsny+. Let B be a simple root in X(§?, a;)* and j
a simple root in (¥, )* such that 3 by=—8 Then we have

(e, By =— W +p'—20], B

From the facts {—2’/+ pi, 3>=>0 (by the assumption), {5, 5> >%{5, /).

(10.5)
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oo B =1, B> and (i, f>— Qol.—20k, B> € £{B, B)Z (by the assump
tion) it follows that

(10.6) (=24 pl+p—2p0B>=—315, B 1fﬁ is a compact (i.e. g.(3; f)C
f,) simple root in I(t)* and {(—2A/+ pf+ F—2p., 5> >0 otherwise.

(If there exists another simple root 5’ in Z(¥, {)* such that §’ | = —p, then
we also have the same result for 5’.)

Let 2(0) be the subset of X(f, t) defined by {« ¢ 2, 1); ae]a‘; e Zp}.
If « is a simple root in 2(m’ N §?)*, then

(=2 +pl+F—20., o) =20}, —2p}e; ) >0.

Hence if 3 (and §) is not compact simple in 2(t)*, then — 27+ p}+5—2p,
is dominant for 2(@)N 2 (%, 1)* by (10.6). Therefore {uj, f>>0 since f &
> R, where the sum is taken over all « in 2(0) N 2(%, 1)*.

When 3 (or f') is compact simple in X(t)*, we proceed as follows.
(We may assume that § is compact simple in X()*.) Suppose that
{u, BY<<O. Then we will get a contradiction. Since (&, §) <0 for a e
S(m’)*, we have (2pi,—2pi, B> € <8, f)Z.. Thus it follows from (10.5)
and (10.6) that

a, f>=0  for all @ e X(m’) such that g,(t; @) ZE..
B

Hence if we put E=, Rx where the sum is taken over all « ¢ (1) such
that g.(t; @) Z f., then every compact root 7 in X(m’) is contained in E or
orthogonal to E. Note that every element § in X(t) satisfying 5[ =—p
can be written as a sum of § (or ¢f) and elements in J(m’). Then’ by the
above result, § can be written as a sum of § and compact roots in X(m’)
(or as a sum of ¢f and compact roots in X(m’) since of,=¥,). Thus we
have g%(a;; B)CbH?. By the condition (i), we have {(z{, 8> >0 a contradic-
tion. . ' Q.E.D.

Added in proof (August 25, 1984)

(i) To prove Theorem in this paper we do not use the assump-
tion that the connected real semisimple Lie group G has a complexifi-
cation G,. Therefore Theorem is valid without this assumption. But if
G has infinite center, we must change the definition of “discrete series”
as in [5].

(i) E. P. van den Ban pointed out that the proof of Remark fol-
lowing Lemma 9 in [18] is incomplete, which is quoted in Remark in
§4. The missing ingredients are given in his preprint “Invariant differ-
ential operators on a semisimple symmetric space and finite multipli-
cities in a Plancherel formula”.
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(iii) We have obtained a simpler proof of Theorem 1 which does

not require in another paper.

(iv) We would like to thank H. Schlichtkrull who pointed us

out some errors in the original manuscript.
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