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1. Introduction and Results
The understanding of sand transportation near the seabed is a challenge
for scientists as all supernatural phenomenon. Many mathematical mod-
els are done by scientists. The challenge is to use a sand transport equa-
tion Balde (2017); Faye et al. (2011); Idier (2002) and an equation
described the movement of the fluid(Navier Stokes equation or Shallow
water). The objective of the this paper is to built a Two-Scale numerical
method to simulate the sand dune in tidal area. The model considered in
this paper is built and studied in Faye et al. (2011).

The concept of two-scale convergence was introduced by Nguetseng (1989)
and Allaire (1992). Numerical method based on two-scale convergence
was used in successfully by many authors. In Aillot et al. (2002), such a
method is use to manage the tide oscillation for long term drift forcast of
objects in coastal ocean water. Frénod et al. (2007) made simulations of
the 1D Euler equation using a Two-scale Numerical Method. In Frénod et
al. (2009), such a method is used to simulate a charge particle beam in
a periodic focusing channel. Mouton (2009) developed a Two-scale Semi-
Lagradian Method for a beam and plasma application. In Faye et al.
(2015), such a method is use to simulate the evolution of sand transport
equation by using Fourier approach.

In this paper, we consider the following model presented in Faye et al.
(2011); Thiam (2018). The system is modeled as follows



∂zε(t,x)
∂t
− 1

ε
∇ · (Aε∇zε) = 1

ε
∇ · Cε in ]0, T [×Ω

zε(0, x) = z0(x) in Ω

∂zε(t,x)
∂n

= g in [0, T )× ∂Ω

(1.1)

where zε(t, x) is the dimensionless seabed altitude, t ∈ [0, T ), for a given T
and x ∈ Ω, Ω being a two dimensional domain of class C2of R2. Aε and Cε
are given by
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(1.2) Aε(t, x) = a(1− bεM(t,
t

ε
, x))|U(t,

t

ε
, x)|3

(1.3) Cε(t, x) = c(1− bεM(t,
t

ε
, x))|U|3 ·

U(t, t
ε
, x)

|U(t, t
ε
, x)|

for a, b and c are three constants positives and M and U are respectively
the water variation and velocity. z0 ∈ L2(Ω) and g ∈ L2([0, T ), L2(Ω)) are
given functions. One can justify the boundary condition of (1.1) by the
fact that if we consider a big domain Ω in which the sand does not go out,
what is translated by the fact that the flux q is zero on ∂Ω, i.e. q · n = 0 on
∂Ω, where n is the normal exterior vector and q is given by

(1.4) q = qf − |qf |λ∇z,

where qf and λ are respectively the water velocity induced sand flow on a
flat seabed and the inverse value of the maximum slope of the sediment
surface when the water velocity is 0. From this equation we have, assum-
ing that qf 6= 0 on ∂Ω,

(1.5)
∂z(t, x)

∂n
= ∇z · n =

qf · n
|qf |λ

= g on ∂Ω.

The small parameter ε involved in the model is the ratio between the main
tide period 1

ω̄
=13 hours and and observation time which is about three

months i.e. ε = 1
t̄ω̄

= 1
200
. In Faye et al. (2015), the authors used equation

(1.1) in a domain without boundary: the two dimensional T2. In this paper,
we suppose that the domain T2 ⊂ Ω, which is bounded with boundary ∂Ω
and functions U andM are regular and satisfy the following hypotheses
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(1.6)



θ 7→ (U ,M) is periodic of period 1

|U|, |∂U
∂t
|, |∂U

∂θ
|, |∇ · U|

|M|, |∂M
∂t
|, |∂M

∂θ
|, |∇M| are bounded by d,

∃Uthr such that∀(t, θ, x) ∈ R+ × R× Ω, |U(t, θ, x)| ≤ Uthr =⇒(
∂U
∂t

(t, θ, x) = 0, ∇ · U(t, θ, x) = 0

∂U
∂t

(t, θ, x) = 0, ∇M(t, θ, x) = 0
)

∃θα < θω ∈ [0, 1] such that ∀θ ∈ [θα, θω] =⇒ |U(t, θ, x)| ≥ Uthr

The precise aim of this paper is to develop a two-scale numerical method
based on finite element method to solve equation (1.1). It is known that in
Faye et al. (2011) and Thiam (2018), if z0 ∈ H1(Ω), for any ε > 0 and any
T ∈ [0, T ), the system (1.1) admit a unique solution zε ∈ L∞([0, T ), H1(Ω). In
addition, the sequence of solutions to (1.1) is bounded in L∞([0, T ), H1(Ω)).
We have also the following theorem.

Theorem 83. Under assumption (1.6), for any T, not depending on ε, the
sequence (zε) of solutions to (1.1), with coefficients given by (1.2) and (1.3),
Two-Scale converges to the profile U ∈ L∞([0, T ], L∞# (R, L2(Ω))) solution to

(1.7)


∂U
∂θ
−∇ · (Ã∇U) = ∇ · C̃ in (0, T )× R× Ω

∂U
∂n

= g on (0, T )× R× ∂Ω

where Ã and C̃ are given by

(1.8) Ã(t, θ, x) = a |U(t, θ, x)|3 and C̃(t, θ, x) = c |U(t, θ, x)|3 U(t, θ, x)

|U(t, θ, x)|
.

Futhermore, if the supplementary assumption

Uthr = 0,(1.9)

is done, we have
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(1.10) Ã(t, θ, x) ≥ G̃thr for any t, θ, x ∈ [0, T ]× R× Ω,

and, defining U ε = U ε(t, x) = U(t, t
ε
, x), the following estimate holds for zε−U ε

(1.11)
∥∥∥zε − U ε

ε

∥∥∥
L∞([0,T ),L2(Ω))

≤ α,

where α is a constant not depending on ε.

2. Finite element method for Two scale limit
The aim of this section is to develop a numerical method based on finite
element method which allows us to resolve (1.1) in a precise way and more
expensive. Because of theorem 83, we can approximate the solution zε(t, x)
of (1.1) by the solution U ε(t, x) = U(t, t

ε
, x), where U is solution to (1.7).

We first consider a uniform mesh on [0, T ]. For the discretization of the
time, we suppose that the time step ∆θ is constant and we use the nota-
tion θn = n∆θ. Denoting by Un the approximation of U(·, θn, ·), using finite
differences, we can approximate ∂U

∂θ
(t, θn, x) in the form

∂U

∂θ
(t, θn, x) ∼ U(t, θn+1, x)− U(t, θn, x)

∆θ
=
Un+1 − Un

∆θ
.

Hence, system (1.7) becomes

(2.1)


Un+1−Un

∆θ
−∇ ·

(
Ã∇Un

)
= ∇ · C̃ on [0, T )× R× Ω

∂Un+1

∂n
= g on [0, T )× R× ∂Ω.

Let

V0 = {w ∈ H1(Ω) :
∂v

∂n
= g on ∂Ω},

then multiplying (2.1) by v ∈ V0 and integrating, we get the following vari-
ational problem: we seek for
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(2.2)


Un ∈ V0,

∀v ∈ V0,
∫

Ω
Un+1−Un

∆θ
vdx+

∫
Ω
Ã∇Un∇vdx =

∫
∂Ω
gvdσ +

∫
Ω
∇ · C̃vdx

Let {Th, h → 0} be a quasi-uniform family of admissible triangulation of
Ω. We denote by Ωh ⊂ Ω, the union of triangles of Th, and h the maximal
length of the sides of the triangulation Th. And let Vh ⊂ V be the set of
all continuous piecewise linear functions defined on Th. Let {wi}Nj=1 be the
standard basis of Vh. Then, using conformal finite element with a finite
element discrete space Vh ⊂ V0, the discrete variational problem is to find
Un+1
h ∈ Vh such that ∀vh ∈ Vh :∫

Ωh

[
Un+1
h − Un

h

∆θ
vh + Ã∇Un+1

h ∇vh]dx =

∫
∂Ωh

gvhdσ

(2.3) +

∫
Ωh

∇ · C̃vhdx ∀vh ∈ Vh.

Let wi, i = 1, . . . , N a basis of Vh, then ∀Un
h ∈ Vh we have

(2.4) Un
h (x) =

N∑
i=1

uni w
i(x) ∀n, ∀x ∈ Ω,

where uni , i = 1, . . . N are the components of Un
h in the base (wi)i=1,...,N .

Taking vh = wj, j = 1, . . . N we get from (2.2) that∫
Ωh

[Un+1
h − Un

h

∆θ
wjdx+ Ã∇Un+1

h ∇wj
]
dx(2.5)

=

∫
∂Ωh

gwjdσ +

∫
Ωh

∇ · C̃wjdx, ∀ 1 ≤ j ≤ N.

Using (2.4), we have

N∑
i=1

1

∆θ

(
un+1
i − uni

)∫
Ωh

wiwjdx+
∑
i=1N

un+1
i

∫
Ωh

Ã∇wi∇wjdx =

(2.6)
∫
∂Ωh

gwjdσ +

∫
Ωh

∇ · C̃wjdx ∀ 1 ≤ j ≤ N.
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From this later equation, we get the following equation

∑
i

( 1

∆θ

∫
Ωh

wiwjdx+

∫
Ωh

Ã∇wi∇wj
)
un+1
i dx =

∑
i

( 1

∆θ

∫
Ωh

wiwj
)
uni dx

(2.7) +

∫
∂Ωh

gwjdσ +

∫
Ωh

∇ · C̃wjdx, ∀ 1 ≤ j ≤ N.

This system can be written as follows

(2.8)
( 1

∆θ
M + A

)
Un+1
h =

1

∆θ
MUn

h +B,

where Un = (un1 , . . . , u
n
N)t is the unknown vector and A a matrix of size N×N

where the coefficients are given by

Ai,j =

∫
Ωh

Ã∇wi∇wjdx,

M a matrix of size N ×N where the coefficients are given by

Mi,j =
1

∆θ

∫
Ωh

wiwjdx

and B is a vector given by

Bj =

∫
∂Ωh

gwjdσ +

∫
Ωh

∇ · C̃ wjdx.

We have the following theorem of convergence.

Theorem 84. Let h be the biggest diameter of all the meshes of Ω, U be
the solution to (1.7) and Un

h = U(·, θn, xh) ∈ Vh the approximation function of
U. Then, the following estimate holds

(2.9)
∥∥∥U − Un

h

∥∥∥
H1(Ω)

≤ C0h
∥∥∥U∥∥∥

H1

.

We have also the following stability result.
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Theorem 85. Let I be the identity matrix and
∥∥∥(I + ∆θM−1A

)−1∥∥∥ be the

spectral norm of the matrix
(
I + δθM−1A

)−1

. Then,

∀∆θ > 0 and, h > 0, if
∥∥∥(I + ∆θM−1A

)−1∥∥∥ ≤ 1,

we have the stability of the scheme.∥∥∥Un
h

∥∥∥
L2(Ωh)

≤
∥∥∥(I + ∆θM−1A

)−1∥∥∥n∥∥∥U0
∥∥∥
L2(Ωh)

+

(2.10) ∆θ
∥∥∥M−1

∥∥∥ n∑
k=1

∥∥∥(I + ∆θM−1A
)−1∥∥∥k( sup

0≤n≤N

∥∥∥B∥∥∥n)
Proof. We get from (2.8)(

M + ∆θA
)
Un+1 = MUn + ∆θUn+1

As the matrix M + ∆θA is invertible, we have

Un+1
h =

(
M + ∆θA

)−1

MUn +
(
M + ∆θA

)−1

∆θBn+1.

Thus, by varying n, the following equalities hold:

Un
h =

(
M + ∆θA

)−1

MUn−1 +
(
M + ∆θA

)−1

∆θBn

Un−1
h =

(
M + ∆θA

)−1

MUn−2 +
(
M + ∆θA

)−1

∆θBn−1

Un−2
h =

(
M + ∆θA

)−1

MUn−3 +
(
M + ∆θA

)−1

∆θBn−2

·
·
·

U1
h =

(
M + ∆θA

)−1

MZ0 +
(
M + ∆θA

)−1

∆θB1.

This makes possible, to obtain the following generic formula for Un.

Un
h =

[(
I + ∆θM−1A

)−1]n
U0 + ∆θM−1

n∑
k=1

[(
I + ∆θM−1A

)−1]k
Bn−k+1
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Taking the norm of Un, we get∥∥∥Un
h

∥∥∥
L2(Ωh)

≤
∥∥∥(I + ∆θM−1A

)−1∥∥∥n∥∥∥U0
∥∥∥
L2(Ωh)

+∆θ
∥∥∥M−1

∥∥∥ n∑
k=1

∥∥∥(I + ∆θM−1A
)−1∥∥∥k∥∥∥B∥∥∥n−k+1

,

giving the desired result. �

Let us know focus on Numerical method:
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3. Numerical method for Reference model
In this section, we develop a two scale numerical method based on finite
element method in order two approximate the solution zε of (1.1).

3.1. Finite element method for reference solution. We proceed in
a same way as in the previous section. Considering a time discretization
with time step ∆t and tn = n∆t, t ∈ [0, T ], we obtain from (1.1) the following
time discretization problem

zεn+1−zεn
∆t

− 1
ε
∇ ·
(
Aε∇zεn+1

)
= 1

ε
∇ · Cε in ]0, T [×Ω

zε(0, x) = z0(x) in Ω

∂zεn+1

∂n
= g on [0, T )× ∂Ω,

(3.1)

where zε(tn, x) = zεn.

Multiplying (3.1) by a smooth test function v and then integrating over Ω
we get:

1

∆t

∫
Ω

(
zεn+1 − zεn

)
vdx+

1

ε

∫
Ω

Aε∇zεn+1 · ∇v(x)dx

(3.2) −1

ε

∫
∂Ω

Aε∇zεn+1 · n v(x)dx =
1

ε

∫
Ω

∇ · Cεv(x)dx

Now, due to the boundary condition (3.1), it can be rewritten as follows

1

∆t

∫
Ω

(
zεn+1 − zεn

)
vdx+

1

ε

∫
Ω

Aε(x)∇zεn+1 · ∇v(x)dx =

(3.3)
1

ε

∫
∂Ω

Aεgv(x)dx+
1

ε

∫
Ω

∇ · Cεv(x)dx.

Multiplying (3.1) by ε, we have
ε

∆t

∫
Ω

(
zεn+1 − zεn

)
vdx+

∫
Ω

Aε(x)∇zεn+1 · ∇v(x)dx =
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(3.4)
∫
∂Ω

Aεgv(x)dx+

∫
Ω

∇ · Cεv(x)dx.

Using the same discretization of the domain Ω and denoting by zεn,h =
zε(tn, xh), xh ∈ Ωh, we have the following finite element problem: find zεn,h ∈
Vh such that

ε

∆t

∫
Ωh

(
zεh,n+1 − zεh,n

)
vhdx+

∫
Ωh

Aε∇zεh,n+1 · ∇vhdx =

(3.5)
∫
∂Ωh

Aεgvhdx+

∫
Ωh

∇ · Cεvhdx ∀vh ∈ Vh.

For any

ε, zεn,h ∈ Vh,

then there exists (zn1 , . . . , z
n
N) such that

(3.6) zεn,h(t, x) =
N∑
j=1

zjwi(x)

then from (3.1), we have the following system

N∑
i=1

ε

∆t

(
zn+1
i − zni

)∫
Ωh

wiwjdx+
N∑
i=1

zn+1
i

∫
Ωh

Aε∇wi∇wjdx =

(3.7)
∫
∂Ωh

gwjdσ +

∫
Ωh

∇ · Cεwjdx∀ 1 ≤ j ≤ N.

From this later equation, we get the following equation
N∑
i=1

( ε

∆t

∫
Ωh

wiwj +

∫
Ωh

Aε∇wi∇wj
)
zn+1
i =

N∑
i=1

( ε

∆t

∫
Ωh

wiwj
)
zni

(3.8) +

∫
∂Ωh

gwjdσ +

∫
Ωh

∇ · Cεwjdx, ∀ 1 ≤ j ≤ N.

which can be written a follows
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(3.9) A′Zn+1 = B′Zn + C ′,

where A′, B′ are N ×N matrix defined respectively by

A′ij =
ε

∆t

∫
Ω

wiwjdx+

∫
Ωh

Aε∇wi∇wjdx(3.10)

B′ij =
ε

∆t

∫
Ωh

wiwjdx(3.11)

and C ′ is a vector defined by

(3.12) C ′j =

∫
∂Ωh

gwjdσ +

∫
Ωh

∇ · Cεwjdx.

3.2. Convergence Result. In this section, we are going to proof the
result containing in theorem 83.

Proof of theorem 83 Let ψε(t, x) = ψ(t, t
ε
, x) be a regular function with

compact support on |0, T ) × Ω and periodic of period 1. Multiplying the
first equation by (1.1) by ψε and integrating over [0, T )× Ω we get :

(3.13)
∫

Ω

∫ T

0

∂zε

∂t
ψεdtdx− 1

ε

∫
Ω

∫ T

0

∇ · (Aε∇zε)ψεdtdx =
1

ε

∫
Ω

∫ T

0

∇ · Cεψεdtdx.

Using integration by parts over [0, T ) in the first term and Green formula
over Ω in the second integral, we get

−
∫

Ω

z0(x)ψ(0, 0, x)dx−
∫

Ω

∫ T

0

∂ψε

∂t
zεdtdx+

1

ε

∫
Ω

∫ T

0

Aε∇zε∇ψεdtdx

(3.14) −1

ε

∫ T

0

∫
∂Ω

Aε∂z
ε

∂n
ψεdσ = −1

ε

∫
Ω

∫ T

0

Cε · ∇ψε dt dx+
1

ε

∫ T

0

∫
∂Ω

Cεψε.ndσ.

But ∂ψε

∂t
writes

(3.15)
∂ψε

∂t
=
(∂ψ
∂t

)ε
+

1

ε

(∂ψ
∂θ

)ε
,

where
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(3.16)
(∂ψ
∂t

)ε
(t, x) =

∂ψ

∂t
(t,

t

ε
, x) and

(∂ψ
∂θ

)ε
(t, x) =

∂ψ

∂θ
(t,

t

ε
, x),

Thus, we get∫
Ω

∫ T

0

zε
((∂ψ

∂t

)ε
+

1

ε

(∂ψ
∂θ

)ε
+

1

ε
∇ · (Aε∇ψε)

)
dt dx− 1

ε

∫ T

0

∫
∂Ω

Aεgψεdσ

(3.17) = −1

ε

∫
Ω

∫ T

0

Cε · ∇ψεdtdx−
∫

Ω

z0(x)ψ(0, 0, x)dx.

Multiplying by ε

ε

∫
Ω

∫ T

0

zε
(∂ψ
∂t

)ε
dtdx+

∫
Ω

∫ T

0

(∂ψ
∂θ

)ε
zεdtdx+

∫
Ω

∫ T

0

∇ · (Aε∇ψε)
)
zεdtdx

(3.18) −
∫ T

0

∫
∂Ω

Aεgψεdσ = −
∫

Ω

∫ T

0

Cε · ∇ψεdtdx− ε
∫

Ω

z0(x)ψ(0, 0, x)dx.

As ψε is regular with compact support on [0, T ) × Ω, and Aε is a regular
function, the functions

(
∂ψ
∂t

)ε
,
(
∂ψ
∂θ

)ε
, ∇ · (Aε∇ψε)

)
and ∇ψε can be consid-

ered as test functions. Then using two-scale convergence we get when ε
goes to 0, ∫ 1

0

∫
Ω

∫ T

0

∂ψ

∂θ
Udtdθdx+

∫ 1

0

∫
Ω

∫ T

0

∇ · (Ã∇ψ)
)
Udtdθdx

(3.19) −
∫ 1

0

∫ T

0

∫
∂Ω

Ãgdσdtdθ = −
∫ 1

0

∫
Ω

∫ T

0

C̃ · ∇ψdtdθdx.

Using Green Formula, we get

(3.20)
∫

Ω

∫ 1

0

∫ T

0

(∂U
∂θ
−∇ · (Ã∇U)

)
ψdtdθdx =

∫ 1

0

∫
Ω

∫ T

0

∇ · Cψdtdθdx
)

which is the weak formulation of
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(3.21)


∂U
∂θ
−∇ · (Ã∇U = ∇ · C

∂U
∂θ

= g.

Let us characterize the homogenized equation for Ã and C̃.Multiplying (1.2)
by ψε and integrating over Ω we get∫

Ω

∫ T

0

Ãεψεdtdx =

∫
Ω

∫ T

0

a(1− bεM(t, θ, x)ga(|U(t, θ, x)|)ψεdtdx

then we have∫
Ω

∫ T

0

∫ 1

0

aga(|U(t, θ, x)|)ψdtdx =

∫
Ω

∫ T

0

∫ 1

0

Aψdθdtdx.

Multiplying (1.3) by ψε and integrating over Ω we get

∫
Ω

∫ T

0

C̃εψεdtdx =

∫
Ω

∫ T

0

c(1− bεM(t, θ, x))gc(|U(t, θ, x)|) U(t, θ, x)

|U(t, θ, x)|
ψεdtdx

we have∫
Ω

∫ T

0

∫ 1

0

cgc(|U(t, θ, x)|) U(t, θ, x)

|U(t, θ, x)|
ψdtdx =

∫
Ω

∫ T

0

∫ 1

0

Cψdθdt dx.

Then

A = aga(|U(t, θ, x)|) and C = cgc(|U(t, θ, x)|) U(t, θ, x)

|U(t, θ, x)|
.

Since the coefficients Aε(t, x) and Cε(t, x) of (1.1) two scale converges to
Ã(t, θ, x) and C̃(t, θ, x), then these coefficients can be set in the form

(3.22) Aε(t, x) = Ãε(t, x) + εÃε1(t, x) and Cε(t, x) = C̃ε(t, x) + εC̃ε1(t, x)

where
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(3.23) Aε(t, x) = Ã(t,
t

ε
, x), Cε(t, x) = C̃(t, t

ε
, x)

and

(3.24) Ãε1(t, x) = Ã1(t,
t

ε
, x), C̃ε1(t, x) = C̃1(t,

t

ε
, x)

We have also to notice that, under the same assumptions as in Theorem 83,
the coefficients

(3.25) Ã, C̃, Ã1, C̃1, Ãε, C̃ε, Ãε1, and C̃ε1 are regular and bounded.

Because of (3.22), equation (1.1) becomes

(3.26)


∂zε

∂t
− 1

ε
∇ ·
(
Ãε∇zε

)
= 1

ε
∇ · C̃ε +∇ ·

(
Ãε1∇zε

)
+∇ ·

(
C̃ε∇zε

)
∂zε

∂n
= g

From (1.7) and using the fact that

(3.27)
∂U ε

∂t
=
(∂U
∂t

)ε
+

1

ε

(∂U
∂θ

)ε
,

where (∂U
∂t

)ε
(t, x) =

∂U

∂t
(t,

t

ε
, x) and

(∂U
∂θ

)ε
(t, x) =

∂U

∂θ
(t,

t

ε
, x)

We have that U ε is solution to

(3.28)


∂U ε

∂t
− 1

ε
∇ ·
(
Ãε∇U ε

)
=

1

ε
∇ · C̃ε +

(∂U
∂t

)ε
∂U ε

∂n
= g.
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From formulas (3.26) and (3.28) we deduce that zε−Uε
ε

is solution to

(3.29)



∂
(
zε−Uε
ε

)
∂t

− 1

ε
∇ ·
(

(Ãε + εÃε1)∇
(zε − U ε

ε

))
=

1

ε

(
∇ · C̃ε1

+
(
∂U
∂t

)ε
+∇ ·

(
Ãε1∇U ε

)
in ]0, T [×Ω

∂
(
zε−Uε
ε

)
∂n

= 0 on ]0, T [×∂Ω.

All the coefficients of (3.29) are regular and bounded, then existence of(
zε−Uε
ε

)
is a consequence result of Ladyzenskaja et al. (1968). We have to

notice that, as the boundary condition of (3.29) is homogeneous, there is
no the boundary term to be considered. Then using the same argument
as in Faye et al. (2011), we get that

(
zε−Uε
ε

)
solution to (3.29) is bounded

in L2([0, T ), L2(Ω)), and we have

(3.30) ‖zε − U ε‖L∞([0,T ),L2(T2)) ≤ ε‖z0(·)− Z(0, 0, ·)‖2γ

where γ is a constant.�

We have also the following theorem of convergence

Theorem 86. Let ε be a positive real, zε be the solution to (1.1), Un
h the

approximation of U solution to (1.7) and U ε defined by U ε(t, x) = U(t, t
ε
, x).

Then, under assumptions (1.6), zε − Un
h satisfies the following estimate:

(3.31) ‖zε − Un
h ‖L∞([0,T ),L2(T2)) ≤ ε‖z0(·)− Z(0, 0, ·)‖2 + f(h, n).

where f is a function not depending on ε and satisfying limh→0 f(h, n) = 0.

Proof. We have

‖zε − Un
h ‖L∞([0,T ),L2(T2)) = ‖zε − U ε + U ε − Un

h ‖L∞([0,T ),L2(T2))

(3.32) ≤ ‖zε − U ε‖L∞([0,T ),L2(T2)) + ‖U ε − Un
h ‖L∞([0,T ),L2(T2)).

From (3.30), the first term of (3.2) is bounded by
(3.33) ‖zε − U ε‖L∞([0,T ),L2(T2)) ≤ ε‖z0(·)− Z(0, 0, ·)‖2.
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For the second term, as Un
h is the approximation of U ε(t, x) = U(t, t

ε
, x) where

U is the solution to (1.7), then there exists a function f(h, n) satisfying
limh→0 f(h, n) = 0 such that

(3.34) ‖U ε − Un
h ‖L∞([0,T ),L2(T2)) ≤ f(h, n)

From (3.33) and (3.34) we get the desired result. �

4. Comparison Numerical Solution of Two-scale limit and reference
solution

In this paragraph, we consider the two approximations: Un
h of the two scale

limits U and zεh,n of zε(t, x). The objective here is to compare, for fixed ε and
for a given time, the quantity zεh(t, x1, x2)−U ε

h(t,
t
ε
, x) when the velocity U and

M are given.

For the numerical simulations, concerning zε, we take z0(x1, x2) = cos 2πx1+
cos 4πx1 and z0(x1, x2) = Z(0, 0, x1, x2). In what concerns the water velocity
field, we consider the function

(4.1) U(t, θ, x1, x2) = sin 2πx1 cos 2πx2 sin 2πθ e1,

where e1 and e2 are respectively the first and the second vector of the
canonical basis of R2 and x1, x2 are the first and the second components
of x.

4.1. Numerical simulation of U and A when U given by (4.1). Let us
recall that the water velocity U used in the simulations is given by (4.1).
The coefficient A is also given by

(4.2) A(t, θ, x) = a|U(t, θ, x)|3,

where a is a constant.

In Figure 3, the θ-evolution of Ã(θ) is also given in various points (x1, x2) ∈
R2.
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In Figure 1 , we can see the space distribution of the first component of
the velocity U for a given time t = 1 and for various values of θ = 1

4
3
4

and 1
6
.

2.pdf

3.pdf

Figure 1.Space distribution of the first component of U(1, 1/4, (x1, x2)),
U(1, 3/4, (x1, x2)) and U(1, 1/6, (x1, x2)) when U is given by (4.1).. Space dis-
tribution of the first component of U(1, 1/4, (x1, x2)), U(1, 3/4, (x1, x2)) and
U(1, 1/6, (x1, x2)) when U is given by (4.1).

In Figure 2, we see, for a fixed point x = (x1, x2), how the water velocity
Ũ(θ) evolves with respect to θ.

4.pdf 5.pdf

Figure 2.θ-evolution of Ũ(θ, (1/2, 1/4)) and Ũ(θ, (1/4, 1/4)) when U is given
by (4.1). θ-evolution of Ũ(θ, (1/2, 1/4)) and Ũ(θ, (1/4, 1/4)) when U is given
by (4.1)
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6.pdf ,7.pdf

Figure 3.θ-evolution of Ã(θ, (1/2, 1/4)) and Ã(θ, (1/4, 1/2)) when U is given
by (4.1). θ-evolution of Ã(θ, (1/2, 1/4)) and Ã(θ, (1/4, 1/2)) when U is given
by (4.1)

4.2. Numerical result: Comparisons zε(t, x) and U(t, t
ε
, x). In this para-

graph, we present numerical simulations in order to validate the Two-Scale
convergence presented in Theorem 83. For a given ε, we compare Un

h (t, t
ε
, x),

where Un
h is the approximation of U(t, t

ε
, x), when U is solution to (1.7) and

zεh,n is the approximation of the solution of zε to (1.1). For the initial con-
dition of (1.1) we use z0(x) = sin 2πx1

Before going further, let us show, what the solution zε to (1.1) converges to
U solution to (1.7). For this, we compare, for a given time t0 = 1, zε(t0, x)
and U(t0,

t0
ε
, x) for ε = 0.5, ε = 0.1, ε = 0, 05, ε = 0.01 and ε = 0.001. The re-

sults is given in figure 4 and figure 5. This figure shows that if ε is too
small, the solution zε to (1.1) is very close to U solution to (1.1).

We remark that, if ε is too small, for a fixed time t, the solution zε is close
to U(t, t

ε
, x).

In an other hand, we will compare the two solutions, when ε is too small
and for a given time t. The results show that the solution U(t, t

ε
, x) is very

cloose to zε(t, x). The results are shown in Figures 6, 7 8 and 9.
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,

Figure 4.ε-evolution of zε(t, x) when U is given by (4.1) and ε = 0.1 in the
left and ε = 0.05 in the middle and ε = 0.01 in the right.. ε-evolution of
zε(t, x) when U is given by (4.1) and ε = 0.1 in the left and ε = 0.05 in the
middle and ε = 0.01 in the right.

Figure 5.ε-evolution of zε(t, x) when U is given by (4.1): ε = 0.001 in the
left and ε = 0.0001 in middle and and U(t, tε , x) in the the right.. ε-evolution
of zε(t, x) when U is given by (4.1): ε = 0.001 in the left and ε = 0.0001 in
middle and and U(t, tε , x) in the the right.

.

In the Figure 10 and Figure 11, we proof also that, the reference solution is
very close to his limit. The initial condition is given by z0(x1, x2) = cos(2πx1)+
cos(4πx1) and U(t, θ, x) = sin(πx1) sin(2πθ)e1.

Besides this, by considering a value of t, and by making ε vary, we notice
that the errors between zε(t, x) and U(t, t

ε
, x decrease as illustrated in the

following tabular.
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Figure 6.Comparison 3D of zεh(t, x1, x2) and Uh(t, tε , x1, x2)). On the left zεh,
on the right Uh(t, tε , x1, x2)) ε = 0.001, t = 1.. Comparison 3D of zεh(t, x1, x2)

and Uh(t, tε , x1, x2)). On the left zεh, on the right Uh(t, tε , x1, x2)) ε = 0.001, t =
1.

Figure 7.Comparison 2D of zεh(t, x1, 0) and Uh(t, tε , x1, 0)). On the left zεh,
on the right Uh(t, tε , x1, x2)) ε = 0.001, t = 1.. Comparison 2D of zεh(t, x1, 0)

and Uh(t, tε , x1, 0)).On the left zεh, on the right Uh(t, tε , x1, x2)) ε = 0.001, t = 1.

The results given in this table show that, at time t = 1, zε(t, x) is closer to
Z(t, t

ε
, x) when ε is very small. These results validate the results obtained

in Theorem 83.
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Figure 8.Comparison 3D of zεh(t, x1, x2) and Uh(t, tε , x1, x2)). On the
left zεh(t, x), on the right Uh(t, tε , x1, x2)) ε = 0.001, t = 10−2, ε =

0.01.. Comparison 3D of zεh(t, x1, x2) and Uh(t, tε , x1, x2)). On the left zεh(t, x),
on the right Uh(t, tε , x1, x2)) ε = 0.001, t = 10−2, ε = 0.01.

Figure 9.Comparison 2D of zεh(t, x1, 0) and Uh(t, tε , x1, 0)). On the left
zεh(t, x), on the right Uh(t, tε , x1, x2)) ε = 0.001, t = 1.. Comparison
2D of zεh(t, x1, 0) and Uh(t, tε , x1, 0)). On the left zεh(t, x), on the right
Uh(t, tε , x1, x2)) ε = 0.001, t = 1.
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Figure 10.Comparison of zεh(t, x1, x2) and Uh(t, tε , x1, x2), ε = 0.001, t =
0.2, z0(x1, x2) = cos 2πx1 + cos 4πx1. On the left zε(t, x1, x2), on the right
U(t, tε , x1, x2).. Comparison of zεh(t, x1, x2) and Uh(t, tε , x1, x2), ε = 0.001, t =
0.2, z0(x1, x2) = cos 2πx1 + cos 4πx1. On the left zε(t, x1, x2), on the right
U(t, tε , x1, x2).

Figure 11.Comparison of zε(t, x1, x2) and U(t, tε , x1, x2), t = 0.4, ε =

0.001, z0(x1, x2) = cos 2πx1 + cos 4πx1. On the right U(t, tε , x1, x2), on the
left zε(t, x1, x2).. Comparison of zε(t, x1, x2) and U(t, tε , x1, x2), t = 0.4, ε =

0.001, z0(x1, x2) = cos 2πx1 + cos 4πx1. On the right U(t, tε , x1, x2), on the left
zε(t, x1, x2).
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value of ε norm L1 norm L2 norm L∞

0.1 21.04 24 39.47

0.01 0.22 0.30 0.86

0.001 6.7. 10−12 8.93.10−12 2.79.10−11

0.0001 5.7.10−12 7.93.10−12 1.99. 10−11

Errors norm Uh(t,
t
ε
, x1, x2)− zε(t, x1, x2), t = 1.
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