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Full Abstract. Motivated by the fact that Floquet theory and averaging
methods used to study the stability of linear periodic systems in contin-
uous time, we formulate and analyze the dynamics of a nonlinear and
non-autonomous system of ordinary differential equations describing the
dynamics of an invasive reproductive plant: the Typha. Its two modes
of reproduction namely; sexual (via seeds) and asexual (via rizhomes) are
included into the hybrid system which combines the features of classical
continuous time and discrete time systems. Stability of the null equilib-
rium is investigated via the basic reproduction rate Ro of the model in the
absence of Typha is computed. For R0,α < 1 the a useful too which can
be applied to analyze the stability of models with seasonality. The theory
of averaging is based on the construction of approximate solutions essen-
tially first-order differential equation with rapidly oscillating ordinary. A
condition of stability of the trivial equilibrium of the switching system is
given. Numerical simulations to support the analytical results are pro-
vided.

1. Introduction
The proliferation of Typha is recognized as a potential threat to wetland
ecosystems around the world Mallik and Wein (1986); Ball (1998). Re-
placement of existing vegetation by dense, mono-specific stands of Typha
can result in significant loss of habitat structure and function Smith and
Kaldlec (1985). Accordingly, the study of conditions that facilitate such in-
vasions are of considerable importance to wetland preservation and man-
agement. The growth of Typha is regulated by a number of factors, includ-
ing hydrology temperature Adriano et al. (1980), plan competition Emery
and Parry (1996); Mal and Doust (1997) , and nutriments Bonnewell
and Pratt (1978); Davis and Valk (1983), Reddy textit et al. (1998);
Miao and Sklar (1998). With modest eco-hydrological requirements, Ty-
pha spp. colonizes areas with rhizomes multiplication and seasonal seeds
dissemination by reproductive adults. We consider a nonlinear and non-
autonomous tri-dimensional system of ordinary differential equations de-
scribing the dynamics of reproductive plants and the two young plants
categories from Typha ’s sexual (seeds) and asexual (rhizomes) reproduc-
tion. Thus we obtain a switching system of three dimensions Diagne et al.
(2012). A switched system consists of a set of subsystems and a rule that
describes switching among them. The subsystems may be continuous-
time or discrete-time systems and the switching rule may depend on time
or states of individual subsystems. Switched systems arise when dynamics
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of systems undergo abrupt changes due to component failures, parameter
changes, switching elements, or switching controllers. Such systems have
been studied extensively in the literature. A recent survey of switched sys-
tems can be found in Liberzon and Morse (1999) and various applications
of switched systems are discussed in Morse (1997).

In this paper, a switched systems of dynamical model of Typha prolifer-
ation developed in Diagne et al. (2012) is considered. More specifically,
we consider a periodically switched system. The goal of this paper is to
investigate stability of trivial equilibrium of switched system. The main
tools used for this purpose are the Floquet theory Richards (1983); Rugh
(1996) and averaging method. Floquet theory provides a numerical re-

sult while the method of averaging gives an analytic result. It should be
mentioned that although Floquet theory has been used in the literature
to investigate stability of periodically time varying linear systems and the
averaging method is a useful computational technique, the method is the
classical methods in analyzing nonlinear oscillations Nicolas (2007). Al-
though Floquet theory and averaging method have a wide range of potential
uses in ecological, biological and evolutionary modeling and is relatively
easy to implement, its use in ecology and biology has been extremely lim-
ited Kooi and Troost (2006).

Averaging is the procedure of replacing a vector field by its average with
the goal to obtain asymptotic approximations of the original system and
to obtain periodic solutions. We aim at constructing asymptotic approxi-
mations of the solution of model and proving their asymptotic validity. We
use the method of averaging to obtain approximations valid for all time.
Averaging was developed for ordinary differential equations, see Sanders
et al. (2007).

Therefore, the other goal of this paper is to promote the wider use of Flo-
quet theory and averaging methods which are useful tools for studying the
effects of temporal variability on ecological systems.

This paper is organized as follows. The model is presented in Section 2.
The Floquet theory and its application to the model is reviewed in Section
3. In Section 4, the averaging method and its application to the model are
presented and illustrated. Conclusions are given in Section 5.
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2. Model
The model of the spread of Typha studied in this paper has been intro-
duced in Diagne et al. (2012). It is described by the system (2.5) used to
model the proliferation of Typha. The system variables Es, Er and A stand,
respectively, for young Typha from sexual reproduction, young plant from
asexual reproduction and adults in which the plant reproduces by the
two reproduction modes. Denoting by K the limited host medium and
Y (t) = Es(t) +Er(t) +A(t) the total number of plants at time t capacity, the
model is obtained in the form of an autonomous nonlinear and system of
ordinary differential equations (for more details, see Diagne et al. (2012)):


Ės = c̃s(t)A (1− Y/K)− (γs + µs)Es,

Ėr = crA (1− Y/K)− (γr + µr)Er,

Ȧ = γsEs + γrEr − µaA,

(2.1)

Let us denote by γs and γr, respectively, the transition rates from compart-
ment Es to A and from Er to A. The death in the compartments Es, Er
and A are characterized respectively by the per-capita mortality rates µs,
µr and µa.

The term (1−X/K) is the probability to find an available space of emergence
in the domain of Typha ’s growth. The term c̃s(t) defines the instantaneous
rate at which the population of adults reproduces young plants from seeds
without space of emergence constrains. We assume that cr is constant and
positive (cr > 0) for all time t ≥ 0.
For simplicity, we consider that the sexual emergence rate c̃s(t) is function
defined by

(2.2) c̃s(t) =


cs if t ∈ [0, αT [ mod T

0 if t ∈ [αT, T [ mod T

where cs > 0 is a constant and α; 0 ≤ α ≤ 1 is the fraction of each year
in which there is emergency from sexual reproduction. In this case, the
non-autonomous and non linear model (Eq.2.1) can be written as two 3-
dimensional and nonlinear subsystem which are according to the presence
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or not of emergency from sexual reproduction. Indeed, for t ∈ R+, we have

• presence of seasonal emergency from seed subsystem equations, if
0 6 t < αT :

Ės = csA(1− Y/K)− (γs + µs)Es,

Ėr = crA(1− 1/K)− (γr + µr)Er,

Ȧ = γsEs + γrEr − µaA,

(2.3)

• absence of seasonal emergency from seed subsystem equations, if
αT 6 t < T :

Ės = −(γs + µs)Es,

Ėr = crA(1− Y/K)− (γr + µr)Er,

Ȧ = γsEs + γrEr − µaA,

(2.4)

We introduce proportions related to occupied space with capacity K by

setting es =
Es
K
, er =

Er
K
, a =

A

K
and y(t) = es(t) + er(t) + a(t). So, we derive

from Eq.2.1 the dimensionless switching model of Typha proliferation:


ės = cs(t)a(1− y)− (γs + µs)es,

ėr = cra(1− y)− (γr + µr)er,

ȧ = γses + γrer − µaa,

(2.5)

For simplicity and without loss generality, we chose a simple occurrence
of seasonal emergency rate function c̃s(t) which is T periodic (with T = 12
months) and defined on [0, T ] by

(2.6) c̃s(t) =


cs if t ∈ [0, αT [ mod T

0 if t ∈ [αT, T [ mod T
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where α (0 ≤ α ≤ 1) is constant and denotes the fraction of the year in
which emergencies from seed take place.

It is known that the system of the switching model of Typha proliferation
is a combination of two 3-dimensional non linear autonomous systems.
Here, we determine model characteristics with biological interest such as
equilibrium and reproduction number for each sub-dynamics according to
the presence or not of seasonal emergency from seed. From the computa-
tion of the equilibrium of (Eq.2.3), it appears that the reproduction number
of the sub-dynamics with presence of both emergency types defined by

R0 =
csγs

µ(γs + µs)
+

crγr
µ(γr + µr)

The parameter R0 is, in an obvious manner, the sum of emergency from
seed R0,s =

csγs
µa(γs + µs)

and emergency from rhizom R0,r =
crγr

µa(γr + µr)
. Also,

we find R0,r computing equilibrium of (Eq.2.4). Those reproduction num-
bers R0 and R0,r guide the existence of equilibrium of related subsystem in
the manner established in the following results.

3. Floquet theory
Floquet theory transforms a linear periodically time varying system into a
linear time invariant system through a Lyapounov transformation. Hence,
the stability of the former system can be inferred from that of the latter.
Below is a brief review of the Floquet theory .
Consider the linear time varying system

Ẋ(t) = A(t)X(t) t ≥ t0

X(t0) = X0

.(3.1)

where X(t) ∈ Rn, the matrix A(t) ∈ Rn×n is piecewise continuous, bounded,
and periodic with period T. Although its parameters A(t) vary periodically,
the solutions of Eq.3.1 are typically not periodic, and despite its linearity,
closed form solutions of Eq.3.1 typically cannot be found.
The matrix system associated with the system Eq.3.1 is

Ż(t) = A(t)Z(t),(3.2)
SPAS EDITIONS (SPAS-EDS). www.statpas.org/spaseds/. In Euclid

(www.projecteuclid.org). Page - 474



A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of
the late Galaye Dia. Diagne M.L. and Sari T.(2018). Floquet theory and averaging
methods : Useful tools for equilibrium stability of dynamical model of Typha
proliferation. Pages 469 — 486.

where Z is an n × n matrix. A non-singular matrix solution of Eq.3.2 is
called a fundamental matrix. Given a fundamental matrix φ(t), every so-
lution of Eq.3.1 can be written as φ(t)c for a constant vector c. It is usual
to take Eq.3.2 with the initial condition φ(0) = I, where I is the n× n iden-
tity matrix. The Floquet theory Richards (1983) Rugh (1996) consists in
showing that every fundamental matrix φ(t) can be rewritten under the
following form

φ(t) = P (t)expBt

where B is constant matrix, P (t) has the same period as A(t) and P (t0) = I.

Application. Our switched system provide a natural context for ap-
plying classical Floquet theory. By linearization of fields of vector of the
switching system in the neighborhood of the origin we obtain the following
linear switching system :

ẋ = A(t)x.(3.3)
Here,

A(t) =


A1 if t ∈ [0, αT ), mod T

A2 if t ∈ [αT, T ], mod T

where

A1 =


−(γs + µs) 0 cs

0 −(γr + µr) cr

γs γr µa


and

A2 =


−(γs + µs) 0 0

0 −(γr + µr) cr

γs γr µa

 .
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We define the average of basic number of reproduction R0,α, by
R0,α = αR0 + (1− α)R0,r = α(R0 −R0,r) +R0,r = αR0,s +R0,r.

Local stability of the origin E0 of the switching system Eq.2.5 can also be
characterized using the following theorem.

Theorem 67. The switching system Eq. (2.5) is locally stable in the origin
E0 if R0,α < 1.

Proof. The assumptions of the Floquet theorem are satisfied. Then we ob-
tain : for 0 6 t < αT,mod T, ẋ(t) = A1x(t). Thus x(t) = exp[A1t]x(t0) = exp[A1t]x0.

Similarly, for αT 6 t < T, mod T,. Hence ẋ(t) = A2x(t)t

x(t) = exp[A2(t−αT ]x(αT )

= exp[A2(t−αT ]exp[A1αT ]x0

Thus, it follows that

M = φ(T ) = exp[A2(T−αT )]exp[A1αT ]x0.

To show the stability of the origin we apply the result of Floquet theory.
Therefore we show that the spectral radius of the monodromy matrix ρ(M)
is less than 1.

In the following numerical simulations, we chooses : γs =
1

8
, γr =

1

6
, µs =

µr =
1

24
, µa =

1

72
, cs = 0.02 and cr = 0.01.

By the dichotomy method we determined the value of α such that ρ(M) = 1.
Thus, for α = 0.4275 we get ρ(M) = 1.

For any value of α such that α < 0.4275 the switching system converges to
the trivial solution.

In the sequel, we will represent the curves R0,α and ρ(M) in terms of α and
we compare them.

In Figures 3, the right figure is a zoom of the left one, made in the vicin-
ity of the intersections. We note that the curves do not intersect at the
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Figure 1. Phase portrait of the switching system (2.5) when ρ(M) < 1.
We illustrate the convergence of solutions of the system to switch to
the zero balance when αT = 3. With this value ρ(M) = 0.9979 < 1, R0 =
1.6200 and R0,r = 0.54 . Phase portrait of the switching system (2.5) when
ρ(M) < 1. We illustrate the convergence of solutions of the system to switch
to the zero balance when αT = 3. With this value ρ(M) = 0.9979 < 1, R0 =
1.6200 and R0,r = 0.54
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Figure 2.ρ(M) and R0,α in terms of α. ρ(M) and R0,α in terms of α

same place. The curve R0,α intersects the line y = 1 before the curve ρ(M).
Therefore, we conclude, for the chosen parameters, that if R0,α < 1 then,
ρ(M) < 1. Thus R0,α < 1 is a sufficient condition for stability of the trivial
equilibrium of the switching system. We will show in the following section
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that this result is a consequence of the averaging theory.

4. Averaging method
Consider an ordinary differential equation of the type

ẋ = εf(x, t, ε) x(0) = x0, x, x0 ∈ D ⊂ Rn,(4.1)
where D is an open set with compact (that is, closed and bounded) closure,
on which f is defined. The parameter ε is assumed to be small. The equa-
tion often arises by expansion in the neighborhood of an equilibrium. The
vector field f is assumed to be differentiable with respect to all variables,
but this can be relaxed.

Since f depends explicitly on time t , equation (4.1) is a non-autonomous
differential equation. This type of equation is usually very difficult to an-
alyze, so one is interested in finding an autonomous system, the solutions
of which approximate the original system, where the accuracy of the ap-
proximation is a function of ε .

Setting ε = 0 is not of much interest : it will give us an approximation
that is valid on the interval 0 ≤ t ≤ L for some constant L, that is on time
scale 1. On a longer time scale, for instance

1

ε
, this is a singular perturba-

tion problem, that is to say, the solution of the unperturbed problem (with
ε = 0) is not an approximation of the solution of the full problem 4.1.

On this longer time
1

ε
another natural idea works better: average the right

hand side over the time t. Assume, for simplicity, that f is periodic in t
with period T . Then define the average

f̄(x) =
1

T

∫ T

0

f(x, s, 0) ds.(4.2)

More rigorously, we state in the following, the result of the asymptotic
method called ”Averaging Method” given by Maurice Roseau in Maurice
(1975).

Lets be a K is a compact, J =]0, a] ⊂ R+, a > 0 a real interval and f a
function defined on R+ ×K × J

Theorem 68. , (Maurice (1975), Chapter 4). Suppose that f is measur-
able in t for all fixed (x, ε) , continuous in x for all fixed t , almost everywhere
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on R+.

Let Y be the solution of the overage problem and I = [0, w[, 0 < w ≤ ∞. Then,
for all L in I and all δ > 0 if ε is small enough, there exists ε0 = ε0(L, δ)such
that for any ε in ]0, ε0], x any solution of the equation (4.1) Initial value y0

at t = 0 is defined at least on the interval [0, L] and satisfies the inequality
|x(t)− y(t)| < delta for all t in [0, L].

Theorem 69. ( Sanders et al. (2007), Chapter 5 and 6). When the aver-
aged system ẏ = f(y) has an hyperbolic equilibrium y, then the initial system
(4.1) has a periodic solution in a vicinity of the balance and stability is the
same as the equilibrium ȳ.

Application. In this part, we are interested to the study of the global
stability of the trivial equilibrium. Indeed, finding a condition that pro-
vides the asymptotic stability of the equilibrium is ecologically important.
Since reducing the speed of Typha is important. The switching system is
transformed to rapidly oscillating model. To apply the principle of averag-
ing developed previously, we rewrite the model in the standard form (4.1).
Recall that the system in study is (see system 2.5) :


ės = c̃s(t)a(1− y)− (γs + µs)es

ėr = cra(1− y)− (γr + µr)er

ȧ = γses + γrer − µaa

(4.3)

where c̃s is a periodic function of period T .
Since the parameters of the system are small ( because the maximum is
γr =

1

6
), we assume the coefficients of system (4.3) are written in the fol-

lowing form

c̃s = εc̃∗s, cr = εc∗r, γs = εγ∗s , µs = εµ∗s, , γr = εγ∗r , µr = εµ∗r, µa = εµ∗a.

with ε > 0 small. We obtain the following system
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ės = ε
[
c̃∗s(t)a(1− y)− (γ∗s + µ∗s)es

]

ėr = ε
[
c∗ra(1− y)− (γ∗r + µ∗r)er

]

ȧ = ε
[
γ∗ses + γ∗rer − µ∗aa

]
To avoid burdening the notation, we can remove the stars and write again
this system as follows



ės = ε
[
c̃s(t)a(1− y)− (γs + µs)es

]

ėr = ε
[
cra(1− y)− (γr + µr)er

]

ȧ = ε
[
γses + γrer − µaa

]
(4.4)

The main result of the averaging (see theorem 68), is applied in the case
where ε is small (ε < 1).. The system (4.4) has as averaged system :



ės = ε
[
c̄sa(1− y)− (γs + µs)es

]

ėr = ε
[
cra(1− y)− (γr + µr)er

]

ȧ = ε
[
γses + γrer − µa

]
(4.5)

with
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c̄s =
1

T

∫ T

0

c̃s(t)dt = αcs.

In terms of time scaling, we introduce the new time τ = εt. Note that τ is
much slower than t. we have

x′i =
dxi
dτ

=
dxi
dt

dt

dτ
=

1

ε
ẋi.

By using τ = εt, the system (4.5) can be written as follows

(4.6)



e′s = c̄sa(1− y)− (γs + µs)es

e′r = cra(1− y)− (γr + µr)er

a′ = γses + γrer − µa

We have that the asymptotic stability of the system is governed by

R0,α =
c̄sγs

µa(γs + µs)
+

crγr
µa(γr + µr)

= α
csγs

µa(γs + µs)
+

crγr
µa(γr + µr)

.

Thus, for an infinite time we have the global stability of System (4.6).

Theorem 70. If R0,α ≤ 1 then trivial equilibrium of system (4.4) is global
and asymptotically stable. Else trivial equilibrium of system is unstable.

Numerical simulations. Lets consider the following parameter

cs = 0.002; cr = 0.012, γr =
1

6
, γs =

1

8
, µs = µr =

1

24
, µa =

1

72
, T = 12, α =

1

3
.

We have

c̃s(t) =


cs, si t ∈ [0, 4, ) mod 12

0, si t ∈ [4, 12] mod 12,
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For these coefficients, R0,moyen = 0.7272 < 1.

We can write the system again as ẋ = εf(t, x)



ės =
1

6

[
c̃s(t)a(1− y)−

(
3

4
+

1

4

)
es

]

ėr =
1

6

[
0.002a(1− y)−

(
1 +

1

4

)
er

]

ȧ =
1

6

[
3

4
es + er −

1

12
a

]
Thus the averaging method applies (ε = 1

6
< 1 and predicted that, the sys-

tem is approximated by the averaged system. The following simulations
illustrate this result.

Let us comment the table of figures 4. Figure (a) shows the evolution
over time of the total population y = es + er + a average the system with
the initial condition Y0 = (0.12, 0.45, 0.27). Figure (b) shows the evolution
over time of the total population y of switching system with the initial
conditionY0 = (0.12, 0.45, 0.27). Figure (c) is thet superposition of the two
curves (a) and (b). Figure (d) illustrates the evolution over time of the
approximation error of the two solutions from the same initial condition.
With the current parameter values, we obtain R0 = 0.108, R0,r = 0.6912 and
R0,α = 0.7272. Note that in Figure (d) the ordinate scale is multiplied by
10−4. Also Figure (d) shows that the upper bounds of the approximation
error defined in Theorem 68 are power 10−4 and reach over time smaller
powers. Thus, the asymptotic approximation becomes more accurate.

In the graphical comparison, one can clearly see that the approximation
by averaging provides a satisfactory result if R0,α < 1.

5. Conclusion
This example of this document shows that the Floquet theory and the
method of averaging are versatile tool for the study of the ecology and evo-
lution of periodic systems . The Floquet theory defines fitness in periodic
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environments can numerically calculate the convergence criteria of a com-
mon two sub system equilibrium Nicolas and Dads (2012), and can be
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used to test the stability of solutions of this cycle. The method of averag-
ing in some cases gives us theoretical results. Given these various uses
and the omnipresence of two structured populations and periodic systems
in nature, the Floquet theory and the method of averaging will be a useful
addition to theorists toolboxes. Although the theory is a linear Floquet
theory, nonlinear models can be linearized near solutions limit cycle to
enable the use of the Floquet theory. We have shown that the method of
averaging is a method to obtain approximate solutions of periodic systems.
Elsewhere,we proved that the solutions converge to a trivial equilibrium,
and ε-close to the trivial equilibrium solution of the system means.
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