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Abstract. We analyze a discretized canonical stochastic volatility model
through calibration to synthetic data as well as financial data. To achieve
this end we ressort to Monte Carlo EM (Chan and Ledolter (1995)) that is,
the combination of EM algorithm (Dempster et al. (1977), Wu (1983)) and
sequential Monte Carlo methods (Gordon et al.(1993), Doucet et al. (2001),
Salmond and Smith (1993)). Finally we consider a slight departure from
canonical stochastic volatility model in order to assess the robustness of
the MCEM procedure. Simulations studies follow.
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1. Introduction

Itis well known that financial assets prices exhibit unpredictable changes
over time. This variability, measured by the variance square root of the
asset price process, is commonly referred as the volatility. Among the ap-
proaches leading to its modeling are the ARCH processes and their gener-
alization (Engle (1982), Bollerslev (1986)). These models try to capture the
link between the innovation process at present date and its past through
the conditional distribution of the innovations that is randomness of the
variance process varies with the variance. Another point of view is to give
volatility latent process dynamics. This is the approach we favor. This
point of view has received several contributions from the scientific com-
munity. We can mention among others the work of Heston (1993), Kim
et al. (1998), Kim and Stoffer (2006), etc. In the sequel, we calibrate a
discrete stochastic volatility model to exchange rates data as well as stock
market indexes. We focus on GBP/USD and YEN/USD rates. Then, we
extend this study to the S&P 500, Dow Jones and NIKKEI 225 indexes. To
do so, we adopted the following plan. First, we start using simulated data
to gauge the estimation method. The advantage in this case is to be able
to control the output parameters returned by the estimation procedure. In
a second step, we consider the calibration of this model on real data sets
and possibly make a comparison with estimates obtained from certain au-
thors. Finally, we depart from the basic volatility model in order to put the
estimation method to the test of robustness.

2. Framework

Consider a filtered probability space on which a risky financial asset
evolves with a price dynamics following a standard geometric Brownian
motion given by:

(2.1) %St = wdt + odW;
t

where w is a mean term called drift, o the volatility which is constant and

(Wi)i>0 a standard Brownian motion. A direct application of It6 lemma
leads to the solution of the stochastic differential equation given by :

(2.2) S, = Soe(w_%GQ)H_UWt.

This model has shown its limits among others the failure in capturing the
so called stylized facts. In particular, the non-constancy of the volatility
is a crucial point in financial modeling. Among the various extensions we
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can mention those that confer a specific dynamics to the volatility (ARCH
model, GARCH model, Heston model, etc.). Singularly, the point of view
pursued is the one which confers to the volatility a dynamic latent pro-
cess thus unobservable or partially observable. In such case, one must
associate to the volatility process an observation process which serves to
quantify its realization. By adopting an exponential process Orstein Uh-
lenbeck for the volatility, the previous model is rewritten :

(

ds—i't = zodt + Utth

(2.3) or = exp(U/2)

where (W});>¢ a standard brownian motion allowing correlation with (W;);>0,
0 the long term mean, ~ the speed return to the long run mean ¢ also en-
suring stationarity of U whenever || < 1, and ¢ > 0 a term of variance also
called volatility of volatility. For the sake of simplicity, a zero correlation
is imposed between the two brownian motions. In order to be able to cal-
ibrate the model to data, we discretize the model following Euler scheme
given by :

X =aXp_1 + oW,
(2.4)

Y = B2V, k> 1
where (V) and (V) are independent gaussian noises independent of X, ~

N(0,02) and |a| < 1. Thus, the parameter vector is § = (o, 3,0). Note it is
customary to linearize (2.4) in order to obtain a linear state space model :

Xk = OéXk,1 + O'Wk
(2.5)

logV? =log 82 + m + Xy + log V2 — m
where m := E(log V}?) = —1.27049 et log V};? follows log x? distribution.

3. Parameter estimation

MCEM as a combination of the Generalized Expectation Maximization al-
gorithm (GEM) with sequential Monte Carlo methods (SMC) is a tool that
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Algorithm 1 : Generalized EM algorithm

¢ Choose an initial guess 6
e Form=1,2,...do

(1) E-Step : Compute Q(0,0(™~1)

(2) M-Step : Find 8™ s.t Q(8(™),9(™—1) > Q(gm—1) g(m—1))
e EndFor.

can be used to estimate stochastic volatility models specifically those falling
in the general setting of hidden Markov models. GEM itself, can be used
when classical estimation methods like Maximum likelihood estimator fails
when dealing with latent variables. We do not fully detail the GEM algo-
rithm since it is well documented (see Dempster et al. (1977) or McLachlan
and Krishnan (2008) for a review). However, the main idea is depicted by
the Generalized EM algorithm in Algorithm 1.

The E-step consists in computing the intermediate quantity, that is the
conditional expectation of the logarithm of the complete data likelihood
given data and the current value of the parameter vector §%*~1 :

n
Q(OW, 0%V := By [log ppee—1) (Xom, Yiin) | Yia] & 3 log[o"]?
{Zﬁ_l E@(k) [(XT — Oé(k)Xr—1>2|Yi:n] }

[P

N | —

N | —

{ZEeW [exp(X, — Y, —1og[B¥)]? + m) — (X, = Y; — log[8%]* + m)|V1,,] }

r=1

The M-step consists in taking the derivatives of the intermediate quantity
with respect to each parameter. The mechanism for updating the param-
eters then obeys the following recurrence scheme:
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p

a(k—‘rl) — Z:‘L:I ]Ee(k) [XT‘—IXT|YI:77.]
Z?:l Eg(k) [X371|Y1:n]
(3.1) log[B*+D]2 +m =log [ "0 By [exp(yr — X, + m)|Yi]]

| o0 — LS By (X, Vi) — a0 DBy [X, 1 Yi))

The conditional expectations that evolves in these computations admit
rarely a close-form solution except few cases including linear and gauss-
ian state space models. Because the underlying distributions are higher-
dimensioned and complex to compute. This is why we have to use appro-
priate tools to approximate them. SMC are set of powerful tools inspired
from genetic algorithms that are suitable whenever one is dealing with in-
tractable random vectors. As for GEM algorithm we do not elaborate on it.
We refer to Allaya (2013) for GEM algorithm and SMC methods .

4. Calibration to data

In this section, we calibrate the discretized SV model to data. We start
with synthetic data as a way to control MCEM behavior in terms of outputs
parameters’ estimate. In a second hand we effectively calibrate SV model
to real data and compare outputs to existing research on the subject using
the same dataset.

4.1. Synthetic data. A first path resulting from the model (2.5) of
T = 500 observations is produced. These data were generated under the
parameter vector using 0* = (0.9,/0.1, —0.8612) with o* = 0.9, ¢* = /0.1 and
log(*)? = —0.8612. The MCEM procedure is started with the initialization
parameters (o, log(3)?,0®) = (0.6, -0.3,1/0.3) At the end of the MCEM
procedure, we have the evolution of the different parameters all along the
500 iterations. The joint plot of the series trajectory and the different
iterations of the MCEM are given in Figure 1. One can also be interested in
the average quadratic error risk for the three estimated parameters made
after running MCEM procedure. Table 1 provides a summary of this mag-
nitude.
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Ficure 1. Path of (2.5) with T' = 500 observations & MCEM iterations for
N = 200 particles.

~

Estimators & log[0]? [6]?

RMSE 0.0251 0.0655 0.0489
TaBLE 1. Root Mean Squared Errors on 500 iterations of MCEM

We generate a second dataset with a longer time horizon 7' = 4000 with
parameters 0* = (0.92,1/0.4, —0.7) where o* = 0.92, ¢* = /0.4 and log(5*)? =
—0.7. The number of particles remains unchanged (/N = 200). A conclusion
similar to what has been already obtained above can be deduced. In Fig-
ure 2, we have a joint plot of the trajectory of the time series as well as the
iterations of the MCEM.

REMARK 8. As it can be noticed in Figure 1 and Figure 2, the MCEM itera-
tions can be stopped earlier because of the relatively expensive computation
time '. One may use a stop heuristic criterion such as the relative variation
of the parameters or simply by using the likelihood ratio as in Chan and
Ledolter (1995) or Kim and Stoffer (2006). Moreover, for the sake of har-
mony and brevity the number of iterations of the MCEM has been arbitrarily
fixed at 500 for both real and synthetic data.

A1l the computations was done using PCs Intel i3, Core 2 Duo CPU 2.20 GHz
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FicURE 2. Path of (2.5) on time horizon 7' = 4000 & MCEM iterations for
N = 200 particles.

4.2. Real data. In the following and unless otherwise stated, we main-
tain NV = 300 particles and 6 = (0.2,0.1, —0.01) as initialization parameters
of the MCEM procedure with o® = 0.2, ¢(® = /0.1 and 2 x log(3®) = —0.01..

(1) - GBP/USD exchange rates. We have the historical GBP/USD daily
exchange rates available on the Federal Reserve System website. We have
used the period from October 1, 1981 to June 28, 1985. Indeed, this time
series has been studied in Harvey and Ruiz (1994), Durban and Koopman

(2000), Doucet and Tadic (2003). In Figure 3, we have represented the
GBP/USD exchange rates as well as the parameters estimated after cali-
brating model (2.5). From (a) to (c) we have respectively the daily exchange
rates p;, the logarithm of the square returns y; and the histogram of the
latter.

(2) - USD/YEN exchange rates. We also collected the USD/YEN daily ex-
change rate for the period from May 31, 2005 to June 1, 2012. In Figure 4,
we have summarized some of the characteristics of the latter. In plot (a),
we noted by p, the daily rate. (b) is that of the logarithm of the square
of the corrected returns of their mean and y; and in (c) the histogram of
the latter. Plots (d), (e) and (f) represent the trajectories of the estimated
parameters from 500 iterations of the MCEM.
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FIGURE 4. Calibrating model (2.5) to USD/YEN.

(3) - S&P 500 index. We analyze the daily data of the S & P 500 index for
the period from May 20, 2008 to May 8, 2012. The daily return is formed
on the quotations at the opening and at the closing. A calibration of the
basic volatility model is also performed. The plot of the latter is given in
Figure 5.

(4) - Dow Jones index We have daily quotations (at closing) of the Dow
Jones index for the period from January 4, 1999 to September 24, 2002.
An analysis similar to the previous index is performed at Figure 6.
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Ficure 5. Calibrating model (2.5) to S&P 500
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Ficure 6. Calibrating model (2.5) to Dow Jones.

FTSE 100 index. We also examine the FTSE 100 index for the period
from January 04, 1999 to September 24, 2002. The results are shown in
Figure 7.
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Ficure 7. Calibrating model (2.5) to FTSE 100.

(4) - Nikkei 225 index. A final application is made to the Nikkei 225 index.
The same period used for the FTSE 100 index is also considered. A similar
analysis is also conducted.
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Ficure 8. Analysis de l'indice Nikkei 225.
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Index Estimator Estimators Indexes | Nikkei 225 | Dow Jones | FTSE 100
a 0.944 0.961 0.974
o 0.178 0.165 0.157
exp(w) 1.387 1.154 1.182
TaBLE 2. MCMC Estimations
Indexes Methods Estimations Indexes | Nikkei 225 | Dow Jones | FTSE 100
o) 0.9447 0.9609 0.9692
o 0.1744 0.1628 0.1631
exp(w) 1.4770 1.2196 1.1884

TaBLE 3. Mean averages over last 40 iterations of MCEM procedure

4.2.1. Comparison of stock indexes. We restate the results by Krichene
(2003) using MCMC methods to estimate the three parameters in concern
on the Dow Jones, FTSE and Nikkei 225 indexes. The posterior averages
of these parameters are summarized in Table 2.

Remark. The parameter exp(w) in Krichene (2003) is linked to the g pa-
rameter through the relation 5 = exp(—w/2).

We could directly compare the last iteration of the MCEM with the averages
estimated by MCMC. However, we have averaged the last 40 iterations of
the MCEM in order to compare them with the posterior averages of these
parameters estimated by MCMC in Krichene (2003). The summary is
recorded in Table 3.

It can be seen that the results of the two methods are substantially similar.
REMARK 9. In these different applications to exchange rate and stock in-
dex data, it appears that the parameter « is very close to 1. This tends to

SPAS EDITIONS (SPAS-EDS). www.statpas.org/spaseds/. In Euclid
(www.projecteuclid.org). Page - 151




A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of
the late Galaye Dia. Allaya M. M. and Ka M. M. (2018). Stochastic volatility model
through MCEM: Departure from canonical SV model. Pages 141 — 162.

confirm a hypothesis of persistence of volatility as well as its return to the
long-term average. Estimated values of o are reasonably small (less than
20%). This ensures a certain stability of the calibration of the volatility. Fi-
nally, the exp(w) = (72 parameter, whose estimated values are relatively
large, reflects the quantifiability of the input of new information on volatility.

5. Departure from canonical sv model

In order to test the basic volatility model as well as the linearization per-
formed in the observations equation (2.5), we have taken over the non-
linearised model (2.4) to which we have added the additive term X?+cos(X?)
which is highly nonlinear, thereby increasing the complexity of the model.
So that the evolution of observations is governed by:

X?+ Xp + COS(X,%))
2 Vi

(5.1) Y, = fexp (
with a complete dynamic given by :
Xk = Oékal + O'Wk

Y, = ﬁexp (X]%-i-Xk-l-cos(X%)) Vi.

(5.2)
2

In this new configuration, we have replicated 150 Monte Carlo experiments
which consist in estimating (5.2) by means of MCEM with random initial-
ization. For each experiment, we run the MCEM procedure 500 times
with N = 200 particles, 0© = (a® ¢ 3©) with o, sO® ~ 1([0,1]) and
o©® ~ 14([0.01,1.01]). Recall that the MCEM procedure follows the usual
recurrence pattern. Given the (k + 1) iteration, the mechanism for se-
quential updating of the parameters then obeys the following recursion:

( n
k1) — 2 r—2 Bpi) [Xr—1. X0 | Yion]

Z?:Z Ee(k) [X72,71 ‘len]

(5.3) o+ — \/% Z:}:Q By [(X, — a+D X, 1)2|Y1,,]

\ Blk+1) — \/2le Y2 ) [e~ CFFeos(XD+X| Y7, ].
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A~

Estimated parameters Qa o B
Mean 0.7344 | 0.2351 | 0.5215
Bias 0.0344 | 0.0351 | 0.0215

Standard deviation | 0.0754 | 0.0674 | 0.1167

MSER 0.0830 | 0.0761 | 0.1187

TaBLE 4. Summary of 150 Monte Carlo replications

The parameters of the synthetic model used are 6* = (0.7,0.2,0.5) with o* =
0.7, 0* = 0.2 and p* = 0.5 whose path in Figure 9.

1 1 1 1 1 1 1 1
0 Gy 100 150 200 250 200 E 400 450 ]

<o) 100 150 200 250 300 350 400 450 Go0

Ficure 9. Path of model (5.2) over a time horizon of T' = 500

At the end of each Monte Carlo experiment (500" iteration of the MCEM),
we averages the last 50 iterations of the MCEM for each of the 3 estimated
parameters. A first summary of the Monte Carlo experiments is given in
Table 4.

In Table 4, we put the mean, bias, standard deviation and the mean squared
error root obtained from the Monte Carlo experiments for each of the 3 pa-
rameters.
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150

50— =

FicURE 10. Histograms of parameters estimates over 150 Monte Carlo repli-
cations of MCEM in model (5.2).

We found a divergence rate to the 3 parameters of 6% which can result,
among other things, from initialization problems, likelihood modalities,
common to GEM algorithm . This results in the existence of extra classes
with very small numbers in histograms. The dominant class of each his-
togram is that which translates the actual convergence of the parameter in
concern. The output parameters are fairly faithful compare to the injected
parameters as input of the model in a satisfactorily manner.

5.0.1. Further Monte Carlo Simulations. In order to test even more model
(5.2), we realized two other series of Monte Carlo experiments. In the first
set of 150 replications, we vary the number of particles used from 250
to 2000. The data length remains fixed at 77 = 500. The true parame-
ter vector and the initialization vector are respectively 0* = (0.9,0.2,0.6) and
0 = (0,0.1,0). A first summary of simulation results is shown in Figure 11.

REMARK 10. One finding that can be made is that as the number of parti-
cles increases, there is greater stability in the estimated parameters for fixed
T. This reinforces the idea of effective convergence of exhaustive statistics,
a _function of conditional distributions approximated by particle systems.

Alongside the graphic illustrations, we have calculated some numerical
quantities for a better understanding of the simulations. Tables 5-02-05-
tabl0 tables illustrate an aggregated summary of the 150 Monte Carlo
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N=250 N=300 N=500 N=750

FIGURE 11. 150 Monte Carlo replications : Evolution of ALMCEM algorithm
with respect to the number of particles for 7' = 500 fixed

Estimated parameters Q o B
Mean 0.8835 | 0.2452 | 0.6008
Bias —0.0164 | 0.0452 | 0.0088
Standard deviation 0.0754 | 0.0674 | 0.1167
RMSE 0.0198 | 0.0457 | 0.0082

TaBLE 5. Aggregation of 150 Monte Carlo replications with N = 250 parti-
cles and T = 500.

replications across means, bias, root of the mean squared errors, and
standard deviations from the last 50 iterations of the MCEM.
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Estimated parameters Q o I6]
Mean 0.8876 | 0.2421 | 0.6028
Bias —0.0123 | 0.0421 | 0.0028

Standard deviation 0.0095 | 0.0057 | 0.0067

RMSE 0.0159 |0.0426 | 0.0082
TaBLE 6. Aggregation of 150 Monte Carlo replications with N = 300 particles
and T = 500.
Estimated parameters Q o B
Mean 0.9008 | 0.2299 | 0.6103
Bias 0.0008 | 0.0299 | 0.0103

Standard deviation | 0.0071 | 0.0060 | 0.0052

RMSE 0.0082 | 0.0306 | 0.0117

TaBLE 7. Aggregation of 150 Monte Carlo replications with N = 750 parti-
cles and 7' = 500.

The second set of 150 Monte Carlo replications consist in observing the
behavior of the estimated parameters over an increasing trajectory length
while keeping the number of particles constant. The summary of the dif-
ferent simulations is given in Figure 12.

Similar to previous replications, a numerical view of the last 50 iterations
of the MCEM can be considered. Tables 11-16, given after the bibliography,
are an aggregate summary.

ReEMARK 11. A finding that can be made is that we can correctly estimate
the parameters as we increase the length of the trajectory despite the fact
that we have frozen the number of particles at N = 250. The only apparent
disadvantage is the extra effort provided to handle the additional observa-
tions.
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N

Estimated parameters Qa o B
Mean 0.9046 | 0.2265 | 0.6131
Bias 0.0046 | 0.0265 | 0.0131

Standard deviation | 0.0063 | 0.0057 | 0.0046

RMSE 0.0087 | 0.0272 | 0.0140

TasLE 8. Aggregation of 150 Monte Carlo replications with N = 1000 parti-
cles and T = 500.

~

Estimated parameters Qa o B
Mean 0.9086 | 0.2228 | 0.6159
Bias 0.0086 | 0.0228 | 0.0159

Standard deviation | 0.0052 | 0.0054 | 0.0040

REQM 0.0103 | 0.0235 | 0.0164

TaBLE 9. Aggregation of 150 Monte Carlo replications with N = 1500 parti-
cles and T = 500.

~

Estimated parameters Qa o B
Mean 0.9103 | 0.2211 | 0.6172
Bias 0.0103 | 0.0211 | 0.0172

Standard deviation | 0.0046 | 0.0054 | 0.0035

RMSE 0.0113 | 0.0218 | 0.0176

TaBLE 10. Aggregation of 150 Monte Carlo replications with N = 2000 par-
ticles and 7" = 500.
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0 50 100 1500 50 100 150 [ 50 100 150 0 50 100 150

FicUre 12. 150 Monte Carlo experiments: Evolution of MCEM algorithm
with respect to length path for N = 250 fixed.

6. Conclusion

In this paper, through the canonical stochastic volatility model we have
highlighted the common use of the MCEM algorithm for inference pur-
pose. We investigate the calibration to financial data including stock mar-
ket indexes and exchange rates. We also compare to MCMC approach by
Krichene (2003) dealing with the same dataset within the same model.
Finally, we also tested the basic model by adding a strongly non-linear
component. On the one hand, to get rid of simplicity of the basic model
and on the other hand to gauge the robustness of the MCEM procedure
to high non-linearity of the resulting model in the estimated parameters.
There are still several points that need more attention. One of them is the
reduction of the cost of calculation. For example, an idea on reducing the
cost of computing the MCEM estimates would be to make the number of
particles used to be adaptive combined along with a forcing function in
order to force the stop of unnecessary iterations whenever convergence is
taking place. Given that some components of the parameter vector con-
verge faster than others. This can result in a substantial gain in compu-
tation time.
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Estimated parameters Q o B
Mean 0.9205 | 0.2017 | 0.5705
Bias 0.0205 | 0.0017 | —0.0294
Standard deviation | 0.0111 | 0.0048 | 0.0088
RMSE 0.0235 | 0.0067 | 0.0308

TaBLE 11. Aggregation of 150 Monte Carlo replications with N = 250 parti-
cles and T = 250.

Estimated parameters Q o 6
Mean 0.8835 | 0.2452 | 0.6008
Bias —0.0164 | 0.0452 | 0.0088
Standard deviation 0.0754 | 0.0674 | 0.1167
RMSE 0.0198 | 0.0457 | 0.0082

TaBLE 12. Aggregation of 150 Monte Carlo replications with N = 250 parti-
cles and T = 500.

Estimated parameters Q o 6
Mean 0.9013 | 0.2316 | 0.6115
Bias 0.0013 | 0.0316 | 0.0115
Standard deviation | 0.0104 | 0.01092 | 0.0081
RMSE 0.0122 | 0.03365 | 0.0146

TaBLE 13. Aggregation of 150 Monte Carlo replications with N = 250 parti-
cles and T = 750.
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Estimated parameters Q o I6]
Mean 0.8896 | 0.2212 | 0.6038
Bias —0.0103 | 0.0212 | 0.0038

Standard deviation 0.0091 | 0.0081 | 0.0058

RMSE 0.0142 | 0.0229 | 0.0074

TaBLE 14. Aggregation of 150 Monte Carlo replications with N = 250 parti-
cles and T = 1000.

~

Estimated parameters Qa o 6]
Mean 0.9042 | 0.2012 | 0.6385
Bias 0.0042 | 0.0012 | 0.0385

Standard deviation | 0.0069 | 0.0066 | 0.0115

RMSE 0.0085 | 0.0075 | 0.0402

TaBLE 15. Aggregation of 150 Monte Carlo replications with N = 250 parti-
cles and T = 1500.

A

Estimated parameters o o I6]
Mean 0.9080 | 0.1826 | 0.6408
Bias 0.0080 | —0.0173 | 0.0408

Standard deviation | 0.0067 | 0.0066 | 0.0094

RMSE 0.0104 | 0.0187 | 0.0419

TaBLE 16. Aggregation of 150 Monte Carlo replications with N = 250 parti-
cles and T = 2000.
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