
CHAPTER 6

Integration on Locally Compact
Spaces According to Bourbaki

For convenience of reference the following two references will be
abbreviated: Bourbaki (1965) by "B," and Taylor (1965, 1985) by
"T." The reader is reminded of the symbol %{X) introduced in Sec-
tion 2.2 for the family of real valued continuous functions with com-
pact support on the locally compact (I.e.) space X.

6.1. The Daniell method. There are basically two very dif-
ferent theories of measure and integration on a given space X. In
the first one, which will be called "classical" here, the starting point
is a family of subsets of X, called measurable, on which a measure
is defined as a set function with certain properties. This theory is
documented very well in Halmos (1950). The second approach is due
to Daniell (1917-18, 1919-20) and consists of first defining the inte-
gral as a linear functional, with a certain monotonicity and continuity
property, on a family of "nice" functions; then extending the integral
to a wider family of functions called "integrable," and finally defining
measurable functions and sets. Thus, in the Daniell approach inte-
grable functions and their integrals come first, measurable sets come
last, in contrast to the classical approach. An advantage of the Daniell
approach is that certain properties of the integral already follow from
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the integrals of the "nice" functions, which are easier to handle than
arbitrary integrable functions. For instance, this will be used in the
definition of a product measure. If X is I.e., then the "nice" func-
tions will be taken to be the family X(X). The Bourbaki theory of
integration follows essentially the Daniell approach, although with a
variation. Below we shall very briefly outline the Daniell method,
without details or proofs. For a full account the reader is referred to
the excellent expository account by Taylor (1965, 1985), Chapter 6.

The general Daniell method does not assume any structure on X,
but assumes that there is a nonempty family ίF of real valued functions
on X that is closed under linear operations (sums and multiplication
by real numbers) and is closed under the formation of the maximum
and the minimum of two functions. Such a family is called a vector
lattice. On SF is defined a linear functional with some additional
properties, as follows.

6.1.1. DEFINITION. Let 3" be a vector lattice of functions X —> R,

then a function I : £F —> R is called an elementary integral on ίF if

it satisfies

(6.1.1) I(c1f1+c2f2) =

(6.1.2) /(/)>0 if />0,

(6-1-3) I(U->0 if fniO

All the usual elementary properties of an integral are satisfied by
/. The condition (6.1.2) implies monotonicity of /, whereas (6.1.3)
is a substitute for continuity. If X is I.e., then £Γ will be taken to be
%(X). For instance, if X = J?n, then an example of an elementary
integral / is the Riemann integral of / 6 X(X).

In order to extend the integral from the members of ίF to a wider
family, two families that both contain 3 are introduced: the family
3~° of over-functions and 3r

u of under-functions. Here / G 7°
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if it is an upward [downward] pointwise limit of members of J. Then
/ need not be finite everywhere. However, / £ 3° cannot have — oo
values, nor / £ 3r

u +oo values. Now for / £ 7° and fn f / with
fn £ 7 define /(/) = lim J ( / J . Then /(/) is either finite or +oo.
Similarly, /(/) is defined for / £ ? t t, and /(/) is finite or — oo. It can
be shown that /(/) does not depend on the choice of sequence fn that
converges to / (T, Lemma 6-2II).

Next, for arbitrary / whose values may be real numbers or ±oo
define the upper integral /(/) = inf {/(/*) : h £ £F°, / < /*}, and the
lower integral /(/) = sup{J(#) : g £ ίFtt, g < /}. It can be shown
that /(/) < /(/). If -oo < /(/) = /(/) < oo, then we say that /
is integrable, and its integral /(/) is the common value of /(/) and
/(/). The family of integrable functions is denoted £. A subset A of X
is called integrable if the indicator of A is in Si. Its integral is denoted
μ(A). In particular, if X is I.e. and £F = 3C(X), then all compact sets
are integrable. The functions in £ satisfy the same familiar properties
as the integrable functions of classical measure theory; for instance,
the Lebesgue dominated convergence theorem.

Finally, an arbitrary real valued / is called measurable if for
every g,h £ £ with g < 0 < h we have max(<7,min(/, h)) £ £.
This latter function can be interpreted as / truncated above by h and
below by g. The definition can be modified in equivalent ways, e.g., by
writing / as the difference /+ — /~ of its positive and negative part. A
subset of X is called measurable if its indicator is measurable. Denote
by S the family of measurable sets. It is shown in T, Theorem 6-5III,
that 5 is a σ-ring.

An immediate consequence of the definition of integrability is

6.1.2. THEOREM (T, Thm. 6-3 I(a)). / £ £ if and only for every
ε > 0 there exist functions g £ 3r

u and h £ 3"° such that I(h) < oo,

g < f < h, and I(h) - I(g) < ε.

This theorem states that an integrable function can be approxi-
mated arbitrarily closely (in terms of its integral) by an over-function
and by an under-function. The next theorem shows that the approx-
imation can even be done by a function in 3.
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6.1.3. THEOREM (T, Thm. 6-4 VI). // / e £ and ε > 0, then
there exists h £ *5 such that I(\f — h\) < ε. If f >Q, h may be chosen

> 0 .

An important subfamily of £ consists of those / for which /(|/|) =

0. Then / and |/ | are in £ and J(|/|) = 0. Such an / is called a null

function. A null set is a subset of X whose indicator is a null

function. This allows the notion of a statement that is true almost

everywhere (a.e. or a.e.μ), i.e., true for all x £ X except for x in a

null set. It can be shown that / is a null function if and only if / = 0

a.e. (T, Thm. 6-4 Π(c)) and that if / £ £ and g = f a.e., then g 6 £

and I{g) = /(/) (T, Thm. 6-4 III). By the definition of null set, a

subset of a null set is also a null set. Therefore, the measure μ defined

on the integrable sets by / is always complete, i.e., if μ(A) = 0 and

5 c i , then B is measurable and μ(B) = 0.

The space £ is linear and we try to make it into a normed linear

space by defining, for / £ £, | |/ | | = /( |/ | ) . This does not quite work,

since | |/ | | = 0 does not imply / = 0 but only / = 0 a.e. Thus,

|| || is a semi-norm but not a norm (see Section 2.1). This situation

can be remedied by considering the equivalence class [/] consisting of

all functions equal a.e. to /. These equivalence classes are preserved

under addition and scalar multiplication so that we may take them as

points of a linear space L with norm ||[/]|| = ̂ (|/|) (observe that the

right-hand side does not depend on the choice of representative from

[/]). It can be shown that L is complete (T, Thm. 6-4 IV). Thus, L is

a Banach space (Section 2.2). If F is the space of equivalence classes

[/] with / restricted to the vector lattice 9~ with which the Daniell

process was started, then F C L. Theorem 6.1.3 shows then that F is

dense in L, i.e., F D L. More can be said. Consider the linear space

M of real valued functions on X with finite semi-norm | |/ | | = /( |/ | ) .

Then J C £ C M and Theorem 6.1.3 shows that £ C S. But the

completeness of £ (T, Thm. 6-4 IV) can be used to show that £ is

closed in M. Hence £ C 7 C £ = £, and therefore we have

6.1.4. THEOREM. Consider 7 and Si to be subspaces of the linear

space M of real valued functions f with semi-norm \\f\\ = ϊ ( | / | ) < oo.
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Then £F = £ . For the corresponding Banach spaces M, L, F, we have

F = L.

A priori there is no guarantee in the Daniell definition of the class
S of measurable sets that X £ 5. However, this desirable property-
is guaranteed if the following condition is satisfied: / G 7 implies
min(/, 1) £ £F, where 1 here stands for the function that equals 1
identically (T, Thm. 6-7 IV(c)). This condition was proposed by-
Stone (1948, 1949) and is termed Stone's axiom. From now on we
shall assume X to be I.e. and take 3 to be %(X). Then Stone's axiom
is satisfied so that X £ 5; therefore S is a σ-algebra (= σ field) rather
than merely a σ-ring.

6.2. Comparison between Daniell and classical method.
It is of interest to compare the results of the classical theory of in-
tegration on I.e. spaces (Halmos, 1950, Chapter X) with those of the
Daniell theory. However, comparison is made difficult by the fact that
the two theories start out with different structures. In the classical
theory the measurable sets are taken either as the σ-ring 23 generated
by the compact sets, or the σ-ring 23 0 generated by the Gδ compact
sets (Halmos, 1950, §51). These are called the Borel sets and Baire
sets, respectively. A priori there is no guarantee that X £ 23, let alone
£ 23O. A Borel measure is a measure on 23 that is finite on compact
sets. Similarly, a Baire measure is finite on Gδ compact sets. This
distinction between Borel and Baire sets and measures vanishes if X
is second countable (Section 2.2). In that case we have 23O = 23 and
X G 23 so that the σ-ring is a σ-algebra. Furthermore, every Borel
measure is regular, which means that a set of finite measure can be
approximated in measure arbitrarily closely from above by an open
set and from below by a compact set (Halmos, 1950, Thm. 52G).
Comparison between classical and Daniell theory is also easiest if X
is second countable and we shall assume this in the following. It turns
out then that ! B c S . Hence, for any elementary integral / on %(X)
and the extension of / to a measure μ on the integrable sets of 5, we
can consider the restriction of μ to 23; denote this restriction by v.
This turns out to be a Borel measure. The question then is in what
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way the integrable functions and measurable functions (in particular,
measurable sets) differ in the two theories. The answer is as follows:
(5, μ) is the completion of (23, ι/), and if / is 5-measurable, then there
exists a 25-measurable function g such that f = g a.e.μ, with an anal-
ogous statement for integrable functions. Thus, the end products of
the two theories differ only by null sets and null functions. But it
should be kept in mind that we have assumed second countability of
X. In the general case we have no results on comparison except for
an example in Section 6.4. A somewhat different comparison can be
found in Taylor (1965, 1985), Section 6-7. See also his Sections 6-9
and 6-10.

6.3. The Bourbaki method. The Bourbaki theory of inte-
gration is basically the Daniell theory, with a small difference that
will be mentioned later in this section. The space X is assumed to
be I.e. and the vector lattice JF is taken to be X(X). For / £ X(X)
the elementary integral /(/) will now be written μ(/), or j fdμ, or
J f(x)μ(dx) (and the same notation will be retained after μ has been
extended to the integrable functions). Let X+(X) be the nonnegative
functions in X(X). It is also convenient to have the notation 3C(X, K)
for all functions / 6 X{X) with supp/ C K compact. Bourbaki's
definition of a measure μ seems at first different from the elementary
integral / satisfying (6.1.1)—(6.1.3), but turns out to be equivalent.
Bourbaki's definition of measure is embedded in that of a signed mea-
sure (following the terminology of Taylor, 1965, and others) whose
values on X+(X) can be negative as well as positive. (Unfortunately,
there is a slight discrepancy with Bourbaki's terminology: the terms
"signed measure" and "measure" here are the equivalents of "mea-
sure" and "positive measure," respectively, in Bourbaki.)

6.3.1. DEFINITION. A signed measure on the I.e. space X is
a linear functional μ satisfying the condition that for every compact
K C X there is a real number cκ < oo such that

(6.3.1) W)\<cκ\\f\\ for every feX(X,K),
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in which

(6.3.2)

A measure is a signed measure μ satisfying

(6.3.3) μ(/)>0 •/ feX+(X).

The norm in (6.3.2) is often called the "sup norm." (Here the
supremum is actually a maximum.) It turns out that a linear func-
tional μ on X{X) for which (6.3.3) holds automatically satisfies (6.3.1).
In order to show this we shall make use of the following lemma.

6.3.2. LEMMA. If X is I.e. and K C U C X with K compact
and U open, then there exists open V with compact closure such that
K C V C V C U. Furthermore, there exists continuous g : X —> [0,1]
with g = 1 on K and g = 0 off V.

PROOF. Kelley, Chap. 5, Thm. 18 (use the fact that with the
Bourbaki definition of I.e. X above is regular). The first part of the
lemma can also be found in Halmos (1950), Thm. 50D, in a slightly
stronger version. D

6.3.3. THEOREM (B, III, §1.6, Thm. 1). Let X be I.e. If μ is a
linear functional on %(X) and satisfies (6.3.3), then μ satisfies (6.3.1)
so that μ is a measure on X.

PROOF. Let K compact C X and / G X(X,K). According to
Lemma 6.3.2 there exists g G X(X) such that g > 0 and g = 1 on K.
Since / = 0 off K we have / = fg so that by (6.3.2) \f(x)\ < \\f\\g(x)
for x G X. The linearity of μ together with (6.3.3) implies that μ
is monotone. Then μ(\f\) = μ(\f\g) < μ(\\f\\g) = \\f\\μ(g). Hence,
(6.3.1) is valid with cκ = μ{g) < oo. D

6.3.4 PROPOSITION. Let X be I.e., then the Bourbaki defini-
tion 6.3.1 of a measure μ on X(X) is equivalent to the Daniell defi-
nition 6.1.1 of an elementary integral I on X(X).
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PROOF. Let / be an elementary integral according to Defini-
tion 6.1.1 and put μ = J. Then μ is linear by (6.1.1) and satis-
fies (6.3.3) by (6.1.2), hence μ is a measure by Theorem 6.3.3. Con-
versely, let μ be a measure according to Definition 6.3.1 and put
I = μ, then (6.1.2) follows from (6.3.3). In order to show (6.1.3)
let supp fλ C K compact, then supp fn C K for all n since fn j 0. By
Dini's theorem (Kelley, 1955, Chap. 7, Probl. E) the point-wise con-
vergence fn I 0 is uniform, i.e., | | /J | —• 0 with || || defined in (6.3.2).
Consider the Banach space DC(X, K) with norm (6.3.2), then the con-
dition (6.3.1) is equivalent to the statement that the linear functional
μ : X(X,K) -> R is continuous (Section 2.2). Therefore, | | / J | -> 0
implies μ(fn) —> 0, which is (6.1.3). D

The condition (6.3.1) implies that for every fixed compact K C X
a signed measure μ (in particular, a measure) is a continuous linear
functional on the Banach space 3C(X, K) with norm (6.3.2). Now
3C(X), whose members have compact but unspecified support, is also
a Banach space with norm (6.3.2). However, it is not true that μ sat-
isfying Definition 6.3.1 is a continuous linear functional on the Banach
space X(X). For instance, let X = R and μ = Lebesgue measure on
R. Take fn continuous, equal to 1/n on an interval An of length > n,
equal to 0 outside a finite interval containing Λn, and < 1/n every-
where. Then | |/n | | —* 0, but J fndμ > 1 for all n. It is possible to
introduce on %(X) a topology that is finer than the topology induced
by the norm (6.3.2) in such a way that a signed measure is contin-
uous. For details see Bourbaki (1966a), Chap. II, §4.4, in particular
Exemple II. Thus, a signed measure can be defined as a continuous
linear functional on 3C(X), relative to the aforementioned topology.
Equivalently, this continuity can be defined by requiring μ to be a
continuous linear functional on the Banach space 3C(X, K\ for each
compact K. These considerations also determine when a subfamily 7
oίX(X) will be called dense in X(X): for any / G X(X) there should
be a compact set K D supp / such that within the family X(X, K)
there are members that come arbitrarily close to / in the sup norm.
More precisely,



106 INTEGRATION ACCORDING TO BOURBAKI 6

6.3.5 DEFINITION. Let 3 c X(X), then 7 is called dense in
X(X) if for every f G X(X) there exists compact K such that supp / C
K αnrfinf{||/-flf|| : g £ 3ϊλX(X,K)} = 0, with \\ \\ defined in (6.3.2).

The difference between the Bourbaki and Daniell methods lies
in the definition of over- and under-functions. For the definition of
integrable functions it is sufficient to consider only / > 0 since an
arbitrary function can be written as /+ — f~. For the extension of
μ to integrable / > 0 only the over-functions are needed. In the
Bourbaki theory the family of nonnegative over-functions coincides
with the family of all nonnegative lower semicontinuous functions on
X (Section 2.2). If / > 0 is l.s.c, then / = snp{g £ X+(X) : g <
/} (B, IV, §1.1, Lemme 1) and one defines μ(f) = supμ(g) (which
may be +oo). On the other hand, in the Daniell theory an over-
function is defined as any upward limit of a sequence of functions
in X+(X). Such a limit is l.s.c. (Section 2.2) but an arbitrary l.s.c.
function is not necessarily so obtainable. That is, the set of Daniell
over-functions could possibly be a proper subset of the Bourbaki ones.
If this happens then there could conceivably be more integrable and
measurable functions and sets according to Bourbaki than according
to Daniell. Certain conditions on X may prevent this. For instance,
if X is metric with distance function d having the property that every
set of the form {y £ X : d(x,y) < c}, x £ X, c £ i?+, is compact,
then every nonnegative l.s.c. function is an upward limit of elements
of X+(X). This follows from Taylor (1965, 1985), Theorem 6-9 III,
after observing that the proof of this theorem remains valid for metric
X with the above compactness condition on the metric d.

There is another difference between the Daniell and Bourbaki
methods that is more apparent than real. Bourbaki (B, IV, §4.1)
extends a measure μ on %{X) to £ by defining £ as the closure of
%{X) in M. But it follows from Theorem 6.1.4 (with 7 = X(X))
that this leads to the same integrable functions as does the Daniell
method, provided of course that the meaning of the upper integral /
is the same in both methods. This will be the case if the nonnegative
integrable over-functions are the same. Another way of verifying the
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equivalence of the two methods is provided by

6.3.6. THEOREM (B, IV, §4.4, Thm. 3). If f > 0, then f e £
if and only if for every ε > 0 there exists g > 0, u.s.c. with compact
support, and h l.s.c. integrable such that g < / < h and f(h — g)dμ <
ε.

This is the same as Theorem 6.1.2 for / > 0 provided the function
h in Theorem 6.3.6 is in J° of Daniell. (Note that in Theorem 6.1.2
f°r / > 0 we may choose g > 0 and then g has compact support since
it is the downward limit of functions in 3C(X).)

In the remainder of this monograph a measure on a I.e. space X
will mean a continuous linear functional on %{X) that is nonnega-
tive on K+(X), i.e., satisfying Definitions 6.1.1 or 6.3.1 (equivalent
by Proposition 6.3.4), and then extended uniquely by the Bourbaki
method to a wider class L of functions called integrable. By continuity
a measure is already defined by its value on a dense subset of 0C(X)
(Definition 6.3.5) and this will be used in the definition of product
measure in Section 6.5.

We mention without proof that in the Bourbaki theory for any
chosen measure μ the compact sets are integrable (B, IV, §4.6, Prop. 10,
Cor. 1) and the measurable sets form a σ-algebra including the open
sets (and therefore the closed sets) (B, IV, §5.4, Thm. 2, Cor. 2 and
IV, §5.1, Prop. 3, Cor. 1). Furthermore, every measure is regular (B,
IV, §4.6, Thm. 4).

Effect of a proper mapping. Let X and Y be I.e. spaces and
h : X —* Y. If h is a proper mapping (Definition 2.2.1) then for
every compact K C F, h~ι(K) is compact C X (Theorem 2.2.3). It
follows that if / G X(Y), then fohe X(X). If μ is a measure on X,
define the induced measure h(μ) on Y (also written μh~ι) by:

(6.3.4) h(μ)(f) = μ(f oh), feX(Y).

This induced measure is also called the image of μ under h.

6.4. Comparison of the three integration methods in an
example. In an attempt to find an example of a space where the
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three theories of integration—classical, Daniell, and Bourbaki—would
lead to different results, the following space was tried. Let Y be an
uncountable index set (e.g., an interval of R). For each y 6 Y let
R be a copy of the real line R. Define X = U{Rυ : y (Ξ Y} with

y y

each R open in X and the relative topology on R being the usual
topology of R. (Thus, each Ry is a component of X; see Section 2.2.
X is also called the sum of the topological spaces R see Bourbaki,
1966b, I, §2.4, Example 3.) Then X is I.e. but not metric nor second
countable. Any compact K C X must be of the form U{Ky compact
C Ry : y G Yj}, with Yλ finite. Define the elementary integral on
%{X) by μ(f) = Σ y € γ Jκ fdm, where m is Lebesgue measure.

It turns out that a function / > 0 is an over-function according
to Daniell if and only if there is a countable subset YQ C Y such that
/ is l.s.c. on Ry for y £Y0, and / vanishes on Ry for y £YQ. On the
other hand, any / > 0 with / l.s.c. on each R is an over-function
according to Bourbaki. Therefore, the class of Daniell over-functions
is properly contained in that of Bourbaki. However, for the definition
of integrable functions only the over-functions / with μ(/) < oo mat-
ter, and those are the same for Bourbaki as for Daniell. Therefore, in
this example Daniell and Bourbaki lead to the same integrable func-
tions. It can be shown that this implies that the measurable functions
are also the same under both theories. Hence, this example does not
lead to different results under Daniell and Bourbaki. On the other
hand, the classical integration theory leads to a different result. Ev-
ery compact K is a Gδ (because this is true for every K C Ry, with
y (zY1 finite) so that the Borel sets and the Baire sets coincide (Sec-
tion 6.2): 23 = 23O. ^ ιs e a s y *° show that 2J, i.e., the smallest σ-ring
containing the compact sets, consists of all sets of the form
YQ some countable subset of Y and By a Borel subset of Ry for each
j / £ 7 0 . This implies that X is not a Borel set, i.e., X is not measur-
able according to classical integration theory, in contrast to Daniell
or Bourbaki theory. Thus, in this example there is an essential dif-
ference between classical integration theory on one hand and Daniell
and Bourbaki on the other. It should be remarked, though, that the
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difference between the two sides is not nearly as large when we only

consider integrable (rather than measurable) functions and sets. In

each of the three theories a necessary condition for / to be integrable

is that it vanish on all but a countable number of R . The only dif-

ference lies in the measurability of / on each such Ry, which is as in

the comparison between classical and Daniell theories in section 6.2.

6.5. Product measure. Let X and Y be two I.e. spaces,

so that X x Y is also I.e. (Section 2.2). Let λ be a measure on X,

μ a measure on F . In classical measure theory it is shown that if

λ and μ are σ-finite, then on X x Y there is a unique measure v,

called product measure, such that on a product set A x B we have

v{A x B) = λ(A)μ(B) (Halmos, 1950, Chap. VII). The analogue in

the Bourbaki theory is a measure v such that for functions / on X x Y

of the form f(x,y) = g(x)h(y), g £ %{X\ h £ X(Y\ we have i/(/) =
\(g)μ(h). It remains to be shown that such a measure v on X x Y

exists and is unique. This will be the subject of Theorem 6.5.1 below.

Note that in this theorem λ and μ are not assumed to be σ-finite. The

proof of the theorem will be given in some detail since the theorem is

of central importance to the main topic of this monograph, and since

the various needed lemmas are scattered in Bourbaki (1965) and some

of them stated in greater generality than needed here. Furthermore,

one of the lemmas will again be needed in Section 6.6. Recall from

Section 2.1 the notation fλ ® / 2

6.5.1. THEOREM (B, III, §4.1, Thm. 1) Let X and Y be I.e. and

let there be given measures A on X, v on Y. Then there exists on

X xY a unique measure v such that for every g £ %(X), h £ %{Y),

we have

(6.5.1) g®hdu= gdλ hdμ.

The theorem is equally valid with "measure" replaced by "signed mea-

sure. "

Before giving the proof, several lemmas are needed and some

additional notation has to be established. If Z and E are arbitrary



110 INTEGRATION ACCORDING TO BOURBAKI 6

spaces, then 3(Z\ E) shall stand for the family of all functions Z —> E

(note that this J bears no relation to the vector lattice J of the

Daniell theory). Our choices for Z will be X, or Y", or X x F, and

E will be either R or a space of real valued functions. If E = R

it may be omitted in the notation. If E is a space of continuous

functions with fixed compact support, then we shall take the sup

norm as a norm on E so that E becomes a Banach space. If Z and E

are topological and K compact C Z, then %{Z,K\E) stands for the

family of all continuous functions Z —> E that have support contained

in K. Finally, 3r{Zλ\ R)®3r(Z2; R) stands for the space of all functions

of the type Σg{ ® hi (finite sum) with g{ G S{Zλ\ R), h{ G 5F(Z2ϊ R).

Now consider the following spaces of functions:

(A)ϊ(XxY;R); (B) J(X; Ϊ(Y; Λ));

(C) %(X x F, K x L; #); (D) 3C(X, K\ X(Y, L\ R))\

(E) X{X, K\ R) ® X(Y, L] R)

in which K and L are compact subsets of X, Y respectively. There is

a natural 1-1 correspondence between the elements of (A) and those

of (B), since a function of (x, y) can be regarded as associating to each

x £ X a function Y —> R. Write this correspondence as a bijection ω:

(6.5.2) ω : 5(X xY R)-^ ?(X; ?(F; R)).

The most important part of the proof of Theorem 6.5.1 is the proof

that (E) is dense in (D). This will be presented in Lemma 6.5.5 below.

First several other lemmas are needed.

6.5.2. LEMMA. Let X be I.e., K compact C X, and J7 1 ? . . . ,Un

a finite open cover of K. Then there exists an open cover V 1 ?... , Vn

of K such that V{ C Ui and Vi is compact, i = 1,... ,n.

PROOF. For every x 6 K there is a compact neighborhood con-

tained in one of the U^ By compactness of K there is a finite number

of these neighborhoods, say WlJ... ,Wk, such that K C U^=1WJ.

For i = 1,... , n take V{ = union of all W contained in J7ί? then V{ is

compact, Vi C Ut , and their interiors Vi,... , Vn is an open cover of

K since each WJ is contained in some V̂ . D
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6.5.3. LEMMA (B, III, §1.2, Lem. 1). Let X be I.e., K compact
C X, and UlJ... , Un an open cover of K. Then there exist real val-
ued continuous functions gλ,... , # n such that g^ has compact support
contained in Ui} g{ > 0 ; Σ^<7t < 1 on X, and Σ™gi = 1 on K.

PROOF. Take the Vi as in Lemma 6.5.2. Using Lemma 6.3.2, for
each i there exists open Wi with compact closure such that Vi C Wi C
Wi C U^ and a continuous function f{ : X —> [0,1] that equals 1 on V{

and 0 off W{. Thus, supp/. C Wi C U{. Since Jί C U J % £ * /̂  > 1
on K. Put m(x) = max(l, Σ™ fi(x))-> ̂  G X, so that m = Σfi o n

UΓ. Define gz- = fjm on X, then gi is continuous, ^ ^ gfz < 1 on X
and = 1 on K. Moreover, suρp# = supp^ C W{ CU{. D

REMARK. A similar proof is given in Chevalley (1946), Chap. 5,
§VΠ, Lemma 1 (attributed to Dieudonne) for X a manifold, in which
case the functions fi can be constructed explicitly. The set of func-
tions gi is called a partition of unity subordinate to the cover
ί7 1 ? . . . ,£/n. (This device in more general form will be used again
in Section 13.3.)

The following lemma is a special case of B, III, §1.2, Lemme 2.

6.5.4. LEMMA. Let X be I.e., K comapct C X, E a Banach space
with norm || | | ; / G 3C(X, K\ E). Then for every ε > 0 there exist
functions gλ,... ,g^ 6 3C(X, K\ R) such that if xi is an arbitrary point
of supp gi} i = 1,... , n, then for every x G X we have

(6.5.3) < ε.

PROOF. Let dK be the boundary of K. For every y G dK
we have f(y) = 0 so that there exists an open neighborhood V of
y such that | |/(z)|| < e/2 if z G Vy. Define K1 = K - U{Vy : y G
dK}, then A"' is compact and C K°. Every x G K9 has an open
neighborhood Ux C A' such that z £ Ux implies \\f(z) — f(x)\\ <
ε/4 and therefore z1^z2 G Ux implies H/ί^j) — / ( ^ l l < ε /^ By
compactness, K1 may be covered by a finite number of these open sets,
say i7 l 5 . . . , Un. By Lemma 6.5.3 there exist nonnegative continuous
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functions gr1?... ,gn : X —> R such that supp^ C U^ Σ™ 9i(x) < 1
for x E X, and Σ" 9i(χ) = 1 for a; E K1. For i = 1,... , n choose any
χi £ suPPί7i> then for any x £ £Λ:

since a: and xt are both in U^ This is still valid if x (£ [/,- since then
g^x) = 0. Thus, (6.5.4) holds for every x £ X. Sum (6.5.4) over
i = 1,... ,n, and put Σ™ 9i(χ) = 5(^)? which is < 1 on X and = 1
on K', then we obtain

(6.5.5)
%

For a: € K', s(x) = 1 so that (6.5.5) implies (6.5.3). For x £ K, (6.5.3)
is true also since then f(x) = 0 and all g^x) = 0. For x € K — K' we
have

(6.5.6)

Combine (6.5.5) and (6.5.6):

/(*)-£>(*)/(*<)

which is (6.5.3). D

6.5.5. LEMMA. The space (E) is dense in the space (D).

PROOF. In Lemma 6.5.4 take E = X(Y,L;R). Let ε > 0 be
arbitrary. Take gi and /(#,) of Lemma 6.5.4 then /(a^) is an element
oΐX(Y,L;R), say/(z, ) = ^ , 1 = 1,... ,n. By (6.5.3) of Lemma 6.5.4
we have

(6.5.7) < ε, x e X,

where the norm || || is that of 3C(F, L\ R). In (6.5.7) take the sup over
a G l t o obtain ||/ — Σ™ gi ® h^l < ε, λvhere this time the norm || ||
refers to (D). Since Σ™ gi ® hi ζ: (E) the lemma is proved. D
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6.5.6. LEMMA, (i) The restriction of ω defined in (6.5.2) to (C)
is an isometry of (C) with (D); (ii) (E), considered as a subspace of
(C), is dense in (C); hence, X(X) ® X(Y) is dense in X(X x Y).

PROOF. (i) We have to show that / £ (C) considered as a
function in (B) is actually a function in (D), i.e., has compact support
and is continuous as a function X —* 3C(F, L\R). Conversely, if / G
(D) is regarded as a function in (A) we have to show that it actually
is in (C). The question about the supports is trivial, so only the
continuity part will be handled.

First, take / £ (C), regarded as £ (£?). In order to verify the con-
tinuity of / : X —* X(Y, L\ i2), we have to check that as z —* x £ J\Γ,
then sup |/(z,y) — /(#,y)| —* 0. This follows from the continuity of
/ as a function o n l x F and the compactness of L by a standard
argument. Next, let / £ (D) be regarded as £ (A). Since / £ (D),
f(z,-) —> /(#,-) uniformly as 0 —> x. This, together with the conti-
nuity of /(#, •) (as a function of y) shows that / is jointly continuous
in (z,y), hence / £ (C).

So far we have shown that ω is a bijection (C) —> (2?). It remains
to be shown that it is an isometry. The norm of / £ (C) is by
definition

(6.5.8) | | / | | ( σ ) = βup{|/(x,y)| : (x,y) G ff x £}.

For fixed x £ X, the norm of /(x, ) € 3C(F,X;Λ) is sup{|/(a:,y)| :
t/ G L}, so that the norm of / 6 (D) is

(6.5.9) | | / | | ( D ) = sup sup |/0r,y)|.
xeKyeL

But the right-hand sides of (6.5.8) and (6.5.9) are equal, so that

()

(ii) By Lemma 6.5.5 (E) is dense in (J9), and by part (i) (D) is
homeomorphic to (C); therefore, (E) is dense in (C). It remains to
be shown that X{X) ® X(Y) is dense in X(X x F); i.e., we have to
show (by Definition 6.3.5) that for every / G X{X x Y) there exists a
compact subset, say M, of X x Y such that / £ X{X x Y, M) and such
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that for every ε > 0 there exists g £ X{X) ® X(Y) with suppg C M
and | |/ — #|| < ε, with || || defined in (6.3.2). Let supp/ = J compact,
then J can be covered by a finite number of sets of the form Ki X L^
I<i compact C X, L{ compact C Y. Take K = UΛΓf , L = UL , then
M = K xLis compact and supp / C M so that / £ (C). Since (E) is
dense in (C) there are functions g £ (C) with | |/ —g\\ arbitrarily close
to 0. Moreover, each such g is in X(X) ® X(Y) and has supp # C M.
Π

PROOF OF THEOREM 6.5.1. Uniqueness. Let v be a signed
measure satisfying (6.5.1), then for / = Σ™ gi ® hi with gi E X(X),
hi E %{Y) we have v(f) = J2™ f g^X J h{dμ. Thus, v is uniquely
defined on %(X) ® 0C(y) and since the latter is dense in X(X x Y)
by Lemma 6.5.6(ii), v is uniquely defined on %{X x y) .

Existence. Let / £ 3C(X x7), then as in the proof of Lemma 6.5.6
there are compact subsets K, L of X, y, respectively such that / £
X(X x y, if x L] R). Therefore, for fixed y £ y, /(-, y) £ X(X, K; R)
so that h(y) — J/(x, y)\(dx) is well defined. Moreover, supp /ι C L.
Furthermore, h : Y —> R is continuous since it is the composition of
V ~̂  /('??/) which is continuous by Lemma 6.5.6(i) (after reversing
the roles of X and y) and /( ,y) —> λ(/( ,y)) which is continuous
by definition of signed measure. Hence /ι £ 3C(y, L i?) and therefore
μ(h) is well defined. Now define v on 3C(X x Y) by

(6.5.10) !/(/) = μ{h\ % ) = y /(*, y)λ(ώ),

for / £ 3C(X x y). By taking / = g ® h it is easily seen that v
satisfies (6.5.1). Obviously, v is a linear functional on X{X xY). If λ
and μ are measures, then by (6.5.10) v is nonnegative on X+{X xY) so
that v is a measure on X xY by Theorem 6.3.3. If λ and μ are signed
measures it remains to be shown that v satisfies the boundedness
condition (6.3.1). That is, we have to show that if compact M C
X x Y, then there exists cM < oo such that for every / £ X(X x y, M)
we have

(6.5.11) K/)l < cM\\f\\
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in which | |/| | = sup{|/(x,y)| : (#,y) G M}. As in the proof of
Lemma 6.5.6(ii), we may WLOG assume M = K x L, K and L com-
pact. Since λ and μ are signed measures, there exist constants aκ <
oo, bL < oo, such that \X(g)\ < o,κ\\g\\ for every g G 3C(X,K) and
\μ(h)\ < bL\\h\\ for every h G 3C(y,£). Take h as defined in (6.5.10),
then for fixed y G F, | % ) | = |λ(/( ,y))| < aK | |/(-,y)| | = a^sup x

|/(x,y)|, so \\h\\ = suP2/ | % ) | < aκ\\f\\. Using the definition (6.5.10)
of v we have |^(/) | = IμWI ^ ^LII^II — aκ^L 11/11? hence we may take
cM = aκbL < oo, so that (6.5.11) has been proved. D

The (signed) measure v defined by (6.5.10) is called the prod-
uct of λ and μ, and will be denoted by λ ® μ, following Bourbaki.
Then (6.5.1) reads

(6.5.12) (λ ® μ)(g ® h) = \{g)μ{h\ g G X(X), h G X(Y).

The defining equation (6.5.10) can also be written in the form

(6.5.13) j fd(λ ® μ) = y μ(dy) ̂  /(x, y)λ(dx),

and by symmetry,

(6.5.14) j fd(\ 0 μ) = I λ(ώ) I /(x, y)/ι(dy),

for / G 3C(X x y). These are Fubini-type equations that follow here
simply from the definition of λ ® μ provided / G 3C(X x y). We shall
need those equations also for integrable f : X x Y -+ R and quote
without proof the relevant theorem.

6.5.7. THEOREM (Bourbaki). Let X and Y be I.e., X a signed
measure on X, μ on Y. If f : X x Y —> R is (λ ® μ)-integrable,
then the set of points y G Y such that /( ,y) is not X-integrable has
μ-measure 0 and on the remaining set J f(x, )\(dx) is μ-integrable.
Moreover, (6.5.13) holds. An analogous statement holds with X and
Y interchanged, resulting in (6.5.14)-

PROOF. Bourbaki (1967), V, §8.4, Thm. 1. D
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6.6. Integration on a manifold with respect to a differ-
ential form. Let M be a d-dimensional C 1 manifold (Chapter 3).
It was already hinted in Section 4.3 that a d-form ω could be used to
define a measure on M. This will be made more precise now. It is
sometimes assumed (e.g., in Chevalley, 1946, V, §VΠ) that M is ori-
entable (Section 4.4) but this is unnecessary if we are only interested
in measures rather than signed measures. The only assumption we
shall make on ω is that if the expression of ω in a chart with local
coordinates x = (a;1 ?... , #n) is (4.4.1), then \a\ is continuous. For
convenience, we make the following definition.

6.6.1. DEFINITION. Let M be a d-dimensional C1 manifold and
ω a d-form on M. We shall say that \ω\ is continuous on M if \a\ is
continuous on every chart, where a represents ω via equation (J^.J^Λ).
If M is orientable and a continuous on every chart, then ω will be
called continuous on M.

A manifold, being locally Euclidean, is a special case of a lo-
cally compact space so that the Bourbaki integration theory applies.
Therefore, it suffices to define a measure on 3C(M). Let / G %(M)
and suppose first that there is an open set U on which there is a chart
with coordinates x = (a^,... ,xd) such that supp/ C U. For short
we shall say that the support of / is contained in a chart. Let ω on U
have the expression (4.4.1) and assume that |α;| is continuous on M.
Let V be the open subset of Rd corresponding to U C M. Then on V
the function x —> f(p(x))\a(x)\ is continuous with compact support
contained in V so that we can define

(6.6.1) μ(f) = Jf(p(x))\a(x)\dXl . . . d x d

as a Riemann integral. The right-hand side does not depend on the
particular chosen parametrization because under a change of variables
the expression for ω changes in the same way (disregarding sign) ac-
cording to (4.3.5) as the volume element dxλ dxd on the right-hand
side of (6.6.1). From the linearity in / of the Riemann integral it fol-
lows immediately that if fλ and f2 are both in %(M) and have their
supports contained in the same chart, then μ(fι +^2) =
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Now suppose / £ %{M) and supp/ C K compact, but K not
necessarily contained in a chart. Then, by compactness, K can be
covered by a finite number of open sets U1,... , £7n, on each of which
there is a chart. Choose a partition of unity with functions <jr1?... , gn

according to Lemma 6.5.3, then / = Σifβii and each term fg{ is
continuous with compact support contained in Ui so that μ(/</̂ ) is
well defined by (6.6.1) applied to fgi instead of /. Then define

n

(6-6.2)

However, the sets TJi and the functions gi are not unique, and it
remains to be shown that for another choice, say £/j, g'j, j = 1,... , m
we have

n m

(6.6.3)
ϊ = i

In order to show this consider the expression Σij μ(fgig
fj). For fixed i,

the functions fgtfj are all continuous with compact support contained
in IΛ. Therefore £ \ μifg^j) = μ(Σj f9i9j) = Kf9i) since ^ ^ =
1 on K. Thus, ^ ^ μ(fgig'j) = Σi μ{Ϊ9i) which is the left-hand side
of (6.6.3). By interchanging the roles of gi andg^ we obtain the right-
hand side of (6.6.3) and the latter has therefore been shown to hold.
Therefore, μ(f) has been defined unambiguously for all / £ X(M).
Instead of μ(f) one usually writes / / ω . It is obvious that J fω is
a linear functional on X(M) and that it is nonnegative on 3C+(M).
Therefore, J fω defines a measure on %(M) by Theorem 6.3.3. We
summarize the result in

6.6.2. THEOREM. Let M be a d-dimensional C1 manifold and ω
a d-form on M such that \ω\ is continuous on M (Definition 6.6.1).
Then ω defines a unique measure μ on M, where μ(f) is also written
J fω, by the formula

(6.6.4) //" = Σ
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in which the terms on the right-hand side are defined by (6.6.1) and

the functions flfj,... , # n form a partition of unity subordinate to a

finite open cover Uλ,... , Un of the support of f such that on each Ϊ7,

there is a chart.

Although not needed in the sequel, we remark that if M is ori-

entable and ω continuous (Definition 6.6.1), then (6.6.4) defines a

signed measure if in (6.6.1) one replaces |α(a:)| by a(x). The bound1

edness condition (6.3.1) is easily established by taking cκ = Σi A*(i7i)>

with the original definition (6.6.1) of μ.

Invariance under a diffeomorphism. If there is a diffeomor-

phism between two manifolds of dimension cf, then a function and a

d-form on one induces in a natural way a function and a d-form on

the other. The next result shows that the two resulting integrals are

equal.

6.6.3 PROPOSITION. Let φ : M —> N be a diffeomorphism be-

tween the C1 manifolds M and N and let ω be a d-form on N, with

\ω\ continuous. If f : N —» R is integrable with respect to the measure

defined by ω, then

(6.6.5) / fω= I (/ o φ)δφ(ω).
JN JM

PROOF. It is sufficient to consider / 6 %(N) with support con-

tained in an open set U on which there is a chart with local coordinates

x = ( χ 1 , . . . , xd). Then f o φ £ %{M) and has its support contained

in V = φ~1{U). On V choose the same chart as on U, so that if we

write p £ V and q £ U as functions of x we have q(x) = Φ(p(%))

Then f(q(x)) on the left-hand side of (6.6.5) equals f(φ(p(x))) on the

right-hand side; denote the common value by f*(x). Moreover, ω on

U and δφ(ω) on V have the same expression in terms of x, of the

form (4.4.1), by (4.5.3) with x{ = y{. Thus, both sides of (6.6.5) equal

/ f*(x)\a(x)\dx1 . . . dxd. D




