
CHAPTER 3

Differentiable Manifolds,

Tangent Spaces,

and Vector Fields

This chapter touches mostly on the topics that are relevant to
the later applications in this monograph. For other important top-
ics in differential geometry, for instance fibre bundles, connections,
Riemann metric, curvature, etc., the reader is referred to the litera-
ture in this field; see, e.g., Bishop and Crittenden (1964), or Greup,
Halperin, and Vanstone (1972). For applications of differential ge-
ometry to statistical parameter spaces see Amari, Barndorff-Nielsen,
Kass, Lauritzen, and Rao (1987).

3.1. Manifolds. The spaces and groups encountered in this
monograph have more structure than merely being topological: they
are manifolds. Loosely speaking, a manifold is a space that is locally
Euclidean at each point. A trivial example is a Euclidean space itself.
More interesting examples are curved subsets of Euclidean spaces.
For instance, the parabola x2 = x\ is a one-dimensional manifold
embedded in i?2, and the sphere x\ + x2 +x$ = 1 is a two-dimensional
manifold embedded in R3. But the subset {(z1? x2) %\χ2 = 0} °f ^ 2

is not a manifold because the point (0,0) does not have a Euclidean
neighborhood.
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§3.1 MANIFOLDS 39

Formally, a d-dimensional manifold is a Hausdorff space M to-
gether with an assignment at every p G M of a neighborhood Up of p
and a function φ mapping Up homeomorphically onto an open subset
of Rd. It follows that if two neighborhoods Up and Uq have nonempty
intersection, then the function φpq = φq o φ~λ is a homeomorphism of
Φp(UpΠUq) onto φq(UpΠUq).

For p G M, the function φp assigns a point of Rd, given by its
d coordinates, to every point q G Up. The choice of φp is sometimes
called a parametrization of Up, or at p. The pair (17p, φp) is often
called a chart at p, or a coordinate neighborhood of p (and a fam-
ily of charts, one at each p G M, an atlas). Whenever two charts
overlap, the intersection receives two parametrizations which are con-
tinuous functions of each other. If for q G Up the coordinates of φp{q)
are a;1?... , xd, then we shall call these often local coordinates on a
neighborhood of p, and if x = (a? l5... , xrf), then we shall often write
x(q) instead of φp(q). Although the greatest interest lies in manifolds
of dimension d > 1, occasionally we have to deal with manifolds of di-
mension 0. These are spaces with the discrete topology (Section 2.2);
for instance, a finite point set.

A richer theory of manifolds results from imposing more smooth-
ness on the functions φ and φpq than mere continuity. If they are
continuously differentiable of order fc, 1 < k < oo, then M will be
called a differentiable manifold of class Ck, or simply a Ck man-
ifold. For our purpose the case k = 1 will suffice most of the time.
Sometimes k has to be > 1. For instance, the notion of a bracket of
two vector fields (Section 3.5) is not even defined unless k > 2. It is
sometimes convenient to take k = oo. Then some statements become
simpler, for instance the definition of smoothness class of a vector field
or of a differential form. Therefore, whenever convenient we shall feel
free to assume k = oo while realizing that some finite value of k might
suffice. This liberty will be taken in Sections 3.5, 3.6, and in Chap-
ter 4. Actually, all our applications will be to C°° manifolds. It is
possible to impose even more regularity than C°° differentiability and
require the functions φ and φ~q to be analytic for every p,q £ Λf
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i.e., they can be developed in convergent power series. Then M is
called an analytic manifold. An analytic manifold is also C°°, but
the converse is false in general. In all applications in later chapters
the spaces and groups will in fact be analytic, but this will not be
used explicitly everywhere.

It is sometimes possible to put a single chart on the whole of
M. In that case the functions φ are the identity functions so that
M together with the chosen chart is trivially an analytic manifold.
The parabola x2 = x\ is of that nature (with global coordinate xλ).
However, it is impossible to do this with the sphere x\ + x\ + x\ = 1
(or with the circle x\ + x\ — 1) unless one point is removed.

So far a Ck manifold has been defined as a Hausdorff space to-
gether with a family of charts satisfying the requirement that the
functions φpq are Ck. This is not quite right since the parametriza-
tions furnished by the functions φp may be changed in a Ck way with-
out changing M as a differentiate manifold. Thus, more precisely,
M is defined as a differentiate manifold by an equivalence class of
parametrizations, where two parametrizations are called equivalent if
they are in Ck relation to each other. The same is true for an analytic
manifold, with "Ck" replaced by "analytic." Thus, the same manifold
(Ck or analytic) can always be parametrized in many different ways.
For instance, on the real line R one can put the usual chart that as-
signs to the point x the coordinate x, or another chart that assigns
to the point x the coordinate tanh#. Since the function y = tanhα:
is analytic in both directions, these two parametrizations define the
same analytic manifold. However, the chart that assigns to the point
x the coordinate x3 turns R into a different analytic manifold since
the inverse of the function y = x3 is not analytic (not even C1). It
will always be assumed in the following without special mention that
if a chart is chosen at a point of M, then it is a chart belonging to
the equivalence class of charts that defines M. Such a chart is called
admissible. Any equivalence class of parametrizations is called a
differentiable structure (or analytic structure as the case may
be). The above example shows that the same set may receive different
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differentiable structures, producing different differentiable manifolds.

Let M and N be two Ck manifolds and / a function M —> N. Let

p G M, then we shall say that / is of class Ck at p if there is a chart

(Up,Φp) at p and a chart (Vq,φq) at q = f(p) such that the function

φ o f o φ~λ on φ (Up) into φq(V ) is of class Ck. Expressed in words,

in terms of local coordinates the function is Ck on a neighborhood of

p. Clearly, this does not depend on the choice of admissible charts.

We shall say that / is of class Ck if / is of class Ck at every point p G

M. An analogous definition holds with " C * " replaced by "analytic."

Important special cases are f : M —> R and / : R —> M. A curve in

the Ck manifold M is a Ck function 7 on an interval of R (possibly

the whole of R) into M. Similarly with uCk" replaced by "analytic."

Jacobians and diffeomorphisms. Let M and N be two d-

dimensional C1 manifolds and / a C1 function M —> N. If x =

(rr 1 ? . . . , xd) are local coordinates on a neighborhood U of p £ M and

similarly y = (y 1 ? . . . , yd) on f(U) in TV, then the Jacobian ^i|y on U

will be defined as

(3.1.1)

i.e., the absolute value of the determinant of the matrix whose (i, j)

element is ^ . The following inverse function theorem is a special

case of the implicit function theorem.

3.1.1. THEOREM. For 1 < k < oo let M and N be Ck manifolds

of the same dimension and let f : M —> N be Ck. If at p G M f

has a positive Jacobian, then there exists a neighborhood U of p such

that f is 1-1 on U and f~ι : f(U) -> U is Ck. IfM, N, and f are

analytic, then so is f~λ.

PROOF. Dieudonne (1960), Theorem 10.2.5. D

If the Ck manifolds are of the same dimension and f : M —> N

a bijection, then / is called a Ck diffeomorphism (or simply a dif-

feomorphism) if / and f~x are Ck. An analytic diffeomorphism
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is defined similarly. By Theorem 3.1.1, if / is bijective and Ck (resp.
analytic), then M and N are diffeomorphic (resp. analytically diffeo-
morphic) if / has a positive Jacobian everywhere.

As a particular case take N = M. Then by Theorem 3.1.1 two
admissible charts at a point p 6 M are related by a positive Jaco-
bian, and, conversely, if the Jacobian is positive then one chart is
admissible if and only if the other one is. In this form it is stated by
Chevalley (1946), Chapter III, §1, Proposition 1.

3.2. Tangent vectors and spaces. First an example. Let
the points of R3 be denoted (x,y,z) and consider the sphere M
whose equation is x2 + y2 + (z — I) 2 = 1. The point p = (0,0,0)
lies on M, and for any real numbers a and fe, not both 0, the line
{(cm,6u,0) : —oo < u < oo} is tangent to M at p. We also say
that the vector (α, 6,0) is a tangent vector of M at p. However, this
elementary analytic-geometric notion does not extend very well to
arbitrary differentiate manifolds. Instead, tangent vectors will be
defined as directional derivatives. In the above example the "lower"
half of the sphere is a neighborhood Up of p that can be parametrized
by the first two coordinates (#,y) of its points. A C1 real valued func-
tion / on U can then be expressed as a C1 function /(x,y). Now
let j(u) = (αu,6u) be a curve in M with \u\ < u0, where uQ is suf-
ficiently small so that y(u) lies entirely in U . (Geometrically, the
curve {^(u) : — u0 < u < u0} is part of a great circle through p.) The
composition of 7 and / is a real valued function on (—uQ,uQ). Its
derivative at u = 0 is

x=2/=0

d

du

The

(3.2.

d

u=o du

expression

1) -+bίy = y=0

is called a tangent vector of M at p in the direction (α, b). This
example motivates the formal definition of tangent vector given below.
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Let M be a C 1 manifold. Given any p G M let 3p(M) be the

family of real valued functions on M that are of class Cι at p. If there

is no danger of confusion we shall write £F instead of 5F (Άf).

3.2.1. DEFINITION. A function t :Jp-> R is called a tangent

vector at p if

(i) t is linear: t(af + bg) = at(f) + bt(g) for f,g G 7p, α, b G i2;

(it) t is a derivation: t{fg) = f(p)t(g) + g(p)t(f) for f,g G 3y

Any particular tangent vector ί may be represented by a linear

combination of partial derivatives, as in (3.2.1), by choosing a chart

at p with local coordinates xλ,... , xd, say. Then t is of the form

(3.2.2) t =

ι=l l x(p)

where the partial derivatives are to be evaluated at x(p). The con-

stants ai will depend on the chosen chart. If yλ,... , yd are other local

coordinates such that the x{ and y; are C1 function of each other,

then t can also be expressed in the form

(3.2.3) t =

and the b are function of the ai, given by

d

(3.2.4) bj = 1 dx-

However, for any / G 9̂ ,, the value ί(/) does not depend on the choice

of chart.

The sum of two tangent vectors at p, say tΎ and ί2?
 ι s defined

in the obvious way: (ί2 + t2)(f) — *i(/) + ^ ( / ) a n c ^ ^s e a s ϋ y s e e n

to satisfy Definition 3.2.1. Similarly a scalar multiple of a tangent

vector. The tangent space at p, denoted Mp, is the vector space of
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all tangent vectors at p. In terms of a chosen chart at p with local

coordinates xΎ,... , xd, a basis of Mp is

1 OXd/\χ(p)

Therefore, dimM = d; i.e., M and M have the same dimension.

3.3 Differential of a mapping. Let M and N be C1 man-

ifolds, not necessarily of the same dimension, and / a C 1 function

M —> N. Let p G M, 5 = /(p), and let Mp, iVg be the tangent spaces

at p, q respectively. To each t G M there corresponds a tangent

vector 14 G -ΛΓ as follows. For # G ^-(iV) the function # o / = gf*,

say, is G ̂ ( M ) . Then define u(g) = t(g*)> This defines a function

M —•> iV which is easily seen to be linear and which is called the

differential of /, denoted df. We can also express this definition by

the formula

(3.3.1) ((df)(t))(g) = t(g of), te Mp, g € ?g(N).

In terms of local coordinates i l r . . , i d a t p ε M and yλ,... , ye at

q = /(p) G N (where e = dimiV), and if t is given by (3.2.2), then

(3.3.2) (df)(t) = — d

in which the 6 are given by

d

(3.3.3) 6,. = J ] a , j = l,...,e.

Now with the above parametrization let ί be represented by the col-

umn vector α, (df)(t) by 6 then it follows from (3.3.3) that b = Aa in

which the (i, j ) element of the matrix A is dfjdxj\x^ = dyjdxjl^^

where we have substituted yi for /j(^). Now take the case where
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e = d, then A is the Jacobian matrix on the right-hand side of (3.1.1)
evaluated at x(p). Therefore, A is invertible if and only if the Ja-
cobian (3.1.1) evaluated at x(p) is positive. On the other hand, the
matrix A represents the linear map df : Mp —•> Nf(p)

 a n d is therefore
invertible if and only if df is bijective, i.e., is a linear isomorphism.
Thus, we have

3.3.1. THEOREM. Theorem 3.1.1 is valid if the expression uf has

a positive Jacobian" is replaced by "df is a linear isomorphism of Mp

andNf(p).»

It follows from Theorems 3.1.1 and 3.3.1 that in order to show
that aC f c function f : M —> iV is a C* diffeomorphism (or an analytic
diffeomorphism in the case of analytic M, iV, /) it suffices to show
that / is a bijection and that df is a linear isomorphism Mp —> Nf^
at each p £ M.

The concept of the differential df of a mapping / is so basic and
useful that it may be worthwhile to express it in an informal way in
order to get a better "feel" for it. Let p £ M and take pλ £ M very
close to p. Then define a functional t on functions g : M —* R by
t(g) = δg = gijpx) — g(p) This t almost satisfies Definition 3.2.1 (with
/, g there replaced by #, /ι, for notational reasons): t satisfies (i) and it
satisfies (ii) approximately by neglecting the second order term δgδh.
Within this approximation there is then a correspondence between
points on M close to p and "small" tangent vectors at p. The same
is true on N at q = f(p). Then if t corresponds to pλ close to p, its
image under df is the small tangent vector at q that corresponds to
f(pλ) close to q. Extend to all tangent vectors by linearity. It may
be of further help in the visualization process by thinking of M as
a manifold embedded in some Euclidean space and picturing a point
px near p as a little arrow, say pp2, that runs from p to px\ similarly
~qqx for points qλ £ N close to q. Then df maps ppx into ~qq 1 ? where

9i =/(Pi)

Differential of a composition. Let L, M, N be C 1 manifolds
and / : L —> M, g : M —> N C1 mappings. Let p be an arbitrary point
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of L and q = g(f(p)) G iV, then d(# o /) is a linear map of Lp into Nq.
From the definitions it follows immediately that d(g o /) = dg o df.

Differential of a real valued function. This turns out to be
of special interest since it has two possible interpretations. There is
on the real line R a single chart with coordinate y, say, and if q is
an arbitrary point of i?, then the tangent space Rq at q is a copy of
R and is spanned by a single vector for which we may take d/dy\q.
Let M be a C 1 (/-dimensional manifold and let / : M —* R be C1.
Let p G M, f(p) = q, and t G M . Since c(f(ί) G i?g, we must have
c?/(ί) = a(t)d/dy\q, with some constant α(ί) depending on ί. It is easy
to get an explicit expression for a(t) by taking in (3.3.1) g(y) = y.
Then the left-handed side of (3.3.1) equals a(t)(d/dy)y = α(<) and the
right-hand side is £(/). Therefore, for real valued C 1 / we have

(3.3.4) df(t) = <(/) j -

By (3.3.4), df associates to each t G M the real number ί(/) and
this association is clearly linear. Thus, df may be regarded as a linear
real valued function on Mp, i.e., a linear functional, according to the
formula

(3.3.5) df(t) = <(/), < G M

We have now two interpretations of df evaluated at p: first, a linear
function Mp —> Rf(vy second, a linear functional on Mp. The latter
interpretation can be applied, in particular, to the coordinate func-
tions xly... ,xd of a chart at p G M. Then a basis of M can be
chosen as (3.2.5). Each dxi can be considered a linear functional on
Mp. Taking in (3.3.5) / = x{ and t = d/dxj\x(p), we get

(3.3.6) ώ, I A
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where <5 = 1 or 0 according as i = j or i φ j (Kronecker delta). For

arbitrary C1 real valued / we can then write

(3.3.7) df = ^

(where the partial derivatives are to be evaluated at x(p)) since by

(3.3.5) and (3.3.6) the values at t = d/dxj of both sides equals df/dxj

evaluated at x(p). If y 1 ? . . . , yd is another admissible coordinate sys-

tem at p, then by (3.3.7) we have

(3.3.8)

where the partial derivatives are to be evaluated at x(p).

Frequently, the differential of a product of two or more real val-

ued functions is needed. From (3.3.5) and Definition 3.2.1(ii), or

from 3.3.7, it follows immediately that

(3.3.9) d(fg) = fdg + gdf.

The dual vector space to M , say M* is the space of all linear

functionals on M . It follows from (3.3.6) that not only is (dxλ,... ,

dxd) a basis of M* but it is the basis dual to (3.2.5).

3.4. Immersion, imbedding, submanifold. Let N and M

be C1 manifolds and / : N —> M a C1 mapping. Then / is called an

immersion if df is 1-1 at every point of N (note: this does not imply

that / is 1-1). For example, let N = i2, M = i?2, and f(u) = (x,y) =

(cosu,sinu) for u £ R. Then df(d/du) = —(smu)d/dx + (cosu)d/dy

which is never 0 so that df is 1-1 at every point. However, / maps R

into the unit circle in R2 and is not 1-1. But an immersion is locally

1-1. i.e., at each p £ N there is a neighborhood U such that / is

1-1 on U (and / is approximately linear if U is small). Let d, e be

the dimensions of M, iV, respectively, and x — (a?1?... ,# e ) a chart
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at p G N, y = (yx,... ,yd) a chart at 5 = f(p) G M. Then / is an
immersion if and only if the matrix ((dfi/dxj)) is of rank e, and then
we have necessarily e < d. It can be shown that if / is an immersion,
then for any chart y = (yx,... , yd) there is a subset yiχ,... , yie such
that x = (xx,... , xe) with xί = yt 0 / (i = 1,... , e) forms a chart at
p (Chevalley, 1946, III §IV, Proposition 1).

If / is 1-1 and an immersion, then / is called an imbedding.
Thus, in the example above / is not an imbedding because / is many-
to-one. An example of an imbedding of R into R2 is f(u) = (x,y) =
(ΐ/,ΐ/2), —00 < u < 00 (the parabola). A special case of an imbedding
is N C M and / = z, where i : N —> M is the inclusion map i(p) = p,
provided that i is an immersion. This is called a submanifold. Thus,
N is a submanifold of M if iV C M and cfo' is 1-1 everywhere. A rather
trivial example is an open subset N of M if N inherits its differentiable
structure from M. But an open subset with a different differentiable
structure is no longer a submanifold. For instance, take N = M = R
in which N is parametrized by the variable #, M by y, and i(p) = p
is represented by y = z3. Then di(d/dx) = 2x2(d/dy) so that di = 0
at a; = 0 and therefore di is not 1-1 at x = 0.

A familiar example of a submanifold N of lower dimension than
M is the one-dimensional straight line ax + by = c in i22 supplied with
the usual differentiable structure. It is assumed here that not both
a and b are 0. There are three cases to be distinguished: (i) a = 0,
6 φ 0; (ii) a φ 0, b = 0; and (iii) α ^ 0, b φ 0. In case (i) N can
be parametrized by x, in (ii) by y, and in (iii) by either. In all cases
di is not = 0 anywhere which implies that di(Np) has dimension 1
for every p £ iV; i.e., di is 1-1 everywhere. For instance, in case (iii)
with parametrization r, di(d/dx) = d/dx — (a/b)(d/dy). A similar
situation prevails if N is the circle x2 + y2 = 1. In the points of N
where x = 0 there is a chart with local coordinate x; similarly, in the
neighborhoods of the points where y = 0 the parametrizations can be
furnished by y; in all other points either x or y will do. In general,
if TV is a submanifold of M, with dimiV = e < d = dimM, and at
p G N (therefore p G M) there is a chart in M with local coordinates
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xλ,... , xd, then since i is an immersion it is possible to choose a subset
Xi . . . . , Xi that form the local coordinates of an admissible chart in
N. This is an equivalent criterion for N C M to be a submanifold of
M (Cohn, 1957, Section 1.9).

In the above examples of straight line and circle as lower dimen-
sional submanifolds N of R2 = M, the topology of N derived from
its differentiate structure is the same as its relative topology as a
subspace of M. Roughly speaking, points of N that are close in the
topology of M are also close in the topology of N. This need not
be the case in general if N is a submanifold of M. For instance,
in the irrational flow on the torus M (Chapter 1) a single orbit N
parametrized by a real variable is a one-dimensional submanifold of
the two-dimensional M and has the topology of R as a manifold, but
its relative topology as a subspace of M is quite different since the
orbit keeps returning arbitrarily closely to any point of departure. A
similar example can be given with M = R2 and N as the union of all
horizontal lines. Then N is a one-dimensional submanifold, and two
points on different lines can be close together in the topology of M
but are far apart in the topology of N.

Submersion. This concept will not be used in the monograph
and is mentioned here only for completeness since it is closely related
to immersion. If the C 1 function / : N —> M is such that at every
point p G iV, df maps Np onto M^ \, then / is called a submersion.
This can of course happen only if dimiV > dimM. If / is both
an immersion and a submersion, then df is a linear isomorphism at
every point, so that / is locally a diffeomorphism by Theorems 3.1.1
and 3.3.1 (analytic if M, iV, and / are analytic). If / is also 1-1, then
/ is a global C1 (or analytic) diffeomorphism.

3.5. Vector fields, integral curves, and brackets. If M is
a C°° manifold, then a vector field X is a function that assigns to
each p £ M an element of M^, denoted X(p). Let / : M —> R be of
class C°° and define Xf : M -> R by (Xf)(p) = X(p)f (henceforth
we shall often omit parentheses and write, e.g., tf instead of t(f) is t
is a tangent vector). We shall say that X is of class C°° if Xf is C°°
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for every / of class C°°. If desired, the domain of X may be restricted

to an open subset of M. If the domain of X is covered by charts, then

in each chart X can be expressed in the form J ^ fi{x)d/dx^ where

the fi are C°° functions (which of course also depend on the chart).

Conversely, if all these /,. are C°°, then X is C°°. If X is a C°° vector

field and h a C°° function M —> R, then hX is a C°° vector field,

where (hX)(p) = h(p)X(p), peM.

Integral curve. Let X be a C°° vector field and 7 a curve

in M with domain the interval (—α,δ), 0 < α, b < 00, such that

7(0) = p G M. Then 7 is called an integral curve of X starting

at p if dj(d/du) = X(j(u)) for every — a < u < b. This can also

be expressed in a different way by using the definition (3.3.1) of the

differential: in (3.3.1) replace / by 7 and t by d/du, then for any C°°

function g : M —* R an integral curve 7 satisfies

(3.5.1) ^ ( - r ( « ) ) = *(7(«))0, -a<u<b.

By taking g successively the coordinate functions in a chart the equa-

tion (3.5.1) can be converted in to a set of differential equations. For

instance, let there be a chart at p with local coordinates a^,... ,xd

and let j(u) (for u in a neighborhood of 0) be represented in the chart

by x{u) with coordinates x^u),... ,xd(u). Also, let X on the chart

be represented by X — Σi ai{χ)^l^xi > with C°° functions α̂  . Then

by taking in (3.5.1) g to correspond to the coordinate function xi we

get

(3.5.2) ^-Xι(u) = a^xiu)), t = l , . . . , d .

A solution of (3.5.2) for u in a neighborhood of 0 provides an explicit

expression for the integral curve locally. It follows from a theorem in

ordinary differential equations that a unique C°° solution exists. If

M and X are analytic, then so is the solution. Relevant references

include: Dieudonne (1960), Theorems (10.4.5), (10.5.3); Birkhoff and

Rota (1978), Chapter 6, Section 10, Corollary 2; Bieberbach (1965),

51 no. 6.
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Bracket. Let X and Y be two C°° vector fields on M. With
XY is meant the operator such that for any C°° real valued function
/ on M, (XY)f = X(Y/). However, in general XY is not a vector
field since, for p 6 M, t = (XF)(p) does not satisfy condition (ii)
of Definition 3.2.1. (One can also see this by writing both X and Y
in terms of the coordinates of a chart; then second order derivatives
enter.) But XY — YX does satisfy condition (ii) (in terms of local
coordinates, the second order derivatives cancel). Define

(3.5.3) [X,Y] = XY-YX;

this is called the bracket (or commutator) of X and Y, and is a C°°
vector field if X and Y are. It follows immediately from the definition
that [X,Y] = -[F,X], and that [X,X] = 0.

3.6. Transformation of vector fields under mappings. In-
variant vector fields. Let M and N be C°° manifolds and / a
C°° mapping M —> N'. Let X be a C°° vector field on M (or on an
open subset of M). Then df X is a C°° vector field on a subset of JV,
whose value at f(p) G N is given by the definition (3.3.1) of df by
taking in that formula t = X(p), for every p G M where X is defined.
We may rewrite (3.3.1) by replacing t by X except that then on the
left-hand side we have a real valued function on JV, whereas on the
right-hand side the function is defined on M. This can be remedied
by composing the left-hand side with / . Thus, the definition of df X
becomes

(3.6.1) ((df X)g) of = X(gof), ge C°°(N).

Now let X and Y be two C°° vector fields on M. We shall show that
the bracket operation has the important property that it commutes
with the differential df:

(3.6.2) df[X,Y] = [dfX,dfY}.

Put U = dfX,V = dfY. Then (3.6.1) reads (Ug) o / = X(g o / ) .
Replace g by Vg : (UVg) o f = X((Vg) o / ) . But (Vg) o f = Y(g o / )
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by (3.6.1) with X replaced by Y. So (UVg) of = XY(g o /) . Reverse
the order of X and Y and subtract: ([17, V]g) of=[X, Y]{g o / ) . The
right-hand side of this equation can be replaced by the left-hand side
of (3.6.1) if [X,Y] is substituted for X, This yields ([U,V]g) o / =
(df [X, Y]g) o /, for arbitrary C°° function g on JV. It follows that
[U,V] = df[X,Y], which is (3.6.2).

An important special case of mapping arises when M = N and
/ is a diffeomorphism of M with itself. Suppose X is defined on the
whole of M, then the same is true of df X. We shall say that X is
invariant under / if df X = X. Equation (3.6.2) shows that if X and
Y are both invariant, then so is their bracket. Now suppose there is
a group G acting on the left of M. The action (or left translation)
of g G G on p G M was denoted p —> gp in Chapter 2, but here
and in Chapter 5 it is more convenient to denote left translation by
Lg. Assume that Lg : M —> M is a C°° diffeomorphism for every
g G G. A C°° vector field X on M is said to be invariant under G
if dLgX — X for every j G G . The property of being invariant under
G is obviously preserved under linear operations so that the invariant
vector fields (under G) form a linear space. Denote this space by
m. Furthermore, if X and Y are invariant, then so is [X, Y]. Hence,
m is closed both under linear operations and under the formation of
brackets. Let dimM = d. If G is transitive over M, then an invariant
vector field X is determined by its value at any given point p0 G M,
for if X(PQ) = ί, and p = gpQ, then X{p) = dLgt. Since t G Mpo and

dimM = <i, it follows that dimm < d. If G acts not only transitively
but also freely, then every t G M generates an invariant X by the
formula X{p) = dL t Ίΐ p = gp0 (observe that g here is unique). It
follows that then dim m = d. This is the case in Chapter 5 when G is
a Lie group acting on itself.




