Chapter 8. Spectral Analysis

Often data are presented as a function f(z) defined on some index set X. If
X is connected to a group, the function f can be “Fourier expanded” and one
may try to interpret its coefficients. This is a rich idea which includes the usual
spectral analysis of time series and the analysis of variance.

This chapter develops the idea in stages. First, for data on groups (time
series, binary vectors, and permutation data). Then the idea is developed for
data on homogeneous spaces (the sphere and partially ranked data). Next some
theory needed for practical computation is derived. All of this is illustrated for
some classical designs in the analysis of variance. Finally, some research projects
are spelled out.

A. DATA ON GROUPS

1. Time series analysis. Fourier analysis of time series or other signals is
a familiar scientific activity. For example, data on the number of babies born
daily in New York City over a five year period are studied by Izenman and Zabell
(1978). Here X = {1,2,...,n} withn = 5x 365+ 1. The data are represented as
a function f(z) = # born on day z. Inspection of this data shows strong periodic
phenomena: about 450 babies are born on each week day and about 350 on each
day of the weekend. (Physicians don’t like to work on weekends.) There might
also be monthly or quarterly effects.

To examine (and discover) such phenomena, scientists pass from the original
data f(z) to its Fourier transform

f(y) = Sef(z) emizvin

where the sum runs over z = 0,1,...,n — 1. Fourier inversion gives
1 £ —2mizy/n
f@)= 2, f(y) e -

It sometimes happens that a few values of f(y) are much larger than the
rest and determine f in the sense that f is closely approximated by the function
defined by using only the large Fourier coefficients in the inversion formula. When
this happens, we have f approximated by a few simple periodic functions of z,
e.g. e"2m2¥/" and may feel we understand the situation.

The hunting and interpretation of periodicities is one use of spectral analysis.
A splendid introduction to this subject is given by Bloomfield (1976). A more
advanced treatment from the same point of view is given by Brillinger (1975).
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142 Chapter 8A

There are other interpretations of spectral analysis. The discussion papers
by Jenkins (1961) and Parzen (1961) present a useful survey of different views.
Some further discussion is given in the last section of this chapter. For now, we
will stick to the data analytic view outlined above.

2. Permutation data. Spectral analysis can be carried out for any group using
the matrix entries of the irreducible representations as a basis. Before developing
this in general, here is an example.

In Chapter 5-A we discussed rankings of three items. People were asked to
rank where they wanted to live: in a city, suburbs, or country. The rankings were

T city suburbs country #

id 1 2 3 242
(23) 1 3 2 28
(12) 2 1 3 170
(132) 3 1 2 628
(123) 2 3 1 12
(13) 3 2 1 359

Here X = S3, and f(m) is the number choosing w. There are three irreducible
representations of S3: the trivial, sgn, and two-dimensional representation p. The
Fourier inversion theorem gives

(r) = $f(tiv) + sga(x) - flsgn) + 2Tr(p(x ™) (o).

Expanding the trace gives a spectral analysis of f as a sum of orthogonal functions.
To facilitate comparison between functions in this basis, let us choose an
orthogonal version of p. Thus, using cycle notation on 53

T id (12) (2 3) (1 3) (123) (132)
i (5 9) (303) 2 %3) 1l ) 2 (3 D) (G5 )

These are arrived at by choosing wy = %(el —e3), wy = %(el + ey — 2e3)

as an orthonormal basis for {v € R3:v; + v2 + v3 = 0}. The matrices p(7) give
the action of 7 in this basis. Now

f(triv) = 1439, f(sgn) = 242 — 28 — 170 + 628 + 12 — 359 = 325,

. -54.5  285/3/2
flp) = (_947\/37/2 -—101.{5 )

Define four functions on S3 by

= (i),
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With this definition, the functions 1, sgn 7, a(r), b(7), ¢(r), d(7) are orthogonal
and have the same length.
Expanding the trace in the Fourier inversion theorem gives

f@):%umm+3%sgwq-5¢a&@@q—9uvﬁﬁ$@q+2%vﬁﬁcu)
— 101.5v/2 d(7)}.
= %{1439 + 325 sgn(7) — 77 a(7) — 1160 b(7) + 349 c(7) — 144 d(x)}.

As a check, when 7 = id, this becomes
1
242 = 6—{1439 + 325 — 109 — 203}.

The largest non-constant coefficient, 1160, multiplies (7). This is the function

r id (12) (23) (13) (123) (132

b(r) 0 0 3/2 =32 \B3]2 -\/3]2

or
—+/3/2 if cities are ranked 3rd (7 (1) = 3)

b(r)=14 0 if country is ranked 3rd (7(3) = 3)

3/2  if suburbs are ranked 3rd (7(2) = 3).

Spectral analysis gives fresh insight into this little data set: After the con-
stant, the best single predictor of f is what people rank last. Now b(m) enters
with a negative coefficient. It “follows” that people “hate” the city most, the
suburbs least and the country in between. Going back to the data #{7(1) = 3} =
981, #{m(2) = 3} = 40, #{n(3) = 3} = 412, so the effect is real. It seems at
variance with the unfolding hypothesis, but is in fact necessary. If people make
individual rankings by unfolding, the proportions connected to extreme ranks will
be monotone with the unfolding point in the center.

The kind of data analytic interpretation given in the last paragraph seems
mandatory — we must seek subject matter interpretation of our findings. As a
word of warning, almost any set of summary statistics can have a story woven
about them — we are good at making up stories.

EXERCISE 1. Carry out the analysis of this section for the non-orthogonal
representation of S3 given in Chapter 2-A. Show that the main conclusions do not

change.

3. A general case, with inference. For G a finite group, and f a function on
G, the Fourier inversion theorem gives

1 —15 §
f(s) = el dp Tr(p(s™)f(p))-



144 Chapter 8A

Now let p be a unitary representation, so p(¢)* = p(¢~!). Corollaries 2 and 3
to Schurs lemma of Chapter 2 yield orthogonality relations for the matrix entries of
p. Define the usual inner product on all functions on G: < @|¢p > = |71;-|E d(t)p(t)*.
Then

< pijlmke > = 0 if p and 7 are inequivalent unitary representations, for any
7, kL.

0 unlessi=~Fkand j=1¢,
<pijloke>=\ L ifi=k j=t
P

It follows that the functions p;;(s) = 1/d, pij(s~') are orthonormal on G with
respect to < -|- >.

To numerically compute the spectral representation, compute f(p) and ex-
pand the trace giving

£(s) = |1?| SV f(0)5i Fisls)-

pyiyJ

The squared length of the projection indexed by functions associated to p is
d, Tr(f(p)f(p)*) = doll f(P)I*.

Elementary inference. In carrying out spectral analysis, it is natural to won-
der “if the data had come out a bit different, would the inferences change?” This
is susceptible to a wealth of interpretations — from an elementary sensitivity analy-
sis, through a bootstrap analysis, through a frequentist model through a Bayesian
analysis. At present, very little is available in off the shelf tools. We here develop
the obvious normal theory. Some more speculative suggestions are contained in
the final section of this chapter.

Let G be a finite group. Suppose that an observed function f(s) can be
regarded as a true function u(s) plus an error or perturbation function &(s)

£(s) = u(s) + e(s).

The strongest possible assumptions that can be made are u(s) fixed (or known)
and ¢(s) ~ N(0,0?%) (normal, with mean 0 and variance o2 independent for each
s). Then for an orthogonal representation p, the coefficients f(p)ij\/@ are all
independent normals, with mean 1/d,ji(p);; and variance 0®|G|. (I have assumed
that all of the representations are real. For unitary representations, complex
normal distributions occur). Further, for p and 7 inequivalent representations,
f(p),-j and f(n)x¢ are independent.

EXERCISE 2. Prove the results in the last paragraph.

If o2 is assumed known, or ji(p) = 0 is assumed for some irreducible so
0* can be estimated, all of the usual inferential tools associated to the general
linear model are available. In particular, d,||f(p)||? is distributed as o? times

2
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a chi-squared variable on d? degrees of freedom (if i(p) = 0). Fisher’s test for
the significance of the largest Fourier coefficient (see e.g. Bloomfield (1976) or
Anderson (1971)) is easily adapted to this setting.

If 02 is assumed to depend on s, a rich array of tools from variance compo-
nents and classical multivariate analysis are available. Work of the Danish school
is particularly relevant — see Perlman (1988) for entry into this literature.

The normality of the Fourier transforms is approximately true under much
less restrictive assumptions than normality of f(s). After all, f( p)i; is an average
of a lot of things, and will be approximately normal and independent of other
coefficients under fairly mild assumptions. This deserves to be worked out more
carefully. Anderson (1971, Sec. 2.6), Freedman and Lane (1980), or Diaconis and
Freedman (1984) are useful places to start.

This seems like a good place to point out

Elementary fact. Let p be an irreducible unitary representation of G. Let
L(G) be all functions on G. Consider the subspace L; spanned by the matrix
entries of the jth column of p. Then L; is an invariant subspace isomorphic to p.

Proof. Let s p;;(t) = pi;j(s~'t). The matrix equation p(s~1)p(t) = p(s~'t) shows
that p;;(s~1t) = Sk akpx;(t) as a function of ¢. Thus L; is an invariant subspace.
Choosing the functions p;;, 1 < i < d, as a basis gives p(s) being the associated
matrix representation. O

Remarks. As j varies, the representations L ; give the d, copies of p that appear
in the decomposition of the regular representation. In applications, the columns
of p sometimes have a natural meaning. For example, on S, the jth column of
the n — 1-dimensional representation codes which i is mapped to position j in
one choice of basis. Expanding the trace preserves this interpretation. Further
discussion of interpretability of the basis functions appears in the last section of
this chapter.

4. Bahadur’s item analysis. Bahadur (1961) introduced a spectral analysis
when X = Z} consists of data on binary k-tuples. For example, fix k at 5 and
consider a population of families with five children. Take f(z) as the proportion
of families whose children were born in birth order z — so if z = 01010, the birth
order was girl, boy, girl, boy, girl. Klotz (1970) gives an analysis of such data.

Economics has massive amounts of “panel study data.” Here ¥ might be 12
and z might represent the pattern of employed/unemployed behavior for a person
in the study. It is not uncommon to have samples larger than 5,000 people. Hsiao
(1986) is a recent book on this subject.

Bahadur’s original motivation was test score analysis, where z records the
pattern of correct/incorrect guesses, and f(z) records the proportion of students
answering in a given pattern.

Let z;, 1 < i < k be the coordinate projection from Zk. Let f(z) be a
probability on Z§. Define a; = E¢(z;) and 2; = (z; — o;)/y/a:(1 - a;). Define
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Tij = Ef(Z,‘Zj), 1< 7
Tije = Ef(ZiZng), 1<j<t

..k = Ef(z122 ... 2x).

The (¥) parameters r;; are correlations. The 7;j, can be thought of higher order
correlations, etc. Bahadur wrote the spectral decomposition of f as follows.

ProrosiTION 1. (Bahadur). For f a probability on Z¥,
f=h-f
where

fi(z) = T af (1 — ;) ~%is the product distribution with
margins matching f.

f2($) =14 Z Tij2iZ; + Z TijeZiZjZ¢ + ...+ T1 k21 .- 2k,
1<j i<j<e

Proof.  Consider the vector space of all functions on Z§ with inner product
< g,h>= Ef(g-h). The set

S ={1;21,22, -y 2k} 21224y 2k—12k} 2122235-++}+--21 -2k}

consists of orthonormal functions: ||g|| =1for g € Sand < g,h>=0forg,h€ S
but g # h. There are 2% functions in S, so they form a basis. Now, set fo = f/f;.
Then < f2,9 >= X fag9fi = Ef(g). Also E¢(1) = 1, E¢(z;) = 0, so the proposition
follows. O

The function f, measures departure from independence. It is natural to look
at the individual coefficients to try to understand the nature of the dependence.
Let 6%y = |If2 — 1||*. Thus define

2 _ 2 2 2
bk = Z’”iﬂ" Z Tijet - Tk
i< i<j<t

452 4 ... +62.
The ratios 612 /6%, provide an index of the relative importance of the jth order

terms. Similarly, if f,, is the approximation to f in which all terms in f, involving
a product of more than m z;’s are omitted, then

1462 +...+ 862
1+62+... 46

1 fm/ A1/ F1 AP =

provides an index of quality for the approximation of f by f,.
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The analysis above is just the standard spectral analysis shifted to a more
natural base measure (matched marginals versus uniform). As Bahadur remarks,
it is also natural to expand and analyze log f. This gets away from the problems
of interpreting negative coeflicients and links into the usual log-linear analysis of
such data as a 2 x 2 X ... X 2 contingency table.

B. DATA ON HOMOGENEOUS SPACE

A natural and useful extension of spectral analysis occurs for homogeneous
spaces. These were defined and illustrated in Chapter 3F.

1. Definitions. Let X be a finite set. Let G act transitively on X with N
the isotropy subgroup: N = {s € G:szg = zo} where z¢ is some fixed point in
X. Let L(X) be all functions from X into the complex numbers C. Then L(X)
decomposes into irreducibles as

Voo Vid...d Vs

Suppose we are given f(z) € L(X), regarded as data — f(z) is the number (or
proportion) of people having property z.

Spectral analysis is the decomposition of f(z) into its projections on the
irreducible invariant subspaces of L(X), and the approximation of f(z) by as
small a number of projections as give a reasonable fit.

Here L(X) is regarded as an inner product space using < flg > =
]}(—IZ f(z)g(z)*, and projections are orthogonal. Of course we usually want even
more: the coefficients of f projected into V; in some natural or interpretable basis
help connect the analysis to the original subject matter.

As shown in Corollary 1 of Section 3 below the decomposition of the regular
representation falls into this domain. The following are less standard.

Ezample 2. Partially ranked data. Let A be a partition of n. Consider data
consisting of partial rankings of n items of shape A: thus people rank their favorite
A1 items (but not within) and their next A, items (but not within) and their final
Ak items (but not within). Here n = Ay + A2 4+ ...+ Ax and we do not assume A;
are ordered. Chapter 5B gives examples.

If Si, X §x, X...%X S, denotes the subgroup of S, which allows permutations
among the first A\; coordinates, the next A, coordinates, and so on, then X =
Sn/S9x X ...x S»,. The space L(X) can be taken as all real valued functions on
X because all irreducible representations are real. Thus L(X) = M* of Chapter
7. The decomposition of L(X) is given by Young’s rule (see Chapter 7-B). Here
are some special cases.

Case 1. X = (n —1,1). This is simple choice data, people choosing one out of
n items. The set X may be regarded as {1,2,...,n} and f(z) is the number of
people choosing z. The decomposition is

L(X) — Sn ® Sn—l,l

with §™ the trivial representation and 5 n-1,1 ‘the n—1 dimensional representation.
This amounts to f(i) = f+ (f(i) — f) with f = L2 f(q).
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Case 2. A =(n—2,1,1). Here people pick their favorite and second favorite items
from a list of n (order matters). The space X may be regarded as {(¢,7), 1 < i #
j < n}so|X|=n(n-1). The decomposition of L(X) is

L(X) = §n ® 2511.—1,1 D Sn—2,2 D S'n—2,1,1

dimn(n—-1) 1 2(n-1) n(n-3)/2(n-1)(n—-2)/2.

To derive this, start with A = (n — 2,1,1). Consider n» — 2 ones, one two, and
one three. Young’s rule asks for the number of ways of arranging these symbols
into arrays which are increasing along rows, and strictly increasing down columns.
The only ways are

23 2 3

3 2 23 2
3

where the block indicates n—2 ones. The number of times each shape appears gives
the multiplicity of the corresponding irreducible. The dimensions are computed
from the hook length formula of Chapter 7.

Here there is a natural interpretation of the decomposition. The projection
into S™ represents the best constant approximation to f, i.e. f = n(nl——:—l—)Ef(i,j).
The two §™~1:1 spaces give the effect of the first coordinate and the second coor-
dinate respectively. The projection of f into $™ @ 25"~ 11 gives the best approx-
imation to f of the form

a+ f1(3) + fo(4) with Bfi(3) = Ba(j) = 0.

The projection into S®~2? can be thought of as the best approximation of f,
orthogonal to §™ @ 25" 11, of form

f3{i,j}

the brackets indicating unordered pairs. The projection onto §"~%1! can be
thought of as a residual, or what’s left when the first four terms are subtracted
off.

EXERCISE 3. Verify the decomposition
Mn—3,l,l,l = s" ) 35n—1,1 ® 3575—2,2 ® Sn—3,3 ® 25“—3,2,1 ® 3sn—2,l,l ® Su—3.1,1,1

n(n = 1)(n - 2) 1 3(n - 1) 31;(1;-—3) n(n—la)(n—E:) Qﬂn—g)gl—ﬁ 3(1;;1) (n;l)

Can you give an interpretation to the subspaces involved?

3. Computing projections. We turn now to the problem of actually computing
the projections, choosing bases, and so on.

Method 1 ~ Character Theory. Let G be a group, p: G — GL(V) a representation.
The decomposition of V' into irreducibles usually requires choosing a basis. There
is a coarser direct sum decomposition that is basis free. Let xi,x2,...,Xxr be
the distinct characters of the irreducible representations Wy,...,Wy of G. Let



Spectral Analysis 149

dy,ds,...,dy be their degrees. Let V=U; @ U; @ ...® U,, be the decomposition
of V into a direct sum of irreducible representations. For : = 1,..., h, denote by
Vi the direct sum of the spaces U; which are isomorphic to W;. Then

V=Vi&®...0V,.

This decomposition is canonical in the following sense:

Theorem 1.

(1) The decomposition V =V, @ ... D V), does not depend on the initially chosen
decomposition of V.

(2) The projection II; of V onto V; associated with this decomposition is given by

I = 203 % (0)"p(0).

teG

(8) If the original representation is unitary, then Il; is an orthogonal projection.

Proof.  We first prove (2). Restrict attention to an irreducible subspace U;.
Then p restricted to U; is an irreducible representation with character x say. Let
II; be defined by the formula in (2). Since U, is invariant, II; maps U; into itself.
Since II; and p commute, II; restricted to U; is a constant times the identity. This
constant is

«_ JO ifx#x
< Xilx > = .
xilx {1 if X # i

This proves that II; is a projection onto V;. Since II; does not depend on the
originally chosen decomposition, (1) follows.

For (3), clearly II; is a projection. To show it is orthogonal, we must show
that II7 = II;. This is obvious if p is unitary. O

EXERCISE 4. Consider the voting data of Chapter 5-B. Compute the projections
into the irreducible subspaces for the people voting for only two candidates (see
Case 2 in Section 2 above. The characters of S5 are in James and Kerber (1981))
compare with people voting for only one candidate.

We will find use for this theorem as a practical tool for computing projections.
Here is a theoretical application which shows that the spectral analysis on groups
developed in Section A is the same as the spectral analysis developed in this
section.

CoROLLARY 1. Let R, L(G) be the regular representation of the finite group
G. Let p be an irreducible representation and V, the direct sum of all irreducibles
in L(G) isomorphic to p. For f € L(G), the orthogonal projection of f into the
space V, is given by

I, £(s) = & Trlo(s™) ()
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Proof. Using Theorem 1, we must show

T, f(s) = @—PIZXP(t-I)Rt f(s) = ,‘%Tr{p(s-*)f(p)}.

Both sides are linear in f, so take f = §,. Cancelling common factors, the left
side equals

e xp(t71)6u(t718) = Xp(us™) = Tr{p(s™)p(w)} = Tr{p(s™)du(p)}-

The projection is orthogonal because the regular representation is unitary. Note
that the right side of the formula doesn’t depend on the basis chosen for p. O

Ezample. Take G = S, and X as the k sets of {1,2,...,n} as discussed
in example 2 of Chapter 5B. Here X = 5,,/Sk X Sp—x and the representation
decomposes without multiplicity (see Exercise 2 of Chapter 7) as

L(X) = S" @ Ss*~1l @ 5722 @ ... @ StThE

dim (}) 1 n—1 - - B -G
Here the projection given by Theorem 1 is simply the projection into irreducibles.

This holds for data on any homogeneous space which is a Gelfand pair (see Chapter
3-F).

Ezample. Take G = S, and X = S,/Sn—2 X S1 X 51. Here there is multiplicity:
L(X) — Sn ® 2sn-—1,1 ® Sn—Z,'l ® Sn—‘z,l,l.

A further decomposition of the projection into 25"~ !'! is required. One way to
do this is described in Exercises 2.8, 2.9 and 2.10 of Serre (1977, Sections 2.6 and
2.7). A second way to do it is outlined next.

Method 2 — Following known vectors. One problem with Theorem 1 is that it
involves a sum over the group. For homogeneous spaces like S49/S56 X Sy3, this is
simply not feasible.

Let G be a group and (p, V') a representation. Suppose V is equipped with an
invariant inner product. We are often in a position where we know, or can guess
at, vectors wy,ws,...,wy € V which generate an invariant subspace W Cc V. It
is then straightforward to orthonormalize w; using the Gram-Schmidt procedure,
forming wi,w3,...,w%. Then the projection of v on W is

_ * *
Mwv =X < v,w] > w}.

Computations using this approach usually only involve a small fraction of work
required for the character theory approach.

Fzample.  Consider the decomposition arising from X = S,/S,-2 X S1 X §1-
ordered pairs out of n. The pieces are

L(X) = gn ® 2Sn—1,1 ® Sn—2,2 ® Sn—Z,l,l.
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Here L(X) is considered as the space of all real functions on ordered pairs with
< f,9> =% f(5,9)g(i, 7). The n— 1 functions fi(i,5) = 8x(i) = L, L <k <n
are linearly independent and span an n — 1 dimensional subspace of 25"~ 1:1, The
n — 1 functions gx(3,j) = 6x(j) — L,1 < k < n are linearly independent of the f;
and each other. They span the rest of 257~ 1:1,

This gives a natural way of decomposing the remaining subspace in the ex-
ample of the last section.

Remark 1.  This approach is available for decomposing any of the subspaces
M?>. The relevant details are given in Section 17 of James (1978). In deriving a
version of Young’s rule that works for finite fields, James introduces a hierarchy of
invariant subspaces $##:# which split M* into progressively more refined pieces
(ending with irreducibles). He gives an explicit basis for each of these subspaces
involving sums over the column stabilizer subgroups. These sums, and attendant
computations, seem computationally manageable.

As an example, we know that each M? contains the irreducible $* once.
Recall from Chapter 7, a standard Young tableau is a tableau which is decreasing
across rows and down columns. Recall that for a tableau ¢ the vector (or function
or polytabloid) e; is defined by

e = E sgn(7)ex (s},

WGCQ

where {t} is the tabloid associated to t, and C; is the column stabilizer of t.
James shows that {e;:? is a standard Young tableau of shape A} is a basis for
S§* in M. For A\’s without many parts, |C;| is manageable (e.g., it has size 2¥
for A = (n — k,k)). The number of standard Young tableaux is given by the
hook length formula of Chapter 7. The e; can be orthogonalized to e;. Then the
projection of v € M* can be computed through v - €.

Remark 2. Often a subspace W C V has a simple data analytic interpretation,
but for computational convenience, the projections are ccmputed with respect to
a basis which scrambles things up. A second problem: the dimension of W can be
smaller than the number of natural projections. For instance, the decomposition
arising in studying unordered three sets out of six is

M3,3 — SG ® SS,I ® 54,2 D S3,3

the dimension of §%% is 9 (= (§) — (§)). Now 5*? is the space of unordered pair
effects. There are (§) = 15 such effects it is natural to look at.

Colin Mallows has suggested a remedy for these problems. Given v € V,
project it to v* € W. Then take the natural vectors of interest, say v, ve,..., ve,
project them into v} € W, and plot < v*,v} > versus i. This allows us to
try to interpret the projections on a natural scale. It assumes v*, v} have been
normalized to be unit vectors. See Diaconis (1989) for applications.

Method 3 — Radon transforms. There is a special technique available for decom-
posing the representations M?* associated to partially ranked data of shape A.
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For clarity, this will be explained for the multiplicity free case A = (n — k, k) with
k<n/2

A vector f € M™%k can be regarded as a function on k sets of an n set.
For 1 < j < k, define a mapping

RY:M"=97 - M™RE by RY f(s) =) f(r)
sJOr

where |r| = j, |s| = k. This Radon transform R* has an inverse R~: M~k
M™—3i satisfying R-RY f = f. An explicit form of the inverse is given by Gra-
ham, Li and Li (1980). If M™~%* and M"~JJ are given bases consisting of delta
functions on the k sets and j sets respectively, then the 7, s element of R~ is

(“DFik—5) 1
(=Db=rlls = v (227)

Note that both Rt and R~ commute with the action of S,,. Composing
maps in the other way, Rt R~ gives a map M™%k — M7—%k This map is an
orthogonal projection onto the single copy of M™ %7 contained in M™~%k:

LEMMA 1. The map Rt R~ is an orthogonal projection on M™%F with range
isomorphic to M™™ I,

Proof. Since R"YR"R*R~ = Rt*(R™Rt)R~ = RtR~, the map is a projection.
To show that it is orthogonal we must show (Rt*R~)* = R*R~. Let s; and s; be
k sets. The sy, sy entry of RT R~ is proportional to

Z 5 1 1
TS1 (_1)|32—-r|'82 _ ,,.l ( n—j ) .

|r|=3 [s2—7|
With 6,3 = 1 or 0 as r C s or not. This sum is a sum of terms of form

1 1
(D=4, -0 (323)°

the multiplicity of this term being #{r C syj:r N sy = £}. This is a patently
symmetric in s; and sy, so orthogonality follows.

Finally, both R* and R~ commute with the action of §,,. The map R~ is
onto M™ 43 so Rt is an isomorphism of M™~7J with the range of RtR™ i.e.
with range R*. 0O

To use the lemma, define R*R~ = ;. Then I — 7, is also an orthogonal
projection. We know M™%k = §ng gn-1l g gn-2-2 g  q gn—kk — prn—ijg
§n-i-Litlg . @ S"%k. One may thus proceed by taking j = k—1,k—2,...,1
inductively. This procedure is computationally feasiable for n large and k small.

A similar procedure is available for any partition A using the results in Section
17 of James (1978). Diaconis (1987) gives details.
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Final remarks on choice of basis. Return to data f on a group G. The Fourier
transform f(p) can be a completely arbitrary matrix for general f. To see this,
just define f by the inversion theorem to have a prescribed f(p). There is a
rather complex restriction, akin to Bochner’s theorem but more complex, when f
is positive. For practical purposes f(p) is an essentially arbitrary matrix.

We have available the possibility of changing bases, changing from f(p) to
Af (p)A~L. As A varies, the invariants of f(p) are its eigenvalues, or its “canonical
form.”

To compare coefficients within f(p) and between various p’s, it seems natural
to consider only unitary (or orthogonal) base changes. Then, there is not much
that can be done to bring f(p) into a simple form. One possibility is to rotate to
make the first few rows of f as large as possible.

Other possibilities are to change bases to bring the matrix into a simple
form. For example, any matrix can be conjugated by an orthogonal matrix to the
sum of a diagonal and skew symmetric matrix: A = (A + Af) + (A — A?), and
A+ A' = TDI?, so TAT? = 1D + S, with D diagonal and § skew symmetric.
Any matrix can be orthogonally conjugated to lower triangular form (essentially)
see Golub and van Loane (1983).

The choice of bases must balance off

e computational convenience
o ease of interpretation
e convenience of orthogonality
e maximal informativeness of a few projections
e invariance considerations.
Nobody ever said statistics was easy.

At present, we can have the first three properties, for partially ranked data,
by using methods 2 or 3 and Mallows’ idea as outlined under method 2. There is
plenty to think about.

C. ANALYSIS OF VARIANCE.

Analysis of variance (ANOVA) is a set of techniques for analyzing cross tabu-
lated data such as two-way arrays. Data analytically, ANOVA is a special case of
spectral analysis as described in Section B. This section develops the connection,
and explains a technique introduced by Peter Fortini for defining the group for
the array from a naturally given set of factors.

There is more to ANOVA than the data analytic aspects presented here.
Section D-4 describes some of the other ideas. Hopefully they can be developed
for other types of spectral analysis.

1. Classical examples.

Fxample 1. Two-way ANOVA with 1 repetition per cell. Here data are collected
in a two way layout
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11 ZT12 ... T1Jg
T21
Tn Trg

The rows represent the I different levels of one factor, the columns represent the
J different levels of a second factor. The classical examples involve agriculture:
the z;; might represent the crop yield, the row factors might be different types
of seed, the column factors might be different types of fertilizer. In a psychology
example the data might be reaction time, the row factor might be wording of
question, the column factor might be type of recording device.

There are two basic steps in analyzing such data: forming estimates of “main
effects” and the testing ritual involving F statistics that is often called ANOVA.
The first is simple and quite sensible: calculate the average of all numbers in
the table z, - the grand mean. Subtract z . from z;;. Calculate “row effects”
;. = -}E]-{xij —z_}. Subtract the row effects and calculate column effects z ;.
Subtract the column effects forming residuals: r;; = z;; — .. — z;, — z;. This is
attempting an additive decomposition of the data:

Tij =2zt 2

If the residuals are small, the approximation makes a useful, simple description
of the data. One then looks at the main effects — e.g. if the column effects are
ordered, they might be plotted against j to see their shape, etc. The residuals
can be plotted (does there seem to be a relation with z; or z ;?). If an additive
fit fails, one can try different scales — an additive fit to log z;;. Tukey (1977)
vigorously illustrates this approach to ANOVA.

The second piece of analysis is a way of performing a statistical test to see
if the main effects are zero. There are several different tests — all main effects
zero, tow effects zero, column effects zero, and even grand mean zero. These
tests all have a geometric interpretation: they are ratios of the squared lengths
of the “effect” vectors to the squared length of the residual vector. The tests can
be justified in language involving normal distributions or in language involving
permutations of the residuals.

I cannot hope to adequately review the statistical aspects of ANOVA here.
The classical text by Scheffé (1959) is still most readable and useful. Two fine
survey articles are those by Tjur (1984) and Speed (1987). Further references and
discussion are given in Section D-4.

We now rephrase this as a spectral analysis problem. The data z;; can be
thought of as a function defined on the set of ordered pairs X = {(i,7) 1 < ¢ <
I, 1< j< J}. Thegroup G = S x Sy (where S, is the symmetric group on n
letters) acts transitively on the ordered pairs. This gives a representation of St x
Sy on L(X) which is just the product of the usual I dimensional representation
we called M1-11 of §; with M7-11 of §;. Now M =11 gplits into the constants,
and an I — 1 dimensional irreducible. We write M1-11 = §T ¢ §1-1:1, So
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MI—l ® MJ—1=(SI ) 51—1,1)®(SJ ® SJ—1,1)=T'.I-U$S]—],1 ® TTfU$SJ_1‘1 ® TTI”U@SI—]’] ® sJ—l,l
dim  IxJ 1 -1 J-1 d-1)J-1)
The observed array z;; is just a vector in L(X). The projection of z into the
invariant irreducible subspaces gives the usual ANOVA decompositon: the pro-
jection onto the one dimensional space of constants is the array with constant
entry z_.. The projection onto $7~1'® triv is onto all arrays which are constant
in each row, with the constants summing to zero. These constants are z; The
final space is spanned by the residuals r;;.
The lengths of these projections give the usual sums of squares required for
the classical ANOVA table. The dimensions of the various irreducible subspaces
give the degrees of freedom for the classical F' tests.

Ezample 2. Two way ANOVA with repeated entries — wreath products. In this
example, data are collected in a two way array, but k observations are collected
at each level of the two factors. It is intuitively clear that the appropriate group
of symmetries allows permutations of rows and columns and, within each row and
column, an arbitrary permutation of the k elements in that cell among each other.
To write this down neatly, it is useful to introduce the notion of wreath product.

Let G be any group and H a subgroup of S,,. Define a group G wr H as
follows. The group consists of the set of elements in G*x H = {(g1,92,.--,9n; h)}.
The product of two elements is

(9155 9n; B)(91,- -5 95 B') = (9194-101)> - - -» InGh-1(n)5 BH').

The identity is (ig,.-.,iG; iH), (g1y---,9n; h)™} = (g;_ll(l),...,g;_ll(n); R=1).
The subgroup G™ sits in G wr H as a normal subgroup. H sits in G wr H as
{(ig,..-,ig; h)}. G wr H is the semi-direct product of G™ and H.

For an I x J table with k replications per cell, the natural symmetry group
is Sk wr(Sy; X Sy). The representation theory of wreath products is completely
known in terms of the irreducible representations of G and H. A reasonable
treatment is Chapter 4 of James and Kerber (1981). When this theory is applied
to ANOVA there are no surprises; the decomposition is the one derived in all
standard texts; see Example 4 below for a special case.

Ezample 3. The Diallel Cross Design. This design is used by animal or plant
breeders to find new hybrid species of known species. Consider n known types
of plant. Form all ('2‘) crosses of distinct strains. The data are some measurable
characteristic of each offspring (yield, size, etc.). Here the data are indexed by
unordered pairs {7, j}. The natural symmetry group is S,; the standard ANOVA
decomposition corresponds to the decomposition of what we have called M"~2:2 =
gn o> Sn—l,l o> Sn—2,2.

We will return to examples after a general definition of the symmetry group
of a designed experiment.

2. A systematic approach. In the examples above we just wrote down a group
and showed how spectral analysis gave “the usual” ANOVA.

Alan James (1957, 1982) and Ted Hannan (1965) introduced ideas to relate an
algebraic object to a designed experiment. Gleason and McGilchrist (1978) give
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a more detailed account of these ideas. Lederman (1967) independently pointed
out the connection between ANOVA and representation theory.

Peter Fortini (1977) extended these ideas to give a reasonably systematic
theory. His work associates a group in a natural way to an experiment given in
terms of classical factors. Then spectral analysis can be used as before. Here is a
brief account of Fortini’s ideas.

Let X be a finite set. We will work with observations indexed by X.

Definition 1. A factor f of the design indexed by X is a set valued map
from X to the elements of a finite set F. If | X| = N, |F| = k, a factor can be
described by an N X k matrix f where fzp = 1if £ € f(z), fze = 0 otherwise. A
maultifactorial design is a set X and a collection of factors (f1, F1),...,(fk, F)-

Definition 2. The automorphism group G of a multifactorial design is the
group of all permutations g of X with the property that for each factor f; there
is a permutation g; of F; such that f;(gz) = ¢:(fi(z)).

Thus, if z is associated with levels f;(z), gz is associated to levels g; fi(x).
The outcome set V of a numerical experiment indexed by X is the set of all
real valued functions on X. This has basis e;, and we have the permutation
representation of G acting on V. An analysis of variance is a decomposition of V
into a direct sum of irreducible invariant subspaces V;. The projections of v € V
onto V; are called main effects. The squared lengths of these projections form the
tth line of an ANOVA table: the number of degrees of freedom of the ¢th line is
dim V.

FEzample 4. Tuwo treatments with two objects per treatment. To understand the
definitions, consider comparing two treatments: A or B with two objects for each
treatment. Take X to be the set of four objects, labeled {1,2,3,4}. There is one
factor — did the object get treatment A or B? Suppose that objects 1 and 3 get
treatment A and objects 2 and 4 get treatment B. The factor matrix is

W N =
S O P
—o~oW

The permutations of X that arein G areid, (1 3), (2 4), (13)(2 4), each associated
with the identity permutation of factors A and B, and (1 2)(3 4), (1 4)(23), (12
3 4), (4 3 2 1) each associated with transposing A and B. We thus get an eight
element automorphism group. Observe that the group is the symmetry group of
the square
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4 3

It is often called D, — the dihedral group on four letters. Observe too that if
we think about the problem directly, as we did before, the “obvious” symmetry
group is S; wr S5. This is an eight element group which is isomorphic to Dj,.
How does the four-dimensional space V' decompose? Here, the decomposi-
tion is obvious, but as an exercise, we follow Fortini and derive the result using
character theory. The character table for D4 is in Chapter 5 of Serre (1977):

Perm

Class X1 X2 X3 X4 X5 rep.

1 1 1 2 1 1 4

(13)(2 4) 1 1 2 1 1 0
12)34),1423) | 1 1 0o 1 1 0
(13), (2 4) 1 1 0 1 -1 2
(1234),(1423) 1 1 0 -1 -1 0

Looking across the first row, there are 5 distinct irreducible representations, four
of dimension 1 and one of dimension 2. Which of these appear in the permutation
representation? The character of the permutation representation is the number
of fixed points of G acting on X. This is given in the last column above. The
multiplicity of x; in the permutation representation is given by

L

m; =< XilXperm > = 3

by Xi(g)Xperm(g)-

Wegetmi =1, my=0, mg=1, my=1,ms =0. Thus, V=V oV, V3. V] is
the 1 dimensional grand mean space, V3 is the space: {y € V:(y1+v3)—(y2+ys4) =
0}. It represents the difference between the average of the group means. The space
V3 is a 2 dimensional space of “what’s left over.”

Example 3. revisited. The need for factors taking more than one value on a
given observation is well illustrated by the diallel cross. Here X = {{¢,7}; 7 # 7}
F ={1,2,...,n},and f{3,7} = {3, 7}. Thus the matrix has two ones in each row.
The automorphism group is a subgroup of S(;) A bit of reflection shows that it

is S, and that V is what we have been calling M™~2:2.

FEzample 5. Balanced incomplete blocks. Let us begin with an example taken
from Cochran and Cox (1957, pg. 443) on the effects of aging on the tenderness
of beef. Six periods of storage (0, 1, 2, 4, 9, and 18 days) were tested. These
treatments are denoted 1, 2, 3, 4, 5, 6 respectively.
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To facilitate comparison, roasts from symmetric locations (left/right sides)
were paired into blocks of size 2. There are 15 = (g) ways to treat a pair. Scoring
was done by 4 judges, each marking on a scale from 0 to 10. The data shows their
totals out of 40, a high score indicating very tender beef.

Block 1 2 3 4 5 6 7 8
Pair {1,2} {3,4} {5,6} {1,3} {2,5} {4,6} {1,4} {2,6}

Scores 717 2625 3329 1727 2327 2930 1025 26 37
Block

Sums 24 51 62 44 50 59 35 63

Block 9 10 11 12 13 14 15
Pair {3,5} {1,5} {2,4} {3,6} {1,6} {2,3} {4,5}

Scores 24 26 2540 2534 3432 1127 2421 26 32
Block

Sums 50 65 59 66 38 45 58

Thus block 1 was given treatments 1 and 2. The roast receiving treatment 1
was rated at 7. The roast receiving treatment 2 was rated 17.

The first thoughts for such an analysis run as follows: It is natural to compute
the sum for all roasts receiving treatment ::

Treatment 1 2 3 4 5 6
Sum 70 115 132 139 158 155

This suggests longer aging improves tenderness, the effect perhaps peaking at
treatment 5 (9 days).

Now it is natural to try to see if there is a block effect: roasts from different
location vary in tenderness, and if one of the treatments was tried on more tender
blocks, this would favor the treatment.

The natural adjustment subtracts from the ith treatment total the sum of
the block averages (here block sum/2) for the blocks containing the ith treatment.
Chapter 5 of Scheffé (1959) gives a careful, clear description. In the example, the
adjusted sums are

Treatment 1 2 3 4 5 6
Adjusted Sum -33 -55 4 8 155 11

These now sum to zero.

Here, the adjustment doesn’t affect the conclusions drawn above. We leave
further details to Cochran and Cox who carry out the usual analysis and conclude
that storage up to about a week increases tenderness.
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In general, there are ¢ treatments to be compared in blocks of size £ < t. An
unreduced balanced incomplete block design involves all possible (fc) blocks and so
k(%) basic units (in the example, t = 6, k = 2 and 30 roasts were involved).

One natural way to index such data is as a pair (i,s) with 1 < ¢ < ¢t denoting
the treatment applied to that unit, and s of cardinality |s| = k — 1 denoting the
subset in the same block as the given unit. Thus X = {(¢,s)} and | X| = t(;_}) =
k().

The group S; that permutes treatment labels operates transitively on X, and
we see that L(X) can be identified with M*~%*-1.1 of Chapter 7. Another way
to arrive at this result begins with the idea that this experiment has two factors:
“treatments” f1(z,s) = ¢, and “blocks” fo{i,s} = {tU s}.

What automorphisms are possible? A little reflection shows that only permu-
tations that permute treatments among themselves are allowed; treatments that
permute things within a block are ruled out and allowable treatments that move
blocks around can be achieved by permuting treatments. Thus the automorphism
group is isomorphic to S;.

The decomposition now follows from Young’s rule. Before stating the result,
let us examine the introductory example on aging of meat. Here t = 6,k = 2, and
we have

M4,l,l — 56 D 255,1 D S4,2 ® S4,l,l
dim30 1 2x5 9 10

(see Case 2 of Section B-2 above). The projection onto the one dimensional space
S6 is the grand mean. The treatment effects can be identified as one of the
S%1 spaces. The block effects space, orthogonal to S @ $%1, is §%? (the full
15-dimensional block effect space M*? = S8 @ §5! @ §%?). These projections
constitute the classical analysis for this experiment, projecting into treatment and
blocks adjusted for treatment.

The remaining S°?' gives a new piece of analysis due to Fortini. To give it
a clear interpretation let us change the imagery. Suppose there are 6 amounts
of vanilla added to ice cream (from none to a fair amount). Fifteen people each
taste two servings each in a balanced incomplete block involving 30 servings in
all. The treatment effects are interpreted as before. The block effects become
subject effects — some people are systematically higher than others.

The classical analysis assumes that treatment and block effects are additive.
However, this would fail if tasters give ratings partially by comparison. The 2nd
copy of §%! can be interpreted as the additive effect on the rating of treatment ¢
due to being in the same block with treatment j.

In tasting examples, this (and its higher order analogs described below) makes
perfect sense. In the aging/tenderness experiment it seems perfectly sensible to
set this effect to zero as is done classically.

To decompose M*~**-1.1 in general, Young’s rule begins with ¢t — k ones,
k —1 twos, and one 3. These are placed into any arrangement as a tableaux which
is non-decreasing in rows and strictly increasing in columns. Thus

k-1 k-1
Mt—k,k—l,l - St @25t—j,j ® St—k,k @St—j—l,j,l.

j=1 j=1
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It being understood that any improper partition above doesn’t contribute.

Fortini (1977) used this decomposition to build a class of standard linear
models for which the decomposition gives the appropriate ANOVA. Calvin (1954)
seems to be the first paper to extend the classical model to try to cope with this
kind of non-additivity.

Ezample 6. The projective plane. As a final topic for this section we recall
that there are many further types of block designs. For example, to compare 7
treatments, with block size 3, the following classical design can be used:

{123} {345} {156} {246} {147} {257} {367}.

Here, each pair appears together in exactly one block, so the same type of
block/treatment analysis is available.

This design is constructed as the set of lines through the origan in the vector
space Z3. Each plane contains 3 points which gives rise to the blocks. These are
edges in the figure below.

100
5
101 6 4 110
7
1 2 3
001 011 010

The group of this design is GL3(Z;), a well studied simple group of order 168. For
someone wishing to learn a little group theory, decomposing L(X) makes a nice
exercise. L(X) is 21-dimensional. It decomposes into 4 irreducible pieces: the
trivial representation, a 6-dimensional space of treatment effects, a 6-dimensional
space of block effects, and an 8 dimensional irreducible space of residuals.

EXERCISE 5. Prove the assertions about L(X). Hints: argue that GL3(Z;) acts
doubly transitively on lines and planes in Z3. Using the “useful fact” in Chapter
TA, this gives two irreducible 6-dimensional representations of GL3. Now consider
X = {(4,p):¢ a point, p a plane, ¢ € p}. Show that GL3 acting on X x X has 4
orbits. Now use the “useful fact” of Chapter 7 to argue that L(X) decomposes
into 4 irreducibles.
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This example is the tip of the iceberg called combinatorial design. Lander
(1982) is a nice reference for the construction of block designs. Beth, Jungnichel,
and Lenz (1986) is a recent encyclopedic reference. It seems like a worthwhile
project to go through the classical designs, compute automorphisim groups, and
compare the spectral decomposition with classical ANOVA.

D. THOUGHTS ABOUT SPECTRAL ANALYSIS.

This chapter builds on two well established traditions: the analysis of variance
and the spectral analysis of time series. The new applications and variations of
classical areas such as block designs should be regarded speculatively.

There is much of value in the parent theories as they appear in modern
practice which I have not thought through in sufficient detail to carry over. This
section outlines some of these techniques.

1. Why projections onto invariant subspaces? It is an empirical fact that the
decomposition of data indexed by X into irreducible pieces is sometimes scientif-
ically useful. Let me make an attempt to explain this. There is no one right way
to analyze data. The spectral decomposition presents certain averages of the data
which often seem sensible. The set of all averages is a 1-1 function of the data, so
nothing is lost. Often the specific labeling of X is fairly arbitrary, and we would
rather not have our conclusions depend on this labeling. In other circumstances,
the order is worth taking into account, but it is useful to separate the part of the
analysis that depends on the order from the part that is invariant under G.

Data indexed by X are represented by a function on X. Sometimes this
function takes values in the integers, as in the case of counted data: “how many
people in the population chose X7” Even here we want to be able to talk about
averages and differences of averages, so we need to consider functions from X into
the rationals ). For the permutation group, the splitting of a representation over
@) is the same as its splitting over the real or complex numbers.

Our function thus naturally sits in L(X): the set of all complex valued
functions. A subset of LX) can be thought of as a partial description. In practice
these will be things like the constants or “first order functions;” sets of functions
that are simple to describe or interpret. If the actual f can be well approximated
by a simple f we regard this as useful. If f is “first order” and g is “first order”
it seems natural that -:7 f or f+ g be the “first order” since, for example, f + g
has the interpretation of combining the two data sets (for counted data). This
suggests that a basic partial description be a subspace of L(X).

Finally, if G acts on X we want to consider descriptions that don’t depend
on the labelling: it seems unnatural that f(z) could be “first order” but not
f(gz). Thus a natural descriptive unit is an invariant subspace of L(X). Then
spectral analysis is the decomposition of f(z) into its projections on the irreducible
invariant subspaces of L(X), and the approximation of f(z) by as small a number
of its projections as give a reasonable fit.

Of course, this kind of linear analysis is just a start. Non-linear analyses may
also be most useful (see Section (4) below). These are easiest to interpret if they
have a simple connection to the linear theory (log f may be well approximated



162 Chapter 8D

by a simple linear fit).

2. On the choice of group. Spectral analysis begins with a group G acting on
a set X. In some areas, like ANOVA, there is some theory to guide the choice of G.
In other areas, like time series, physics dictates the choice. In new applications,
there may be several possible groups among which to choose.

Clearly if G acts on X and H is a subgroup of G, the splitting of L(X) into H
irreducibles is finer than the splitting under G. Choosing the smallest group that
preserves essential structure gives the largest number of projections. Preliminary
analysis may start with larger groups.

Consider a two way I x J array. The group that gives classical ANOVA
is Sy X S§y. Another group that operates transitively is Z; X Z;, operating by
cyclically shifting each coordinate. A third transitive action is given by Sy x Z;.
Any of these groups might be appropriate. Z; preserves adjacency (or time order)
while Sy invariance says adjacency isn’t relevant. Thus S; X Z; might be deemed
natural for a problem in which the rows index types of bird, the columns index
months of the year, and the entries are number of birds sighted in that month by
a local bird watching society.

EXERCISE 6. Derive the appropriate spectral analysis for St X Z;.
As a second example, consider X = ZJ. Four groups act naturally on this
space: Z¥, GLx(Z:),Z, wr Sk, and Z, wr Z;. We consider these in turn.

a) Under Z§, L(X) = € V, where V, is the one dimensional space spanned
yeX
by £ — (—1)*?. Here spectral analysis amounts to the Fourier inversion theorem

1#) = 52 S (-1 ()

b) GLk(Z;) acts doubly transitively on X, so by Serre’s exercise (2.6),
L(X)=VodW

with Vp the constants and V; = {f: X f(z) = 0}.

¢) Zy wr Sk (see Section C for notation) is the group of pairs (y,7) with
T € Sk, y € Z§ acting on X by (y,7)z = (ZTr-1() + Y1, Tr-1(x) + Yr): you
permute the coordinates by = and add y. It is straightforward to show that

L(X)=Vo®dVi®...0 Vi

with V; the linear span of (—1)*"¥ for |y| = j. Thus spectral analysis under Z; wr
Sk lumps together pieces of the spectral analysis under G = Z¥.

EXERCISE 7. Show that L(X) splits as shown for Z; wr Si. Find the decompo-
sition with respect to Zy wr Zy.

3. On probability. The data analytic approach to spectral analysis presented
in this chapter is not based on probability. Spectral analysis is a reasonable, useful
activity if f is not a sample, rather a complete enumeration of a population. Thus,



Spectral Analysis 163

nothing is unknown, but there may still be plenty to do in condensing the data so
that simple descriptions can be given. This point of view follows Tukey (1977).

Of course, there are many opportunities for probability to play a role. When
we informally assess goodness of fit in a linear approximation such as f(i,j) =
a + b; + c;, we compare the residuals r;; = f(¢,j) — a — b; — ¢, with the main
effects a, b;, c;. If residuals are small, we regard the approximation as useful. The
standard tests and confidence interval procedures are formalizations of this idea.

There is much more to do in constructing a believable probabilistic theory
for spectral analysis. For example, the data f(z) might be a sample from a
larger population F(z). If the sample size is small, there is no reasonable hope
of estimating F’, but one can hope to estimate some simple functionals of F' such
as its projections onto a few subspaces of interest. How the dimensionality of the
subspaces should relate to the size of X and the sample size seems like a rich
interesting question. Finch (1969) makes a start on these questions. See also the
discussion in Section 3 of Diaconis (1985).

In some instances the bootstrap offers a reasonable way to wiggle data a
bit. There are two obvious ways to bootstrap — sample iid from f(z) to get
fY(2), f¥(z),..., f=z), or fit a model and bootstrap residuals. Freedman (1981)
describes these alternatives in regression problems. Of course, all of this is tied to
some sampling like story. Without a believable sampling justification (as in com-
plete enumeration problems) I find the bootstrap far too violent a perturbation
of the data. Diaconis (1983) suggests less drastic perturbations.

I have been impressed with the usefulness of the basic normal perturbation
model outlined in Section A-3. This serves as an accurate approximation for all
sorts of schemes for quantifying “if the data had come out different, how would
my conclusions differ?” or “if I had more data, how close is my best guess likely
to be?”

Some further discussion of the need for probability is given later. It is worth
emphasizing that spectral analysis can be useful without underlying probabilistic
structure.

4. Lessons from ANOVA. A basic component of ANOVA is a test to see if
projection of a given function onto a given subspace can be assumed to be zero.
The standard test involves comparison of the observed projection with an estimate
of “ambient noise” — usually the normalized length of the projection of the data
onto the space of residuals. If the ratio of lengths is “large”, then the projection
cannot be asserted to be zero. Usually, “large” is quantified under the normal
perturbation model of Section A-3.

Terry Speed (1987) gives an elegant survey of this material delineating a
natural class of perturbation models involving patterned covariance matrices, for
which the orthogonal projections in fact give the maximum likelihood estimates.

An important idea from classical ANOVA deals with fixed versus random ef-
fects. As data analytic motivation, consider a two way array with one observation
per cell. Suppose the rows are different brands of typewriters and the columns
are different typists. The z;; might be average speed. If we are trying to evalu-
ate typewriters, then the row averages are basic. It may be that the typists are
thought of as drawn from a pool of typists. Then, the column averages are not of
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particular interest — they are thought of as random effects. Their mean, variance,
or distribution may be of interest as information about the population of typists.
Tukey (1961) contains an interesting discussion of the distinction between fixed
and random effects and its impact on ANOVA and time series data.

Modern ANOVA employs a wealth of non-linear techniques. These begin
with transformations of z;; to T(z;;) aiming for linearity. Box and Cox (1964)
or Hoaglin, Mosteller, and Tukey (1983, Chapter 8) give the basics. This is often
supplemented by fitting more complex models such as

f(3,7) = a+b; +c; + dbic;

as in Tukey (1949) or Mandel (1961). Stein (1966) gives a decision theoretic
version.

More aggressive transformation techniques involving splines or more complex
smoothers appear in approaches like projection pursuit (see, e.g. Huber (1985) or
Henry (1983)) or Ace (see Breiman and Friedman (1985), Stone (1985), or Hastie
and Tibshirani (1986)). None of these techniques are well tried out in ANOVA
settings, but all seem worth thinking about and extending to other instances of
spectral analysis.

Another important aspect of modern statistics is a concern for robustness —
it may be that observed data is well approximated by a linear fit except for a few
“wild values.” For methods based on linear projections, even one wild value can
foul up everything, making it seem as if no linear fit works.

One approach to these problems is to replace the usual averaging operators by
robust versions such as medians. Hoaglin, Mosteller and Tukey (1985, Chapters
2-5) contains a good review. It is not at all clear if these approaches can be
adapted to more complex designs which really lean on the additivity. Another
approach is to try to remove or down-weight the outliers. Other approaches
involve using perturbation distributions that are longer tailed than normal. Pasta
(1987) contains a review of the problems and available remedies. It is fair to say
that even for ANOVA this is a difficult problem, on the cutting edge of current
research.

Here is another contribution of modern statistical theory to ANOVA. We
now realize that while the projections have many appealing properties, they are
not the most accurate estimates of population projections under the usual normal
model. Non-linear shrinkage estimators can do better than the classical linear
estimators. Stein (1966) shows how to modify the usual estimators in orthogonal
designs to get improvement. I do not know of a systematic account for more
general designs.

The Bayesian analysis of ANOVA data is important on its own — we often
know quite a bit and want a way to combine this prior knowledge with the obser-
vations in a sensible way. Box and Tiao (1973) cover the basics. Consonni and
Dawid (1985) give group related theory.

The Bayesian techniques give a reasonable way to get shrinkage estimates,
possibly using conjugate priors and empirical Bayes ideas as surveyed by Morris
(1983). Berger (1985, Chapter 4) surveys the recent literature on estimating a
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normal mean. Again, most of these ideas are applicable in ANOVA and other
spectral analysis problems but the details need to be worked out on a case by
case basis.

An important problem that must be dealt with is missing data. The algebraic
theory of ANOVA works neatly if things are neatly balanced. With a two-way
layout and unequal numbers of observations per cell, there are no longer simple
formulas for many quantities of interest. It is not unusual to have symmetry
broken by having some subjects get sick or be lost for other reasons.

A rich collection of techniques has evolved for dealing with these problems.
A most useful tool for computing “projections” has evolved as the EM algorithm
of Dempster, Laird and Rubin (1977). They survey the literature. Dodge (1985)
gives some special techniques for ANOVA problems.

There is some very recent work which relates the approach taken in this
chapter to some of the mathematics of Chapter 3-F. In working with stochastic
models for designed experiments, many workers have emphasized the importance
and utility of “general balance.” This is a condition introduced by Nelder (1965)
which links the “design” part of the experiment to the structure of the assumed
model. When the condition holds, all sorts of elegant formulas for computing best
linear unbiased estimates are available. A recent survey of this material is given
by Houtman and Speed (1983).

Recently, Bailey and Rowley (1986) have given a useful sufficient condition
on the group of symmetries of the design (the definitions are a bit different than
those in Section C) which forces generalized balance. There are too many details
needed to state their results carefully. Very roughly, the group of symmetries acts
on a space T of treatments, and the representation L(7") must be multiplicity
free (see Chapter 3F). The Bailey and Rowley paper is very clearly written and
connects wonderfully with the material in this monograph.

5. Lessons from time series. Spectral analysis of time series and other sig-
nals is widely applied and has an enormous literature. Robinson (1982) surveys its
history. It differs from ANOVA in having numerous hard science manifestations.
Indeed, in some speech, geophysics, and signal processing applications the spec-
trum is naturally observed. Brillinger (1988) contains a list of such applications.

It is natural to try to emulate the success stories of spectral analysis for other
groups. It seems fair to admit that at present there is no underlying “physical
justification” for the spectral decomposition in other cases. None the less, it seems
promising to try to plug into the experience and imagery of the established theory.

For example, it is well known that the periodogram (essentially the squared
discrete Fourier transform) is not an accurate estimate of the amplitude of the
Fourier transform at given frequency. It is asymptotically an exponential variable,
and so not consistent as time goes on. Under smoothness assumptions on the
underlying spectrum, smoothing the periodogram becomes sensible and leads to
reasonable estimators. Olshen (1967) gives details.

The same problem is present in other spectral analyses. Under the normal
perturbation model the Fourier transform has independent coordinates with fixed
variance (see Example A-3). This continues to hold under broad alternative per-
turbation models. Without repeated observations, there is a limit to the accuracy
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of estimates. Thought of in the ANOVA context this is not surprising — we can
only hope for an accurate indicator of variability. We can think of formulating
natural smoothness assumptions to allow increased accuracy.

When applicable, the sampling model is a natural replacement for signal plus
noise — the Fourier transform applied to a population is simply a 1-1 transform
and so gives a natural parameter to estimate.

Time series has goals in addition to estimating the spectrum at a point.
In continuous time problems, there can be a continuous spectrum, and many
other functionals are relevant. Tukey (1986) emphasizes this aspect and points
to properties of ensembles of time series that are of scientific interest. For ranked
data, there is an obvious prediction problem: how will a complete enumeration
(or larger sample), turn out? More in line with time series, prediction might
be this: people partially rank several quantities; later their true preferences are
revealed. How good a guess can be made based on current knowledge?

Time series analysis has a time domain side which is based on models for
the observed process. There is a healthy interplay between time and frequency
domains. This is presented by Anderson (1971) or Priestly (1981). As with
ANOVA, it’s nice to see natural projections have an interpretation as reasonable
estimates of parameters in a model. Models for data on homogeneous spaces
are introduced in the next chapter. There hasn’t been any serious work on the
interplay with spectral analysis.

There are many modern versions of spectral analysis of time series. There
are remedies for all of the problems discussed in the ANOVA section. It seems
impossible to survey this briefly. Anderson (1971), Brillinger (1975) and Priestly
(1981) are good references; leading to others. With work, most of these ideas
should be transferrable to other spectral domains when the need arises.

One final thought: real examples in hard science settings are a sparkling
part of time series analysis. If progress is to be made in generalization, similar
examples will have to be found.





