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The first nontrivial correspondence analysis (CA) solution of a two-way

contingency table gives scores of the row and column categories so that the cor-

relation between the row variable and the column variable is maximized. Hence

it is natural to order the categories by the scores. In this paper, the appropriate-

ness of this technique is investigated. Sufficient conditions are given. Sampling

theories, when the data fail to satisfy the conditions because of the presence of

random errors, are studied. As to whether one should use one or two CA solutions

for the ordering, simulation study is used to show their difference.

1. Introduction. Ordering things in time has been the interest of
archaeologists since a century ago when Petri tried to seriate chronologically
some 900 graves by means of the numbers of various potteries in them. Math-
ematicians had developed methods of seriation since then. Among them,
D.G. Kendall had made significant contributions in the sixties and seventies.
Kendall (1963) proposed a model for the graves and made statistical inference
about the model. In Kendall (1971a), a measure, called common content, of
similarity between graves was suggested. An algorithm for achieving a right
ordering of the graves satisfying the condition of being pre-Q was also given.
Then in Kendall (1971b), the method of multidimensional scaling was intro-
duced to seriate objects, given their similarity matrix.

Recently, the method of correspondence analysis (CA) for contingency
tables has gained more and more attention, especially in its use of ordering
objects (Greenacre (1984), Hill (1974) and Schriever (1986)). The idea is to
order the rows by the elements of the first non-trivial eigenvector of a matrix
obtained from the matrix of frequencies or proportions. Though this method
looks suitable intuitively, a mathematical justification, however, is needed.

In this paper, we study the appropriateness of the first non-trivial corre-
spondence analysis solution as a rule for seriating the rows of a Q-matrix. In
Section 2, method of CA, ideas of Q-matrix and total positivity (TP) are
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introduced. Sufficient conditions are obtained, in Section 3. The special case,

when the solution is linear, is also investigated. In Section 4, we study the

problem when the observed matrix is not a TP, but TP with some errors. Large

sample results, such as consistency and asymptotic normality, are established.

As to whether an ordering by the first two non-trivial solutions will do a better

job when errors appear, simple simulation shows that the answer is negative.

Section 5 contains some problems that need further investigation.

2. Correspondence Analysis and Total Positivity. Let A = (α^)
be an n x p contingency table and R =diag(α;+) and C = diag(α + J ) be

diagonal matrices with elements the row and column totals, respectively. Cor-

respondence analysis (CA), according to Hill (1974), is to assign scores to the

row and column categories by reciprocal averaging process.

DEFINITION 2.1. The triple (/>, x, y) is a CA solution of A if

px = R~λAy and py = C~1Atx. (2.1)

The elements of the vector x are called "row scores" and the elements of

y are called "column scores". The number p is the correlation of x and y with

respect to the matrix A.

It is easy to see that x and y satisfy

p2x = R^AC^A^ and p2y = C^A^^Ay. (2.2)

Hence p2 , x and y are the eigenvalue and eigenvectors of some matrix. Since

the row sums of both R~1AC~1At and C~1AtR~1A are all equal to unity,

the maximal value of p2 is 1 with corresponding eigenvectors 1 = (1,1, * ,1)

and 1 = (1,1, ,1) of dimensionality n and p, respectively.

The vector x corresponding to the next largest eigenvalue naturally offers

an ordering of the row categories. As to whether this order can be interpreted

as time, some conceptual background are needed.

The idea of Petri's "Concentration Principle", introduced by Kendall

(1963), is that, over a certain period of time, new artifacts appeared, became

popular, quickly or gradually, and then fell out of use.

DEFINITION 2.2. The matrix A = (α^ ) is called a Q-matrix if for each

j = 1, ,p, the vector (α^ , i = 1, , n) is either increasing in i, decreasing

in i or first increasing then decreasing in i.

Any matrix that can be made a Q-matrix by permuting its rows is called

a pre-Q matrix.

Consider a table whose each row consists of numbers of certain types

of artifacts in a grave. According to the concentration principle, this table

has the property of a Q-matrix provided that the graves are ordered in time.
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Hence the rows of a Q-matrix are expected to be correctly ordered. We are to

study whether the elements of the first non-trivial CA solution of a Q-matrix

are in ascending or descending order.

However, we first note that it is not difficult to construct a 2-way table

such that more than one ordering of the rows or columns result in Q-matrix.

Consider, as an example, the 6 x 4 table

A =

Γθ 0 1 2
0 1 7 5
0 3 43 22
2 9 64 32
2 12 94 35
.1 6 62 18

The row permutations (123456), (234561), (345621), (123546), (235461) and

(354621) and column permutations (1234), (1243), (2341) all lead to Q ma-

trices. Also note the famous example of Fisher's on the relationship between

colors of eye and hair of Scottish school children, given in Greenacre (1984),

shows that pattern-Q of a matrix alone is not enough to guarantee the mono-

tonicity of its first non-trivial CA solution.

Eye Color Fair Red
Blue 326 38
Light 688 116

Medium 343 84
Dark 98 48

Hair Color
Medium Dark Black

241 110 3
584 188 4
909 412 26

403 681 85

This matrix satisfies the condition of being a Q, but the order given by CA

solution is Light-Blue-Medium-Dark which leads to a non-Q matrix.

Other conditions, such as total positivity of the matrix, must be intro-

duced. Let X and Y be subsets of R.

DEFINITION 2.3. A real-valued function K defined onXxY is said to be

(strictly) totally positive of order s (TPS or STPS) if for every t = 1,2, , s,

all #i < x2 < xt and yι < y2 < < yt (xi £ X, y% € Y, for i = 1,2, , ί),

the determinant

2/1,2/2," ,2/t

K(x1,y1) K(xuy2)
i) K(x2,y2)

K(xuyι) K(xuy2)

K{xuyt)
K(x2,yt)

K(xuyt)

is (positive) nonnegative.

Examples of TP functions include (See Marshall & Olkin (1979), for ex-

ample)
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(i) K(x,
(ii) K(x

(iii) The

y) =

,y) =

: exp (xy) is ST1

= i{χ < y) is T
function

is TP2 but

Doo on R2.

Poo on R2.

1 i f x < ί / < x + l,

0 otherwise.

not TP3 on R2.

(iv) K(x,y) = [1 + (x - y)2}-1 is not TP2 on R2.

In the case when X = {1,2, ••• ,τι} and Y = {1,2, ,p} K can be
considered as an n X p matrix with elements k{j = K(i,j) for i = 1,2, , n
and j = 1,2, ,p.

Note that all four examples share the property that, for any x,K(x,y)
first increases and then decreases in y. Hence, although the family of Q-
matrices and the family of TP (or STP) matrices do not include each other,
they overlap.

The following are some useful and important results taken from Marshall
and Olkin (1979) and Gantmacher and Krein (1950), in the theory of total
posit ivity.

LEMMA 2.1. Let K be (S)TPS on X X Y , then f(x)g(y)K(x,y) is
(S)TPS on X xY whenever the functions {and g are (positive) nonnegative
on X and Y, respectively.

LEMMA 2.2. Let K be TPS on X x Y and let L be TPr on Y X Z ,
then the integral

M(x,z) = J K(x,y)L(y,z)dσ(v)

where σ is a sigma-ίinite measure, is

LEMMA 2.3. If K is TPoo on R2 , then the integral equation

Xφ(x)= Γ K{x,y)φ{y)dy (2.3)
J — oo

has the following properties:
(i) All the eigenvalues of (2.3) are positive and simple : λo > λi > λ2 >

(ii) The eigenfunction φo (x) corresponding to λo does not have any zeroes,
(iii) The eigenfunction φj(x) corresponding to Xj has exactly j nodes and

no other zeroes, j = 1,2,



ROUH-JANE CHOU 199

3. Sufficient Conditions. When X = {1,2, - - - ,n} and Y =

{1,2, ••• ,p}, Schriever (1986) gives sufficient conditions for the joint distri-

bution of (X) Y) so that the first canonical functions are monotone. In this

section, we study the continuous version of correspondence analysis.

Let fχ{ ) and fγ\χ( | x) denote the pdf of the random variable X and

the conditional pdf of the random variable Y given X = x, respectively. The

continuous analogue of the equations (2.1) and (2.2) are

ph(x) = E[g(Y)\X = x] and pg(y) = E[h(X) | Y = y], (3.1)

and
p*h(x) = E{[h{X) I Y] I X = x},

p2g(y) = E{E[g(Y) \X]\Y = y},

where h(x) and g(y) are the scoring functions of X and y , respectively. The

equations (3.2) say, assuming the validity of changing orders of integration,

P2g(y) = I g(u>)fγ\χ(u \ x)dufx\γ(x | y)dx

= I K(u,y)g(u)du (3.3)

where the kernel function K(Ή, y) is defined by

K(u,y) = I fγ\χ(u I x)fχ\γ(x I y)dx.

The scoring function g(y) is thus the eigenfunction of K(u,y).

3.1. An Example.

Let (X,y) be jointly bivariate normal, i?iV(0, 0; 1, 1, />), with density

χ2 ~ 2 p x y + y

The conditional densities and hence the kernel function are

) ) •

x) = VMi-p2)*** [ " ^ 7 ) ( 2 / - p x f ] '
(x\y) =

and

K(u,y) = / /y|χ(ω I x)fx\γ(x I y ) ^

^ ^ 2 ] (3'4)
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This K{u, y) depends on u and y only through u - p2y. Denote k*(u - p2y) =

K(u,y). Then we are solving the equation

/•OO

= / k*{u - p2y)g{u) du. (3.5)
J — oo

Differentiating both sides of (3.5), we have

/

OO β

jj-k*(u-p2y)g(u)du

- dk*(s-p2y)

f°° \ Γ dk*(s-p>y),]

-J-ΛL dv ds\9{u)du

/•OO

= -p2g(u)k*(u - p2y)\ux_00 +P2 k*(u - p2y)g'(u) du.
J — oo

If

g(u)k*(u - P2y)\™=_oo = 0 for all y,

then

*29'{y) = P2 Γ k\u - p2y)g'(u) du. (3.6)
J — oo

Hence gf(y) is also an eigenfunction function of k*(u - p2y), its corresponding

eigenvalue is λ2//?2.

Since K(w, y) is TPoo and its trivial and largest eigenvalue is λo = 1 with

corresponding eigenfunction go(y) = l By Lemma 2.3, the jth eigenfunction

has j nodes. For j = 1, gι(y) has 1 node and no other zeros. According to

(3.6), g[(y) is also an eigenfunction, with eigenvalue λ 2 / p 2 which is greater

than λ2. Hence

and λ2 = p2. Furthermore, g[(y) =constant x go(y)=const ant. That is, gι(y)

is linear and hence monotone. In order to make g\ orthogonal to #o and have

unit variance, we take

gi(y) = y>

A similar procedure gives us the following that

gk(y) = Hk(y)/VE,

where Hk(y) is the Hermite polynomial of degree k.

Since in the present case, X and Y are symmetric, we have also that

hk(x) = Hk{x)lVk\.
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Thus the reconstitution formula is

where

the marginal density function of X, is the standard normal density function.
The identity (3.7) is called Mehler identity in classical analysis (Lancaster

(1958)).

3.2. General Results.
Kendall (1963) models a grave, in the spirit of concentration principle, by

assuming that the numbers nx (y) of the zth artifact in the yth position are
independent Poisson variables having expectation

Enx(y) = μx exp [-ψ(zy)],

where

z - I
Zy - ) σx-y

— 5 — i f y
Px

and 0 < ψ( ) is an increasing function, μx^αx^βx and σx are functions of x.
Several values of x and y then compose a random matrix whose expec-

tation satisfies the condition of begin a Q matrix. As the elements of this Q
matrix are all positive, we would like to view them as probabilities multiplied
by a common constant. Thus each column may be viewed as the conditional
probability of Y = y given X — x multiplied by the frequency of X = x.

It has been shown that the property of Q alone is not sufficient for the
first non-trivial CA solution to give the correct ordering. We thus confine
ourselves to totally positive conditional pdf's.

THEOREM 3.1. Suppose that fγ\χ(y \ x) is TPQO on R2, in solving

(3.3), if
(i) L(u, y) = - Γ-oo lkK^ V)ds is

then the first non-trivial eigenfunction g\ (y) is monotone.

PROOF. Since fγ\χ(y | x) is TPoo and

, v _ fγ\χ(y I χ)fχ(χ)
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where
ΛOO

fγ(y)= / fγ\χ(y I χ)ϊx{χ)dχ
J — oo

is the marginal pdf of Y, by Lemma 2.1, fχ\γ(x \ y) is TPoo . Hence, by
Lemma 2.2,

/•OO

K(u,y) = / fγ\χ(u I x)fχ\γ(x I y)cίz
./—oo

is TPQO, &nd, as a result from Lemma 2.3, its first nontrivial eigenfunction
g\{y) has one node and no other zeroes. Differentiating both sides of (3.3)

λig[(y) = J — ^ - ^ g i ( u ) d u

ΛOO

= -5i(u)£K2/)Γ=-oo + / I(^,y)^(w)^
«/—oo

ΛOO

= / L(u,y)g[(u)du.
J -oo

by (ii). Thus #{(y) is an eigenfunction of L(u,y).
Since L(u, y) is ΓPQO , its first eigenfunction has no sign-change. It must

be g[(y)i because the derivatives of other eigenfunction of K(u,y) have at
least one node. Therefore, g\(y) is monotone. This completes the proof of the
theorem.

It is easily checked that the kernel function (3.4) satisfies the conditions
(i) and (ii) of the theorem.

3.3. Special Case when the First Non-trivial Eigenfunction Is Linear.
As the totally positive function that one would often think of is the ex-

ponential function, exp(^y), we now study the case when the conditional dis-
tribution of Y given X = x belongs to the exponential family. If the marginal
distribution of X is its conjugate prior distribution, then the first non-trivial
CA solution is in fact linear. The interesting lemma by Diaconis and Ylvisaker
(1979) is of key importance to this result.

LEMMA 3.1. Given the exponential family of distribution with pdf

dPθ(x) = exφθ - M(θ)]dμ(x).

Assuming the changeability of the order of differentiation and integration,
then

(i) E(X I θ) = M'(θ) and
(ii) E(Mι(θ) I x) = αx + 6(α,6 are constants)

iff the conjugate prior density is
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In order that aX + 6 be a proper Bayes estimate of Mf(θ) using square
error loss, the value of a is restricted by 0 < a < 1. For a proof of this lemma,
see Diaconis and Ylvisaker (1979). Now comes the result:

THEOREM 3.2. With conditional density ofY given X = x:

fγ\x(y I x) = ey*-MWμ(y)

and its conjugate prior density

fχ(x) = c(α,b)exp -x M(x) ,
I d CL J

the function g(y) — y — j-^j satisfies the equation

λg(y) = / K(u,y)g(u)du
J — oo

with λ = α.

PROOF. Recall the equation (3.2)

p 2 g ( y ) = E{E[g{Y) \ X ] \ Y = y } .

With g(y) — y — jz^ , we have, by Lemma 3.1,

E(g(Y) I X) = M'{X) - J—
1 — α

and

E \M'{X) - - ^
L 1 — α

= α(y
1 — α \ 1 — α

Note that fγ\χ(y \ x) is ΓPoo and hence so is K(u, y), this linear function
must be the first non-trivial eigenfunction of K(u,y).

4. Asymptotic Theory and Simulation. The observed contingency
tables may not satisfy the condition of being TP or Q matrices even when their
matrices of expectations are, due to the presence of random errors. In this
section, we assume that the elements in the contingency table are Poisson
variables with positive means. The CA solutions of the observed table are
then shown to be consistent estimators of their corresponding solutions of the
mean matrix, when the total number of observations approaches infinity. The
deviations between the observed and the estimated solutions are also shown
to follow the multivariate normal distribution, asymptotically.
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One may also suspect, when errors exist, whether using the first two

nontrivial eigenfunctions will result in better ordering. When the underlying

mean matrix is proportional to the standard bivariate normal density, simu-

lation study shows that it is not the case.

4.1. Asymptotic Results.

Let Λ = (λij) be a p x q(p > q) matrix with positive elements and

A = (dij) be p X q where a'^s are independent Poisson variables with means

nλij , respectively. Then, by the law of large numbers, we have

dij P λ 1 1

-^->χij a s n-+oo, t = l , , p , j = l , . . . , g ,

p
where —> means converging in probability. Hence

£ ^ " and

4 (R-1/2AC;x/2ACχι/2)

as n —• oo , where R(R\) and C(C\) are diagonal matrix with elements row

sums and column sums of A(Λ), respectively.

Suppose that the nontrivial CA solutions for A and Λ are {ίai^a^Va) &nd

(λ α , ί α ,τ/α), α = 1, ••-,?- 1, ί i >•••> A?_i, λi > ••• > λ g_i . By the

following relationship, which are equivalent to the CA problem

2(C1/2r) λ-(R~1

and the continuity of eigenvalues and eigenvectors as functions of the elements

of the matrix, we have

t l ^ λ l and C*^ya \ η a

as n -» oo , where C* = n~1C . Also because C* -^> C\, we have

THEOREM 4 . 1 . For a = 1,2,3, , g - 1,

ίa —• Xa and ya —> ηa as n —>• oo.

As to how big the deviations are, according to the central limit theorem,

dij has the following Z-representation (Chou and Hu (1992)),

-7- i n - l i f 2 ( ^ ) i
tj f y lj/jιj -\r n f-
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where = means that both sides have the same distribution, and Zy denotes
the standard normal variable. Hence

+ n 1 / 2di(i, j) + n-1d2(ij) + ,

where

with

aΛzij) χij r /T
= A / τ = " x , Λ V A i

a>2(Zij) λjj
= ~ T T

ij) = -H2(Zij)

,Ziq) =

i = l

Therefore we have the following ^-representation:

LEMMA 4 . 1 .

+ n" 1 /^ +
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where

W = (Wjk) and U = (Ujk), both are qx q and
p Γ \ \

-Σ

Perturbation method (Courant and Hubert (1953)) then gives the expan-
sion of the eigenvalues and eigenvectors of (i2~1/2AC~1/2)ί(iZ~1/2AC~1/2).
Denoting y* = C * 1 / 2 ^ and 77* = C\'2ηα , the results are

LEMMA 4.2.

where

7?*^ = HZιvα and η*α

i2) =

the rows of Hα are

hαβ = (λ« - * if and

(4.1)

and the elements of the vector vα and v* are

υ*β = tfβW < if α, and υαα = 0,

and <, ey Ία Ία

Since

+ + + «-^^) + n-i^) )

(4.2)
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cψ) and c | 2 ) = diag(cψ)wiere C^ = diag(cψ) and c | 2 ) = diag(cψ) with

4 " •

.(2)
L3

i = l
3/2 '

2 λ + j

8 9λ3/2

- i 2

i 1
2

P

i = l

The n " 1 / 2 terms in (4.1) and (4.2) are both linear in Z[AS, hence we have

THEOREM 4.2. Let the CA solutions for A and Λ are (tα,%α,yα)
(λ α ,£α,77α),α = 1>2, ••• ,q - 1, with 4 > > lq-\ and λi > > \q-\.

Then, for α = 1,2, , q — 1, as n —• oo

wiere

1

and

2L/Q; = COV ( O J Y 7/ α

v -f- O ^ C J Y ^?Q:J

THEOREM 4 . 3 . Under the same conditions and notations as Theorem
4.2, we have for α φ β, α, β = 1,2, , q - 1,

Vn(y«-nα,y/J-^)^JV(O,Σ),

wiiere

Σ = \ytα y

and

I* U-l/2 *(1) , ^(1)^1/2.
Λ

4.2. Simulation Study.
Though the sample CA solutions are consistent for their corresponding

population CA solutions, one is curious about whether the ordering of the rows
obtained from first two CA solutions is better than that obtained from the first
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CA solution only. A simulation is done when the cells of the population table

are standard normal densities:

-2pxy) )

Remember that for this function, the first two non-trivial CA solutions are

Hι(x) = x and Π2(x)/V2 = O 2 - 1)/Λ/2 , respectively.

For each p = 0.1(0.1)0.9, an 11 x 11 table is generated where each cell

is a Poisson observation with mean nf(x{,yj), i, j = 1,2, ••• ,11. Sample

first and second CA solutions, (yit,?/2i)^ = 1,2, , 11, are obtained. A

first ordering is given by the orders of yu,i = 1,2, ••• ,11. A second one is

obtained by projecting the points (yu^y2i),i = 1,2, — ,11, to the parabola

y — (# 2 — l)/y^. Their respective rank correlations with the ordering of

2/j, j = 1, ,11, are calculated. For each n=50, 100, 200 and 500, the

experiments are repeated 500 times. The averages of the absolute values of

the rank correlations, r\ and r2 , are given in Table 4.1.

From the table, it is seen that both rι and r2 increase as n increases. The

r2 values are all smaller than their corresponding τ\ values. The interpretation

is that, in the bivariate normal case, there is no need to consider the second

eigenfunction. Using two eigenfunctions merely increases the sampling errors

and hence decreases the precision.

5. Conclusion and Discussion. It is seen that in order to tackle

the problem of ordering, total positivity is the right condition to consider.

However, the sufficient condition given in Theorem 3.1 is not a pleasant one.

It is difficult either to construct a bivariate distribution that satisfies this

condition, to check whether commonly used distributions satisfy it or to prove

whether bivariate normal is the only distribution that satisfies it. Also a

question is about the order of TP. According to Fisher's example, given in

Section 2, TP2 is necessary. It is not difficult to check that the uniform density

considered in Section 2 satisfies the condition of being TP2 , but it is not ΓP3.

As CA leads to correct ordering, an interesting question to ask is whether TP2

is also sufficient.

Another problem worthy of further study is that of convex curve fitting.

It is related to the simulation of Section 4.2. According to Lemma 2.3, the

second non-trivial eigenfunction of a TP kernel has two nodes. It is a quadratic

function when the kernel is a bivariate normal density. For general TP kernels,

it is natural to try to fit {(yit, y2i), i = 1,2, ,p) with a convex curve to which

the projections of the points offer an ordering.



ROUH-JANE CHOU 209

n =50

TABLE 4.1. Comparison of orderings using first
one or first two CA nontrivial solution

n=100

rho

.1

.2

.3

.4

.5

.6

.7

.8

.9

row 7*1

.3537

.4439

.5995

.7811

.8695

.9298

.9279

.9173

.8200

col T\

.3561

.4415

.5974

.7778

.8694

.9318

.9345

.9103

.8242

row Γ2

.3296

.4127

.5343

.6978

.7739

.8230

.8080

.8059

.7696

col T<ι

.3421

.4097

.5309

.6847

.7586

.8045

.8020

.7968

.7525

rho

.1

.2

.3

.4

.5

.6

.7

.8

.9

row 7*1

.3829

.5523

.7975

.9087

.9539

.9763

.9870

.9840

.9584

col 7*i

.3607

.5633

.8101

.9047

.9606

.9767

.9860

.9888

.9571

row 7*2

.3608

.4974

.6921

.8094

.8470

.8392

.8101

.7779

.7953

col 7*2

.3409

.5892

.7088

.8103

.8338

.8293

.8224

.7991

.7796

n

rho

.1

.2

.3

.4

.5

.6

.7

.8

.9

=200

row 7*1

.4242

.7625

.9220

.9675

.9823

.9892

.9944

.9959

.9985

col 7*i

.4522

.7585

.9179

.9586

.9815

.9888

.9942

.9968

.9989

row 7*2

.3886

.6809

.8127

.8439

.8354

.8161

.7747

.7835

.7905

col 7*2

.4119

.6707

.8169

.8368

.8377

.8144

.7764

.7616

.7767

n

rho

.1

.2

.3

.4

.5

.6

.7

.8

.9

=500

row 7*1

.6158

.9357

.9763

.9892

.9942

.9964

.9988

.9997

.8200

col 7*1

.6508

.9366

.9774

.9895

.9951

.9967

.9985

1.0000

.8242

row 7*2

.5633

.8310

.8597

.8161

.7924

.8003

.8002

.7811

.7696

col 7*2

.5786

.8301

.8487

.8140

.7918

.7959

.7820

.7792

.7525

Vι = correlation between the original order and the order determined by the first CA

nontrival solution.

7*2 = correlation between the original order and the order determined by the first

two CA nontrivial solutions.

There is no doubt that the comparison between CA and MDS as seriation
techniques remains to be of chief interest.
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