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DETECTING CLUSTERS IN DISEASE INCIDENCE

By DANIEL RABINOWITZ
Harvard School of Public Health

This paper is concerned with searching for localized environmental risk
factors. The approach taken here uses case-control data to search for clusters of
disease cases. In this context, case-control data means a sample of locations as-
sociated with diseased subjects (cases) and healthy subjects (controls). A cluster
of cases is a region where the number of cases appears to be larger than what
would have been expected had the cases occurred randomly in the underlying
population. Clusters indicate areas where localized risk factors are likely. The
methodology developed here produces a random field over the region where the
cases and controls are located. The field is large where there are clusters of
cases. Asymptotically, as the number of cases and controls becomes large, the
field tends in distribution to a smooth Gaussian field. The operating character-
istics of inferential procedures based on the random field may be approximated
by considering the random field’s limiting distribution.

1. Introduction. Environmental risk factors such as toxic spills, con-
taminated drinking water and radiation may increase the incidence of cases
of birth defects, cancer or disease. When exposure to a risk factor occurs in
small areas or during small periods of time, the increased incidence of cases
may take the form of a spatial or temporal cluster. If a cluster of cases is
detected, health workers can scrutinize the location of the cluster and, one
hopes, discover and eliminate localized risk factors that may have caused the
increased incidence. Decisions to further investigate locations identified by a
cluster detection methodology must be made with reference to the probability
of incorrectly detecting a cluster where there is no increased risk.

Case-control data is a sample of locations associated with diseased sub-
jects (cases) and a sample of locations associated with healthy subjects (con-
trols). This paper presents a method for using case-control data to detect
clusters of cases. The control data is used to account for non-homogeneities
in the density of the population from which the cases arise as suggested in
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Cuzick and Edwards (1990). An approach to approximating the probability of
detecting clusters when there are no areas of increased risk is also presented.

Cluster analyses are undertaken with various purposes. In some situa-
tions, it is of interest to test whether there is a cluster near some posited source
of risk. An example is Diggle (1990). In some situations it is of interest to
determine whether cases tend to arise in clusters as opposed to being spread
out uniformly. Examples are Tango (1984), Nagelerke et al. (1988) and Fraser
(1983). In other situations, the purpose is to find clusters of cases that may
indicate exposure to localized risk factors. Examples are Besag and Newell
(1991) and Oppenshaw et al. (1987). It is the third purpose, finding clusters,
that motivates the methods explored here.

In searching for clusters of cases for the purpose of discovering localized
environmental risk factors, a main concern is to insure that apparent clusters
are not simply artifacts of variations in the spatial or temporal density of the
underlying population from which the cases arise. Areas where the underlying
population is dense will contain more cases than will areas where the underly-
ing population is sparse. If non-homogeneities in the density of the population
are not accounted for, then these areas where the incidence of cases is high
may be mistaken for areas of increased risk.

Two approaches are generally taken in response to the concern. One is
to use controls or historical data to form an estimate of the the density of the
underlying population, and then to compare the locations of the cases to the es-
timated density. Examples are Diggle (1990) and Ohno et al. (1979). Another
is to model the density of the population at risk as a nuisance parameter, and
to take as the reference distributions to which test statistics are compared,
the test statistics’ conditional distributions given sufficient statistics for the
nuisance. Examples are Whittemore (1987) and Weinstock (1981). The con-
ditioning approach, which is taken here, sidesteps the difficulties inherent in
estimating the density of the underlying population.

Often, cluster analyses are based on a discretization. The spatial or
temporal region where the cases and controls are located is partitioned, more
or less arbitrarily, into disjoint units. An unusually large number of cases in
a unit or in adjacent units is considered evidence of localized increased risk.
Examples are Raubertas (1988) and Ederer et al. (1964). Ederer points out
the importance of choosing the partition without reference to the data.

An alternative approach, based on scan statistics, takes into account the
fact that clusters are not likely to occur in arbitrarily delimited units. In a scan
statistic approach, a statistic chosen to be sensitive to a local increase in the
incidence of cases is evaluated at each point of the spatial or temporal region
of interest. The function that maps each point of the region to its associated
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value of the test statistic forms a random field over the region. Points where
the field takes on extreme values are considered locations where there may be
localized risk factors. An example is Wallenstein (1980). The methodology
developed here is a scan statistic approach.

All cluster analyses must grapple with the question of what sort of clusters
are envisioned as likely. In scan statistic approaches, the question manifests
itself as the choice of the scan statistic that is to be computed at each point
of the spatial or temporal region. In approaches based on discretization, the
question manifests itself as the problem of choosing the unit size and of how
the information in nearby units is to be combined. The methodology explored
here is flexible enough to accommodate various degrees of knowledge about
the sorts of clusters likely to be induced by risk factors of interest.

A scan statistic approach is an example of multiple testing; the hypothesis
that there is a cluster located at any given point is tested at the infinitude
of points of the spatial or temporal region of interest. Deciding what sort of
p-value should be associated with the tests or how to compute a p-value can be
a formidable problem. To the policy maker faced with the decision of whether
or not to expend resources examining area pointed out by an extreme value of
the random field, the probability that a cluster will be detected where there
are no localized risk factors is an important quantity. On the other hand, to
someone at a location where excess risk is indicated by an extreme value of the
random field, it is irrelevant that tests were performed at other locations. In
any case, it is useful to understand the probabilistic behavior of the random
field that results from a scan statistic approach.

In order to evaluate the statistical significance of an extreme value of the
scan statistic achieved at some point in the region, it is often suggested that
the the extreme value be compared to the distribution (under the hypothesis of
no localized risk factors) of the maximum of the random field. In a few cases,
especially ones in which the scan statistic corresponds to the number of cases
in a fixed window of time, exact or asymptotic formulae for the distribution of
the maximum have been derived. Examples are Huntington and Naus (1975),
Gates and Westcott (1985), Glaz (1989) and Berman and Eagleson (1985).
Loader (1991) treats some more complicated situations. Sometimes it is sug-
gested that distribution theory be determined via Monte Carlo simulation. An
example is Day et al. (1988). Here, an approach based on approximating the
distribution of the random field by the distribution of a Gaussian field with
the same covariance structure is used to derive a formula for tail probabilities
of the maximum.

In the next section, the kind of case-control data to which the methodol-
ogy is applicable is described and a model for the data, under the hypothesis of



258 DETECTING CLUSTERS IN DISEASE INCIDENCE

no localized risk factors, is proposed. The model is then extended to a family
of alternatives which are used to suggest a scan statistic. The approximation
to the tail probabilities for the maximum of the random function that results
when the scan statistic is computed at each point of the region of interest is
then presented. The third section contains a heuristic derivation of the ap-
proximation to the distribution of the maximum. In the fourth section, the
methodology is applied to some real data and the results of some simulation
experiments are presented.

2. Detecting Clusters. This section begins with a description of the
sampling scheme assumed for the case-control data. Then, a non-parametric
model for the locations of the cases and controls under the null hypothesis of
no localized risk factors is posited. In order to develop a statistic sensitive
to a localized increased in the incidence of of cases, the model for the null
hypothesis is embedded in a semi-parametric family of alternatives reflecting
localized increased risk, and the model is used to derive a likelihood-based
score statistic. A normalized version of the score is suggested for use as a scan
statistic. When the scan statistic is evaluated at each point of the region of
interest, a random field results. Large values of the field indicate points where
there is an increased incidence of cases and where increased risk is likely. This
section concludes with a description of an approximation to tail probabilities
for the maximum of the field. The approximation may be used to assess the
statistical significance of large values of the field.

The methodology developed here requires a random sample of the lo-
cations of cases and controls. Cases are subjects with a disease that may
be associated with localized environmental risk factors. Controls are healthy
subjects drawn from the same underlying population as the cases. Because
the controls are used to adjust for non-homogeneities in the density of the
underlying population, if there are no localized risk factors, the density of the
locations of the controls must be the same as the density of the locations of the
cases. If the cases and controls are located in a spatial domain, the locations
take the form of two dimensional vectors. If the cases and controls occur in
space and time, then the locations take the form of three dimensional vectors.

Let m denote the number of cases and let n denote the number of con-
trols. Denote the locations in the combined sample of cases and controls by
Z1,L2,...,Tntm- A probabilistic model for the sampling scheme, under the
hypothesis of no localized risk factors, is that each subset of the combined sam-
ple that contains m elements is equally likely to be the subset associated with
the cases. That is, given the number of cases and controls, m and n, and given
the locations of the combined sample of cases and controls, &1, Z3,. .., Znitm,
the subset of locations associated with cases behaves like a random subset
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of {z1,22,...,Zn4m} drawn uniformly from all subsets of size m. In what
follows, this model will be referred to as Hg.

In order to develop test statistics, it is convenient to embed the null
hypothesis, Hp, in a family of models similar to the models considered in
Diggle (1990). Suppose that, in the absence of localized risk, the locations of
the cases and controls are generated by two Poisson processes. Suppose also
that the rate for the process generating the locations of the cases is pA(z) and
that the rate for controls is A(z). Here, the argument z takes values in the
whole spatial or temporal region of interest. The unknown function A reflects
non-homogeneity in the spatial or temporal distribution of the population at
risk. The unknown constant p reflects that, although the controls arise from
the same population at risk as the cases, they may not arise with the same
frequency.

In order to use this Poisson process model to develop a test statistic
sensitive to localized increased incidence of cases, the model is extended to a
family of alternatives that correspond to increased risk around a given location,
say t. Consider alternatives, indexed by [, where the rate for the process
generating cases is replaced by a rate of the form pA(z)ef9(®?), Here g(z,t) is
a known function that reflects the distance between locations z and t. If g(z,t)
were large when z is near ¢, and small for z away from ¢, then for positive g,
the ratio of the rate for cases to the rate for controls would be larger for z
near t than for  away from ¢. The larger that § is, the more extreme would
be the differences in the ratio. In this way, # would parameterize a family of
alternatives that reflect increased risk near t. The model is semi-parametric
in the sense that ) is an infinite dimensional nuisance parameter while 3 is a
finite dimensional parameter of interest.

Let z;, i = 1,2,..., 2p4m, denote the indicator that the i** location is
associated with a case, so that z; is equal to 1 if the i location is associated
with a case and z; is equal to 0 otherwise. Under the hypothesis, § = 0, the
conditional distribution of the z;, given the z’s, n, and m is the same as the
the distribution associated with the null hypothesis, Ho. That is, all subsets
of cases are equally likely. In this sense, Hp is embedded in the family of
alternatives.

The scan statistic advocated here may be derived by considering the prob-
lem of testing whether 8 = 0 in the model for increased risk. The likelihood
for the semi-parametric model is given by

n+m

exp {—-//\(x) (1 + peﬁg(z,t)> dz} H (,\(z)peﬂg(z,t))za )\(z)(l—zi)_

i=1
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The conditional likelihood of the 2's, given the &’s, n and m is
[IH™ ezifal@int)
Ew €S H?:lm el{i € w}ﬁg(z,’,t) ’

where § is the class of subsets of {1,2,...,m + n} of size m. Inference for 8
may be based on the score from the conditional likelihood:

n+m

T, = S0, = > (= po(an) = 50)

where p is the proportion of cases in the combined sample of cases and controls,
m/m + n, and §(t) is the sample average of the g’s,

1 n+m
pr 2. g(z;,t).

The following argument suggests that when g is chosen so that the family
of alternatives reflects increased risk around a point ¢, the score from the
conditional likelihood is sensitive to an increased incidence of cases near to
t. Consider again the situation in which g(z,t) is large when z is close to t,
and small when z is far from ¢. Suppose that the proportion of cases at the
locations near ¢ is larger than the proportion of cases at the locations away
from t. Then, z; — p would be, on average, greater than zero among those i for
which g(z;,t) — g(t) is positive, and, on average, less than zero among those 7
for which g(z;,t) — g(t) is negative. It follows that in such situations, T; would
be large and positive. Similarly, if the proportion of cases at the locations near
to t is close to the proportion of cases at the locations away from ¢, then T} is
likely to be around 0. In this way, the value of T; indicates whether subjects
near to t appear to be at excess risk for becoming a case. As will be explained,
the scan statistic advocated here is a normalized version of T.

If attention is restricted to the conditional likelihood, then there is no
need to estimate A, the density of the population from which the cases and
controls arise. Furthermore, the score from the conditional likelihood has
an optimality property in the context of the semi-parametric model. In the
asymptotic scenarios in which, as N tends to infinity, A takes the form N g
while p remains fixed, the conditional maximum likelihood estimator, given
by solving the score equation

d
aft(ﬁ) =0

for 3, has a variance equal to the asymptotic variance of the maximum like-
lihood estimate of 8 in a particular parametric sub-model. The import of
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this result is that, in scenarios in which the numbers of cases and controls are
both large, and in which there is no auxiliary information about the density
of the underlying population from which cases and controls arise, restricting
attention to the conditional likelihood does not lead to any loss of asymptotic
efficiency.

The parametric sub-model alluded to above may be associated with the
likelihood, parameterized by o, 3 and p,

n+m 2
exp {._ / NAO(x)eah(zvt) (1 + peﬂg(xvt)) dx} H NAO(xi)eah(ziyt) (peﬁg(zivt)) ,
=1

where
h(x’t) = g(:v,t) - p,(t)
and where [ ho(@)(1 + P)g(er 1)d
_ ol +p)g(z,t)dz
HO = T Ro(@)(L + p)da
Let v equal

L [ XN+ ol 0

Then the information in the parametric sub-model evaluated at @ and 8 both
equal to 0 is nv. Observe that at 8 = 0, the information in the conditional
likelihood is

n+m

o(t)=p(1-p)(1-6) Y (g(=i,t) - §(t))*,
1=1

where § = 1/(n+ m — 1). That the conditional likelihood estimator is asymp-
totically as efficient as the maximum likelihood estimator in the parametric
sub-model follows therefore from a law of large numbers result: as N tends to
infinity, o(t)/nv tends to 1 in probability.

Now, consider the function g. It should be chosen to be sensitive to
the kinds of clusters that are envisioned as probable. If it is thought that
likely environmental risk factors produce the disease in question only in nearby
subjects, then g(z,?) should be large for = close to t and should decrease quickly
as ¢ moves away from ¢. If it is thought that the probability of the disease is
raised for subjects only moderately close to a risk factor, then g(z,t) should
decrease slowly as £ moves away from ¢.

When there is no clear notion of what kinds of clusters are probable, then
T; might be evaluated for several choices of g. In fact, the test statistic could
be evaluated as as the g function ranges over a continuum of possibilities, and
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the supremum of normalized versions of the resulting values might be used as
a test statistic.

The g function or functions might also be chosen to reflect characteristics
of the region known to influence how exposure to a risk factor at one location,
say t, might be experienced by a subject at another location, say . Geographic
distance may not be adequate for expressing the influence that a localized
risk factor has on the likelihood of disease at nearby locations. For example,
even though z and ¢ might be close, if they were separated by a a mountain
range that blocks the spread of airborne toxic materials, then they might be
appropriately treated as far apart. On a smaller scale, if the location z were
contained in some neighborhood near to the location ¢, but if the inhabitants
of the neighborhood were thought not to spend time in the area around ¢, then
it could be appropriate to treat  and ¢ as far apart.

The derivation in the next section will rely on the assumption that g
is smooth. In the examples of the fourth section, g(z,t) is of the form
e—nllz—tll‘/(l + e—nllz—tll‘),

Now, consider how T; may be used to define a score statistic that may be
evaluated at every point of the spatial or temporal region of interest. (Strictly,
it is not possible to evaluate a statistic everywhere in the region, but the
test statistic may be evaluated over a fine grid of locations.) It is desirable
that values of the test statistics computed at different locations be roughly
comparable. If they were, then points where localized risk factors are most
likely to be found could be determined by finding the largest values of the
random field. The statistic T} has the disadvantage that at different values of
t, the conditional variance, o(t), is not the same. This suggests that it would
be easier to compare evidence of excess risk at different locations using the
normalized version of T3, W; = a‘%(t)Tt. The variance of W; is equal to 1 at
every t. This makes values of the test statistic evaluated at distinct locations
at least roughly comparable.

When T; is evaluated at only one g function, points where W; is large are
to be considered locations where localized risk factors are likely, and worthy of
further investigation. When T; is evaluated over a continuum of g functions,
indexed, say by 7, points where the maximum (as 7 varies) of W; are to be
considered locations where localized risk factors are likely. Alternatively, since
the form of T} is reminiscent of a kernel density estimate, the parameter 7
might play a role similar to that of a band width and n might be chosen
subjectively after an inspection of the field.

For large n and m, under broad regularity conditions on g and the dis-
tribution of the z;, under Ho, the conditional distribution, given the z;, n and
m, of W, evaluated at a particular point ¢, is approximately that of a standard
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normal. The conditional covariance of W; evaluated at two points, t; and i,
is

n+m

Tuta = 073 (1) 072 () Y (9laits) = §(t1))(9(i, t2) — §(t2))p(1 — p)(1 — 6)

=1

where § = 1—1/(n+ m — 1). As t varies, W; forms a random field. Under
broad regularity conditions, the conditional distribution of W, as a field, may
be approximated by the distribution of a smooth Gaussian field with covariance
Oty,ta-

The decision to investigate further a cluster indicated by a large value of
W; must depend in part on the statistical significance of the detected cluster.
In order to evaluate how unusual extreme values of W; are, it is useful to have
an approximation to the conditional distribution of the maximum of the field.

Denote by M, sup, W;, the maximum of the field. An approximation to
the tails of the distribution of M based on the Gaussian field approximation
is

P{M > b}~y = / (2m) 5551 (8) Al dt
A

+1 / b1=2(2m)~ 5 o(b) || 7 dt
2 Jaa

where ¢(b) is the density of a standard normal; d is the dimension of the
spatial or temporal region of interest; A is the region and 0A is its (smooth)
boundary; —A; is the matrix of mixed partial derivatives with respect to s of
05, evaluated at s = t; |A¢| is its determinant; and |A}| is the determinant
of PTA;P;, where P; is a d by d — 1 matrix comprised of orthonormal vectors
orthogonal to n¢, a vector normal to the tangent to dA at t.

The accuracy of the approximation is sensitive to the extent to which the
marginal distribution of W; is close to Gaussian. When g or the configuration
of the z; is such that for some values of ¢ only a few locations contribute
substantially to W;, or when n and m are small, the Gaussian approximation
may be poor. In such situations, simulations of the conditional distribution of
the field, although time consuming, might be more appropriate than relying
on the approximation. The integrals in the formula for 4, may be computed
approximately by sums.

When the scan statistic is to be evaluated over a continuum of g functions,
say indexed by 7, as well as over the spatial or temporal region of interest,
some modifications must be made to the approximation. The region, A, should
be replaced by the set of (¢,7) pairs for which the statistic is evaluated and
the boundary of A should be replaced by the boundary of the (¢,7) pairs; d
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should be replaced by d + d’, where d’ is the dimension of 7; and —A; should
be replaced by the matrix of mixed partials with respect to ¢ and 7.

The approximation to tail probabilities for M is appropriate as the dis-
tribution of W; approaches the distribution of a smooth Gaussian field with a
covariance which is of the form, for A small,

Ott+h = 1- hTAth + O(h3)

In the third section, the approximation is developed heuristically. At the
end of the third section, a modification to the formula, applicable when the
supremum is taken over only a finite grid of values of the field rather than over
the whole region, is described.

Finally, for computational purposes, it is useful to note that the (¢, é3)th
entry of A; may be written as

Bi, (1)Bi, (1) _ Ciyip (%)

o?(t) o(t)
where wim o )
Bu()= 3 (0= o(at) — o 90)) o(a0) ~ 9(0),
=1 u 1
and where
(L o 9 o
Ciyin(t) = ; (ét—u g(zi,t) — ot g(t)) (a; g(zi,t) — a1, g(t)) -

Here, 3% means differentiation with respect to the i** component of ¢.

3.The Approximation. In this section an approach to deriving the ap-
proximation of the tail probabilities of the supremum over t of Wy, P {M > b} ~
Yb, is discussed heuristically. There are three steps to the derivation. The first
step is the approximation of the distribution of the supremum over ¢ of W; by
the distribution of the supremum over ¢ of Wy, where W is a smooth Gaussian
field with the same covariance structure as W. The second step isA'Ehe approx-
imation of the probability that there exists a local maximum of W exceeding
b, for large b, by the expected number of such maxima. The third step is the
approximation of the expected number of local maxima exceeding b, for large
b, by 7. The validity of this approach follows from the fact that W exceeds b
if and only if there exists a local maximum of W exceeding b.

An approach based on differential geometric arguments to approximating
the distribution of the maximum of smooth Gaussian fields is explored in
Knowles and Siegmund (1989), Sun (1990), Johnstone and Siegmund (1989)
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and the references therein. The approach taken here rests on the notion,
suggested in Aldous (1989), that for large b the point process of local maxima
exceeding b behaves approximately like a Poisson process with a low intensity.
The goal of this section is a presentation of the proofidea rather than a rigorous
treatment.

For the first step in the derivation, note that the validity of the approx-
imation of the distribution of the supremum of W; by the distribution of the
supremum of a Gaussian field with the same covariance structure would fol-
low from the continuous mapping theorem if weak convergence of W to W
(with respect to the uniform metric) could be established. In suitably regu-
lar asymptotic scenarios in which the number of cases and controls tend to
infinity on the same order, convergence of the finite dimensional marginals
might be demonstrated by an adaptation of the methods of Holst (1979) of
Rosén (1972). Tightness might be approached with the methods of Bickel and
Wichura (1971). In what follows, it is taken for granted that the distribution of
the supremum of W is well approximated by the distribution of the supremum
of W.

Consider next the third step of the derivation, the approximation of the
expected number of local maxima of 1% exceeding b by 7. The local maxima
may be divided into two subsets, local maxima in the interior of the region A
and local maxima on the regions boundary JA. The two terms in the definition
of v, correspond to approximations to the expected number of maxima in each
subset.

A local maximum of W occurs at a point ¢ on the boundary if and only
if the following two conditions hold: as a function whose domain is restricted
to the boundary of A, W achieves a local maximum at ¢; and along paths that
pass from the interior of A, through ¢, to the exterior of A, W is increasing
at t. Given that W, as a function whose domain is restricted to the boundary
of A, achieves a local maximum greater than b at a point ¢, the conditional
probability that W is increasing on paths that pass from the interior of A,
through ¢, to the exterior of A is 1/2. This suggests that the expected number
of local maxima of W exceeding b, for W as a function whose domain is
restricted to the boundary of A, is twice the expected number of local maxima
of W exceeding b occurring on the boundary.

The first term of 7, is the integral over the interior of A of an approxima-
tion to to the intensity of the point process of local maxima of W exceeding
b. The second term is 1/2 times the integral over the boundary of A of an
approximation to the intensity of the point process of local maxima of W ex-
ceeding b for W as a function whose domain is restricted to the boundary of
A. The derivations of the approximations to the intensities of the two point
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processes of local maxima are similar, so only the approximation of the process
on the interior is considered here.

Every local maximum of Wt exceeding b in the interior of A is a point
where W is greater than b and where the gradient of W VW is equal to 0.
Not every such point is a local maximum because of the possibility of saddle-
points and local minima. But, as will become apparent, for large b, points
where W is greater than b and where VWt is equal to 0 are points where the
the matrix of mixed partial derivatives of W, with respect to t, D? Wt, is with
high probability negative definite. This suggests that in order to approximate
the intensity of the point process of local maxima of w exceeding b, it suffices
to approximate the intensity of the point process of locations where W exceeds
b and VW is equal to 0.

The intensity of the point process of locations where W exceeds b and
VW is equal to 0 is now considered. Let ¢ be a fixed but arbitrary point in A
and let R be a small region containing ¢. Denote the volume of R by vol(R).
At ¢, the intensity of the point process of locations where W exceeds b and
VW is equal to 0 is

lim P{E!s € Rs.t. W, > b; VW, _0}/vol(R)
vOl(R)—0

The Taylor expansions
W ~ W, + VW,(t—s)
and
VW, ~ VW, + D*W;(s —t)
suggest approximating the probability above by

P{W,>b; 3s € R s.t. VW, + D*Wj(s — t) = 0}/vol(R)
= P{W; > b;[-D*W,]"'VW, +t € R}/vol(R)

= / @(@) P{[-D*W,|"'VW, + t € R | W = i, }di/vol(R)
b

To evaluate the conditional probability in the integrand above, the joint
conditional distribution of D2Wt and VWt given Wt is required. The content
of the following computation is the idea, developed in J7 of Aldous (1989) and
in Leadbetter et al. (1983), that conditionally, given a large value of the field at
a point ¢, and given also that the gradient of the field at ¢ is zero, the Jacobian
of the field at ¢ may be treated as as the constant, —w;A;, and also that the
covariance of VWt is A¢. By differentiating the expressions EWtWt =1



D. RABINOWITZ 267

and EW,W, = o(s,t), and interchanging the order of differentiation and
expectation, the following relations may be derived:

EVW,VWT = Ay

EVWtWt = 0;
and o
ED2WtWt = —At.

These relations, together with the joint normality of W, VW and D*W suggest
approximating the probability in the integrand, as vol(R) tends to 0, by

P {[m, +0,(D] VW, + t € R} ~ vol(R)(2m) % (5] + (=) |AJ?

Combining these results with the relation

| etwpwtan = 11100 + 0 (t)
suggests approximating the intensity by
(2m)~ 5641 A7 .

Finally, consider the second step, the approximation of the probability of
at least one local maximum of W exceéding b by the expected number of such
local maxima. For the sake of simplicity, restrict attention to the interior of
A, and restrict attention to points where W, exceeds b and where VW is equal
to 0 rather than local maxima.

Let Ny denote the number of points where W exceeds b and VW is equal
to 0. In order that
EN, — P{N, > 1}

is of lower order than F N, it suffices that for all ¢,
supE{Nb—1| Wth; VWt=O}

tends to 0 as b becomes large. The supremum will not tend to 0 for an arbitrary
Gaussian field, but the following heuristics suggest that it should be the case
for fields with the same covariance structure as W when g(z,t) is chosen so
that the score statistics T; are sensitive to a localized increase in the incidence
of cases.

Let ¢ be fixed but arbitrary and consider the conditional distribution of
N, — 1 given that VW; is equal to 0 and that W; is equal to w; for some
wy greater than b. To observe that the conditional expectation of Ny — 1 is
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small, it is convenient to divide the points where VW is 0 and W is greater
than b into two subsets, those near to ¢ and those away from ¢. Let R be a
fixed but arbitrarily small open region containing . The representation for
Ws conditional on Wt = w; and VW; = 0,

— ~ 1
W, ~ @y(1— 5(3—t)TAt(s—t)+Op((s—t)3),
suggests that, if R is sufficiently small, as @; becomes large, the contribution
by the points in R\{t} to the conditional expectation of N, — 1 tends to 0.
Let £(t,s) denote EVW;W,. Given W; > band VW, = 0, the
conditional distribution of
. W, — o (s, ),
* V1= 0(s,t) = &(s,)TE(s, t)

for s outside of R is that of a smooth mean 0 variance 1 Gaussian field. Let
b*(t, w;) denote

b—o(s,t)w:
V= %(s5,0) — £, 0P (5, 1)
Then the conditional probability that W exceeds b is bounded by the condi-
tional probability that Wy exceeds b*(2, Wt) It follows that if, conditionally

given W, > band VWt = 0, b*(t, Wt) tends to infinity, then the contribution
to the conditional expectation of Ny — 1 by points outside of R tends to 0.

uP

To observe that it is not unreasonable that b* should tend to infinity for
the kinds of fields considered here, note that if the g(z,t) are chosen so that
the score statistics are sensitive to a localized increase in the incidence of cases,
then for ¢ away from s, g(z,t) and g(z, s) will not be large at the same values
of z. This suggests that for s outside of R, o(s,t) will be bounded away from
1. Also, conditionally given W, > b, W, — b tends to 0 in probability as b
becomes large. These two considerations, together with the definition of b*,
suggest that as b becomes large, b* will tend to infinity.

It is interesting to compare 7 to the approximation in J7 of Aldous (1989)
and to the approximations in Corollary 2 of Knowles and Siegmund (1989).
The first term of 7, is the natural analogue of J7 for non-stationary processes,
and corresponds to the first term of the Knowles and Siegmund formula. The
second term in 7, corresponds to the second term of the Knowles and Siegmund
formula. It would be interesting if the difference between the expected number
of regions exceeding b and the probability that the field ever exceeds b could be
related to the local and global overlapping discussed in remark (iz) following
Theorem 1 of Knowles and Siegmund.
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Note that when Wt is equal to w;, and a local maximum occurs at t +
h, for h small, the approx1mat10n of —D?W, by w:A; suggests that WH_h
is approximately @; + 3 hTAth This in turn suggests that if the field is only
evaluated at a finite set t1 , t2, ...tar, tail probabilities for the observed maximum
might be approximated by the probability that the maximum over the whole
field exceeds the envelope,

M 1
b(t) = b+ min (¢~ t)T As(t - ;).
This in turn suggests substituting b(¢) for b in the formula for ~,.

4. Examples and Simulations. In this section, the methods are
applied to the data set considered in Diggle (1991). The locations associated
with the cases and controls were normalized so that the locations lay in the
unit square. The function g(z,t) was taken to be e~llz=tl* /(1 4 e=7ll==tll*),
with 7 equal to 30.0, 150.0 and 900.0. Low values of 7 correspond to large
clusters; high values of 7 correspond to small clusters. For each value of 7,
the scan statistic was evaluated at the points ) for ¢ and j equal to
0,1,...,15.

In order to compute 73, the integral in the first term,

/ |At|% dt7
A

(15’ 15

was approximated by

15 15
Z Z |A £, ’
1515
=1 j=1
That JA is not smooth was ignored in estimating the integral in the second
term of 7s,
/ |AL)? dt,
9A
by
15 1 15 1
. T2 . T2
Z; {(1L0AG 01,07} /16 + Z {(1,0)A (1,07} /16
15 15
+Z {0,144, 1)T} /16 + Z {©O.108,,4)0, 1)T} /16.

=0

Figure 1 shows a plot of the case-control data treated in Diggle (1990).
The cases, plotted with dark dots, are 58 cases of cancers of the larynx. The
controls, plotted with light dots, are 978 cases of cancers of the lung. The
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Figure 1

goal of the original analysis of this data was to determine if proximity to an
incinerator appeared to be associated with an increased risk of cancer of the
larynx. Proximity to the incinerator was not thought to increase the risk of
cancers of the lung. Figures 2a-2c show a contour plot of the realization of
the random field, for each of the three values of 7, superimposed over the
case-control data. The location of the incinerator is represented by a triangle.

For 1 = 30.0, the contour plot attains a maximum in the lower left hand
corner, indicating an excess of cases on the periphery of the region where the
cancers occur. When 7 is 150, a peak in W materializes near the incinerator.
The peak is more pronounced when 7 is 900.0. The increased incidence of cases
near the incinerator was found to be statistically significant by the methods
in Diggle (1990).

Before considering the outcome of applying the approximation, 73, to the
observed maxima in the data sets, it is useful to examine the results of some
simulation experiments. In order to check the validity of the approximation in
the examples, the conditional distribution under Hy of W, and the distribution
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Figure 2b. Bandwidth = 150.0
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Figure 2c. Bandwidth = 900.0

of the Gaussian field W with the same covariance as the conditional covariance
of W was simulated for each of the data sets for 5 equal to 30.0, 150.0 and 900.0.
The simulations were based on the IMSL routines RNPER and DRNUN.

In each simulation, 900 replication of the fields were computed. With
each replication, the maximum over the 16 x 16 grid was recorded. Quantiles
of the empirical distributions from the simulations, together with the quantiles
given by inverting the approximation +; are recorded in Tables 1.

It may be observed from the tables that the approximation to the quan-
tiles given by inverting -, improves as the quantiles increase. Also, the approx-
imation is a fairly accurate approximation to the distribution of the maximum
of the Gaussian field. For large 7, when g(z,t) decreases quickly as x moves
away from ¢, the Gaussian approximation to W is fairly inaccurate. Gener-
ally, the analytical approximation is a vast improvement over the naive p-value
given by inverting the marginal N(0,1) distribution, but it can be quite in-
accurate even for fairly large values of b when the Gaussian approximation is
poor.
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Table 1
Cancer Data
Quantiles of the approximation and of the empirical distributions
of the supremum of W and the supremum of W

n=30.0 n = 150.0 n = 900.0
ath quantile of: ath quantile of: ath quantile of:

«a w W approx W W  approx W W  approx
0.990 3.25 3.35 325 3.83 339 345 496 3.56 3.73
0.975 3.04 299 296 3.54 3.25 3.18 4.56 3.35 3.47
0.950 2.83 2.85 2.70 3.25 3.02 293 420 3.20 3.24
0.925 2.68 2.60 252 3.04 2.8 2,77 3.89 3.08 3.10
0.900 2.60 2.52 239 2.89 274 266 3.77 293 2.99
0.850 2.43 2.37 2.18 2.75 2,52 249 3.50 2.77 2.83
0.800 2.29 224 2.00 2.58 243 233 337 266 2.72

When the data is sparse or when the bandwidth is small, the scan statistic
may depend for the most part on only a few z;. In such cases, the Gaussian
approximation to the marginal density of the field is poor, especially in the
extreme tails. Substituting saddlepoint approximations to the density of the
scan statistic for ¢ in 73, as in Loader (1990), might yield more accurate
approximations.

Now, return to the the approximation v, with b equal to the maximum of
W observed in the data sets. The approximation may be viewed as a nominal
p-value for the null hypothesis of no localized excess risk. In the cancer data,
the suprema associated with 7 equal to 30.0, 150.0 and 900.0 are 1.99, 2.74
and 2.94. (That there is a contour line labeled 3 in Figure lc, is an artifact
of the interpolation program that produced the plot.) The approximations to
the p-value are 0.187, 0.099, and 0.123. The simulations suggest that these
values are too low. The empirical probabilities from the simulations of the
fields calculated with 7 equal to 150.0 and 900.0, are 0.193 and 0.340.

Acknowledgement. The author thanks Professor Peter Diggle for kindly
supplying the cancer data set.
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