CHAPTER 5
MINIMUM DISTANCE ESTIMATORS

5.1. INTRODUCTION

The practice of obtaining estimators of parameters by minimizing a certain
distance between some functions of observations and parameters has long
been present in statistics. The classical examples of this method are the
Least Square and the minimum Chi Square estimators.

The minimum distance estimation (m.d.e.) method, where one obtains
an estimator of a parameter by minimizing some distance between the
empirical d.f. and the modeled d.f., was elevated to a general method of
estimation by Wolfowitz (1953, 1954, 1957). In these papers he
demonstrated that compared to the maximum likelihood estimation method,
the m.d.e. method yielded consistent estimators rather cheaply in several
problems of varied levels of difficulty.

This methodology saw increasing research activity from the
mid—seventy’s when many authors demonstrated various robustness
properties of certain m.d. estimators. Beran (1977) showed that in the i.i.d.
setup the minimum Hellinger distance estimators, obtained by minimizing
the Hellinger distance between the modeled parametric density and an
empirical density estimate, are asymptotically efficient at the true model and
robust against small departures from the model, where the smallness is being
measured in terms of the Hellinger metric. Beran (1978) demonstrated the
powerfulness of minimum Hellinger distance estimators in the one sample
location model by showing that the estimators obtained by minimizing the
Hellinger distance between an estimator of the density of the residual and an
estimator of the density of the negative residual are qualitatively robust and
adaptive for all those symmetric error distributions that have finite Fisher
information.

Parr and Schucany (1979) empirically demonstrated that in certain
location models several minimum distance estimators (where several comes
from the type of distances chosen) are robust. Millar (1981, 1982, 1984)
proved local asymptotic minimaxity of a fairly large class of m.d. estimators,
using Cramer-Von Mises type distance, in the i.i.d. setup. Donoho and Liu
(1988 a, b) demonstrated certain further finite sample robustness properties
of a large class of m.d. estimators and certain additional advantages of using
Cramer-Von Mises and Hellinger distances. All of these authors restrict
their attention to the one sample setup or to the two sample location model.
See Parr (1981) for additional bibliography on m.d.e. through 1980.

Little was known till the early 1980’s about how to extend the above
methodology to one of the most applied models, v.i.z., the multiple linear
regression model (1.1.1). Given the above optimality properties in the one-
and two- sample location models, it became even more desirable to extend
this methodology to this model. Only after realizing that one should use the
weighted, rather than the ordinary, empiricals of the residuals to define m.d.
estimators was it possible to extend this methodology satisfactorily to the
model (1.1.1).
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106 MINIMUM DISTANCE ESTIMATORS 5.2

The main focus of this chapter is the m.d. estimators of # obtained
by minimizing the Cramer-Von Mises type distances involving various
w.e.p.’s. Some m.d. estimators involving the supremum distance are also
discussed. Most of the estimators provide appropriate extensions of their
counterparts in the one- and two- sample location models.

Section 5.2 contains definitions of several m.d. estimators. Their
finite sample properties and asymptotic distributions are discussed in
Sections 5.3, 5.5, respectively. Section 5.4 discusses an asymptotic theory
about general minimum dispersion estimators that is of broad and
independent interest. It is a self contained section. Asymptotic relative
efficiency and qualitative robustness of some of the m.d. estimators of
Section 5.2 are discussed in Section 5.6. Some of the proposed m.d.
functionals are Hellinger differentiable in the sense of Beran a§1982) as is
shown in Section 5.6. Consequently they are locally asymptotically minimax
(L.a.m.) in the sense of Hijek — Le Cam.

5.2. DEFINITIONS OF M.D. ESTIMATORS

To motivate the following definitions of m.d. estimators of g of (1.1.1), first

consider the one sample location model where Y;— 4, ...., Y, — 0 arei.i.d.
F, F aknown d.f.. Let

-4 1
(1) Fo(y) :=n 1331 I(Yi<y), y €R.

If 0 is true then EFy(y + 6) = F(y), V yeR. This motivates one to define
m.d. estimator & of @ by the relation

2) B = argmin{T(t); teR}
where, for a G € DI(R),
(3) T(t) := nf [Faly + t) — F(y)]* dG(y), teR.

Observe that (2) and (3) actually define a class of estimators 4, one
corresponding to each G.

Now suppose that in (1.1.1) we model the d.f. of e,; to be a known
d.f. Hyp;, which may be different from the actual d.f. Fpj, 1 <i < n. How

should one define a m.d. estimator of #? Any definition should reduce to ]
when (1.1.1) is reduced to the one sample location model. One possible
extension is to define

(4) Py = argmin{K(t); t €RP},

where
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(5) Ki(®) =07 f[2{1(Yai ¢y + xast) — Bui(y)}? dG(y),  teB?.

Ifin (1.1.1) we take p =1, xpij; =1 and Hp; = F then clearly it reduces to
the one sample location model and f; coincides with & of (2). But this is
also true for the estimator ﬁx defined as follows. Recall the definition of

{V;} from (1.2.1). Define,foryeR,teRP, 1<j<p,

(6) Zi(y, t) == Vi(y, t) - }’31 Xnij Hai(y).
Let
(7) Ky(t):= [ 7 (y, )(X'X) &y, t) dG(y), te R,

where § := (24, ..., Zp) and define,
- ) »
(8) By = argmin{K(t), teR°}.

Which of the two estimators is the right extension of #? Since {V;,
1 < j < p} summarize the data in (1.1.1) with probability one under the

continuity assumption of {eni, 1 <i < n}, ﬁx should be considered the right
extension of #. In Section 5.6 we shall see that Bx is asymptotically
efficient among a class of estimators {ﬁn} defined as follows.

Let D = ((dnjj)),1<i<n, 1< j<p, bean nxp real matrix,

n ’

(9  Via(y, )= 2 dnsj (Yni <y + xnit), YER, 1<j<p,
and

P n 9 p
(10) Ky(t) := 2 [[Vja(y, t) — 2 dusj Hai(y)]* dG(y), teRP.

1=1 1=1
Define
(11) B, = argmin{K (t), teR}.

1D =n"/?1,0, ..., Olnxp then #, = By and if D = XA then f, = f,,
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where A is asin (2.3.32). The above mentioned optimality of ﬂx is stated

and proved in Theorem 5.6a.1.
Another way to define m.d. estimators in the case the modeled error
d.f.’s are known is as follows. Let

- ns ’
(12) MyH) =277 5 (1(Yai ¢ y) ~Huiy —xast)}, s€l0,1], yeR,

(18) QW = [ M(sy0) d6(y) di(s), te®,
where L isad.f. on [0,1]. Define
(14) p = argmin{Q(t), teRP}.

The estimator f with L(s) =s is essentially Millar’s (1982) proposal.

Now suppose {Hpij} are unknown. How should one define m.d.
estimators of B in this case? Again, let us examine the one sample location
model. In this case # can not be identified unless the errors are symmetric
about 0. Suppose that is the case. Then ther.v.’s {Y;— 6, 1<i<n} have

the same distribution as {~Y; + 0, 1<i < n}. A m.d. estimator 4" of 4
is thus defined by the relation

(15) §" = argmin {T*(t), teR}
where
(16) T'(t) := n_lf[ii:)l {(Yi<y+t)-I(-Yi<y-— t)}]2 dG(y).

An extension of ¢ to the model (1.1.1)is f} defined by the relation

(17) Ay = argmin{K(t), t€ R’}

where, for t € RP,

(18) Ky = [V'(y )X X)V'(y, ) dG(y), V"= (Vi .., V),
Vi ¥ = 5 xai{I(Yas € yoxast) — [(-Yas < y-xait)}, yeR, 1¢ip.

More generally, a class of m.d. estimators of f can be defined as
follows. Let D be as before. Define, for yeR, 1< j< p,,

n ’ ’
(19a) Yi(y, t) == 3 dusj {l(Yni <y + xnit) = (~Yni <y — xait)}.
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Let Y;'= (Y1, ..., Yp) and define

(19b) K1) = [ Y7 (3, 1) (3, 1) dG(y), teR.
and ﬂ]'; by the relation

(20) A, = argmin {K(t), teR®}.
Note that ﬂ; is ﬂ; with D = XA,

Next, suppose that the errors in (1.1.1) are modeled to be i.i.d., i.e.,
Hyi=F and F is unknown and not necessarily symmetric. Here, of course,
the location parameter can not be estimated. However, the regression
parameter vector f can be estimated provided the rank of X; is p, where
X; 1is defined at (4.3.11). In this case a class of m.d. estimators of g is

defined by ﬁn of (11) provided we assume that

(21) 2 duj=o, 1¢j<p.
A member of this class that is of interest is ﬂn with D = X;A;, A; asin
(4.3.11).

Another way to define m.d. estimators here is via the ranks. With
Rit asin (3.1.1), let

(22) Tja(s, t) := ii-l:l dnij I(Rst € ns), s€f0,1],1<j< p,

Ky(t) == [T, (s, ) Tys, t) dL(s), teRP,

where Tl" = (Ty, ..., Tp) and L is a df on [0, 1]. Assume that D
satisfies (21). Define

* . *
(23) B, = argmin{K (t), teR®}.
Observe that {ﬁn}, {ﬂ];} and {f} are not scale invariant in the

sense of (4.3.2). One way to make them so is to modify their definitions as
follows. Define

(24) Ky(a,8) = 5 [Viaay, 0 - §, duig B 4G),

Kj(a, t) == [ Y} (a5, )¥j(ay, 1) dG(y),  t€®, 220,
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Now, scale invariant analogues of ﬁn and ﬂ; are defined as

(25) ﬁ; := argmin {K (s, t), teR°}, A°:= argmin {KI;(S’ t), teRP},

where s is a scale estimator satisfying (4.3.3) and (4.3.4). One can modify

{B} in a similar fashion to make it scale invariant. The class of estimators
Xk

{B,} is scale invariant because the ranks are.

Now we define a m.d. estimator based on the supremum distance in
the case the errors are correctly modeled to be i.i.d. F, F an arbitrary d.f.
Here we shall restrict ourselves only to the case of p = 1. Define

n
(26) Ve(y, t) == i)=31(xi -x) I(Yi <y + txj), t,y €R,

Di(t) = sup {Vc(y, t); yeR},
Da(t) := —inf {V(y, t); yeR},
Da(t) := max {D5(t), Da(t)} = sup{| Vc(y, t)|; yeR}, teR.
Finally, define the m.d. estimator
(27) Bs := argmin{Dy(t); teR}.
Section 5.3 discusses some computational aspects including the
existence and some finite sample properties of the above estimators. Section
*
5.5 proves the uniform asymptotic quadraticity of K, K;, K, and Q as

processes in t. These results are used in Section 5.6 to study the asymptotic
distributions and robustness of the above defined estimators.

5.3 FINITE SAMPLE PROPERTIES AND EXISTENCE

The purpose here is to discuss some computational aspects, the existence and
the finite sample properties of the four classes of estimators introduced in the
previous section. To facilitate this the dependence of these estimators and
their defining statistics on the weight matrix D will not be exhibited in this
section.

We first turn to some computational aspects of these estimators. To
begin with, suppose that p =1 and G(y) =y in (5.2.10) and (5.2.11).

Write f, xi, d; for B, xiy, diy, respectively, 1<i<n. Then
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(1) K(t) =[5 di{I(Ys <y + xit) — Hi(y)})* dy
= %: 5 didj [ {I(Y ¢ y+xit) — Hi(y) HI(Y; € y+x5t) — Hy(y)}dy.

No further simplification of this occurs except for some special cases.
One of them is the case of the one sample location model where x; =1 and
H; = F, in which case

K(t) = [[%: d{I(Y3 < y) — F(y — )} dy.

Differentiating under the integral sign w.r.t. t (which can be justified under
the sole assumption: F has a density f w.r.t 1)) one obtains

K(t) = 2 [%: di{I(Y; < y + t) — F(y)} dF(y)
=—-23%; di{F(Y:i—t) —1/2}.

Upon taking d;= 1 /2 one sees that in the one sample location model & of
(5.2.2) corresponding to G(y) =y is given as a solution of

(2) 3 F(Y:i— ] ) =n/2.
Note that this @ is precisely the m.Le. of § when F(x) = {1 + exp(—x)}-l,
i.e., when the errors have logistic distribution!

Another simplification of (1) occurs when we assume ¥;d; =0 and
H;=F. Fixa teR andlet c¢:= max{Y;—xit; 1<i<n}. Then

(3) K(t) = [ dd(Ys ¢y + xit)] dy
=% % did; [T[max(Y; —xjt, Y —xit) <y < | dy
= —%; ¥j did; max(Y; —x;t, Yi — xit).
Using the relationship
(4) 2 max(a, b) =a + b + |a-b|, a,beR,
and the assumption ¥; d; = 0, one obtains

(5) K(t)=-2 3Z  didi]Y;—Yi—(xj—xi)t]

If dj = x; —X in (5), then the corresponding A is asymptotically
equivalent to the Wilcoxon type R-estimator of f as was shown by
Williamson (1979). The result will also follow from the general asymptotic
theory of Sections 5 and 6.
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If di=xi—X, 1<i<n,and x;=0, 1<i<r; xij=1, r+1<i<n
then (1.1.1) becomes the two sample location model and

r' N
Kt)=—2 2 ¥ |Yj—Yi—t| +a r.v.constant in t.

i=1j=r+1

Consequently here § = med{|Y;—Y;|, r+1<j<n, 1<i<r}, the usual
Hodges—Lehmann estimator. The fact that in the two sample location model
the Cramer—Von Mises type m.d. estimator of the location parameter is the
Hodges—Lehmann estimator was first noted by Fine (1966).

Note that a relation like (5) is true for general p and G. That is,

suppose that p > 1, G € DI(R) and (5.2.21) holds, then V t € RP,

p 4 4
(6) K(t)=-23 B3  dijde |G((Yi—xit)-) = G((Yi - xit)-)|.
To prove this proceed as in (3) to conclude first that

P ’ ’
K(t) = -2 jgl 15§<§Sn d;jdi; G(max(Yx — xkt, Y; —xit)-)

Now use the fact that G((avb)-) = G(a-)vG(b-), (5.2.21) and (4) to obtain
(6). Clearly, formula (6) can be used to compute J in general.

Next consider K*. To simplify the exposition, fix a teRP and let
Ii:=Y;j —x’it, 1<i<n; b:=max{rj, —ri;; 1<i<n}. Then from (5.2.19)
we obtain

+ B 2
K'(t) = % S 131 dij{I(rs < y) — (-1 < y)}]* dG(y)-

Observe that the integrand is zero for y > b. Now expand the quadratic and
integrate term by term, noting that G may have jumps, to obtain

P
K*(t) =j2_}l 21) i) dijdkj{2G(1'i V —1y)} — 2J(r3)
—G((ri VrK)-) = G(-x3 v —rk)},
where J(y) := G(y) — G(y-), the }ump in G at yeR. Once again use the

fact that G(avb) = G(a)VG(b), (4), the invariance of the double sum under
permutation and the definition of {r;} to conclude that
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1K) = J)l::l £ didig| G(Ys — xi) — G(-Yi + xy8)| — I(Ys — x3t)
—3 {IG((Ys = xit)-) = G((Yu — xit)-) |
+ |G(=Y; + xit) — G(-Yi + xt)| }].

Before proceeding further it is convenient to recall at this time the
definition of symmetry for a G € DI(R).

Definition 5.3.1. An arbitrary GeDI(R), inducing a o—finite measure
on the Borel line (R, .2), is said to be symmetric around 0 if

(8) |G(y) - G(x)| = | G(—=x-) = G(-y-)I, Vx,yeR

or

(9) dG(y) = — dG(-y), VyeR
If G is continuous then (8) is equivalent to

(10) 1G6(y) - G(x)| = |G(~x) - G(y)], VxyeR

Conversely, if (10) holds then G is symmetric around 0 and continuous.

Now suppose that G satisfies (8). Then (7) simplifies to

p ’ ’ /’
(77) K'(t)= j2=:1 ¥; Yy dijdkj[l G(Y; —xit) — G(—Yx + xxt)| — J(Yi—xit)
— |G(=Y: + x1t) — G(—Yi + xit) |-
And if G satisfies (10) then we obtain the relatively simpler expression
p ’, ’
(") K'(t) = j§1 ¥ Yy dijdkj[| G(Y;: — xit) — G(—Yx + xxkt)|
- |G(Yi— x'it) - G(Yx — x;t) | ]

Upon specializing (7*) to the case G(y) =y, p=1,d;=n /% and
x; =1 we obtain

K*(t) =n 1% 5 {| Vi + Yi—2t] — | Yi— Y|}

and the corresponding minimizer is the well celebrated median of the
pairwise means {(Yi+Y;)/2; 1<i<j<n}.

Suppose we specialize (1.1.1) to a completely randomized design with
p treatments, i.e., take
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xij = 1, mj; + 1 <i<mj,
=0, otherwise,
where 1< nj < n is the jth sample size, mg = 0, mj = ny+ ... + nj, 1 < j< p,
my, =n. Then, upon taking G(y) =y, dj = x3; in (7*), we obtain
nj nj

P
K'(t)= 2 B % {IVy+ Y- 2t] - | Y5 - Yigl},  te®,

where Yjj = the ith observation from the jth treatment, 1 < j < p.

Consequently, £ = (i, ... , ﬂ;)', where A = med {(Y;; + ij)z‘l,
1<i<k<nj}, 1<j<p. Thatis,ina completefy randomized design with p

treatments, §° corresponding to the weights d; = x; and G(y) =y is the
vector of Hodges—Lehmann estimators. Similar remark applies to the
randomized block, factorial and other similar designs.

The class of estimators ' also includes the well celebrated least
absolute deviation (1.a.d.) estimator. To see this, assume that the errors are

continuous. Choose G = § — the measure degenerate at 0 —in K*, to obtain

(11) K*(t) = él[él &y {I(Yi — xit € 0) —I(Y; —xit > 0)}]2

P ,
=3X (ﬁl d;; sgn(Y; —xit))2, w.p.1, V teRP.

_jzl 1=

Upon choosing d; = x;, one sees that the r.h.s. of (11) is precisely the square
of the norm of a.e. differential of the sum of absolute deviations

P(t) == % |Y; — xit|, teRP. Clearly the minimizer of P (t) is also a

minimizer of K*(t) of (11).
Any one of the expressions among (7), (7/) or (7*) may be used to

compute f° for a general G. From these expressions it becomes apparent

that the computation of f° is similar to the computation of maximum
likelihood estimators. It is also apparent from the above discussion that both

classes {f} and {f'} include rather interesting estimators. On the one
hand we have a smooth unbounded G, v.i.z., G(y) = y, giving rise to
Hodges—Lehmann type estimators and on the other hand a highly discrete G,
v.i.z., G = b, giving rise to the l.a.d.e.. Any large sample theory should be
general enough to cover both of these cases.

We now address the question of the ezistence of these estimators in
the case p = 1. As before when p = 1, we write unbold letters for scalars
and dj, xi for djy, x5, 1 <i< n. Before stating the result we need to define
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I(y) := 51 I(xi = 0) d:{I(Yi < y) = I(-Y31 < y)}, y€R
Arguing as for (7) we obtain, with b = max{Y;, —Y; 1<i<n},

(12)  fIT] dG ¢ B I(xs = 0)|di| [G(b-)-G(Yi-) + G(b-)-G(-Y3)] < m.
Moreover, directly from (7) we can conclude that
(13) fr?dG<a.

Both (12) and (13) hold for all n > 1, for every sample {Y;} and for all real
numbers {d;}.

Lemma 5.3.1. Assume that (1.1.1) with p = 1 holds. In addition,
assume that either

(14a) dixi20, V 1<i<mn, or (14b) d;x; <0, VYV 1<i<n.

Then a minimizer of K* ezists if either Case 1: G(R) = w, or Case 2: G(R)
<o and di =0 whenever x;=0, 1<i<n.

If G 1is continuous then a minimizer is measurable.

Proof. The proof uses Fatou’s Lemma and the D.C.T. Specialize
(5.2.19) to the case p =1 to obtain

K'(t) = [ 55 difI(Ys < y + xst) = (Y3 < y — x3t) }|* dG(y).
Let K'(y,t) denote the integrand without the square. Then
K'(y, t) = T(y) + £*(y, 1),
where
(15)  K*(y,t) = Zi I(xi > 0) ds{I(Yi < ¥ + xit) — I(-Yi < y —xit)} +
+ %; I(x: < 0) di{I(Y; < y + xst) — I(-Y: < y —xit)}.

Clearly, V y, teR,

[K*(y, 8| € Bil(x;#0)|di] =: @, say.

Hence
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(16) I(y) —a< X'y, t) <T(y) + o, VyteR
Suppose that (14a) holds. Then, from (15) it follows that V y € R,
K(y,t) —m+a as t—za,

so that V yeR,

(17) Ky, t) =T+ a8 t =2

Now consider Case 1. If a =0 then either all x;=0 or di=0 for
those i for which x;# 0. In either case one obtains from (13) and (16) that
Vte, K'(t)= [T?dG < o, and hence a minimizer trivially exists.

Ha>0 then, from (12) and (13) it follows that [ (I(y) + @) dG(y)

= w, and by (16) and the Fatou Lemma, lim inf o K*(t) = o. On the

+

other hand by (7), K*(t) is a finite number for every real t, and hence a
minimizer exists.
Next, consider Case 2. Here, clearly I' = 0. From (16), we obtain

Ky, ) <a®, ¥y teR,
and hence

K'(t) < o®G(R), V teR

By (17), X'(y,t) — + @, as t — + o. By the D.C.T. we obtain
K*(t) — o®G(R), as |t| — o,

thereby proving the existence of a minimizer of K* in Case 2.

The continuity of G together with (7*) shows that K" is a
continuous function on R thereby ensuring the measurability of a minimizer,
by Corollary 2.1 of Brown and Purves (1973). This completes the proof in
the case of (14a). It is exactly similar when (14b) holds, hence no details will
be given for that case. o

Remark 5.3.1. Observe that in some cases minimizers of K* could be
measurable even if G is not continuous. For example, in the case of l.a.d.
estimator, G is degenerate at 0 yet a measurable minimizer exists.

The above proof is essentially due to Dhar (1991a). Dhar (1991b)
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ives proofs of the existence of classes of estimators {f} and {f'} of
5.2.11) and (5.2.20) for p > 1, among other results. These proofs are
somewhat complicated and will not be reproduced here. In both of these
papers Dhar carries out some finite sample simulation studies and concludes

that both, # and f" corresponding to G(y) = y, show some superiority over
some of the well known estimators.

Note that (14a) is a priori satisfied by the weights d; = x;. o

Now we discuss B of (5.2.14). We rewrite
Q) = 275 B Ly f {101 <) ~ B(y-xitVHI(Y; < v) ~ By(y-xi0)}4G(y)

where Lij =1 —L((ivj)n™!), 1<, j< n. Differentiating Q w.r.t. t under
the integral sign (which can be easily justified assuming H; has density h;
and some other mild conditions) we obtain

(18) Q(t)=2n"" % % Ly [{I(Y: < y) - Hi(y — xit)}hi(y — x;jt) dG(y) x;.

Specialize this to the case G(y) =y, L(s)=s, p=1, xi=1 and integrate
by parts, to obtain

Q(t) = —2n"2 %; % min(n —i, n — j){H;(Y; — t) — 1/2}
=-n2% (n—i)(n+i-1) {Hy(Yi—t)—1/2}.
Now suppose further that H; = F. Then f is a solution t of
(19) Yi(n—i)(n+i-1){F(Yi—t)—1/2} =0.

Compare this B with & of (2). Clearly B given by (19) is a weighted

M-estimator of the location parameter whereas 0 given by (7) is an
ordinary M-estimator. Of course, if in (18) we choose L(s) = I(s > 1),

p=1xi=1,G(y) =y then &= B Ingeneral B may be obtained as a
solution of Q(t) = 0.
Next, consider ﬂ* of (5.2.23). For the time being focus on the case

p=1 and d;j = x; —X. Assume, without loss of generality, that the data is
so arranged that x; < x2 € ... { x5. Let o:= {EY -Y; /ng —xi);1 < j,
xi < Xj}, t := min{t; te ¢’} and #; := max{t; te c)"f Then for x; < xj, t <
to implies t < (Yj — Yi)/(xj —xj) so that Rijs < Rji. In other words the
residuals {Y; —txj; 1 < j < n} are naturally ordered for all t < ¢y, w.p.1,,
assuming the continuity of the errors. Hence, with T(s, t) denoting the
T1a(s, t) of (22), we obtain for t < 2o,
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k
T(s, t) =_21 di, k/n<s < (k+1)/n, 1<k <n-1,
i=
=0, 0<s<1l/n, s=1
Hence,
K'(t) =75 w {3 di)? t
(t) _k=lwk{i=l 1} ) t< 0-

where wy = [L((k+1)/n) —L(k/n)], 1<k < n—1. Consequently
K (to) = 3w {3 dy)?
(to-) = 2 {2 di}"

Similarly using the fact ¥; d; = 0, one obtains

* n-1 k 9 *
K (t) = k2=:1 Wk {igl dl} =K (tp), t> .

As t crosses over f, only one pair of adjacent residuals change their
ranks. Let x;j < xj.; denote their respective regression constants. Then

* * n-1 k 2
K'(t0-) =K (o) = .5, wx { 3 di}? -
n-1 k 9 j'l 2
—[Z e {2 di}" + v {dju+2 di}]
k#j
j 9 izt .9
= {3, a0~ {da+ 5, &)
But x;{x3<...<{Xpn, Xj <Xjs and ¥;dj =0 imply
) Ly
% di < diea+ 3 di €0,
1=1 1=1

Hence K*gto—) > K*(to.). Similarly it follows that K*(t“) > K*(tl-).
Consequently, f; and [, are finite, where

B := minfte # K'(t,) = inf K'(A)},
A€ oF

fy:=max{te # K (t-) = inf K (A)},
A€ e

and where of¢ denotes the complement of . Then ﬂ* can be uniquely
defined by the relation § = (B, + f)/2.



5.3 FINITE SAMPLE PROPERTIES AND EXISTENCE 119

This ﬂ* corresponding to L(s) = s was studied by Williamson (1979,
1982). In general this estimator is asymptotically relatively more efficient
than Wilcoxon type R-estimators as will be seen later on in Section 5.6.

There does not seem to be such a nice characterization for p > 1 and
general D satisfying (5.2.21). However, proceeding as in the derivation of

(6), a computational formula for K of (5.2.22) can be obtained to be

(20) K'(t) = -2 él %i 3j dyjdjx |L((Rit/n)-) — L((Rje/n)-)|-

This formula is valid for a general o—finite measure L and can be used to
compute ﬂ*.

We now turn to the m.d. estimator defined at (5.2.26) and (5.2.27).
Let dj = x; —Xx. The first observation one makes is that for teR,

n n
Dy(t) :=sup | B diI(Yi<y + tdi)| = sup | ¥ di I(Rie< ns)].
yeR =1 0<s<1 =1

Proceeding as in the above discussion pertaining to ﬂ*, assume, without loss

of generality, that the data is so arranged that x; < x3 < ... < x5 so that d; <
d2<...<dn. Let of :={(Y;j—Yi)/(dj—di); di<0,d;20,1<i<j<n}.
It can be proved that D (D;) is a left continuous non—decreasing (right

continuous non—increasing) step function on R whose points of discontinuity
are a subset of ¢f. Moreover, if w =) < {4 < € ... {ta< gy = o

denote the ordered members of o, then Dj(¢-) = 0 = Di(tws) and Di(tw.)

= %; di = D;(t;), where d} = max (dj, 0). Consequently, the following
entities are finite:

Ps1:=1inf {teR; Di(t) > Da(t)},  Fs2:= sup {teR; Di(t) < Da(t)}.

Note that fs3 > fs; w.p.1.. One can now take fs = (fs1 + fs2)/2.
Williamson (1979) provides the proofs of the above claims and obtains
the asymptotic distribution of fs. This estimator is the precise
generalization of the m.d. estimator of the two sample location parameter of
Rao, Schuster and Littell (1975). Its asymptotic distribution is the same as
that of their estimator.
We shall now discuss some distributional properties of the above m.d.

estimators. To facilitate this discussion let J denote any one of the
estimators defined at (5.2.11), (5.2.20), (5.2.23) and (5.2.27). As in Section

4.3, we shall write A(X, Y) to emphasize the dependence on the data {(x'i,

Yi); 1<i< n}. It also helps to think of the defining distances K, K", etc.
as functions of residuals. Thus we shall some times write K(Y — Xt) etc. for
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K(t) etc. Let K stand for either K or K*or K of (5.2.10), (5.2.19) and
(5.2.22). To begin with, observe that

(21) K(t —b) = K(Y + Xb — Xt), V t,beRP,
so that
(22) AX, Y + Xb) = X, Y) + b, V beRP

Consequently, the distribution of f— # does not depend on B.
The distance measure Q of (5.2.13) does not satisfy (21) and hence

the distribution of f— 8 will generally depend on S.
In general, the classes of estimators {8} and {f"} are not scale

invariant. However, as can be readily seen from (6) and (7), the class {f}
corresponding to G(y) =y, Hi = F and those {D} that satisfy (5.2.21) and

the class {f'} corresponding to G(y) =y and general {D} are scale
invariant in the sense of (4.3.2).

An interesting property of all of the above m.d. estimators is that
they are invariant under nonsingular transformation of the design matrix X.
That is,

AXB,Y) = B A(X, Y) for every pxp nonsingular matrix B.

A similar statement holds for f.

We shall end this section by discussing the symmetry property of
these estimators. In the following lemma it is implicitly assumed that all
integrals involved are finite. Some sufficient conditions for that to happen
will unfold as we proceed in this chapter.

Lemma 5.3.2. Let (1.1.1) hold with the actual and the modeled d.f. of
e; equalto H;, 1<i<n.

(i)  Ifeither

(ia) IHi, 1<ig nl and G are symmetric around 0 and

H;, 1<i<n} arecontinuous,

or

(ib) djj = — da-tsnj, Xij = —Xn-isn,j ond Hy = F V 1<i <,
1<j<p,

then

B and ﬂ* are symmetrically distributed around f, whenever they
ezist uniquely.
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(i) If {H;, 1<i<n} and G are symmetric around 0 and either
{H;, 1 <i<n} are continuous or G is continuous,

then

B is symmetrically distributed around P, whenever it ezists uniquely.

Proof. In view of (22) there is no loss of generality in assuming that
the true g is 0.

Suppose that (ia) holds. Then AX, Y) = AX, =Y). But, by

definition (5.2.11), AX, —Y) is the minimizer of K(-Y — Xt) w.r.t. t.
Observe that V t € RP,

P ’ 2
K(-Y — Xt) =j§1 f [ B dyi{I(-Yi < y + x1t) — Hi(y)}]" dG(y)
p ’ 2
= 3 [1% di{l - 1(Ys < -y — xit) - B(y)}]" 4G(y)

_ jgl [ 12 d5{1(Ys < y — xit) — Hi(y-)}]? dG(y)

by the symmetry of {H;} and G. Now use the continuity of {H;} to
conclude that, w.p.1.,

K(-Y — Xt) = K(Y + Xt), VteRP,

so that B(X, -Y)=- ﬁ(X, Y), w.p.1, and the claim follows because
—AX, Y) = argmin {K(Y + Xt); teRP}.

Now suppose that (ib) holds. Then
K(Y + Xt)
P ,
= 3 [1% dusni{I(Yi ¢ y4xaaint) ~ F@)H' dGE)
P ,
? jgl f[zi dn~i+1,j{I(Yn-i615 Y+xn-i+lt) - F(Y)}]2 dG(Y)

K(Y — Xt), V teRP.

This shows that —X, Y) = AX, Y) as required. The proof for ﬂ* is

similar.

a



122 MINIMUM DISTANCE ESTIMATORS 5.4

Proof of (ii). Again, (X, Y) = f'(X, —Y), because of the symmetry
of {H;}. But,

K*' (=Y — Xt)
p /’ 4
= jgl f[zi dijI(—Yi <y +xit) -1+ I(-Yi<—y + xit)}]2 dG(y)

p 4 4
= j§1 f[Ei dij {I(Yi<y+xit) -1+ I(Yi<—y + Xit;)}]2 dG(y)

= K*(Y + Xt), V teRP,

w.p.1, if either {H;} or G are continuous. o

5.4. ASYMPTOTICS OF MINIMUM DISPERSION ESTIMATORS: A
GENERAL CASE

This section gives a general overview of an asymptotic theory useful in
inference based on minimizing an objective function of the data and
parameter in general models. It is a self contained section of broad interest.
In an inferential problem consisting of a vector of n observations (,
= ((al, .---» Cnn)’, not necessarily independent, and a p-dimensional

parameter OcRP, an estimator of @ is often based on an objective function
Mn(¢n, 0), herein called dispersion. In this section an estimator of @
obtained by minimizing Mpu((n, <) will be called minimum dispersion
estimator.

Typically the sequence of dispersion M, admits the following
approximate quadratic structure. Writing Mp(d) for My((n, 0), often it
turns out that Mp(d) — My(6), under 6, is asymptotically like a quadratic
form in (0 — @), for @ close to @, in a certain sense, with the coefficient of
the linear term equal to a random vector which is asymptotically normally
distributed. This approximation in turn is used to obtain the asymptotic
distribution of minimum dispersion estimators.

The two classical examples of the above type are Gauss’s least square
and Fisher’s maximum likelihood estimators. In the former the dispersion
M,, is the error sum of squares while in the latter M, equals -logLy, Ln
denoting the likelihood function of @ based on ¢(,. In the least squares
method, Mp(0) — My(6y) is exactly quadratic in (0 — @), uniformly in @
and 6,. The random vector appearing in the linear term is typically
asymptotically normally distributed. In the likelihood method, the well
celebrated locally asymptotically normal (l.a.n.) models of Le Cam (1960,
1986) obey the above type of approximate quadratic structure. Other well
known examples include the least absolute deviation and the minimum
chi-square estimators.
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The main purpose of this section is to unify the basic structure of
asymptotics underlying the minimum dispersion estimators by exploiting the
above type of common asymptotic quadratic structure inherent in most of
the dispersions.

We now formulate general conditions for a given dispersion to be
uniformly locally asymptotically quadratic (u.l.a.q.d.). Accordingly, let Q

be an open subset of RP and My, n > 1, be a sequence of real valued functions

defined on R"xQ such that Mpy(-, 6) is measurable for each 0. We shall
often suppress the (, coordinatein My and write My(6) for My(¢(y, 0).
In order to state general conditions we need to define a sequence of
neighborhoods Nn(0(3 = {0¢€Q, |6.(0)(0— 0o)|5Bll, where 6, is a fixed
parameter value in (2, B is a finite number and {é,(6,)} is a sequence of
pxp symmetric positive definite matrices with norms |[8,(6,)|| tending to
infinity. Since 0, is fixed, write &, Nn for é&,(8), Nu(8), respectively.
Similarly, let P, denote the probability distribution of {;, when 0= 6,.

Definition 5.4.1. A sequence of dispersions {Mp(f), @ €Np},n > 1,is
said to be u.l.a.q. (uniformly locally asymptotically quadratic) if it satisfies
condition (A1) — (A3) given below.

(A1) There exist a sequence of px1 random vector Sy(f,) and a sequence

of pxp, possibly random, matrices Wp(6,), such that, for every 0 <
B < w, and for all @ €N,

Mq(6) = Mu(0o) + (0— 06) Sa(0o) + 5(0— 06) Wa(0o)(0— bo) + 55(1),

where " 0p(1)" is a sequence of stochastic processes in @ converging to
zero, uniformly in @ € Ny, in Py-probability.

(A3) There exists a pxp non-singular, possibly random, matrix W(f,)
such that

62 Wa(00) 8" = W(8) + op(1), (Px).
(A3) There exists a px1 r.v. Y(f) such that

£(8218n(80), 62 Wa(00)82") » #( V(05), W(b5))

where 4, £ denote joint probability distributions under P, and in the
limit, respectively.

Denote the conditions (Al), (A2) by (Al) and (A2), respectively,
whenever W is non—random in these conditions. A sequence of dispersions
{M,} is called uniformly locally asymptotically normal quadratic (u.l.a.n.q.) if

(A1), (A2) hold and if (A3), instead of (A3), holds, where (A3) is as follows:
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(A3) There exists a positive definite pxp matrix X(f,) such that
6;1511(00) _d’ N(O’ 2(00))7 (Pll)°

If (AI) holds without the uniformity requirement and (A2), (A3) hold
then we call the given sequence My locally asymptotically quadratic gl.a.q.).
If (A1) holds without the uniformity requirement and (A2), (A3) hold then
the given sequence M, is called locally asymptotically normal quadratic.

In the case My(0) = —fn Ly(0), the conditions non—uniform (A1),

(A2), (A3) with ||&] = O(nl/ 2), determine the well celebrated 1.a.n. models
of Le Cam (1960, 1986). For this particular case, W(8,), £(6,) and the
limiting Fisher information matrix F(p 6y), whenever it exists, are the same.

In the above general formulation, M, 1is an arbitrary dispersion

satisfying (A1) — (A3) or (A1) — (A3). In the latter the three matrices
W(0<S,1 X(6,) and F(6,) are not necessarily identical. The la.n.q.
dispersions can thus be viewed as a generalization of the l.a.n. models.

Typically in the classical i.i.d. setup the normalizing matrix &, is of
the order square root of n whereas in the linear regression model (1.1.1) it is

of the order (XIX)I/ 2 In general &, will depend on @, and is determined
by the order of the asymptotic magnitude of Sp(f).

An example where the full strength of (Al) — (A3) is realized is
obtained by considering the least square dispersion in an explosive
autoregression model where for some Jp >1, X;j=pXiq1+e5i21, and
where {ej, i> 1} arei.i.d. r.v.’s. For details see Koul and Pflug (1990).

We now turn to the asymptotic distribution of the minimum
dispersion estimators. Let {Mp} be a sequence of u.l.a.q.d.’s. Define

(1) 0, = argmin{My(t), teQ}.

Our goal is to investigate the asymptotic behavior of f, and My(fy).
Akin to the study of the asymptotic distribution of m.l.e.’s, we must first

ensure that thereis a @, satisfying (1) such that
(2) | 628 — 00)| = Op(1)-

Unfortunately the u.l.a.q. assumptions are not enough to guarantee
(2). One set of additional assumptions that ensures (2) is the following.

(A4d) V e>03 a 0<2Z¢<o and Nye such that
Po(|Mn(6o)| € Ze) > 1 — ¢, V n> Nie.
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(A5) V €>0 and 0 < a<wo,3 an Nz and a b (depending on ¢ and a)
such that

Pq ( inf Mju(t) > @) 21—, V n> Nge.
|| 60 (t—00) || >b

It is convenient to let

Qu(0, 06) := (0— ) Su(0o) + (1/2)(0— 60) Wa(Go)(0— ), € TP,
and 0, := argmin{Qn(0, 6;), 0cRP}. Clearly, 8, must satisfy the relation
(3) B 8o Do — O0) = —82"Su( ).

where 2p:= 6 Woéy!, where Wy = Wi(0,).
Some generality is achieved by making the following assumption.
(AS6) [162(8 — Go)l| = Op(2).

Note that (A2) and (A3) imply (A6). We now state and prove

Theorem 5.4.1. Let the dispersions My satisfy (A1), (A4) — (AS6).
Then, under Py,

(4) (80— B) " 6 Buba((Ba — B) | = 0p(1),

(5) infy . Ma(6) — Ma(60) = — (1/2)(Ba — 00) Wa (B — 0o) + op(1).
Consequently, if (A6) is replaced by (A2) and (A3), then

(6) 6ol — 00) — {W(8)} " ¥(80),

and

(7) inf ., Mn(0) — Mn(0) = —(1/2) Su(0o) 8" B" 6" Su(8) + 0p(1).

If, instead of (A1) — (A3), My satisfies (Al) — (A3), and if (A4)
and (A5) hold then also (4) — (7) hold and

®) bu(a— 80) — N(0, T(80)),

where T(0o) = {W(00)} '(0){W(00)} .
Proof. Let Ze be asin (A4). Choose an a > Ze in (A5). Then
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[|Ma(8o)| < Ze, inf Ma(8 + &2'h) 2 o
|h|>b
c [ inf Ma(0 + 6a'h) < Ze, inf Ma(fo + 63'h) > o
|| <b || >b
c [ inf My(6 + 82'h) > inf My(6 + &'h)].
|h|>b |k|<b

Hence by (A4) and (A5), for any € > 0 there exists a b (now depending
only on €) suchthat V n > N;eVNge,

(9) Po( inf Mn(0 + 63h) > inf Mqa(f + 831h)) > 1 —¢,
|h|>b || <b

This in turn ensures the validity of (2). Having verified (2), (A1) now yields
(10) Mn(8) = Ma(0) + Qu(8n, o) + op(1), (Pn).
From (A6), the inequality

Jinfye . Ma(0) —infyey [Ma(0) + Qu(0, 05)]

<SP | My (6) — [Mn(8) + Qn(0, 60)]]
and (A1), we obtain

(11) Mn(bn) = Mn(oo) + Qn(bn, 00) + Op(l)) (Pn)'
Now, (10) and (11) readily yield

Qn( bn, 00) = Qn(bn, 00) + op(l): (Pn)7

which is precisely equivalent to the statement (4). The calim (5) follows

from (3) and (11). The rest is obvious. o

Remark 5.4.1. Roughly speaking, the assumption (A5) says that the
smallest value of Mp(d) outside of N, can be made asymptoticall
arbitrarily large with arbitrarily large probability. The assumption (A4
means that the sequence of r.v.’s {My(6,)} is bounded in probability. This
assumption is usually verified by an application of the Markov inequality in
the case En|Mp(6p)| = O(1), where E, denotes the expectation under Py,
In some applications Mpy(8,) converges weakly to a r.v. which also implies
(A4). Often the verification of (A5) is rendered easy by an application of a
variant of the C-S inequality. Examples of this appear in the next section
when dealing with m.d. estimators of the previous section. o
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We now discuss the minimum dispersion tests of simple hypothesis,
briefly without many details. Consider the simple hypothesis Hy: 8= 6. In
the special case when M, is —fn Ly, the likelihood ratio statistic for testing
H, is given by —2 inf{My(0) — My(6o); 0eQ}. Thus, given a general
dispersion function M,, we are motivated to base a test of H, on the
statistic

(12) Tp = —2 inf{Mn(6) — Ma(0); 0¢€ Q},

with large values of T, being significant.
To study the asymptotic null distribution of Ty, note that by (7),

Ty = Su(00)8:. @1 628a(00) + 0p(1), (Pn). Let Y, W etc. stand for ¥{fy),
W(8), etc.

Proposition 5.4.1. Under (A1) — (A3), (A4), (A5), the asymptotic null
distribution of Ty, is the same as that of ¥ W Y.

Under (A1) — (A5), the asymptotic null distribution of Ty is the same
as that of Z B L where Z isa N(O, Ipxp) 7.v. and B = 22w igl2 g

Remark 5.4.2. Clearly if W(6,) = X(8,) then the asymptotic null

distribution of T, is xp. However, if W # X, the limit distribution of T,
is not a chi—square. W% shall not discuss the distribution of T, under
alternatives. 0

A class of examples of the ul.a.n.q.d.’s where (A1) — (A5) are
satisfied with typically W # ¥ is given by Huber’s M—dispersions for the
model (1.1.1), v.i.z.,

Mq(t) = i p(Yi — xit), teRP,

where p is a convex function on R with its almost everywhere derivative 4.
As mentioned in Chapter 4 the estimators obtained by minimizing M, are
studied extensively in the literature, see Huber (1981? and references there
in. These estimators include the least square and the l.a.d. estimators of B.
Now, let gi(t) := [[¥(x) — ¢¥(x — t)]rdF(x), teR, r = 1, 2, and suppose that F

and ¢ are such that [ydF =0, 0 < [¢?dF < m, g is continuously
differentiable at 0 and that g, is continuous at 0. Then it can be shown,
under (NX), that Huber’s dispersion is l.a.n.q. with

0=F 6 =(XX)" Sif)=—Tix;iYYi—xif),
Wa(B) = §(0)X'X, W = §(0)Ipxp, and X = [¢2dF Iy,
This together with the convexity of p and a result in Rockafeller (1970)

yields that the above dispersion is u..a.n.q.d. See also Heiler and Weiler
(1988) and Pollard (1991).
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For p(x) = |x| and F continuous, 9(x) = sgn(x) and g.(t) =
2r|F(t) — F(0)|. The condition on g; now translates to the usual condition
on F in terms of the density f at 0. For p(x) = x2, ¢(x) = 2x, gi(t) = 2t,

so that g; is trivially continuously differentiable with g;(0) = 2. Note that

in general W # © unless g(0) = [¢2 dF which is the case when ¢ is
related to the likelihood scores.

The next section is devoted to verifying (A1) — (A5) for various
dispersion introduce in Section 4.2.

5.5. ASYMPTOTIC UNIFORM QUADRATICITY
In this section we shall give sufficient conditions under which Ky K;, of

Section 5.2 will satisfy (5.4.A1), (5.4.A4), (5.4.A5) and K, and Q of

Section 5.2 will satisfy (5.4.A1). As is seen from the previous section this
will bring us a step closer to obtaining the asymptotic distributions of
various m.d. estimators introduced in Section 5.2.

To begin with we shall focus on (5.4.A1) for K, K} and K;. Our

basic objective is to study the asymptotic distribution of ﬁn when the actual

df’s of {eni, 1 <i < n} are {Fpj 1 <i< n} but we model them to be
{Hp;, 1 <1< n}. Similarly, we wish to study the asymptotic distribution of

ﬂ; when actually the errors may not be symmetric but we model them to be

so. To achieve these objectives it is necessary to obtain the asymptotic

results under as general a setting as possible. This of course makes the

exposition that follows look somewhat complicated. The results thus

obtained will enable us to study not only the asymptotic distributions of

these estimators but also some of their robustness properties. With this in

mind we proceed to state our assumptions.

(1) X satisfies (NX).

(2) With d(j) denoting the jtb column of D, ||d(j)||2 > 0 for at least
one j; ||d(j)||2 =1 for all those j for which ||d(j)||2 >0, 1<j<p.

(3)  {Fui, 1<i<n} admit densities {fn;, 1 <i<n} wrt. A

(4)  {Gn} is a sequence in DI(R).

(5)  With dnj = (dnis, --- , dnip), theithrowof D, 1<i<n,
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(6) With 7q :=3i ||dnil|® fni,
bn
lim supn [ [ 7a(y + x) dGu(y) dx = 0
an

for any real sequences {an}, {bn}, an < bn, bp —ay — 0.

(7)  With dnij = dnij — dnij, 1 € j € P; €ni = AXni, kni= ||cnil|, 1 <1< m,
Y §>0,V ||v]|<B,

P
lim supy j§1 f[Ei df,ij{Fni(y + v’ Cni + Okni) —
~Fui(y + v/ cai = 6ri)}]’ dGu(y) < k &,
where k is a constant not depending on v and 6.
(8) With Ryj := 2i dnij Xni fni, vpj = Aan, 1<j<p,
2 2
2, [ lwngll*dGa = O().

(9)  With upj(y, u) := % dnijFni(y + cllliu), for each u €RP,
14 o o 2
Z, [R5, W) = 43103, 0) = v sny()%dGaly) = o(1).

(10) With myj := %; dnij[Fni — Hai), 1<j<p; my = (mpy, ... , mpp)
2
S llmy||* dGx = O(1).

(11) With Ta(y) = (tar(y), ) v0p(y)) = D A (y)XA, where A~ is

defined at (4.2.1), and with Ty := [Ty gn dGy, where gn€L{(Gy), 1=
1,2,n > 1,is such that g, > 0,

0 < lim infy [g2 dGp < lim supy [g2 dGy < o,
and such that there exists an a > 0 satisfying

lim inf, inf{0 T00; OcRP, ||8] = 1} > o
(12) Either
(8) 0dnixa;A0>0 V1<i<n and V 6RP, ||6] = 1.
Or
(b) 0 dnixnA0<O0 V1<i<n and V OcRP, || 0] = 1.
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In most of the subsequent applications of the results obtained in this
section, the sequence of integrating measures {Gp} will be a fixed G.
However, we formulate the results of this section in terms of sequences {Gp}
to allow extra generality. Note that if G, = G, GeDI(R), then there always
exists a geLy(G), r = 1, 2, such that g > 0, 0 < [g2dG < .

Define, for y€R, ueR?, 1< j<p,

(13) $3(y, w) = Vja(y, An),  Yi(y, u) := 8i(y, u) — (3, v).

Note that for each j, S§, uj, Y] are the same as in (2.3.2) applied to Xy; =
Yni, Cni= Ax;ni a.nd dni = dnij, 1 S i S 11, 1 S j s p.
Notation. For any functions g, h : R°*1 — R,
2 2
|lgu—hvlZ:= [{g(y, u) —h(y, V)}’dGa(y).

Occasionally we write |g|,2l for | gollz..

Lemma 5.5.1. Let Yy, ..., Ynn be independent r.v.’s with respective
d.f’s Fny, ..., Fon. Then (5) implies

(14) B3 [¥30l2= o)
Proof. By Fubini’s Theorem,
(15) Ej§l| Yiol2 = % fldil® Fi(1 - F3) dCa
and hence (5) implies the Lemma. O

Lemma 5.5.2. Let {Yni} be as in Lemma 5.5.1. Then assumptions
(1) — (4), (6) — (10) imply that, for every 0 < B < w,

P
(16) E e Y- Y2|2 = o(1).
u -

Proof. By Fubini’s Theorem, V u €/(B),
P v 2 2 ’
(17) E 3 Y= YHol3 <[5 |4 Fiy + cin) — Fi(y)| 4G
by
< f—b (f M(y + x) dGn(Y)) dx
n

where b, = B max; ki, yn asin (6). Therefore, by assumption (6),
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P
(18) ij_:lw;-’,,-yg’oﬁ, =o0(1), V uekP.

To complete the proof of (16), because of the compactness of

M(B) := {ueR®; ||u| < B}, it suffices to show that Ve >0 3 a 6§> 0 such
that YV vel(B),

P
lim sup, E sup X |Lju—Ljy| <€,
Jesfics

u-v =1

where
2 .
Lju := IYju— fi’olm ueRP, 1<j<p.

Expand the quadratic, apply the C—S inequality to the cross product
terms to obtain

(20) |Lju—Ljv] ¢ |Y?u—Y?V|121+ 2| YSu—Yivln [ Yiv—Yoln, 1 <j<p.

Moreover,
% 0 |2 0 0 12 0 0 |2
(21) | Yju—Yjvln € 2{|Sju—Sjvln + |4ju— sjvi|n},
g% _ g0 |2 gt 2 T Gi.|2
|Sju—Sjvln € 2{|Sju—Sjv|n + |Sju—Sjvln},
0 012 + + 12 " - 12 <i«
| sju — pjvln € 2{|sju — Livln + |4ju — tiv|a}, 1<j<p,

where S5, 4i are the 83, 4 with dj; replaced by dij, dij := max(0, d;),
ir Kj I j i dij j

dij:=dij—dy, 1<i<n, 1<j<p.

Now, |[u — v|| < 6, nonnegativity of {d3;}, and the monotonicity of
{F;} yields (use (2.3.15) here), that forall 1< j<p,

|Wiu— el € S5 d5{FA(y + civ + bm2) -

—Fi(y + civ— 0s;)}]” dGa(y)-
Therefore, by assumption (7),
P

(22) lim sup, su 2_31| fu — ;1,}’v|,2l < 4k

"n—v |$6 i=

By the monotonicity of Sf and (2.3.15), |[u— v|| ¢ § implies that for
all 1<j<p, yeR,
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- Y dii:j I(—bki < Yi—v’ci—y <0)
+ £
<Sj(y, w) - S;(y, v)
<Y d?j I0<Yi—v’ci—y < bki).

This in turn implies (using the fact that a < b < ¢ implies b2 < a’ + ¢ for
any reals a, b, c)

{S3(y, w) - 3@z, V)’
<{Z: dii:j I(0<Yij—y—v'ei € 5&1)}2 +
+ {5 d3 I(=bri < Yi—y —vc; < 0)}2
<2 {51 di; I(—bri < Yi—y — v/c; € bks)}

forall 1<j<p andall y e 2. Now use the fact that for a, b real, (a + b)2
< 2a + 2b2 to conclude that, forall 1< j<p,

(23) |STu—Sivl
<4 f{zi d*ij[I(—ﬁni <Yi—y—v'ci< bki) —
= pi(y, v, O]} dGa(y) +
+ 4 {2 d3j pi(y, v, 6)}°dGu(y)
= 4{L; + I}, (say),
where pi(y, v, 6) = Fi(y + v’ci + 6k;) — Fi(y + v’ ci — 6k;).
But (dij)*<d% forall i and j implies that
P P
ESfi= 3 [3(d)" pi(y, v, &) (1~ pi(y, v, 6))dGaly)
bn
< [E a0 pi(y, v, 0)4Ga(y) € £ (f mly + 5)dCaly))ds,

by (3) and Fubini, where ap, = (—B — §)max; ki, bn = (B + §)max; &3, and
where <, is defined in (6). Therefore, by the assumption (6),

P
(24) B3 Jj = of1)
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From the definition of II; in (23) and the assumption (7),

)
(25) lim supp .ZIIIJ- < k6.
j=
From (21) — (25), we obtain
(26) lim sup, E f’ 5 ,E | Y5u — j‘,|,21 < 40k 6°.
n—-v

Thus if we choose 0 < § < (e/40k)1/ 2 then 19) will follow from (26), (20)
and (18). This also completes the proof of (16).

To state the next theorem we need
- p /7 2
(@) Ky®):= 3 [{¥i(,0) + ¢ Ri(5) + mi(y)}’ dGuly)

In (28) below, the G in K, is assumed to have been replaced by the
sequence Gy, just for extra generality.

Theorem 5.5.1. Let Yni, ... , Yon be independent r.v.’s with
respective d.f.’s Fpy, ... , Fan. Suppose that {X, Fni, Hni, D, Gn} satisfy (1)
—(10). Then, for every '0<B<u,

(28) E ”s1ﬁp | K (Au) — KD(Au)l = o(1).

Proof. Write K, K etc. for Kn’ Kn etc. Note that
p
K(Aw) = 3 [183(y, w) — 4(3) + my(y)]” dGa(y)
P
=2 [0, w) - Y30) + Y0) + wu(y) + my(y)
+ 1y, w) — 13y) — w y(y)]® dGun(y)

where Y3(y) = Y3(y, 0), #§(y) = &j(y, 0). Expand the quadratic and use the
C-S mequa.hty on the cross product terms to obtain

(29) |K(Au)—K(Au)|
P
Sj§ {IY(J?H—YV|n+|#Ju ;- V1|n

+2|Y5u—=Yivla [| Y] + vy + mjln + | pfu—pf —w vl
+ 2|Yj +u’Vj +mj|n'|ﬂju—#j —u’Vj|n }
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In view of Lemmas 5.5.1, 5.5.2 and assumptons (8) and (10), (28) will
follow from (29) if we prove

(30) "sﬁp .2 | Biu — 4§ —w’ ”J|n = o(1).
u

Let = |pgju—pj —w ujln, 1< j<p, ueRP. In view of the compactness
ﬂl) and the assumptlon (9), it suffices to prove thatV ¢ >0,3a §> 0
3 Y v e #B),
(31) lim sup, sup 2 [ €5u— &ivl| < e
[lu-vll<é =2
But
2 2 2
|€u— vl <2 {1u—m3l? + = v 14112
1/2
+ €147 (16— mvln + =l 194l
+ 18w — vl = vl llwlla}
Hence, from (22) and the assumption (9),
Lh.s. (31) < 2 {4k&® + 6(a + 2k %?)} = k6

P
where a = lim supy ,2_‘,1 lyllZ . Therefore, choose 8 < €/k; to obtain (31),
hence (30) and therefore the Theorem. o

Our next goal is to obtain an analogue of (28) for K;. Before stating
it rigorously, it helps to rewrite K; in terms of standardized processes {Y}}

and {y}} defined at (9). In fact, we have
p
K;(All) = j§1 f[s(l) (Y) u) —-%; dij + Sfl? (—Y: u)]2 dGn(Y)
P
=3 [V 6,0 =Y} () + Y] (3, 0) -3 (=)
+ 45 (v, w) — 45 (v) — v v5(y)
+ 4§ (=3, ) — 1§ (y) — v v(y)

+wdi(y) + W] (y) +m} (7)]° dGa (7)

where



5.5 ASYMPTOTIC UNIFORM QUADRATICITY 135

Wiy) = Y3(y) + Y3(—), vi(y) = vi(y) + vi(-y),
mj(y) := %; dij {Fi(y) — 1 + Fi(—y)}

=43 (v) + 43 (—y) — 21 dj, vER 1<j<p.
Let

. P
(32) Kj(Au) =j2=)1 f [W} + m} + u’u}]2 dGnq, u €RP.

Now proceeding as in (29), one obtains a similar upper bound for
| K (An) —f{l;(Au)I innvolving terms like those in r.h.s. of (29) and the

terms like |Yu—Y$|-n, |4fu— 4] —wvj|l-n ||¥jll-n, | Yj]-n, where for
any function h: RP*' — R, |hu|gn = [hz(—y, u) dGy(y). It thus becomes
apparent that one needs an analogue of Lemmas 5.5.1 and 5.5.2 with Gpy(-)
replaced by Gnu(—-). That is, if the conditions (5) — (10) are also assumed
to hold for measures Gn(—-s} then obviously analogues of these lemmas
will hold. Alternatively, the statement of the following theorem and the
details of its proof are considerably simplified if one assumes G, to be

symmetric around zero, as we shall do for convenience. Before stating the
theorem, we state

Lemma 5.5.3. Let Ynpy, ..., Yon be independent r.v.’s with respective
d.f’s Fny, ... , Fan. Assume (1) — (4), (6), (7) hold, {Gn} satisfies (5.3.8)
and that (33) hold, where

(33) 1% |l datl® {Fas(-y)+1-Fai(y)} dCa(y) = O(1).

Then,

(34) B3, |¥3el% = 0(1),

and

(34b) E ||:i|II$)B jglllY‘j’u—Y?oIgn =0(1), VO0<B<wm no

This lemma follows from Lemmas 5.5.1 and 5.5.2 because under
(5.3.8), L.h.s.’s of (34a) and 34b1) are equal to those of §14) and (16),
respectively. The proof of the following theorem is similar to that of
Theorem 5.5.1.

Theorem 5.5.2. Let Ypi, ... , Ynn be independent r.v.°s with
respective d.f.’s Fyy, ... , Fan. Suppose that {X, Fpni, D, Gn} satisfy (1) —
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(4), (6) —(9), (5.3.8) for all n > 1, (33) and that

(35) E [l deuty) = o),
Then, V 0 < B < o,
(36) E ||nslﬁlg)B |Ky(Au) - Kﬁ(Au)I = o(1). O

Remark 5.5.1. Recall that we are interested in the asymptotic
distribution of A-l(ﬂn — f) which is a minimizer of f{n(ﬂ + Au) w.rt. u

Since ﬂn satisfies (5.3.22), there is no loss of generality in taking the true A
equal to 0. Then (28) asserts that (1 /2)f{n satisfies (5.4.A1) with
(37) 0=0, b=A"), Sa=A1F, Wo=A 2, A,

T = — [ Tu(y{¥p(y) + my(y)} dGa(y),

By = f Pn(Y)Px,\(Y) dGn(y),

where T'n(y) = AX A’(y)D, A asin (4.2.1), Y3':= (Y5, ..., Y§) and
my ;= (my, ...., mp).

In view of Lemma 5.5.1, the assumptions (5) and (10) imply that
EK(0) = O(1), thereby ensuring the validity of (5.4.A4).

Similarly, (36) asserts that (1/2)K) satisfies (5.4.A1) with
(38) 0=0, 6o=A"%, Su=A"19% W.=A32}A,
T :=— [ Ta(y{Wy(y) + m}(y)} dGa(y),
2= [ Ta(y)Ta (¥) dGa(y),

where Ti(y) := AX A*(y)D, A*(y) := A'(3) + A (), y € R,
W;,:= (W7, ..., Wp) and m;':= (m7, ..., mp).

In view of (12), (31), (33) and (5.3.8) it follows that (5.4.A4) is
satisfied by K(0).

Theorem 5.4.1 enables one to study the asymptotic distribution of ﬁn
when in (1.1.1) the actual error d.f. Fp; is not necessarily equal to the



5.5 ASYMPTOTIC UNIFORM QUADRATICITY 137

modeled d.f. Hpj, 1 < i < n. Theorem 5.4.2 enables one to study the
asymptotic distribution of ﬂ; when in (1.1.1) the error d.f. Fpi is not
necessarily symmetric around 0, but we model it to be so, 1 <i < n. o

So far we have not used the assumptions (11) and (12). They will be
now used to obtain (5.4.A5) for K and KJ.

Lemma 5.5.4. In addition to the assumptions of Theorem 5.5.1 assume
that (11) and (12) hold. Then,V €> 0,0 < z < o, 3 N (depending only on
€) and a B (depending on €,2z) 3 0 < B < o,

(39) P( inf K (Au)22)21—¢ YV n>N,
|[ull>

(40) P( inf KD(Au) 22z)21—g¢, Vn>N.
[[ull>8

Proof. As usual write K, K etc. for KD, f(n etc. Recall the

definition of T from (11). Let ko(6) := 6 Tn0, 0 €. By the C-S
inequality and (11),

2, 15 (12 ¢ 2 lli2 2
@) sy k(@IS Bl - alE = O
Fixan € > 0and a z€(0, m). Define, for teRP, 1< j< p,
Vi(t) := [{Y$ + ' R; + m;} ga dGn,
n
Vi(t) = f[Via(y, ¥) = X dnij Hni(y)] 8a(y) dGu(y).
Also, let V.= (Vi ...,Vp), V= (V1 -, Vp)y Tn = |gn|,2,, 74 := lim supy .
Write a u€RP with |jul| > B as u=16, |r| > B, ||#| = 1. Then,
by the C-S inequality,

inf K(Au) > inf (0' V(rAJ))z/'yn,

l[ull>B HRALE!
inf K(Au)>  inf (0 V (rA0)*/m.
[[ul[>8 |=|>8, || 6|1

It thus suffices to show that 3a B €(0,®) and N >
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(39) P( inf (0 V(A0 /1u2z)21—p¢ V n>N,
HRAL S

(40) P( inf (0 V(A0 m2z)21—¢ V>N
HRALE

But, V ueR?,
A P
1V (Aw) =~ ¥ (Aw)ll < 290 B {1 V3= Yivl2 + [fu—f —w'3s3}.

Thus, from (11), (16) and (30), it follows that ¥ Be(0, w),

(42) SUP||u||<B IV (Au) — ¥ (An)|| = op(1).
Now rewrite
0 V(tAf) = 0 T+ 1 kq(0), T :=(Ty ..., Tp) with
T; :=f{Yf,-’+mj}gndGn, 1<j<p.

Again, by the C—S inequality, Fubini, (16) and the assumptions (10) and
(11) it follows that 3 N; and b, possibly both depending on ¢, such that

(43) P(IT|| <) 21— (¢/2), 13N,
Now choose B such that

(44) B> (b+(z2)/%) o,

where a is asin (11). Then, with ay := inf{|ka(0)|; ||0] = 1},

45) P(  inf (8 V(@A) 1>z
(45) (|r|=B,||0||=1( (rA0))" /2 2)

=P(|0' V(tAD)| 2 z)/% V |6 =1, |1] = B)
>P(|10°T] - |1| |ka(8)] |2 (z7)"/% V|0 = 1, 1] = B)

> P(IT|| ¢ «z7%)"/2 + B a) > P(I T || ¢ (z7)"/? + B o)
> P(| T|| <b) > 1—(¢/2), V23N,
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In the above, the first inequality follows from the fact that ||d| — |c|| ¢
|d + c|, d, ¢ reals; the second uses the fact that |8’ T | < || T || for all

_ 1. . : 1/2 1/2
|| 8| = 1; the third uses the relation (—w, «(z9)/“ + B @) C (—w, |(z7)/“ +
B ay); while the last inequality follows from (43) and (44). :

Observe that 0 ¥ (rAf) is monotonic in r for every |8 = 1.
Therefore, (45) implies (40) and hence (40) in a straight forward fashion.
Next, consider 8’ V (rAf). Rewrite

0 V(tAf) = f i%1(0' d5)[(Yni ¢ ¥ + 1X3A6)) — Hni(y)] ga(y) dGu(y)

which, in view of the assumption (12), shows that v (rAf) is monotonic
in r for every ||@]| = 1. Therefore, by (42) 3 Nj, depending on ¢, 3

P(  inf (0 V(rA0)*/ 1a 2 2)

HRALE
>P( inf (0 VzA0)/ya>z)
HEAS!
>P( inf (0 VzA0) a2 2)—(e/2), Vo N,
HEALE!
2 1—g¢ V n> NyVN,,
by (45). This proves (39) and hence (39). o

The next lemma gives an analogue of the previous lemma for K;.
Since the proof is quite similar no details will be given.

Lemma 5.5.5. In addition to the assumptions of Theorem 5.5.2 assume
that (11*) and (12) hold, where (11*) is the condition (11) with Ty replaced
by Tq:= (¥, ...., ¥p) and where {¥}} are defined just above (32).

Then, ¥V € > 0,0 < z < w, 3 N (depending only on ¢) and a B
(depending on ¢, z) 3

(46) P( "iﬁfB K;(Au) 212) > 1—¢, Y n>N,
a[>
(47) P( inf K;(Au) > z) > 1—¢, Van2N o

[[ull>8
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The above two lemmas verify (5.4.A5) for the two dispersions K and
K*. Also note that (40) together with (5) and (10) imply that ||A_1(A =Pl
= Op(1), where A is defined at (49) below. Similarly, (47), (5), (35) and
the symmetry assumption (5.3.8) about {Gp} imply that IIA_I(A+— Al =

Op(1), where A" is defined at (53) below. The proofs of these facts are
exactly similar to that of (5.4.2) given in the proof of Theorem 5.4.1.

In view of Remark 5.5.1 and Theorem 5.4.1, we have now proved the
following theorems.

Theorem 5.5.3. Assume that (1.1.1) holds with the modeled and actual
d.f.’s of the errors {epn;, 1 <i<n} equalto {Hpi, 1 <i<n} and {Fp;, 1<i
< n}, respectively. In addition, suppose that (1) — (12) hold. Then

(48) (By—8) A 20 AT(B) - A) = 0y(1),

where A satisfies the equation

(49) B, A A-f) = T

If, in addition,

(50) Bl ezists forn > p,

then,

(51) ATN(By—B) = 21 Tn + 0p(1),

where Iy and B, are defined at (37). o

Theorem 5.5.4. Assume that (1.1.1) holds with the actual d.f.’s of the
errors {eni, 1 < i< n} equalto {(Fni, 1<i< n}. In addition, suppose that
{X, Fpni, D, Gn} satisfy 31)—(4), 6) — (9), (5.3.8) for all n > 1, (11), (12)
and (33). Then,

(52) (6~ A") A 25 ATy~ A7) = op(1),
where A" satisfies the equation

(53) 25 A A-p) =I5

If, in addition,

(54) (%) ezists forn 2 p,

then,
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(55) ATB - B) = (B2) Ta+ 0p(1),
where I3 and Bn are defined at (38). o

Remark 5.5.2. If {Fi} are symmetric about zero then my = 0 and £

is consistent for f even if the errors are not identically distributed. On the
other hand, if the errors are identically distributed, but not symmetrically,

then ﬂ]‘; will be asymptotically biased. This is not surprising because here

the symmetry, rather than the identically distributed nature of the errors is
relevant.

If {F;} are symmetric about an unknown common point then that
point can be also estimated by the above m.d. method by simply augmenting
the design matrix to include the column 1, if not present already. o

Next we turn to the K; and ﬂ; (5.2.22) and (5.2.23). First we state

a theorem giving an analogue of (28) for K;. Let Yj, pj be Yq, pa of
(2.3.1) with {dni} replaced by {dnij}, j=1, ...., P, Xni replaced by Yp;

and cpi = Ay(Xni — Xn), 1 <i<n, where A; and X, are defined at
(4.3.11). Set

(56) Rj(s) := i (dnsj — &ni(5))(Xni—%a) qni(s),
where, for 1< j< p, dpj(s) := n !y dnij foi(s), 0<s <1, with {£y:} asin
(3.2.35) and qqn;= fni(H-l), 1<i<n. Let

o ¥ P 1 * 2
(57) Ky(t) = E, [ 106, 0~V RI6) + (s, 0)) dLas).
In (59) below, L in K; is supposed to have been replaced by Ly.
Theorem 5.5.5. Let Yny, ... Ynn be independent r.v.’s with respective
d.f’s Fny, ... , Fun. Assume {D , Fni} satzsfy (1), (2) (3), (2.3. 3b),

23 2.12), (3 2.35) and (3.2.36) with wi=djj, 1<j<p, 1<i<n Let
e a sequence of d.f.’s on [0, 1] and assume that

(58) jgl fo p,?(s, 0) dLy(s) = O(1).
Then, for every 0 < B < w,
(60) sﬁp IK,,(Au) K,,(AII)l = op(1).

||
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Proof. The proof of (60) uses the a.u.l. result of Theorems 3.2.1 and
3.2.4. Details are left out as an exercise. o

The result (60) shows that the dispersion K; satisfies (5.4.A1) with
(61) 0=0, 8= A7, Sa=A7'Ts, Wa=A180 A,

T ==, Ta(s] %s) + mys)} dLa(s),
2= S ' Ta(s)T (s) dLa(s),

where T (s) = 1XcA(s)D(s), D(s) := ((dnij — dnj(s)), 1<i<n, 1<iKp; A(s
asin (2.3.32), 0<5 < 1; X asin (4.2.11); V. i= (Yo ot Bl = (23,
o ) with ()2 Vs, 0, 16) = 40, 0.

Call the condition (11) by the name of (11*) if it holds when (Ty ,
Gyp) is replaced by (I‘;, Lp). Analogous to Theorem 5.5.4 we have

Theorem 5.5.6. Assume that (1.1.1) holds with the actual d.f.’s of the
errors {eni, 1 <i < n} equal to {Fni, 1 <i< n}. In addition, assume that

D, X, Fui} satisfy (NX ), (2), (3), (2.3.3b), (3.2.12), (3.2.35), (3.2.36) with
{ »i} 1<j« p,( 1 <)1 g 1)1 & V g and 8128 Let {Ln} be a sequence of
d f s on [0 1] satzsfyzng (58). Then

(62) (By— A7) A 20 A6 - A7) = 05(1),
where A" satisfies the equation

(63) 2. AN (A - ) = T

If, in addition,

(64) (2a)™" eists forn 2 p,

then,

(65) A8y~ B) = (2a) ' Ta + 0p(1),

where Ty and Bp are defined at (61).

The proof of this theorem is similar to that of Theorem 5.5.3. The
details are left out for interested readers. See also Section 4.3. o
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Remark 5.5.3. Discussion of the assumptions (1) — (10). Among the
assumptions (1) — (10), the assumptions (7) and (9) are relatively harder to
verify. First, we shall give some sufficient conditions that will imply (7), (9)
and the other assumptions. Then, we shall discuss these assumptions in
detail for three cases, v.i.z., the case when the errors are correctly modeled to
beii.d. F, F aknown d.f., the case when we model the errors to be i.i.d. F
but they actually have heteroscedastic gross errors distributions, and finally,
the case when the errors are modeled to be i.i.d. F but they actually are
heteroscedastic due to difference in scales.

To begin with consider the following assumptions.

(66) For any sequences of numbers {ani, bni}, ani < bni,
maxj (bni - a'ni) — 0,

. -y pbui 2
lim sup, max; (bni-ani) j; o f {fni(y+2)-tni(y)}” dGn(y) dz = 0.
(67) max; [ {75 dGn = O(1).

Claim 5.5.1. Assumptions (1) — (4), (66), (67) imply (7) and (9).

Proof. Use the C—S inequality twice, the fact that (d*ij)2 < d%j for all
i, j, and (2) to obtain

P , )
j{:l f[%df] {Fi(y + civ+ 6ki) = Fi (y + civ— 5&1)}]2 dGx(y)

bj
<23 ||di||2 fEi 0k j;i £ (y + z) dz dGx(y)
b.
< 4p?6® max; (26ni)—1 j; il f 2 (y+2) dGy(y)dz, (by Fubini),

where a; = — k;6 + c’iv, bi = kif + C’iV, 1 <i < n. Therefore, by (66), (67)
and (1),

Lhs. (7) < 4p26°%, (k = lim supy max; |fi|3 ),

which shows that (7) holds.
Next, by (2) and two applications of the C—S inequality

Lhs. (9) = B, [ [8: dy {Fs (5 + ciw) = Fi(y) — ciufi(y)}” dGa(y)

<p [B {Fi(y + cin) — Fi(y) — ciuf(y)}” dGa(y)
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=p{[B[ " (60 +2) - 1) dGuy)
+ 5[ L (6 + 2) — f(y))da] dCa(y)}

<o {ficin f7 15 + 2 - 1)) &

+ 35 (—eiw) [, [y +2) 1)} da] dGa(y)

ei’ul

¢ [max; (2]ciul)! [ {f(y+2)— 1(y)’dGa(y)dz]-

-4p ¥4 (cliu)2,

- ci’nI

where ¥ (¥3) is the sum over those i for which ciu 0 (c'iu < 0). Since
DA (ciu)2 < pB for all ueM(B), (9) now follows from (66) and (1). o

Now we consider the three special cases mentioned above.

Case 5.5.1. Correctly modeled i.i.d. errors: Fpi=F = Hpi, Gn=G.
Suppose that F has a density f w.r.t. A. Assume that

(68) (@) 0< [fdG<no, (b)) 0< [fdG<a.
(69) fF1-F)dG <.
(70) (a) lim [y +2) dG(y) = f1dG

(b) lim [y +2) dG(y) = [ dG.

Claim 5.5.2: Assumptions (1), (2), (4) with G = G, (68) — (70)
imply (1) — (10) with Ga = G.

This is easy to see. In fact here (5) and (6) are equivalent to (68a),
§69 and (70a); (66) and (67) are equivalent to (68b) and (70b). The LHS
10)=0

Note that if G is absolutely continuous then (68) implies (70). If G
is purely discrete and f continuous at the points of jumps of G then (70)
holds. In particular if G = §p, i.e., if G is degenerate at 0, o > f(0) > 0
and f is continuous at 0 then (682, 570) are trivially satisfied. If G(y) =y,
(68a) and (70a) are a priors satisfied while (69) is equivalent to assuming
that E|le;— ez < w, €1, €2 ii.d. F.



5.5 ASYMPTOTIC UNIFORM QUADRATICITY 145

If dG(y) = %F(y)(l — F(y))} ! dF(y), the so called Darling—
Anderson measure, then (68) — $70 are satisfied by a class of d.f.’s that
includes normal, logistic and double exponential distributions.

Case 5.5.2. Heteroscedastic gross errors: Hpj = F, Fpi= (1—6n:)F+6ni
Fo. We shall also assume that G, = G. Let f and f; be continuous
densities of F and F,. Then {F,i} have densities fy; =1+ bni (fo—1), 1
<i<n. Hence (3)is satisfied. Consider the assumption
(71) 0 < 5ni < 1) maxsi 6ni_’ 07

(72) [1F—F| dG < w.

Claim 5.5.3. Suppose that f, and f satisfy (68) and (70), F satisfies
€69), and suppose that (1), (2) and (4) hold. Then (71) and (72) imply (5) —
9).

Proof. The relation f;=f+ 6i(fo —f) implies that
Vj—-zidijcif=zidijci5i(fo—f), 1<j<p,
and
=B [1ds]* £ = B ldd® 61 (o~ 9.
Because X ||di||2 <p, % ||ci||2= p, we obtain
2
| [ [ra(y+x) — % [ldil* £y + x)]dG(y)|
¢ pmax; 8 | [[fo(y + %) —f(y + x)|dG(y)|, V xeR.

Therefore, by .(71), (68a) and (70a), it follows that (6) is satisfied. Similarly,
the inequality

p
z [ llv; =3 dsj ¢ 1]1* 4G ¢ 2p” max; & {1 4G + [ 4G}
ensures the satisfaction of (8). The inequality
| f % |dslI{Fs(1 — F5) - F(1 — F)} dG| < 2p max; 6 f |Fo—F| dG,

(69), (71) and (72) imply (5). Next,
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S8 + x) - (7)) d6(y)
<21+28) [{Iy +x) ~ 1)} dG(y) + 48 [ {fu(y + x) ~ fu(y)}* dG().

Note that (68b), (70b) and the continuity of f imply that
: 2 _
lim [{i(y + x) —1(y)}* dG(y) = 0

and a similar result for f;. Therefore from the above inequality, (70) and
71) we see that (66) and (67) are satisfied. By Claim 5.5.1, it follows that
7) and (9) are satisfied. o

Suppose that G is a finite measure. Then (F1) implies (68) — (70)
and (72). In particular these assumptions are satisfied by all those f's that
have finite Fisher information.

The assumption (10), in view of (72), amounts to requiring that

P
(73) jgl(zi: d;; 8)% = O(1).
But
p 2 n n ’ 2
(74) 5}31(? d;jé;)” = i§1 k§1 d; 6; dy &k € (fl} [Ids]| &5)°.

This and (2) suggest a choice of §; = p-ll 2 |lds|| will satisfy (73). Note that
if D=XA then ||d;|? = x3(X X) x;.
When studying the robustness of Bx in the following section, 6% =

p 'xi(X'X) !x; is a natural choice to use. It is an analogue of n /2
contamination in the i.i.d. setup. o

Case 5.5.3. Heteroscedastic scale errors: Hyp; = F, Fni.(y) = F(7n1y),
Gp = G. Let F have continuous density f. Consider the conditions

(75) TiZoni+1; oni>0, 1<i<n; max;onj— 0.
(76) lim [ |y|#(sy) dG(y) = [ Iy|#(¥) 4G(y), i=1,k=1;
j=0k=1,2.

Claim 5.5.4. Under (1), (2), (4) with Gp = G, (68) — (70), (75) and
(76), the assumptions (5) — (9) are satisfied.

Proof. By (41), (43), (49) and Theorems II.4.2.1 and V.1.3.1 of
Hajek—Sidak (op. cit.),
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(77) lim limsup max; [ |£(ri(y + x)) — f(y + x)|" dG(y) = 0,

1imf|f(y+x)-f(y)|’dG(y)=0, r=1,2
x+ 0

Now,
| [ lldsll? {Fs(1 - Fs) - F(1 - F)} G|
¢ 2pmas f | F(ry) ~ F(y)| dG(y) € 2p mass " [ Iy| sy) dG(y) s

= o(1), by (48) and (49) with j=1,r=1.
Hence (69) implies (5). Next,

| [ 1y + %) dG(y) - B |asll* [14G]

< % [|dsf| 2y f {[f(ri(y + x)) —f(y + x)|+|£(y + x) —£(y)| }dG(y)+
+ max; o3 p f £dG.

Therefore, in view of (48), (77) and (68) we obtain (6). Next, consider
[y + %) — £i(y)Y’ dG(y)
<4rd [{li(ri(y + %)) —f(y + ¥ + [y + %) —15)]° +
+ [f(rsy) —f(y)]z} dG(y)
R ) ey ) il 0 e 0 i 5.
[l -3 e” oG
<p’ max; [{rif(riy) - 1(y)}* 4G(y)
< 2p” max; 73 [ f {f(riy) — ()} dG(y) + [ dG] = o(1),

by (75), (70b), (77). Hence (70b) and the fact that E IIZ‘ ds; clll
implies (8). o
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Here, the assumption (10) is equivalent to having

(78) I [15 du{F(ry) - F5)H? dG(y) = O(1).

One sufficient condition for (78), besides requiring F to have density f
satisfying

(79) lim [ (yi(sy))* dG(y) = f (¥1(y))” 4G(y) < o,
is to have
(80) 3 A =o0(1).

1=1

“1/2 314 the other choice is a%

One choice of {03} satisfying (80) is oi=n
xxi(X X) x5, 1¢i¢<n

Again, if f satisfies (F1), (F3) and G is a finite measure then (68)
(70), (76% and (79) are a priori satisfied. O

Now we shall give a set of sufficient conditions that will yield (5.4.A1)
for the Q of (5.2.13). Since Q does not satisfy (5.3.21), the distribution of
Q under (1.1.1) is not idependent of f. Therefore care has to be taken to
exhibit this dependence clearly when formulating a theorem pertaining to Q.
This of course complicates the presentation somewhat. As before with
{Hni}, {Fni} denoting the modeled and the actual d.f.’s of {en;}, define for

0<s<1,yeR,teR’,
- -4 DS ’
(81) Hn(s’ Y, t) =1 1i§1 Hni(y - xnit)1

._ _1/2 ns ’ ’
mp(s,y) :=n i{Jl{Fni(y — xpifl) — Hai(y — xaif)},

N VPR . ‘.
Mln(sa Y) =1 i§1 {I(Ym <y)—Fai(y - xnlﬂ)},
dan(s, y) = dLn(S) dGn(y).
Observe that

Q(t) = [ [Muns, y) + ma(s, y) -/ {Has, y, )Ha(s, y, A}’ dea(s, ).

Note that the single integral is over the set [0, 1]xR.
Assume that {Hp;} have densities {hpj} w.r.t A and set
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—_ - ns ’
(82) Ra(s, ) =02 % xai hai(y — x:f),
_ . ,
ha(y) ;=" 3 iy — xnif), se0, 1], y € B,
l—/n = ARn, '.gln = I l_/n l—/n’ dan.
Finally define, for t € RP,
(83) Q(t) := [ [Min(s, ) + ma(s, y) + ¢ Ru(s, )I” daa(s, y).

Theorem 5.5.7. Assume that (1.1.1) holds with the actual and the
modeled d.f.’s of the errors {eni, 1 <1< n} equalto {Fpni, 1 <i< n} and
{Hxai, 1 £i < n}, respectively. In addition, assume that (1) holds, {Hpj, 1 < i <
n} have densities {hpi, 1 <i<n} w.rt. A, and the following hold.

(84) |h2|n = O(1).

(85) V ve M(B),V 6§>0,
- bni ,
lim sup, max; (26kn3) 1 j; o f hﬁi(y —Xnif + z) dGy(y) dz

= lim sup, max; f h2i(y — xnif) dGn(y) < o,
where ani = —0Kkni — CaiV, bni = Skni—CniV, Kni = ||Cnill, cni = Axpi, 1 <i < n.

(86) V¥ ued(B),

[ (o' [fa(s, v, B+ An) = Ha(s, v, B)] + w7} dans, y) = o(1).

(87) So' 8 Fuily - xaif) (1 - Fai(y — xaif) dGa(y) = O(1)
(88) S mi(s, ¥) dan(s, y) = O(1).

Then, YV 0 < B< o,

(89) E o, |Q(B + Au) — Q(Au)| =o(1).

The details of the proof are similar to those of Theorem 5.5.1 and are
left out as an exercise for interested readers.
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An analogue of (51) for A will appear in the next section as
Theorem 5.6a.3. Its asymptotic distribution in the case when the errors are
correctly modeled to be i.i.d. will be also discussed there.

We shall end this section by stating analogues of some of the above
results that will be useful when an unknown scale is also being estimated. To
begin with, consider K of (5.2.24). To simplify writing, let

(90) K3(s, u) := K ((1+s07'/%), Au), sER, ueRP,
Write as:= (1 + sn~*/2). Then from (5.2.24) and (90),

(91)  K(s,u) =j§1 S {¥3(yas, w) + 4i(vas, v) - B dij Hi(y)} dCu(y)

where H; is the d.f. of es, 1< i< n, and where 4§, Y are as in (9) and

({)3{),. respectively. Writing u3(y), Y3(y) etc. for ui(y, 0), Yi(y, 0) etc., we
obtain

(92) K(s, ) =j§31 [ {¥3(vas, w) = Y3(y) + p(yas) — () — syi(y)
+ Y30) + wu(y) + syvi(y) + mi(y)
+ u(yas, u) — pj(yas) — w vj(yas)
+ w[v(yas) = %(y)]}” dGaly)
where v; is as in (8) and
(93) vi(y) ="'/ % dusj ni(y), 1<j<p.
The representation (92) suggesting the following approximating candidate:
(94) K3(s, u) ‘=,-’§1 [15 + wy + syv; + my)? dGo.
We now state
Lemma 5.5.5. With v, asin (6), assume thatV |s| <b, 0< b < m,
(95) Lim lim supn f 7a((Lesn/2)y+x)dGu(y)
= lim supy f Yn(y)dGn(y) < w,

and
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(96) lim lim supn [ |y| (y+2y) dGa(y)

= lim supa [ |¥]%(y) dGa(y) < =.
Moreover, assume thatV (s, v)e[-b, b]xMB) =:4;, andV 6> 0

P n ’ -
(97) lim supnj§l f[igldtij{Fni(yas v cniv + 8§02y + kag)) -

- Fai(yas + cawv - 60 /2|y| + Kas))}]2 dGu(y)

<k&,

for some k not depending on (s, v) and 6.
Then,V 0< b, B < w,

68) B 3 f{Y3((+en ™y, u) - V)Y dGa = o)

where the supremum is taken over (s, u)et;.
1/2

b}

Proof. For each (s, u)ek;, with ag=1+sn

B3 f{¥3ves, 0) - YO} dGaly)

n bn
¢ f_:n J utyaee) dGa(s)ds + [ f 131 lyees) aCalis

where B, = B max; |||, bn = b~ 1/2

. Therefore, from (95) and (96), for
every (s, u)ed;,

B3 [ {¥ilrae u) - Y{))* dGaly) = (1)

Now proceed as in the proof of (16), using the monotonicity of Vjq(a, t),
pi(a, u) and the compactness of 4; to conclude (98). Use (97) in place of
(7). The details are left out as an exercise. o

The proof of the following lemma is quite similar to that of (30).

Lemma 5.5.6. Let G;(y) = Gqn(y/ar). Assume that for each fized

(7, u)eds, (8) and (9) hold with Gn replaced by Gn. Moreover, assume the
following:
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09  E [6i0) dGuly) = o)
(100) I [ 1480529 ~ ) - i)} dGaly) = 1), ¥ [s] <.
Then,V0O < b, B < u,

p
(101) sup 3 f {u}(yas, ) — i(ar y) — wwiar y)}* dGa(y) = o(1),
and
(10 swp B [ {48va) ~ 505) — ()} dGaly) = of1)

where the supremum in (101), (102) is taken over (s, u) €4, |s| < b,
respectively.

Theorem 5.5.8. Let Yy, .. Ynn be mdependent r.v.’s with respective

d.f’s Fni, .., Fon. Assume (1) — (5), (8), (10), (95) — (97) and the
conditions of Lemma 5.5.6 hold. Moreover assume that for each |s <b

(103) B, [ l(ra0) @I dGaly) = (1)
Then,¥V 0<b, B < m,
(104) E sup |K}(7, u) - K;(T, u) = o(1).

where the supremum is taken over (s, u)ed;.
The proof of this theorem is quite similar to that of Theorem 5.5.1. O

5.6. ASYMPTOTIC DISTRIBUTIONS, EFFICIENCES AND
ROBUSTNESS

5.6a. Asymptotic Distributions and Efficiences

To begin with consider the Case 5.5.1 and the class of estimators {BD}

Recall that in this case the errors {en;} of (1.1.1) are correctly modeled to
be iid. F, i.e, Hpj=F = Fy;. We shall also take Gn = G, GeDI(R).
Assume that (5. 5. 68) — (5 5.70) hold. The various quantities appearing in
(5.5.37) and Theorem 5.5.3 now take the following simpler forms.
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(1) Ta(y) =AX'Df(y), yeR,  B.=AX DD'XA [1dG,

.9'n=—AX'DfY;fdG.

Note that #;. will exist if and only if the rank of D is p. Note
also that

(2) 2319, =D xA)! [Y; 4G / (f*4G)™
= (D'XA [dG)™" 5; di [#(es) — E(es)],
where Y(y) = f ! fdG, yeR.

Because Gy = G € DI(R), there always exists a geLg(G) such that g
> 0, and 0 < [g2dG < w. Take g, =g in (5.5.11). Then the condition
(5.5.11) translates to assuming that

(3) lim inf,, "iﬁf |6'D’ XAl > a for some a > 0.
0l|=1

Condition (5.5.12) implies that ¢ D'XA0>0 or 6 D'XA 0¢0, V
[|#l =1 and V n > 1. It need not imply (3). The above discussion together
with the L-F Cramer-Wold Theorem leads to

Corollary 5.6a.1. Assume that (1.1.1) holds with the error r.v.’s

correctly modeled to be i.i.d. F, F known. In addition, assume that (5.5.1),
(5.5.2), (5.5.12), (5.5.68) — (5.5.70), (3) and (4) hold, where

(4) (D"XA)™! ezists for all n 3 p.
Then,
(5) A'(B—A)=(D'XA f£aG) ™" B dui [#ens) — Ev{eas)] + 0p(1).

If, in addition, we assume

(6) ax [14uill” = o(1),

then

(7 5 ATH(By— B) — N(O, o)
where

%, := (D' XA)'D'D(AX'D)™,  r2=Var y(er)/(f£dG)’. o
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For any two square matrices L; and L, of the same order, by
L{> L, we mean that L; — L, is non—negative definite. Let L and J be

two pxn matrices such that (LL')'1 exists. The C-S inequality for
matrices states that

(8) 33 > JL'(LL) LY’ with equality if and only if J « L.
Now note that if D = XA then ED = I p. In general, upon choosing
J=D',L=AX in (8), we obtain
D'D)D XA-AX'D or %> Ipg
with equality if and only if D « XA. From these observations we deduce

Theorem 5.6a.1. (Optimality of BX) Suppose that (1.1.1) holds with

the error r.v.’s correctly modeled to be i.i.d. F. In addition, assume that
(5.5.1), (5.5.4) with Gp = G, (5.5.68) — (5.5.70) hold. Then, among the class

of estimators {B; D satisfying (5.5.2), (5.5.12), (3), (4) and (5)}, the
estimator that minimizes the asymptotic variance of b'A—l(BD — f), for
every beRP, is ﬁx—the ﬁn with D = XA. O

Observe that under (5.5.1), D = XA a priori satisfies (5.5.2), (3), (4)
and (6). Consequently we obtain

Corollary 5.6a.2. (Asymptotic normality of BX.) Assume that (1.1.1)

holds with the error r.v.’s correctly modeled to be i.1.d. F. In addition,
assume that (5.5.1) and (5.5.68) — (5.5.70) hold. Then,

A(B, - B) — N(0, 2pp). o

Remark 5.6a.1. Write BD(G) for BD to emphasize the dependence

on G. The above theorem proves the optimality of ﬁx(G) among a class of
estimators {ﬁD(G), as D varies}. To obtain an asymptotically efficient

estimator at a given F among the class of estimators {Z?X(G), G varies}

one must have F and G satisfy the following relation. Assume that F
satisfies (3.2.a) of Theorem 3.2.3 and all of the derivatives that occur below
make sense and that (5.5.68) hold. Then, a G that will give asymptotically

efficient ﬁX(G) must satisfy the relation
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—£dG = (1/1(f))-d({/1), If) := [ (i/f)°dF.

From this it follows that the m.d. estimators ﬂX(G), for G satisfying the

relations dG(y) = é2/3)dy and dG(y) = 4ddy(y), are asymptotically
efficient at logistic and double exponential error d.f.’s, respectively.

For Z‘JX(G) to be asymptotically efficient at N(0, 1) errors, G

would have to satisfy f(y)dG(y) = dy. But such a G does not satisfy
(5.5.58). Consequently, under the current art of affairs, one can not estimate

f asymptotically efficiently at the N(0, 1) error d.f. by using a ﬁx(G).
This naturally leaves one open problem, v.i.z., Is the conclusion of Corollary
5.6a.2 true without requiring [fdG < o, 0 < jfsz < of? ul

Observe that Theorem 5.6a.1 does not include the estimator f; — the
,Z‘In when D = n1/2[1, 0, ..., Olnxp i.e., the m.d. estimator defined at (5.2.4),

(5.2.5) after Hy; is replaced by F in there. The main reason for this being
that the given D does not satisfy (4). However, Theorem 5.5.3 is general
enough to cover this case also. Upon specializing that theorem and applying
(5.5.49) one obtains the following

Theorem 5.6a.2. Assume that (1.1.1) holds with the errors correcit
modeled to be i.i.d. F. In addition, assume that (5.5.1), (5.5.68) — (5.5.70
and the following hold.

(10)  FEither
n 29340 0 forall 1<i<n, all || =1,

or
0 Y29.x,:A0< 0 forall 1<i<n, all ol = 1.
(11) liminf, inf |nY/20%,A0] > a> 0,
o=1
where Xy is as in (4.2a.11) and 0, is the first coordinate of 0. Then
(12) n'/%2,A- A7 (Bi— B) = Zn [ [ 4G + (1),

where
Zo =1 Y23, {¥(eni) — E¢(eni)}, with ¢ asin(2).

Consequently, n'/ 27:;,(,31 — f) is asymptotically a N(0, 72) r.v. o
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Next, we focus on the class of estimators {ﬂ]‘;} and the case of i.1.d.

symmetric errors. An analogue of Corollary 5.6a.1 is obtained with the help
of Theorem 5.5.4 instead of Theorem 5.5.3 and is given in Corollary 5.6a.3.
The details of its proof are similar to those of Corollary 5.6a.1.

Corollary 5.6a.3. Assume that (1.1.1) holds with the errors correctly
modeled to be 1.i.d. symmetric around 0. In addition, assume that (5.3.8),

(5};'5.1), (5.5.2), (5.5.4) with Gy = G, (5.5.68), (5.5.70), (3), (4) and (13) hold,
where

(13) S 1-F)da <o
Then,
(14)  AT(F— ) =—{2AX'D [£4G} ™ [W'(y) £(y)dG(y) + op(1),

where {'(y) := {(y) + f(~y) and W'(y) is W'(y, 0) of (5.5.32). If, in
addition, (6) holds, then

-1,-1
(15) X, A (6 -0 — N(0, 2pp). o
Consequently, an analogue of Theorem 5.6a.1 holds for ﬂ; also and

Remark 5.6a.1 applies equally to the class of estimators {ﬂ;((G), G varies},
assuming that the errors are symmetric around 0. We leave it to interested
readers to state and prove an analogue of Theorem 5.6a.2 for fi.

Now consider the class of estimators {ﬂ;} of (5.2.23). Recall the
notation in (5.5.61) and Theorem 5.5.6. The distributions of these estimators
will be discussed when the errors in (1.1.1) are correctly modeled to be i.i.d.
F, F an arbitrary d.f. and when L, = L. In this case various entities of
Theorem 5.5.6 acquire the following forms.

Py = 0; bi(s) = 1; D(s) = D, under (5.2.21);
* ’ -
T'a(s) = AXcD q(s), q=£(F");
’ ’ n
Fa=—AXD [Y)adl = AXcD 2 dui po(F(en);

2n=(AX:D D XcA) [’dL,

where X; and A, are defined at (4.2a.11) and where
u
eo(u) := [ q(s)dL(s), 0¢ugl.



5.6a DISTRIBUTIONS, EFFICIENCES, AND ROBUSTNESS 157
Asymptotic Distributions and Efficiencies

Arguing as for Corollary 5.6a.1, one obtains the following

Corollary 5.6a.4. Assume that (1.1.1) holds with the errors correctly
modeled to be 1.1.d. F and that L is a d.f. In addition, assume that (F1),
(NX¢), (5.2.21), (5.5.2), and the following hold.

(16) lim inf, "iﬁf 10D XA 0] 2 a>0
0||=1
(17) Either
0 dus(xai — %) A1020, V 1<igm, V [0 =1,
or
0 dni(xni —Xa) A10<0, VY 1<igm, V |6 =1.
(18) (D' XcAp) ™! exists for all n > p.
Then,
- ’ 1 _ n
(19) AT (6, - ) = (D XcA, fo q2dr)™ Z das 9(F(eni)) + 0p(1)-
If, in addition, (6) holds, then
* -1, -1 o* 2
(20) (5)ATE - B) — NO, Aly)
where % = (D'XcAr) 'D'D(AX:D) ™, of = Var (F(e))/( ] '?dL)2.
Consequently,
- *
(21) AT By~ B) — N(O, otlpep)
and {ﬂ;c} is asymptotically efficient among all {ﬁ*, D satisfying above
conditions}. o

Consider the case when L(s) =s. Then

-2
dh = ([Px)dx)? [ [[Fxry) - FERFG)E)E(y) dxdy.
It is interesting to make a numerical comparison of this variance with

that of some other well celebrated estimators. Let a‘%, C’%ad, a%s and a,z,s
denote the respective asymptotic variances of the Wilcoxon rank, the least
absolute deviation, the least square and the normal scores estimators of f.
Recall, either from Chapter 4 or from Jaeckel (1972) that
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oh = (1/12)-{f(x) dx} % olaa= (2£(0))% ofs= %

ohs = {[£x)/p(@7'(F))) dx} %

where o2 is the error variance. Using these we obtain the following table.

Table I
2
F & o} 0% ofad ok o
Double Exp. 1.2 1.333 1 /2 2
Logistic 3.0357 3 4 x 2/3
Normal 1.0946 /3 /2 1 1

It thus follows that the m.d. estimator ﬂ;c(L), with L(s) = s, is

superior to the Wilcoxon rank estimator and the l.a.d. estimator at double
exponential and logistic errors, respectively. At normal errors, it has smaller
variance than the l.a.d. estimator and compares favorably with the optimal

estimator. The same is true for the m.d. estimator ﬁX(F).

Next, we shall discuss B. In the following theorem the framework is
the same as in Theorem 5.5.7. Also see (5.5.82) for the definitions of wy,
B etc.

Theorem 5.6a.3. In addition to the assumptions of Theorem 5.5.7
assume that

(22) lim inf, inf | f 7 danl| > a, Jor some a > 0.
4 ll6l]=1

Moreover, assume that (10) holds and that

(23) B! ezists for all n 3 .

Then,

(24) ANB-8) =—Ba' [ [Fuls, y){ Hin(s, y) + mas, y)} dens, y) +

+ op(1).
Proof. The proof of (23) is similar to that of (5.5.51), hence no details
are given. 0

Corollary 5.6a.5. Suppose that the conditions of Theorem 5.6a.3 are
satisfied by Fni=F =Hp;, Gn=G, Ly =L, where F s supposed to have
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continuous density f. Let
141 -1 Dns nt ’
(2) C=[f[[ [ {An"E 3 xixifi(y)ii(y) A} (sn)-
-{F(yAz) — F(y)F(2)}] dafs, y) daft, 2),
where fi(y) = f(y — x'iﬂ), and dofs, y) = dL(s)dG(y). Then the asymptotic
distribution of A} (B— f) is N(0, Bo(f)) where %o(f) = Bn'CBnl. o

Because of the dependence of ¥; on g, mno clear cut comparison
between B and Bx in terms of their asymptotic covariance matrices seems

to be feasible. However, some comparison at a given f# can be made. To
demonstrate this, consider the case when L(s) =s,p=1 and f; = 0.
Write x; for xi; etc.

n
Note that here, with r,% = '21 xzi,
i=
_ -2 1_1 ns .ns . .
Bn = Tx _/; n i{llxljijlxj ds ff2 dG,
-2 ll_lns.nt.
C=1x j;j;n i§1 Xi j§1 xj (sAt) dsdt

[ [[F(yAz) — F(y)F(2)] d(y) do(z).
Consequently
-9 1 41 -1 Ds nt
Tx _/; j; (s A t)n igl xij)gl xj dsdt

2o(0) = T2=1,-72,  say.
ns ns

-2 ! 4 ) 12
(7x j; n ._lxljizllxj ds)

i=

Recall that 72 is the asymptotic variance of 7x(fx — f). Direct
integration shows that in the cases x; =1 and x;=i, r, — 18/15 and
50/21, respectively. Thus, in the cases of the one sample location model and
the first degree polynomial through the origin, in terms of the asymptotic

variance, fx dominates § with L(s)=s at f=0. o
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5.6b. Robustness

In a linear regression setup an estimator needs to be robust against
departures in the assumed design variables and the error distributions. As
seen in Section 5.6a, one purpose of having general weights D in BD was to

prove that ﬁx is asymptotically efficient among a certain class of m.d.

estimators { B])’ D varies}. Another purpose is to robustify these estimators

a%a.inst the extremes in the design by choosing D to be a bounded function
of X that satisfies all other conditions of Theorem 5.6a.1. Then the

corresponding BD would be asymptotically normal and robust against the

extremes in the design, but not as efficient as BX' This gives another
example of the phenomenon that compromises efficency in return for
robustness. A similar remark applies to {ﬁ;} and {ﬂ;}

We shall now focus on the gualitative robustness (see Definition 4.4.1)
of Bx and ﬂ;(. For simplicity, we shall write B, f', for B, ﬂ;{ in the rest
of the section. To begin with consider A. Recall Theorem 5.5.3 and the
notation of (5.5.37). We need to apply these to the case when the errors in

(1.1.1) are modeled to bei.i.d. F, but their actual d.f.’s are {Fyni}, D= XA
and G, = G. Then various quantities in (5.5.37) acquire the following form.

(1)  Ta@y) = AX A’ (3)XA, 2, = AX' [A'TIA" 4G XA,

Tn= [Tu(y)AX [aa(y) + Ba(y)] G() = Zn + b, 527,

where

(2) = X(X X)'X; b, := f Ta(y)AX A(y) dG(y);
ani(y) = I(eni < ¥) — Fui(y),
Ani(y) := Fai(y) — F(y), 1<i¢n, yeR;

’

’
an = (anl; Qn?2y --.vy ann), An = (Anl; An27 ey Ann)°

The assumption (5.2.1) ensures that the design matrix X is of the

full rank p. This in turn implies the existence of 3;1 and the satisfaction
of (5.2.2), (5.2.12) in the present case. Moreover, because Gp = G, (5.2.11)
now becomes
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(3) lim infy IIiﬁf kn(0) > v, forsome 7> 0,
0)|=1
where
kn(0) := 0’ AX” [ A" gdG XA, e =1,

and where g is a function from R to [0, ﬂ, 0< JgrdG <w r=1,2.
Because G is a o—finite measure, such a g always exists.
Upon specializing Theorem 5.5.3 to the present case, we readily obtain

Corollary 5.6b.1. Assume that in (1.1.1) the actual and modeled d.f.’s
of the errors {eni, 1 <i<n} are {Fpni, 1<i<n} and F, respectively. In
addition, assume that (5.5.1), (5.5.3) — (5.5.10) with D = XA, Hy; = F,
Gn =G, and(3) hold. Then

(4) AN (A=) = = B2 {Zn + ba} + 0p(1). 0

Observe that 3;1bn measures the amount of the asymptotic bias in
the estimator ﬂ when Fj;# F. Our goal here is to obtain the asymptotic

distribution of A_l([? — f) when {Fyj} converge to F in a certain sense.
The achievement of this goal is facilitated by the following lemma. Recall
that for any square matirx L, "L"m = sup{lﬁ;'Ln; It]] € 1}. Also recall the

fact that
’11/2
(5) I, < {rIL '},

where tr. denotes the trace operator.

Lemma 5.6b.1. Let F and G satisfy (5.5.68). Assume that (5.5.5)
and (5.5.10) are satisfied by Gp = G, {Fni}, Hai = F and D = XA
Moreover assume that (5.5.3) holds and that

(6) pu = [ (B [xs® |fos —£1)°dG = o(1).
Then with 1= Ipyp,

(i) | 20— 1f 24G||_ = o(1).

(i) 22! —1(f£dG) Y = o(1).

(i) |tr. n—p [£4G| = o(1).
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(iv) |3, [Im1%4G ~p [ £a6] = o(1)
(v) Iba — f AX An(y)f(y)dG(y)]| = o(1)-
(vi) 1% — [ AX aa(y)i(y)dG(y)]| = 0p(1).
(vii) "sallllzl | kn(6) — f1gdG| = o(1).

Remark 5.6b.1. Note that the condition (5.5.10) with D = XA,
Gn = G now becomes

(7) SIAX A)%4G = 0(1).

Proof. To begin with, because AX XA = I, we obtain the relation
’ ’ * ’ %*
Ta(y)Ta(y) — £2(y)1 = AX [A’(y) — f(y)1]XA- AX [A (y) — f(y)[] XA
= AX'C(y)XA- AX C(y)XA
=%y)? (y), v €R,

where C(y) == A'(y) —=I£(y), y) := AX C(y)XA, y € R. Therefore,
8 || Ba-1 f f2dG||m5 ||:ﬁ1<)1 f"t',(y)g' (¥l dG(y) ¢ f {tr.LL'}1/2dG
where L =70 . Note that, by the C—S inequality,

9) tr. LL = tr. 202 D¢ {tr.70 }%
Let é;=1f;—1f, 1<i<n. Then

(10) |tr.2D"| = |tr. %; 5j Ax; x3A- Ax;x;A - 66|
= |31 5 66 (xj AAxs)’|
<3i% |66 - [Ix:Al? - fIxj Al
= (% || Axil®] &) = pu.
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Consequently, from (8) — (10),
(1) |20 —1f£dGI|_< [ (% [|Axill?|f; —£])%dG = o(1), by (6).

This proves (i) while (ii) follows from (i) by using the determinant and
cofactor formula for the inverses.
Next, (iii) follows from (6) and the fact that

(12) |tr. 8a—p [ dG| = | [tr.90" dG| < pn, by (10).
To prove (iv), note that with D = XA,

p 2 n n ’ ’

z SInl*d6 =2 B [xiAAx xiAAx; fi(y)f(y) dG(y).

Note that the r.h.s. is p jfsz in the case f;=f Thus

p 2 V4
(13) |2, [l 4G —p f£dG| = | [190"dG] < pu.

This and (6) proves (iv).
Similarly, with d} (y) denoting the jtk row of My), 1< j< p,

Ibn — [ AX"An fdG? = || [ 2AX" A dG|?

- ,-’5, {[ di(y)AX’ An(y) dG(y)}?

(14) < pn [IIAX" An(y)|I? dG(y)

and

(15) 1% — [ AX aa(y) £(y)AGH)I* < pu [ IAX anl|*dG.
Moreover,

(16) E[|AX a||® dG = '3 |xiA|® Fi(1 - Fy) dG.

Consequently, (v) follows from (6), (7) and (14) whereas (vi) follows from
(5.5.5), (6), (15) and (16). Finally, with /% = AX'¢!/2, v ¢,
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|ka(6) — [18dG| = |0 [DgdG 0] = []|6'9'/%| gaG.

Therefore,
";ﬁglmm — [18dG]| < [ {5: | Axi|®|f; — 1]} gdG
<om{fe2dG}/?=0(1),  by(6). @

Corollary 5.6b.2. Assume that (1.1.1) holds with the actual and the
modeled d.f's of {eni, 1 <i< n} equalto {Fpni, 1<i<n} and F,
respectively. In addition, assume that (5.5.1), (5.5.3) — (5.5.7), (5.5.9),
(5.5.10) with D= XA, Hy;=F, Gp = G; (5.5.68) and (6) hold.

Then, (5.5.8) and (2) are satisfied and

(17) A (B-B) = —(f1%4G) ™" {Zn + bn} + 0p(1)

where
Zn = [ AX aa(y) d¥(y) = A i xai [Yens) — [ 9(x)dFni(x)],
bo = [AX Ax(y) d¥(y) = [ %5 Axai [Fai — F] 4y,
with ¢ asin (5.62.2). o
Consider Zy. Note that with o2 := Var{y(ens)|Fni}, 1<i<n,
E ZoZn = 5 AxnixaiA- 0.
One can rewrite

ot = [ [[Fai(xty) - Fu(x)Fai(y)] d(x)dyy), 1<i<n.

By (5.5.68a), 9 is nondecreasing and bounded. Hence max; ||Fni —F|| — 0

readily implies that max; ok — ot P = Var{y(e)|F}. Moreover, we
have the inequality

|EZuZa — Ty | < B | Axad]® | o2i — o”].
It thus readily follows from the L-F CLT that (5.5.1) implies that Zp =

N(o, azlp,p), if max; ||Fn; — F||m — 0. Consequently, we have
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Theorem 5.6b.1. lSQualitative Robustness). Assume the same setup
and conditions as in Corollary 5.6b.2. In addition, suppose that

(18) maxs [[Fas — Fl|_ = of1),
(19) 1Al = o).

- n
Then, the distribution of B under i1:[ ani converges weakly to the degenerate
distribution, degenerate at .

Proof. It suffices to show that the asymptotic bias is bounded. To
that effect we have the inequality

I £dG) ™" ball® < [1IAX"AJ? dG < a, by (7).

From this, (17), and the above discussion about {Z,}, we obtain that ¥ 7>
0 3 Ky such that Pn(Ep) — 1, where Pn denotes the probability under

_ﬁani and Eq= {||A_1(B — B)|l < Kn}. Theorem now follows from this and
1=
the elementary inequality ||B— B < [|All_|A™*(B-B)I. o

Remark 5.6b.2. The conditions (6) and (18% together need not imply

(5.5.7), (5.5.9) and (5.5.10). The condition (5.5.10) is heavily dependent on
the rate of convergence in (18). Note that

&2 . A2 A2
(20) 1Ball? < min{g(o) [ |AX" All%dy, (f1%4G) []|AX A|?dG}.
This inequality shows that because of (5.5.68), it is possible to have
||‘f>n||2 = O(1) even if (7) (or (5.5.10) with D = XA) may not be satisfied.

However, our general theory requires (7) any way.
Now, with ¢ =9 or G,

(21) [IAX Al%dp = [ % x1AAx; As Aj dp
< f (5 [l Axi | As]de.
Thus, if
*
(22) Zi [[Axil| |Fi(y) — F(y)| < k An(y), yER,

%*
where k is a constant and A, is a function such that
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(23) lim supy [ (Ar)’dy <o,

then (7) would be satisfied and in view of (20), ||ba|| = O(1).

Inequality (223 clearly shows that not every sequence {Fpi}
satisfying ((16 , (18) and (5.5.3) —{(5.5.9) with D = XA will satisfy (7). The
rate at which Fji3 F is crucial for the validity of (7) or (22). o

We now discuss two interesting examples.

Example 5.6b.1. Fp; = (1 — 6pi)F + 6ni Fo, 1 <i < n. This is the
Case 5.5.2. From the Claim 5.5.3, (5.5.5) — (5.5.9) are satisfied by this
model as long as (5.5.68) — (5.5.70) and (5.5.1) hold. To see if (6) and (7)
are satisfied, note that here

pu= (% | Axi]|® 6 |£ - £ol))’dG < 2 max; 82 p? - [ (£ + £)dG],
and
% || Axil| |Fi —F| = Z; [|Ax;]|6; |F — Fo.
Consecguently, here (6) is implied by (5.5.68) for (f, G), (f, G) and by

(5.5.71), while (7) follows from (5.5.72), (21)—(23) upon taking
A: = |F — Fy|, provided we additionally assume that

(24) %; ||Ax;| 6 = O(1).
There are two obvious choices of {é;} that satisfy (24). They are:
(25) (a) Gai=n% or (b) Gi=p Y?|Axni, 1¢i¢n.

The gross error models with {6;} given by (25b) are more natural
than those given by (25a) to linear regression models with unbounded
designs. We suggest that in these models, a proportion of contamination one

can allow for the ith observation is p_l/ 2||Axi||. If 6; islarger than this in
the sense that 3; ||Ax;||6; — o then the bias of B blows up.

Note that if G is a finite measure, {f uniformly continuous and %&}
are given by (25b) then all the conditions of the above theorem are satisfied
by the above {Fi} and F. Thus we have

Corollary 5.6b.3. FEvery f corresponding to a finite measure G 1is
qualitatively robust for B against hetroscadastic gross errors at all those F’s
which have uniformly continuous densities provided {6;} are given by (25b)
and provided (5.5.1) and (19) hold. o
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Example 5.6b.2. Here we consider {Fp;} given in the Case 5.5.3.
We leave it to the reader to verify that one choice of {oyni} that implies (7)
is to take

(26) oni = || Axal|, 1<ign

One can also verify that in this case, (5.5.68) — (5.5.70), (5.5.75) and (5.5.76)
entail the satisfaction of all the conditions of Theorem 5.6b.1. Again, the
following corollary holds.

Corollary 5.6b.4. Every f corresponding to a finite measure G is
qualitatively robust for B against hetroscedastic scale errors at all those F’s
which have uniformly continuous densities provided {oni} are given by (26)
and provided (5.5.1) and (19) hold. o

As an example of a o—finite G with G(R) = » that yields a robust
estimator, consider G(y) = (2/3)y. Assume that the following hold.

(i) F, F, have continuous densities f, fp; 0 < f fzd)\, f f% d) < .

(i) [F1-F)dr<a. (iif) [IF=Fgld) < .

Then the corresponding p is qualitatively robust at F against the
heteroscedastic gross errors of Example 5.6b.1 with {653} given by (25b).

Recall, from Remark 5.6a.1, that this J is also asymptotically

efficient at logistic errors. Thus we have a m.d. estimator f that is
asymptotically efficient and qualitatively robust at logistic error d.f. against
the above gross errors models!!

We leave it to an interested reader to obtain analogues of the above

results for * and . The reader will find Theorems 5.5.4 and 5.5.6 useful
here. ]

5.6c Locally Asymptotically Minimax Property

In this subsection we shall show that the class of m.d. estimators {f'} are
locally asymptotically minimax (l.a.m.) in the Hijek — Le Cam sense (Hijek
(1972), Le Cam (1972)). In order to achieve this goal we need to recall an
inequality from Beran $1982) that gives a lower bound on the local
asymptotic minimax risk for estimators of Hellinger differentiable functionals
on the class of product probability measures. Accordingly, let Qpni, Pni be
probability measures on (R, #), tni, ¥ni be a o—finite measures on (R, .Z)
with vpj dominating Qni, Pni; qni := dQni/d¥ni, Pni:= dPni/dvpi; 1<i<n.
Let Qo = Qpx....xQpn and P2 = Ppyyx....xPy, and IIn denote the class of
all n—fold product probability measures {Q2} on (Re, 2n).
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Define, for a ¢ > 0 and for sequences 0 < 71— 0, 0 < 72 — 0,
Ha(Pr,c) = {Qn € % %: f (il — pat?)dums < ¢,

F(P2,¢,7n) = {Quelln; Que H#(Pn,c), max; f (qni — Pai) dpins < Mt

1
max; [ (qnf?~ pai®)2dvns < mna),

where 1’ := (a1, 7n2).

DEFINITION 5.6¢c.1. A sequence of vector valued functionals {Sj:

Mo R, n > 1} is Hellinger—(H-) differentiable at {Pn € IIn} if there exists
a triangular array of px1 random vectors {&ai, 1 <1< n} and a sequence of
pxp matrices {An, n > 1} having the following properties:

(i) f €nidPpni =0, f I €nill®dPns < o, 1i<n; B f énini’ dPni = Ipxp.
(ii) For every 0 < ¢ < o, every sequence 7 — 0,

supl| An{Sa(Q®) — Su(P2)} — 2 5 [ £us paii(ant’ — pad’”) dumill = o(1)
where the supremum is over all Qn € J4(P2,c, 7).
(iii) For every e > 0 and every a€RP, with |of =1,

% [ (e &n3)I(] @ &ns] > €) dPps = o(1).

Now, let Xpy, ..., Xnn be independent r.v.’s with Quqy, ..., Qun

denoting their respective distributions and S, = S.(Xnt, -, Xnn) be an
estimator of Sp(Qn). Let % be a nondecreasing bounded function on [0, ]

to [0, ») and define the risk of estimating Sp by Sp to be
(1) Ra(Sn, Qn) = En{ (|| 4n{Sa — Sa(Q)}},

where En is the expectation under Qn.

Theorem 5.6¢c.1. Suppose that {Sp: IIn - RP, n> 1} is a sequence of
H-differentiable functionals and that the sequence {Pnelln} is such that

(2) maxifpﬁi dpmi = O(1).

Then,
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(3) lim lim inf, inf sup Rn(Ss, Q) 2 E %(||Z||
o 80 QUE J(Pn,c,mn) L

where Z is a N(0, Ipxp) 7. 0.

Sketch of a proof. This is a reformulation of a result of Beran (1982),
pp 425—426. He actually proved (3) with J4(Pn,c,7,) replaced by
# n(Pn,c) and without requiring (2). The assumption (2) is an assumption
on the fixed sequence {Pn} of probability measures. Beran’s proof proceeds
as follows:

Under (i) and (iii), there exists a sequence of probability measures
{Qu(h)} such that for every 0 < b < o,

W (S0, B (a0~ (0/2) b s il s = o),
Consequently,
(5) lim, o 51 f {ah2(h) — paf?Ydvs = 47102,

b|<b

and for n sufficiently large, the family {Qn(h), ||h|| < b, heRP} is a subset
of H#n(Pn,(b/2)). Hence,V c > 0,V sequence of statistics {Sp},

(6) liminfpinf, sup Ra(Sn,Qn)
Sn QRE & n(PD,c)

> lim infy inf_  sup Ra(Sn,Qu(h)).
Sn ||b]| <2¢

Then the proof proceeds as in Hijek — Le Cam setup for the parametric
family {Qn(h), ||h|| < b}, under the La.n. property of the family {Qn(h),
|hj| < b} with b = 2c, which is implied by (4).

Thus (3) would be proved if we verify (6) with &% ,(Pn,c) replaced by
Jn(Pn,c,m,), under the additional assumption (2). That is, we have to show
that there exist sequences 0 < 7n; — 0, 0 < 7y2 — 0 such that the above
family {Qn(h), ||k } < b} is a subset of Jg(Pn Sb/2),nn) for sufficiently
large n. To that etfect we recall the family {Qn(h3 from Beran. With &
as in (i) — (iii), let £nij denote the jth component of &ni, 1< j<p,1<i<n.
By (ii1) there exist a sequence €y > 0, €n | 0 such that

2
max % [ o 1 nsil > en) dPas = o(1).

Now, define
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* * %*
fnsj = ot I &ngj] <€), Tngjo= oty — [ batj dPmi, 1S,

i = (& -, &nip)’s 1<i<n.
Note that
(7) [€nill < 2pen, fznidpni =0, 1<i<n.
Fora 0 <b<w, ||h]| <b,1<i<n,define
ni(h) = (1 + b’ &43)pni, en < (2bp) 7,
= Pni, en > (2bp) L.

Because of (7), {gni(h), |[b]l < b, 1 <i < n} are probability density
functions. Let {Qqi(h ;(&hl <b, 1<ig 13 denote the corresponding
probability measures and Qu(h) = Qni(h)x....xQnn(h).

Now, note that for |[h|| < b, 1<i<n,
f(Qni(h) —Pni)2 dpni = 0, €n 2 (2bp)_1,

= f (h'%ai)’phi dpmi,  €a < (2bp) .
Consequently, since en | 0, en < (2bp)—1 eventually, and

":ﬁgb max; [ (qni(h) — Pai)” dpmi ¢ (2pen)? b max; pas dfini =* lnt.

Similarly, for a sufficiently large n,

||1S1ﬁl<)b max; f (q:ll/i2(h) - pxll/i2)2 dvni < 2bpen =: 73, say.

Because of (2) and because €n | 0, max{#n1, Mn2} — 0.

Consequently, for every b > 0 and for n sufficiently large, {Q2(h),
||| < b} is a subset of %(Pn,(b/2),7]xg with the above #ny, 7n2 and an
analogue of (6) with &% n(Pn,c) replaced by J(Pn,(b/2),m,) holds. The
rest is the same as in Beran. o

We shall now show that f" achieves the lower bound in (3). Fixa

P € RP and consider the model (1.1.1). As before, let Fp; be the actual d.f.
of epi, 1 <i< n, and suppose we model the errors to bei.i.d F, F symmetric
around zero. The d.f. F need not be known. Then the actual and the
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modeled d.f. of Yp; of (1.1.1)is Fp;(- —x;,iﬂ), F(- —x;iﬂ), respectively.
In Theorem 5.6¢.1 take Xp;i = Ypi and {Qni, Pni, vni} as follows:

(8) QBi(Yni ¢ +) = Fui(- —xnih), PEi(Yai < -) = F(+ —xn3f),
ll'gi(')=G('—xI’liﬂ)7 Vni = A, 1<i<n.

Also, let Qg = lex fo,’n ; P; = Pglx ngn. The absence of f from

the sub— or the super— script of a probability measure indicates that the
measure is being evaluated at f = 0. Thus, for example we write Qn for

Q5 (=_ﬂani) and P™for Pj, etc. Also for an integrable function g write
1=

fg for [gdA.
Let fni, f denote the respective densities of Fpi, F, w.r.t. A. Then

qgi(') = fnig- — x,',iﬂ), pffi(-) =1(. — x;,iﬂ) and, because of the translation
invariance ot the Lebesgue measure,

(9)  #alPho) = {Qemr™; 5 [ {(f)"/2 - (8% < %)
= {Quem”; 3; [ (6262 - £/%)? ¢ P} = Hu(Pry).
That is the set J{n(P?,,c) does not depend on . Similarly,
H(Pyc, 1) = {QUEN™; Q€ Hu(P7c), max; f (fui — £)7 dG € My,
max; f (4%~ /2 maa} = Ja(Pr.c.m)

Next we need to define the relevant functionals. For teRP, yeR, 1<i<n,
define

(10) myi(y, ) = Fai(y + Xni(t — £) — 1+ Fai(—y + xai(t — ),
bu(y, t) := Zi Axai mai(y, t),
palt, Q%) = pnt, F) := [ [[ba(y, 1)|1* 4G(y),
F’ := (Fny, **+, Fon).

Now, recall the definition of ¢ from (5.6a.2) and let Ty(f, Qp = To(B, F)
be defined by the relation
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(11)  To(B, F) = f+ (X X [ £24G) " [ B xailFai(y) — 1 + Fus(—y)] dwAy).
Note that, with by(y) = bu(y, ),
(12) AT(Ta(B, F) - B) = ([124G) ™" [ba(y) di(y).

Some times we shall write Ty(F) for Ty(g, F).
Observe that if {Fpn;} are symmetric around 0, then Ty(B, F) = g

= Tu(B, Pp. In general, the quantity A-I(Tn(F) — f) measures the

asymptotic bias in A" due to the asymmetry of the errors.
We shall prove the La.m. property of f° by showing that T, is H-

differentiable and that f° is an estimator of T, that achieves the lower
bound in (3). To that effect we first state a lemma. Its proof follows from
Theorem 5.5.4 in the same fashion as that of Lemma 5.6b.1 and Corollary
5.6b.2 from Theorem 5.5.3. Observe that the conditions (5.5.35) and
(5.5.11*) with D = XA, respectively, become

(13) [ 1ba(¥)I? dG(y) = O(1),

(14) lim inf, "iﬁf 0'AX' [A*gdGXA 02 a, foran a>0,
0l=1

where A" is defined at (5.5.38) and g is as in (5.6a.3).

Lemma 5.6c.1. Assume that (1.1.1) holds with the actual d.f.’s of {eni,

1<i<n} equalto {Fpni, 1<ig n) and suppose that we model the errors to
be i.i.d F, F symmetric around zero. In addition, assume that (5.3%;
5.5.1), (5.5.3), (5.5.4), (5.5.6), (5.5.7), (5.5.9) with D = XA, G = G;
5.5.68), (5.6a.13), (5.6b.6) and (13) hold. Then (5.5.8) and its variant where
the argument y in the integrand s replaced by —y, (5.5.33), (14) and the
following hold.

(15) AT —Tu(F) = — {2 4G} " Zi + 0p(1), under {Q7}.
where

(16) T = % Axni {¥(-eni) — Yeni) — [ mii(y) dG(y)},

with mp;i(y) = mpi(y, f) and ¢ as in (5.6a.2). o

Now, define, foran 0 < a < o,
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Ho(P?, a) = {QUell’; Q* = ﬁFm, max; [ |foi—f|7dG —0,1=1,2,
max; [|Fas — Fl|_ — 0, [ [5: | Axnill |Fai — F|]* 4G < 2%}

Lemma 5.6¢.2. Assume that (1.1.1) holds with the actual d.f.’s of {eni,
1<i<n} equalto {Fni, 1 <i< n} and suppose that we model the errors to
be ii.d F, F symmetric around zero. In addition, assume that (5.3.8),
(5.5.1), (5. 5. 68) and the following hold.

(17) G is a finite measure.
Then, for every 0 < a < o and sufficiently large n,

Ao(P2,2) ) F(Pobam),  ba:= (4pa) V%, a:= G(R).
Moreover, all assumptions of Lemma 5.6¢.1 are satisfied.

Proof. Fixan 0 < a < w. It suffices to show that

(19) 5 f (42— 1722 <], n21,
and
(20) (2) max; [ (foi—f)’ dG <oy, D21,

(b) ma,xlf(fl/2 f1/2 <fnz, 121,
imply all the conditions describing (P2, a).
Claim: (19) implies [ [% [|Axnil| |Fni—F|?dG ¢a’,  n21.
By the C-S inequa.lity,
(21) IFnl(x) F lf ni _f
x
¢ f (fxlx/iz _f1/2) f (fxll/iz n f1/2)2
—w -
54f(,1,/i2—f1/2)2, 1<i<n, x€eR.
Hence,

S 1 | Axasl| |Fus — F|]? 4G < B || Axnsl)? - 21 f (Fas — F)® dG
< 4par-3; [ (6342 — 122,
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which proves the Claim.
The finiteness of G_ together with (21) and (20b) with #7ny — 0
imply that max; ||Fni — F||m — 0 in a routine fashion. The rest uses

(5.5.66), (5.5.67) and details are straightforward. O
Now let w&y) wW—y) — ¢(y), yeR. Note that dy( ry) —d¥(y), dep

=—2dy, d¢ = fdG and because F is symmetric around 0, [¢f = 0. Let
= Var{{(e)[F}, 7= [fdG, p=(y/0),
éni = &ni(Yni, B) = Axqi p(ens).
Use the above facts to obtain
25 [ £aily, B) 08 (i) - (oBiy)) /%Y dy
=25 Axos [ /2 (8347 — £/%)
= i Axai { [ 0 fas — [0 (852 - 1/2)2)
= —0"! % Axas{ [ [Fai — Fl dp— [ (B2 —£/3)?} .
(22) = 07'%; Axai {2 [ [Fui — F] 4G — [p (02? - £/%)7).

The last but one equality follows from integrating the first term by parts.
Now consider the r.h.s. of (12). Note that because F and G are
symmetric around 0,

S a 4G = [%; Axai [Fai(y) — 1 + Fas(—y)] d9(y)

= [%i Axui [Fai(y) — F(y) + Fai(—y) — F(-=3)] d¥(y)
(23) = 2 [ % Axyi [Foi — F] fdG.
Recall that by definition Tq(A, P%) = f. Now take Ap of (ii) of the H—

differentiable requirement to be A 7ol and conclude from (18), (22),
(23), that

14a{Ta(B, Q3) — Ta(B, PR)} -
— 2% [ &ai(y, A (i) - ofi() /Y gy |
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<1185 Axas f fp (6352 = £72)%)] < maxs || Axad] - floll_- b3 = o(1),

uniformly for {Qn} € J(P2,ba, ).

This proves that the requirement (ii) of the Definition 5.6c.1 is
satisfied by the functional T, with the {é,i} given as above. The fact
that these {éni} satisfy (i) and (iii) of the Definition 5.6c.1 follows from
(5.3.%), (5.5.1), (17), (18) and the symmetry of F. This then verifies the
H-differentiability of the above m.d. functional T,

We shall now derive the asymptotic distribution of A° under any
sequence {Qn} € A n(Pn, a), under the conditions of Lemma 5.6c.2. For

that reason consider Zp of (16). Note that under Qn, (1/2)Zy is the sum
of independent centered triangular random arrays and the boundedness of

and (5.5.1), imply, via the L—F CLT, that C;l/ 2 7% —2 N(0, Iyxp), where
Co=4'E 237} = % AxnixniA 025, 0oi= Var{tfeni) |Fai}, 1<i<n.
But the boundedness of ¢ implies that max; |a,211 - 02| -+ 0, for every
Qe A o(Pn, 2), where o? = Var {{(e;)|F}. Therefore o \Z, — N(0, Tpxp).
Consequently, from (15),

Lim lima supy ﬁggﬂmm (| 4(8"~Ta(6, Q)11 Q3} = E w(|1Z]).

for every bounded nondecreasing function %, where Z is a N(0, Ipxp) I. v..
This and Lemma 5.6c.2 shows that the sequence of the m.d.

estimators {f'} achieves the lower bound of (3) and hence is l.a.m. o

Remark 5.6¢.1. It is an interesting problem to see if one can remove
the requirement of the finiteness of the integrating measure G in the above

l.a.m. result. The l.a.m. property of {ﬂ} can be obtained in a similar fashion.
For an alternative definition of 1.a.m. see Millar (1984) where, among other

things, he proves the l.a.m. property, in his sense, of {B} forp=1.

A problem: To this date an appropriate extension of Beran (1978) to
the model (1.1.1) does not seem to be available. Such an extension would
provide asymptotically fully efficient estimators at every symmetric density
with finite Fisher information and would also be l.a.m. o

Note: The contents of this chapter are based on the works of Williamson (1979,
1982), Koul (1979, 1980, 1984, 1985a,b), Koul and DeWet (1983), Basaw and Koul
(1988) and Dhar (1991a, b). oo





